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Abstract—The last few years witnessed radical improve-
ments in lower-limb prostheses. Researchers have pre-
sented innovative solutions to overcome the limits of the
first generation of prostheses, refining specific aspects
which could be implemented in future prostheses designs.
Each aspect of lower-limb prostheses has been upgraded,
but despite these advances, a number of deficiencies re-
main and the most capable limb prostheses fall far short of
the capabilities of the healthy limb. This article describes
the current state of prosthesis technology; identifies a
number of deficiencies across the spectrum of lower limb
prosthetic components with respect to users’ needs; and
discusses research opportunities in design and control that
would substantially improve functionality concerning each
deficiency. In doing so, the authors present a roadmap of
patients related issues that should be addressed in order
to fulfill the vision of a next-generation, neurally-integrated,
highly-functional lower limb prosthesis.

Index Terms—Prosthesis, lower-limb, user’s needs, co-
morbidities.

I. INTRODUCTION

PROSTHESES were first developed to provide lower-limb
amputees with stability and support, and for cosmetic pur-

poses. Their optimization led to designs aiming at restoring not
only basic locomotion tasks but also more advanced movements
(e.g., running, cycling, swimming). In the developing world, the
estimated number of amputees is 40 million, and up to 90% of
amputations are performed in lower limbs [1].
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Designing the optimal prosthetic solution is a daunting task,
and the process must take into account the users’ needs, the
presence of comorbidities, and the technological challenges.
Previous reviews have addressed issues related mainly to the
technological aspects ([2], [3], [4]), here we are going to focus
on user-related matters. Lower-limb amputees present various
issues related to their walking pattern, weight distribution, and
perception of their prosthetic limbs (see Section II). These issues
affect the usability and comfort of the devices, and prostheses
design flaws might in turn aggravate them. On the prosthesis
design side, the most known issues are related to the poor
fitting and alignment of the socket system, the lack of sensorial
inputs from the artificial limb, and the mechatronic design of
the ankle-foot and knee components (e.g., reliability, weight,
comfort) (see Section II and Section III).

Addressing these issues will enable a next generation of lower-
limb prostheses (see Fig. 1), which will include improved socket
and suspension systems, the ability to provide both powered and
passive joint behaviors, improved integration between the knee
and ankle-foot components, and bidirectional delivery of motor
commands and sensory feedback.

In the following sections, we will review the state-of-the-art
relative to these aspects, highlight the most promising perspec-
tives and discuss how integrating them could lead to a novel
generation of prostheses, more effective in addressing patients’
needs.

II. USERS’ NEEDS, COMORBIDITIES, AND TECHNOLOGICAL

CHALLENGES

Amputees often present kinetic and kinematic asymmetries
during gait [5] and implement compensation strategies [6] lead-
ing to higher metabolic movement cost [5], [7], [8], [9]. Most
lower-limb amputees distribute their weight unevenly, leading to
back pain and joint degeneration due to uneven bone growth. The
presence of such conditions can cause the onset of comorbidities,
that impact amputees’ mobility and daily life [10], [11], [12] and
influence the medical care and rehabilitation process.

Lower-limb amputees often suffer from comorbidities and
related conditions [13], [14]: according to [15], less than 5%
of amputees are free of comorbidities, whereas 60% present
3 or more. The most common are peripheral vascular disease,
diabetes, lumbago and rheumatoid arthritis or osteoarthritis,
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Fig. 1. Schematic representation of (a) issues and limitations of current prosthetic system; (b) novel technologies to overcome these issues and
limitations to be included in future prosthetic system.

and their incidence is correlated to age, sex, cause of ampu-
tation, amputation level and presence of a bilateral amputation.
Diabetes mellitus is one of the main causes of non-traumatic
amputations, since it leads to neuropathy, soft tissue sepsis and
peripheral arterial occlusive disease [16]. Pathologies connected
to diabetes account for 82% of vascular-related amputations and
patients suffering from them have an increased risk of limb loss:
30 times greater if compared to non-diabetic ones [17]. Patients
with critical limb ischemia have a 12% probability of undergoing
an amputation procedure during the first 6 months after the
revascularization surgery [18]. Musculoskeletal comorbidities
are a direct consequence of the biomechanical alterations of an
amputee’s gait and are exacerbated by the use of prostheses with
poor fitting and weight distribution. Osteoarthritis, arthritis, os-
teoporosis, and osteopenia are the most common, but lower limb
amputations often also lead to back pain and postural changes
[19]. Osteoarthritis involves a degeneration of the cartilage, and
generally affects the knee and hip of the healthy limb due to the
increased stress to which these joints are subjected. Osteoporosis
and osteopenia involve a decrease in the bone density and
mass and tend to affect the amputated side. They are caused
by the tendency of the amputees of limiting the weight put on
the prostheses and by the subsequent insufficient loading of the
lower limb bones.

User satisfaction plays a key role in amputees’ rehabilitation
process and help to avoid prosthesis rejection and lead to better
prosthesis optimization [20], [21]. Several factors contribute to
prosthesis acceptance: appearance, aspect of the residual limb,
presence of pain, fit of the device, prosthesis properties and
use of the prosthesis (see Table I). Prosthesis properties, fit and
usability (i.e., locomotion task that are permitted and helped by
the prostheses) improve the acceptability and embodiment of the

prosthetic device, by allowing a better daily life use (e.g., easier
donning and doffing, easier maintenance, etc.) and promoting
user’s independence and mobility. In addition, a better fit of
the socket guarantees better control during movement and a
healthier residual limb (e.g., less irritation, skin rashes, etc.).
Prostheses’ appearance plays a key role regarding the accept-
ability of the artificial limb, both from the point of view of the
amputee and the society. It is therefore important to allow a
deep customization of the prosthesis to meet the aesthetic taste
of different demographic groups, avoiding early abandonment
and limited use of the device. All the above-mentioned factors
are not relevant for every amputee and are related to the level
of amputation, gender, liner use and social conditions (e.g.,
employment, marital status). In addition, no single parameter
significantly influences satisfaction on its own [22].

In order to accommodate the variable needs of amputees’ gait,
in addition to the presence of amputation-related pathologies and
user satisfaction parameters, several deficiencies of currently
available prostheses must be addressed. Table II reports an
illustrative summary of the most common deficiencies of lower
limb prostheses currently adopted by the majority of patients.
The table was compiled based on the outcomes of the focus group
meeting of MOTU++, held with a pool of amputee subjects,
clinicians, and engineers; and on the personal experience of
the researchers involved, backed up by the literature. In the
following sections of the manuscript we are going to address
state-of-the-art strategies to tackle each one of them. Designing
an optimal interface between the prosthesis and residual limb can
for instance help to overcome the biomechanical issues related
to amputation: uneven weight distribution, gait asymmetries,
atypical muscle activation and increased metabolic cost. In addi-
tion, a correctly designed socket system contributes to ensuring
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TABLE I
PROSTHETIC SYSTEMS USERS’ SATISFACTION FACTORS

TABLE II
COMMON DEFICIENCIES IN CURRENT PROSTHETIC SYSTEMS
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stability and promotes the embodiment, reducing the risk of
developing chronic conditions (e.g., arthritis and osteoarthritis)
[23]. The ankle-foot and the knee prostheses design are of
compelling importance: they need to be efficient, reliable, and
able to restore locomotion functions, avoiding the introduction
of harmful compensatory strategies and limiting the increase
of the metabolic cost. Sensory feedback is another key aspect
of a prosthesis, it helps in promoting usability, agency and
embodiment restoring the missing afferent sensorial pathways,
but to be effective it must be intuitive and easy to master to avoid
increasing amputee’s cognitive burden. Finally, the overall pros-
thetic system must be lightweight, comfortable and aesthetically
pleasing, to avoid leading to limited use of the device or even
abandonment [23], [24], [25], [26].

III. PROSTHESES: COMPONENTS, CHALLENGES, AND

FUTURE DIRECTIONS

A. Prostheses Sockets

The main physical human-machine interfaces in prosthetic
legs are the socket and the suspension system [27], which are
responsible for the mechanical coupling between the residual
limb and the prosthesis. The socket design is critical both for
prosthesis usability and acceptance (see Section II), since it often
constitutes one of the main reasons for prosthesis abandonment,
with a rate of around 25-57% [23], [24]. Socket design must
take into account residual limb health (e.g., the presence of
wounds, skin irritation, etc.), possible volume changes of the
residual limb, the presence of comorbidities and the user needs
in terms of mobility and activity. The perfect fit of the socket
guarantees stability and good transmission of the weight to the
prosthesis, essential for the execution of dynamic and natural
movements and thus for prosthesis acceptance. Residual limb
volume changes are more relevant in the period immediately
after the amputation but persist in stabilized amputation as well
[28], [29]. Such variations result in a compromised fit of the
socket, which leads to relative movement between the socket and
the residual limb and an uneven distribution of pressure on the
tissue [28]. This can in turn cause dermatitis, skin edema, rashes,
redness, and other skin problems [26], [30]. These conditions
could be exacerbated by the sequence of swing and stance
phases during ambulation, which produces a cyclic change in
pressure on the residual limb [27], and by the presence of
comorbidities, such as peripheral vascular disease and diabetes.
Physical activity and changes in body weight also have a strong
impact on the residual limb volume and socket fit [28].

Traditional rigid sockets and the skin can either be in direct
contact, or have a prosthetic sock or liner interposed between
them [8]. Alternatively, it is possible to use flexible inner sockets
made of a silicone-based material that is coupled with an outer
rigid frame and, where appropriate, with liners or prosthetic
socks. Flexible inner sockets allow more residual limb volume
variations, more dynamic movements and increase the propri-
oceptive feedback of the amputee. Efforts were made over the
years to reduce localized stresses on the residual limb area, and
evenly distribute the weight (e.g., with the Total Surface Bearing
socket (TSB) [27]). However, many of the issues presented

above, related to the socket and liner designs, are still open and
need to be addressed.

A possible solution to these issues could be given by osseoin-
tegration, which is a direct connection between the prosthetic
device and the residual limb via a metal implant inserted into
the skeletal structure [23], [31]. Such an implant avoids the
drawbacks brought by the socket interface, such as discomfort
and pain, and enhances the transmission of the forces from the
prosthesis to the limb, through “osseoperception” [25], [32],
[33]. One of the major drawbacks of this method is associated
with the percutaneous nature of osseointegration: with the pylon
penetrating the skin, the risk of infection is increased [12]. In
addition, safety measures to prevent excessive torque from being
transmitted to the implant must be taken into account, since it
can lead to fractures, implant loosening, or implant breakage
[34]. Even though formal criteria for the inclusion of subjects for
osseointegration do not exist, typical exclusion criteria include
diabetes, vascular diseases, immunosuppressed subjects, a body
mass index above 25 kg/m2, and other situations that could lead
to mechanical complications and insurgence of infections [25],
[34], [35].

Another possible solution could be the use of highly elastic
materials, pads and air or fluid chamber systems, allowing the
implementation of adaptable sockets [36], that could therefore
be better accepted, more comfortable and able to adapt to volume
changes [29]. Despite compliant sockets being a promising
solution, there is a lack of evidence in the literature regarding
the specifications such systems must achieve due to the difficulty
in evaluating both short and long-term volume changes of the
stump. It is therefore necessary to implement technical solutions
capable of accommodating large volume variations, such as
fluid-filled socket inserts [37].

B. Powered Prostheses

As discussed in Section II, amputees present a different
walking pattern if compared to non-disabled subjects, both in
terms of kinetic and kinematic variables. Such differences lead
to the adoption of compensation strategies [6] that generate
gait asymmetries [5], an increase in the metabolic cost [5], [7],
[8], [9] and joint degeneration, caused also by uneven weight
distribution. Amputees’ activity level is affected by the presence
of movement difficulties: more than 60% are classified as “not
sufficiently active” and more than 30% as “sedentary” [38].
Lower-limb amputees also present a significant increase in the
risk of developing cardiovascular diseases [39], increasing the
activity level can help mitigate this and other risks connected to
a sedentary life [40].

The current standard of care in lower limb prostheses consists
of a carbon-fiber ankle-foot in combination with a variable
damping mechanism at the knee joint (see Fig. 2). The ankle
generally provides a fixed stiffness about a nominally level
ground slope, while the knee provides a low resistance to motion
during the swing phase of gait, and a relatively high level of
resistance during the stance phase. Both the knee and ankle are
energetically passive, and therefore are unable to provide net
power for movement.
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Fig. 2. Lower-limb prostheses for above-knee amputees (left) and
below-knee amputees (right).

The healthy knee and ankle joints are, of course, able to
provide both power dissipation and power generation behaviors,
and in general, they do provide both during different locomotion
activities (see, for example, [41]). Knee and ankle prostheses
capable of power generation (in addition to power dissipation)
would provide a better replication of the biomechanical func-
tionality of the respective healthy joints [42], [43], [44], [45],
[46], [47]. Although most readers would agree with the previous
statement, it is informative to unpack it and discuss how power
could specifically improve mobility, and what advances are
necessary to fully implement power in knee and ankle pros-
theses. In the case of the ankle, the most salient deficiency of a
passive prosthesis is the absence of powered push-off in the late
stance phase. Powered push-off has been shown to: 1) provide
propulsive power for locomotion; 2) set up the initial conditions
for the swing phase; and 3) reduce the impact and corresponding
loss of momentum during contralateral heel strike [48], [49],
[50], [51], [52]. Restoring power to an ankle prosthesis is likely
to lead to more energy-efficient locomotion, improved swing
phase characteristics, and potentially reduced joint loading on
the contralateral limb. In addition to powered push-off, power
generation at the ankle would also have other important and
perhaps less obvious benefits. Chief among these is the ability
to adapt ankle behavior to varying terrain and activities. As
previously shown, such adaptation requires modulation of the
stiffness characteristics of the ankle, both in terms of the nominal
equilibrium point (i.e., angle) and stiffness (e.g., [53], [54]).
Although these characteristics can be varied without power for
certain constrained movements, the general implementation of
variable stiffness and equilibrium point requires power gener-
ation, as is exhibited by the healthy ankle during uneven and
sloped terrain walking. In addition to the power generation
needed for the stance phase, motive power is also required to
reposition the ankle joint during the swing phase of gait in level
walking, and to a much greater extent during slope and stair
ascent and descent [55], [56]. In the latter case power generation
is necessary during the swing phase to facilitate subsequent
power dissipation during the stance phase [57], allowing the

user to descend stairs in a controlled manner. One of the primary
dissipation mechanisms occurs immediately after the toe strike
when the ankle dissipates power under load while transitioning
from a plantarflexed angle to a dorsiflexed angle [41]. In order
to do so, the ankle must start at a plantarflexed angle, and must
be positioned during the swing phase into that configuration,
which in general requires power generation at the joint. There-
fore, power generation is required to provide power dissipation.
Further, power is required when responding to perturbations,
such as stumble events during the swing phase. In such instances,
particularly in the early swing phase, the healthy ankle generally
responds with active dorsiflexion to clear the stumble obstacle.
This type of “elevating” response is known to be an active
(i.e., powered) response [58]. Finally, motive ankle power is
necessary to restore healthy functionality for a large number of
activities beyond basic mobility tasks, such as cycling, skiing,
dancing, and other sport or recreational activities. Ideally, a
prosthesis would restore volitional movement, which is only
possible with a powered joint.

In the case of a knee prosthesis, powered movement offers
several benefits for both the stance phase and swing phase (see
[41]). A powered knee would enable stance-knee extension,
which permits the reproduction of healthy knee joint function
for stair and slope ascent, in addition to sit-to-stand and squat-
to-stand movements. Less obviously, a powered knee can more
easily replicate the non-dissipative behavior of the knee joint
during the loading response, such as the stance-knee flexion
and subsequent extension that occurs during normal walking.
This behavior in general reduces impact forces during heel
strikes, lessens the likelihood of slip, and reduces the vertical
excursion of the center of mass of the body during locomotion.
Although much of knee movement during the swing phase is
passive (e.g., inertially coupling movement that results from
the combination of ankle push-off and thigh acceleration, see
[59]), several swing phase movements do require power: the
swing phase during stair ascent, during slow walking, during
backward walking, and when stepping over obstacles (see [41]).
Additionally, stumble or scuff recovery movements, particularly
during the early swing, are known to be active movements that
require power at the knee [58]. Finally, as with the ankle, motive
power is necessary to restore healthy functionality for a large
number of activities beyond basic mobility tasks, such as sports
or recreational ones. As also with the ankle, a prosthesis would
ideally restore volitional movement, which is only possible with
a powered joint.

Several advances have been recently made in the development
and implementation of powered prostheses (e.g., [53], [56],
[60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70],
[71], [72], [73], [74], [75], [76], [77], [78], [79], [80]), although
substantial work is required to fulfill the potential of powered
artificial knees and ankles. Human muscle has a dynamic range
of output impedance that has not yet been matched by robotic
means of actuation, particularly at the low end of impedance.
In addition, matching the torque and power output of biological
joints, while also achieving the range of their movements and
output impedances, remains an open issue [81]. Even if powered
prostheses show encouraging results for some gait restoration



BARBERI et al.: TOWARD THE DEVELOPMENT OF USER-CENTERED NEUROINTEGRATED LOWER LIMB PROSTHESES 217

metrics (e.g., preferred walking speed, metabolic cost, gait
symmetry),performances are still distant from subjects without a
disability, as in the case of Ottobock Empower [45]. Weight and
noise are other key factors for the usability and acceptability of
powered devices, that must guarantee adequate assistance limit-
ing encumbrance and tedious sounds. For these reasons, the most
adopted actuation principles are the electromechanical ones due
to the controllability and power density of DC motors, especially
if combined with compliant elements [3]. Improvements in the
field of powered prostheses would lead to a novel generation
of devices, able to restore not only volitional movements, but
the complex motion patterns needed for performing sports and
outdoor activities also, allowing amputees to regain an active
lifestyle and independence.

C. Control Strategies

Commercial prosthetic legs are rather passive or rely on
embedded sensors (e.g., inertial measurement units, encoders)
to detect users’ intentions and performed movements [82].
Sensor-based control presents a major limitation in not directly
involving the user in the control loop, and this entails difficulties
in performing challenging tasks without experiencing high cog-
nitive fatigue and increased energy consumption [83]. Even if
some high-end prostheses models (i.e., Genium X3 by Ottobock,
Rheo Knee XC by Össur) provide a good level of adaptation
to different terrains and activities, switching between them is
mostly a manual operation. Consequently, a smooth transition is
generally not possible, requiring additional effort from the user.
As stated in Section II, inadequate controllability of the device
affects the user’s perception of usability, reducing the acceptance
rate of lower limb prostheses and, consequently, possibly leading
to abandonment [84], [85]. Lack of controllability, together with
discomfort and poor mobility are the main causes of prosthesis
rejection [86], [87], [88], [89]. To avoid the abandonment of
the prosthetic device it is thus necessary to develop an efficient
and reliable control strategy, capable of moving and adapting
the artificial joints to accommodate each movement, locomotion
task or gait phase of the user.

Volitional control can help improve the sense of ownership
and agency [90]. In such a control scheme, the amputee di-
rectly or indirectly interacts with the prosthesis to change its
state. It can be based on intent recognition algorithms, or it
can refer to the use of manual switches [91]. EMG signals
are typically used for direct control of prosthetic arms and
legs. This strategy strongly depends on the level of disability
of the users, increasing their cognitive burden and preventing
smooth transitions, making it sometimes necessary to explore
more automated approaches [92], [93]. Automated controllers
for powered prosthetic devices are divided into three levels
of control: high-level, mid-level, and low-level (Fig. 3). At a
high-level, signals from the device, the environment, and the
user are recorded [92] and the movement intention of the patient
is decoded [92]. This information is then transmitted to the
mid-level, which is responsible for the conversion of the decoded
motion intention into the desired state of the prosthesis, and the
transmission of the output to the low-level control [92]. The

translated output can be a combination of joint position, angles,
velocities, and/or torques [92], which depend on the design of
the prosthetic actuator. Finally, at the low-level, the device is
actively controlled by following the received input. At this level,
there is a direct tracking of the references used at higher levels
(e.g., position or torque) [94]. Proportional integral (PI) and
proportional integral derivative (PID) systems are commonly
used [94] to change emulated stiffness and damping values of
the prosthetic joints to create desired joint behavior.

1) Control Schemes: Developing an efficient control
scheme is extremely challenging due to the variability of the
gait task, which includes several different locomotion modes
(e.g., stairs and ramp negotiation, sit-to-stand, etc.) [60]. It is
necessary to consider numerous aspects:

1) The number of activities to implement: a large number of
motor tasks increase usability at the expense of complex-
ity.

2) Training strategy: it impacts the effort asked to the user
in terms of time and physical fatigue.

3) Input signals: they determine the setup burden and the
maximum extractable information.

4) Critical time [95]: the time by which a classification deci-
sion must be delivered, it must consider the mechatronic
response time of the prosthesis.

Other important aspects to be taken into account are the intrin-
sic variability of the human gait and the level of amputation. A
prosthesis user can change gait parameters, such as the walking
speed and the foot elevation, accordingly to the performed task
and environmental conditions. Therefore, it is important to de-
velop a controller capable to be robust to various walking speeds
[96] and environment parameters, such as steps and slopes with
different heights and inclinations [97], [98]. The amputation
level can impact the control strategy selection due to the effect on
muscles availability, subject mobility [99] and walking strategies
choice.

The first distinction must be made between echo control
and non-echo control strategies [60]. When the information is
extracted from the amputated side, the strategy falls into the
non-echo control group. With echo control, data are recorded
through sensors placed on the healthy side of the amputee
instead. This strategy tries to mirror, usually with gait pattern
generator controllers, what happens on the sound side on the
amputated side, with a delay of half a gait cycle [60]. Both echo
and non-echo schemes can be used in combination with various
types of signals (i.e., electromyographic, inertial, etc.). They
can be time-dependent or based on different kinds of triggers
(e.g., mechanical sensory interfaces (MSI)) [9], [100], [101],
[102], [103]. Major drawbacks of the echo-control strategy is
that it requires instrumentation of the sound limb, applies only
to unilateral amputees, and it is not conducive to asymmetric
behaviors [60]. Another major drawback is that echo-controlled
prostheses require a high output joint impedance [104] to allow
the device to determine the joint trajectory without the user
freely moving the prosthesis [104]. In this way, the users cannot
interact with the prosthesis but must follow its trajectory. Conse-
quently, this type of control system leads to a low embodiment
of the device, which is perceived as an external object, and it
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Fig. 3. Overview of a generalized control framework for powered lower-limb prostheses. Modified from [13]. Input signals coming from the user
and the prosthesis must be decoded by the controller. The environmental state constrains the possible movements, and they can be read and
decoded by the controller. Physical interactions are present between the environment and the user and the environment and the prosthesis.
Sensory stimulation can be delivered from the prosthesis to the user. Finally, safety measures are necessary to avoid potential falls of the user.

is, therefore, less accepted by amputees [60], [104]. For the
abovementioned reasons, echo control is not optimal for real-life
prosthetic applications.

Secondly, gait phase identification, motion intention recog-
nition, and gait pattern recognition algorithms [101] must be
defined, and the relative differences discussed. With gait phase
identification algorithms, the gait is divided into several sub-
phases (e.g., stance phases and swing phases). Stiffness and
damping parameters are adjusted based on the phase of the
cycle of the prosthesis, which is identified through accelera-
tion, angles, and other signals. Finite-state machines (FSM)
are commonly used to switch from state to state [105]. Motion
intention recognition is usually based on machine learning algo-
rithms (e.g., neural networks, pattern recognition, etc.) that draw
conclusions regarding the intention of movement [106], [107],
[108], [109] or the prosthetic device impedance parameters
[110] by processing the information extracted from the sensory
apparatus on the prosthesis. Supervised learning, unsupervised
learning, or reinforcement learning are usually implemented.
Time-invariant classifiers, such as Linear Discriminant Analysis
(LDA), Support Vector Machine (SVM), Artificial Neural Net-
work (ANN), and nearest neighbor classifiers, are the most used
approaches [93], [111], and have been widely tested in different

input conditions such as, for example, varying input window
length ([106], [107], Fig. 4(b)). Specifically, [106] tests different
classification algorithms on five locomotion modalities, varying
the length of the input window, to minimize classification error
while maintaining real-time performances. To reduce classifi-
cation errors in realistic scenarios, the algorithms can be tested
by adding signals’ noise, adopting data augmentation techniques
[112] (see Fig. 4(c)), simulating sensors fault [108], [113], [106],
[114], [112], [115] and implementing adaptive classifiers [111]
able to adapt to slow variations of the input signals. For example,
in [112] a deep generative model is used to reduce classifica-
tion error both across different subjects and across different
days for a five classes classification task (see Fig. 4(c)). Mo-
tion intention detection algorithms can also adopt non-machine
learning approaches, leveraging neuromusculoskeletal models
to compute the mechanical moment production around a joint
[116], or directly modulating prosthesis parameters based on
kinematic variables [97]. Pattern recognition algorithms rely on
the periodicity of the gait, adapting pre-programmed walking
patterns based on the stride time and other kinematic or ki-
netic information [101]. Pattern recognition is commonly used
with mechanical sensory interfaces or electromyographic sig-
nals [109], [117], [118], [119], [120], allowing high accuracy,
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Fig. 4. Different approaches to classification algorithms for lower-limb prostheses presented. (a) Comparison of the performances of classifiers
with different input signals and their combinations (i.e., kinematic, kinetic, inertial, EMG) [143]; (b) classification accuracy during stance phase and
swing phase, when varying the length of the sliding window and the type of classifier used (i.e., linear discriminant analysis, support vector machine
and quadratic discriminant analysis) (©1981 IEEE) [106]; (c) study of the classification performances with and without data augmentation through
different strategies and with individual and pooled user configurations (©2019 IEEE) [112].

although in a controlled environment. Due to its versatility, the
pattern recognition approach can be exploited for both gait phase
and motion intention identification problems, as well as for the
computation of gait cycle related features. Some shortcomings
of the pattern recognition approach involve the necessity of a
wide set of training data that must cover all the desired classes,
and the pre-defined patterns created during training might be
subject-dependent. With gait pattern recognition algorithms, the
user inputs are also generally limited, not allowing significant
variability to the predefined patterns [117].

Even though impressive progress has been made with the use
of machine learning applied to prostheses, we are still in need of
an efficient and ‘faultless’ control scheme. Classification perfor-
mances above 90% can be reached, but the drawbacks of a classi-
fication error potentially leading to patient’s fall regarding health
and confidence in the prosthesis are so severe to render a 10%
or even a 5% error probability not acceptable. Consequently, it
is necessary to seek another candidate for controlling prosthetic
legs. A potential solution could be brought by neuromorphic
engineering approaches: prostheses would be implemented with
tight interactions with the surrounding environment using sensor
fusion and non-static signal acquisition techniques (i.e., “static
frame decoding”) [121]. The neuromorphic approach guarantees

a high level of adaptability to different and changeable condi-
tions, both from the point of view of the subject behavior and
environment, while maintaining a high level of computational ef-
ficiency [121]. Sensor fusion approaches rely on different sensor
inputs to improve the locomotion task separability and increase
prediction accuracy. In particular, in addition to the canonical
sensors (e.g., EMG, IMU and mechanical), these techniques
implement sensors capable of acquiring environment-based data
(i.e., cameras, depth sensors, lidars, etc.) that are less subject
dependent and thus allow a better across-subjects generalization
and a reduction in classification errors [122].

2) Control Signals: To decode the users’ motor intention,
several types of signals can be recorded through different types
of interfaces, with various degrees of invasiveness [26]. It is
possible to divide them into biomechanical sensory interfaces,
(invasive) central nervous system (CNS) interfaces, (invasive)
peripheral nervous systems (PNS) interfaces, and surface elec-
tromyographic (sEMG) interfaces [3], [123], [124]. The last
three types all fall in the category of biological input-oriented
signals [125].

Biomechanical signals interfaces, or mechanical sensory in-
terfaces (MSI), use sensors (kinematic and/or kinetic [92], [125],
often in combination with footswitches [93]) related to the
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biomechanics of gait, that extract forces, torques, angles, ori-
entations, etc. [124]. The major advantage of such interfaces
is the ease of implementation on the prosthesis since no direct
contact with the amputee is needed, allowing for a self-contained
device. On the other hand, the exclusion of the subject from the
control loop does not allow the adoption of volitional control
and limits the embodiment, adding complexity to the execution
of challenging tasks [83].

CNS interfaces can be whether invasive or not invasive.
Recording the activity at the cortical level is useful to collect in-
formation regarding volitional movements, and is generally done
through intracortical electrodes or electrocorticography (ECoG)
[124], [126]. However, the invasiveness of these techniques
and the fact that many locomotion-related control loops happen
through a reflex arc complicate the use of neural activity for the
control of lower-limb prostheses [92]. Electroencephalography
(EEG) is a non-implantable CNS interface alternative to record
the electrical activity of the brain [92]. This type of interface is
susceptible to movement artifacts and requires the user to specifi-
cally focus on the performed tasks [92]. Functional near-infrared
spectroscopy (fNIRS) was also used in the rehabilitation of
lower-limb impaired patients (i.e., stroke patients) and could be
explored in amputation-related applications in the future [125],
[127].

PNS signals interfaces are obtained invasively through per-
cutaneous electrodes that reach the peripheral nerves, or im-
plantable EMG electrodes that allow the recording of intramus-
cular EMG signals (iEMG) [124]. Various implantable EMG
technologies are now commercially available, such as IMES
electrodes [128], MIRA [129], iSens [130] and MyoPlant [131],
[132]. Intramuscular electrodes pick up signals coming from
single motor units, not providing the overall activation pattern
of the target muscle. Therefore, a specific algorithm is needed
to gather information about muscular activation and classify
the movement of the users. Despite the invasiveness of the
procedure, the electrode placement would be a one-time-only
operation and would eliminate the need for calibration sessions
at the beginning of each experiment. Furthermore, the signal is
not subjected to motion artifacts, and the problems related to the
electrodes being placed on the skin (e.g., comfort, possible de-
tachment of the electrodes due to sweating, etc.) can be neglected
[125]. However, due to the invasiveness and its related risks, this
technique is less adopted than non-invasive ones [125]. When
the amputation is too proximal, and the presence of functional
muscles is rare, Targeted muscle reinnervation (TMR) represents
a valid alternative solution [92]. TMR is a surgical operation
in which the motor nerves of the residual limb are rerouted to
reinnervate a proximal muscular region [133], [134], [135]. It
improves the functioning of the prosthesis and reduces neuroma
pain (i.e., growth of nerve tissue around the cut nerve) [4], [134],
[136], [137], [138]. The rerouted nerves grow into the newly
innervated muscles, gaining the capacity to excite them [4].
Alternatively, the user intent can also be inferred by decoding
the electrical activity recorded from peripheral nerves through
implanted neural electrodes. This technique is useful in case no
residual functional muscles are present to apply EMG techniques
and helps to overcome the typical drawbacks of surface EMG

(e.g., electrode shifting, electrode detachment, etc.) [132]. The
major drawback of this approach is its invasiveness, the risk of
damaging the nerves [132] and the poor signal-to-noise ratio of
the PNS neural signals [139].

Surface electromyography (sEMG) represents a less invasive
technique to access informative signals from the PNS. sEMG
control of active prostheses has been widely explored [135],
[140], [141], [142], [143], both individually and in combination
with mechanical sensors, such as in [143] (see Fig. 4(a)), in
which the authors compared the performance of a dynamic
Bayesian network in classifying five locomotion modeswith
different sensor signals as input. This strategy provides intuitive
control of the device, by processing sEMG signals recorded from
the residual muscles of the users. EMG is, however, susceptible
to signal variations due to noise and movement artefacts, changes
in electrode-skin conductivity, fatigue, and cross-talk between
muscles, making this approach more challenging [92], [144].
EMG signals have a wide inter-subject variability but present
consistent patterns within the same subjects during the gait
[144] if compared to iEMG, since they provide information
related to the overall activation pattern of the target muscle.
Especially for lower-limb applications, it is generally necessary
to have multiple recording sites to exploit intention decoding
algorithms’ prediction capabilities [124]. EMG signals can be
used alone or in combination with other sensors (e.g., mechan-
ical sensors) within intention decoding algorithms or for direct
control approaches [125], [126]. Sensor fusion also represent
a viable strategy to improve the performances of classification
algorithms, while still aiming at maintaining a light setup.

From the user’s perspective, it is important to maintain good
device performance while guaranteeing usability and comfort.
Consequently, iEMG should be preferred when osseointegration
represents a viable option. This would guarantee that the “wear-
able” setup is limited to the prosthesis only, avoiding surface
electrodes covering the residual limb and limiting the related
discomforts. When osseointegration is not a feasible approach,
sEMG represents a less invasive solution, with proven efficacy
when signals are used in an intention decoding framework.
Commercial sEMG electrodes can be embedded in sockets,
but more customizable sEMG electrodes could also be used
(e.g., high density sEMG based on MXenes and other new
materials [145]), which guarantee the coverage of a wide area
together with better control of the recording sites’ position. Such
solutions must also take into consideration the breathability of
the materials, to avoid sweating and hygienic problems.

D. Sensory Feedback

To fully restore the functionalities of the missing limb, pros-
theses should deliver sensorial inputs from the environment and
proprioceptive inputs to the nervous system of the subject (See
Section II). For instance, the lack of sensorial information has
functional consequences on the embodiment of the prosthesis
(a low embodiment level implies that the users perceive the
prostheses as an external and foreign object, that doesn’t belong
to their body schema [146]). Low embodiment, in turn, might
lead to a higher risk of falls, decreased mobility, and an increased
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Fig. 5. Sensory feedback in lower limb prostheses. (a) Location of evoked sensation over the calf and foot with overlapping sensation when
stimulating on the common peroneal branch or on the tibial branch of the sciatic nerve [170]; (b) comparison of the performances (speed and
self-confidence) with (SF) and without (NF) sensory feedback, during walking (OT) and stair ascending and descending (ST) [151]; (c) type and
location of the evoked sensation over the calf and foot through intraneural stimulation [147].

cognitive burden [147]. The general acceptance of prostheses is
therefore reduced, and amputees tend to abandon them [89],
[148]. Moreover, painful sensations coming from the missing
limb (Phantom Limb Pain, PLP) or the residual limb (Residual
Limb Pain, RLP) are often associated with alterations in the
nervous system due to amputation [149]. The lack of sensation
coming from the missing leg has been linked with PLP [150]
and low embodiment [151].

Current commercially available prostheses do not restore the
sensory feedback of amputees, who need to rely on visual and
haptic feedback derived from the interaction between the socket
and the residual limb [147].

Several approaches for providing sensory feedback to am-
putees have been presented, however, most of these studies fo-
cused on upper-limb amputees [152], [153], [154], [155], [156]
and only a few efforts have been made for providing sensory
feedback in lower-limb prostheses, especially in transfemoral
amputations [148]. Neural stimulation and feedback restoration
are exploitable through non-invasive (cutaneous) or invasive
(direct nerve stimulation) techniques [157], [158].

Non-invasive sensory feedback can be delivered through vi-
bration [159], electrotactile stimulation [160], mechanotactile
pressure [161], and others. Such techniques have been proven
effective in both reducing PLP and RLP and improving pros-
thetic device usability [149]. Despite the advantage of low
invasivity and ease of implementation, the most relevant is-
sue of non-invasive techniques is that the elicited sensation
does not correspond to a homologous stimulation [162], [163].

Cutaneous stimulation techniques often require extensive train-
ing to provide complex stimuli and the elicited sensations are
affected by variability [164], depending on the transducer posi-
tion [132], and therefore the user usually engages in an intensive
cognitive load to interpret the signals, as demonstrated for upper
and lower limb applications in [164], [165], [166]. Some non-
invasive techniques were also reported to be distracting for daily
use [162].

Invasive sensory feedback is traditionally delivered through
intraneural or extraneural electrodes, implanted through surgical
operation (see Fig. 5). Extraneural (cuff) or epineural electrodes
are wrapped around the nerves externally without penetrating
them. They entail reduced risks of nerve damage [162] com-
pared to intraneural electrodes and they are easier to implant
and more robust [167]. On the other hand, they need a higher
current to stimulate the neurons and stimulate a larger portion
of the nerves, making this technique less selective compared
to the intraneural counterparts [162]. Intraneural electrodes are
implanted through the nerves (transversally (e.g., TIME elec-
trodes [168]) or longitudinally (e.g., LIFE electrodes [169]))
and potentially elicit a more natural and more selective sensa-
tion [162]. The technique is however more invasive, and can
interfere with EMG recordings. The evoked sensation through
intraneural stimulation results to be not only homologous (i.e.,
they match the quality of external stimulus [147], [150]) but
also somatotopically coherent (i.e., they match the location on
the phantom limb [147], [150], [170], Fig. 5(a), (c)). This entails
the rapid and direct usability of such a technique, without the
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Fig. 6. Concept of a fully integrated lower limb neuroprosthesis.

TABLE III
TECHNOLOGY READINESS LEVEL (TRL) OF CURRENT PROSTHETIC TECHNOLOGIES
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need for a training session, to enable the users to benefit from
the sensation return (see Fig. 5(b)). Furthermore, it was shown
that restoring sensory feedback in upper-limb amputees through
neural stimulation significantly decreased the PLP [152], [153],
[171]. Sensory feedback was also successfully exploited through
intraneural stimulation in lower-limb amputees performing vari-
ous locomotion tasks [147], [148]. Besides the improvements in
mobility [151] (see Fig. 5(b)), it also led to health and cognitive
benefits [151], exhibiting a reduction in PLP [148], both in short
and long-term periods after the stimulation was delivered [148].
Specifically, [151] quantifies the functional and cognitive bene-
fits of intraneural sensory feedback, leveraging gait markers of
the leg neuroprosthesis and confidence measures. More complex
intraneural stimulation paradigms are yet to be tested to explore
the effects on PLP and RLP in both the short and long term,
and a limited number of in-depth studies have been conducted
on this topic for lower limb amputees. The major limitation of
neural stimulation techniques is their invasiveness and difficulty
of implementation in long-term fully implantable systems [132].
The agonist-antagonist myoneural interface (AMI) [135], [172]
is another invasive approach to reestablish proprioceptive feed-
back in amputees, by leveraging the spindle and Golgi tendon
organs of the residual muscles. The AMI is created by surgically
connecting the agonist-antagonist muscles pair, thus allowing
the antagonist muscle spindle and Golgi tendon organs to be
stretched by the activation of the agonist muscle, providing
muscle-tendon proprioception. Despite the naturalness of the
perceived sensations, the AMI is an invasive 2-stage surgical
procedure and does not allow the connection of more than two
muscles together, as for biological joints.

Despite the lack of extensive studies, intraneural sensory feed-
back represents the most promising and efficient way of pursuing
sensory feedback restoration in lower-limb neuroprostheses for
the reasons described above and its versatility in providing a
wide range of somatosensory and proprioceptive sensations, es-
pecially with the use of biomimetic sensory encoding strategies
(i.e., to evoke close-to-natural sensations [150]).

IV. CONCLUSION AND PERSPECTIVES

Lower limb amputation is an impactful condition, which leads
to reduced mobility and is associated with comorbidities that
negatively affect amputees’ daily life. While some of the comor-
bidities are among the causes of amputations (e.g., peripheral
vascular disease, diabetes), some of them are consequences
of the amputation (e.g., lumbago, arthritis) (see Section II).
The complexity of the context reflects the complexity of the
users’ needs, which are various and depend also on both the
medical and social conditions of the subject (see Section II).
The non-compliance with one or more of such needs potentially
leads to dissatisfaction, possibly worsening of comorbidities
and, ultimately, to prosthesis abandonment. For these reasons,
developing a functional and efficient user-centered prosthetic
leg, capable of assisting the amputee in daily living tasks, is not
trivial. Extensive at-home testing is still not a common practice,
due to the setup complexity and home-monitoring challenges,

but is crucial to avoid non-reproducible and impractical solu-
tions. The encumbrance of the setup is a key factor for prosthesis
acceptability: bulky acquisition devices, electrodes not embed-
ded into the socket and solutions that extend to other parts of
the body (e.g., TMR, EEG, etc.) are perceived as invasive and
uncomfortable, and consequently abandoned. Similarly, noisy
solutions are perceived as disturbing during daily activities.
Treating PLP and RLP is equally essential for amputees’ qual-
ity of life, but current treatments (e.g., medications, medical
therapies, brain stimulation, etc.) are often time-consuming and
present contraindications. Being able to mitigate the pain with
intraneural stimulation allows for a better-integrated solution
instead, capable of improving the user’s quality of life effort-
lessly, concurrently restoring sensory functions and improving
prosthesis usability.

In Section III we have identified a number of deficiencies
in current prosthetic devices, both with respect to commercially
available devices, and within the research field. We analyzed the
key aspects to consider during the development of each module
of a neurointegrated prosthesis, having as main objectives user
experience, usability and functionalities restoration. In Fig. 6
the concept of a fully integrated neurally-controlled prosthesis
is shown. The movement’s intention is decoded through sensor
fusion techniques, relying on EMG, IMUs and prosthesis’ built-
in sensors. The EMG signals can be acquired both with invasive
techniques (i.e., iEMG) or with custom electrodes embedded
inside the socket or the liner (i.e., sEMG). As explained in
Section III, iEMG is preferable when osteointegration is possi-
ble, merging the benefits of a direct bone-prostheses connection
to the better EMG signal quality of the implanted electrodes,
concurrently reducing the setup burden by removing the socket.
If contraindications for osteointegration are present (e.g., dia-
betes, vascular diseases, etc.), sEMG is a valuable substitute if
the electrodes are designed to be integrated inside the socket
structure, limiting the time required for the donning and doffing
of the prosthesis. In the latter case, the comfort of the amputee
can be enhanced by using adaptable sockets (i.e., sockets with
air or fluid chambers) capable of accommodating slight residual
limb volume variations. Once data from the different sensors
have been acquired, the signals are preprocessed and interpreted
by means of machine learning or neuromorphic approaches,
relying on algorithms capable of adapting to the surrounding
environment and the slow changes of the collected signals, such
as in the case of EMG. After the movement intention is decoded
at a high level, a finite-state machine is used to send commands
to the powered prosthetic leg during specific gait phases. The
use of a powered prosthesis allows the subject to perform
dynamic movements decreasing the required metabolic cost,
reducing the use of compensatory strategies and limiting the
insurgence of related long-term comorbidities (see Section III).
To close the control loop, intraneural electrodes are used to
deliver electrical stimulation through the residual nerves of the
subject. The stimulation is designed and delivered based on
the information extracted from the knee encoder and sensors
placed under the prosthetic foot, reestablishing the sensory and
proprioceptive pathways lost during the amputation process.



224 IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 17, 2024

The invasive approach can be also used in combination with
non-invasive feedback, which can help in providing discrete
information (e.g., state transitions), complementary to the more
complex encoded by the intraneural electrodes. The choice of
approach is dependent on both subject preferences and adopted
prostheses. The combination of the presented technologies en-
hances prosthesis usability by allowing effective control of the
device and restoring sensations coming from the missing limb,
concurrently increasing the general embodiment of the prosthe-
sis. Additionally, sensory feedback helps to mitigate PLP and
RLP and enhance the awareness of the surrounding environ-
ment, decreasing the risk of falling events (see Section III-D).
For the above-mentioned reasons, the development of a fully
integrated powered neuroprosthesis would significantly improve
the quality of life of lower limb amputees.

The neuroprosthesis we propose combines impactful solu-
tions in a modular fashion, that can be fully integrated minimiz-
ing the setup burden, thus maximizing comfort, usability and
acceptability. Therefore, it could represent the optimal compro-
mise between a heavily research-oriented setup and an already
commercially available prosthesis, solving most of the field’s
open issues with a user-centred approach and implementing
innovations that directly address amputation-related problems.

How far are we from of achieving such a solution? Although
excellent progress has been made in the implementation of an
integrated device, the commercialization of a fully integrated
powered neurally-controlled prosthesis is not close by (see
Table III). The majority of ankle-foot and knee prostheses com-
mercially available are passive or semi-passive and do not assist
the user during force-demanding tasks. Additionally, the few
powered models (e.g., Power KneeTM by Össur and Empower
by Ottobock) on the market do not involve the amputee in the
control loop, relying on internal sensors only for the control and
not providing sensory and proprioceptive feedback. Advanced
prosthesis control still shows limitations regarding reliability
and the setup burden, even in a research environment. Despite
a fully integrated solution not being available already, most
of the technologies discussed across this work present a high
level of technology readiness. This entails the possibility of
moving toward the final goal with an incremental approach,
implementing, integrating and deploying the solutions when
the technology of the single neuroprostheses module is mature
enough to reach the market.
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