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Abstract—The daily healthy diet and balanced intake
of essential nutrients play an important role in modern
lifestyle. The estimation of a meal’s nutrient content is an
integral component of significant diseases, such as dia-
betes, obesity and cardiovascular disease. Lately, there has
been an increasing interest towards the development and
utilization of smartphone applications with the aim of pro-
moting healthy behaviours. The semi – automatic or auto-
matic, precise and in real-time estimation of the nutrients of
daily consumed meals is approached in relevant literature
as a computer vision problem using food images which
are taken via a user’s smartphone. Herein, we present the
state-of-the-art on automatic food recognition and food vol-
ume estimation methods starting from their basis, i.e., the
food image databases. First, by methodically organizing the
extracted information from the reviewed studies, this review
study enables the comprehensive fair assessment of the
methods and techniques applied for segmenting food im-
ages, classifying their food content and computing the food
volume, associating their results with the characteristics
of the used datasets. Second, by unbiasedly reporting the
strengths and limitations of these methods and proposing
pragmatic solutions to the latter, this review can inspire
future directions in the field of dietary assessment systems.

Index Terms—Dietary assessment system, food databa-
ses, food segmentation, food recognition, food classifica-
tion, food volume estimation, nutrient information, com-
puter vision, machine learning, deep learning, artificial
intelligence.

I. INTRODUCTION

THE global incidence of chronic diet-related diseases, such
as obesity, diabetes, and cardiovascular diseases, shows

an ever –increasing trend, which tends to take on epidemic
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proportions. The number of obese people has nearly tripled since
1975. In 2016, more than 1.9 billion adults were overweight, out
of which over 650 million were obese. Moreover, in 2019, 38
million children under the age of five were overweight or obese
[1]. Diabetes is considered as a major cause for blindness, kidney
failure, heart attacks, stroke, and lower limb amputation. The
World Health Organization (WHO) estimated that 1.5 million
deaths were directly caused by diabetes and that diabetes was
the seventh leading cause of death in 2019 [2]. According to the
International Diabetes Federation, 463 million people (adults
20-79 years) suffer from diabetes worldwide nowadays [3]. As
far as cardiovascular diseases (CVDs) are concerned, they are
a group of disorders of the heart and blood vessels that in-
clude coronary heart disease, cerebrovascular disease, rheumatic
heart disease and other conditions. CVDs are the number one
cause of death globally while, in 2016, 17.9 million people
died from CVDs representing 31% of all global deaths [4].
The above-mentioned diseases are inextricably linked. Healthy
diet has been shown to be the common denominator that
can either positively or negatively affect the aforementioned
diseases. A healthy lifestyle, which includes a balanced diet,
maintaining a healthy weight and regular exercise can signifi-
cantly reduce the percentage of individuals suffering from these
diseases.

Daily diet monitoring by experts is definitely the most ap-
propriate way to achieve a healthy and balanced diet, which
includes daily recording of the type and the estimated amount
of food consumed [5]. However, since daily diet monitoring by
specialists is almost impossible, patients are advised to record
their daily eating habits themselves. Although these methods are
widely used, their accuracy remains questioned, especially for
children and adolescents who lack motivation and the required
skills [6], with the average error in estimating the amount of
food consumed being more than 20% [7]. Even well-trained
individuals with diabetes have difficulty in calculating, with a
relative accuracy, the amount of carbohydrates of their meal
[8]. The rapid increase in the use of smartphones and their
advanced computing capabilities during the last decade, have
led to the development of smartphone applications [9] that can
detect food, recognize its type and calculate its nutritional value,
by estimating its quantity, via the analysis of food images [10].
In a typical scenario, the user is asked to take one or more photos
or even videotape their meal, and then, the application computes
the corresponding nutritional information.
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Fig. 1. An automated vision-based dietary assessment system.

Nowadays, the advances in the field of computer vision and
Artificial Intelligence (AI) provide users with the possibility to
monitor their health every day through appropriate applications
[11]. Recent studies have shown that AI-based applications
are more popular among users, compared to traditional dietary
recording methods, for recording the nutritional composition of
food [12]. AI-based methods can be divided into semi-automatic
which require user participation, and automatic that do not
require any human participation. These applications do not aim
to replace dieticians, on the contrary their goal is to provide
them with an additional tool in the monitoring patients’ diet.
The performance and accuracy of these applications depend
to a large extend on various factors, such as the food image
databases used for training of the system and extraction of
nutritional composition, the food segmentation techniques, the
food recognition methods and the volume estimation techniques.

The quality and the quantity of images of a food database
mainly affects the performance of the food recognition step
[13]. Food classification, which consists of food segmentation
and food recognition steps is next. Food segmentation is the
process of partitioning a food image into multiple segments (sets
of pixels) [14]. Food recognition comprises the identification
of the foods which are present in the food image through the
application of machine and deep learning techniques [15], [16].
The final step is the volume estimation for each food item which
is present in the food image. This step depends directly on
the previous steps of segmentation and recognition. Volume
calculation of each identified segment, in combination with a
food nutritional database, is used for the extraction of the nu-
tritional composition [17]. A typical procedure of an automated
vision-based dietary assessment system is shown in Fig. 1.

In this article, we present a review of the literature over the
past 10 years (2012 - 2021) in the field of food images seg-
mentation, food classification, food volume estimation and food

macronutrient content estimation based on smartphone-captured
food images, assessing, in parallel, the main characteristics
of the employed food image databases. The in-depth analysis
of the methods used in each of the above components of a
dietary assessment system comprises the main distinguishing
characteristic of this review in comparison with existing reviews
in the specified research topic [18], [19], [20], [21], [22]. This
analysis led to the categorization of the employed methods
as: (i) semi-automatic and automatic food image segmentation
methods, (ii) traditional machine learning (ML) - based and
deep learning-based methods for food image classification, and
(iii) 3D reconstruction, pre-build shape templates, perspective
transformation, depth camera and deep learning methods for
food volume estimation (Table I). The algorithms and techniques
pertaining to each of these categories are identified per inves-
tigated study, and their performance, strengths and limitations
are presented and contrasted. Importantly, we suggest pragmatic
solutions to deal with the identified limitations starting from the
construction of relevant datasets to the computation of the food
nutrient value. This manuscript is hereunder organized in six
sections, with Sections II-V presenting the review of the methods
and techniques used in each of the components of a dietary
assessment system, and Sections VI and VII being devoted to
the discussion of the outcomes and conclusions derived by this
review study.

II. FOOD IMAGE DATABASES

The process of collecting food images, which can be used in
the food classification model, is crucial and it directly affects
the performance of the classification models. A comprehensive
collection of food images is the key to a classifier’s performance.
Large food image databases, such as Food-101 [23], UEC-
Food100 [14], VIREO Food-172 [24], and UEC-Food256 [25],



138 IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 17, 2024

TABLE I
MAIN TECHNIQUES, METHODS AND PERFORMANCE METRICS FOR EACH STEP IN DIETARY ASSESSMENT SYSTEM

Fig. 2. Food images from UEC-Food100, UEC-Food256, Food-101 and MedGRFood databases.

are benchmark food databases and are typically used to evaluate
machine learning models. Existing databases are distinguished
by the different characteristics they have, such as cuisine type,
the number of images, the number of food classes, the food
categories, the way of acquisition, the task of use (classification
or segmentation task) as well as by how many different food
items are included in each photo. For instance, Diabetes [26]
has 11 classes with a total of 5420 pictures out of which 3800
images are downloaded from the web and 1620 are captured in a
controlled environment. A few food databases have been created
by compiling images of existing food databases. For instance,
the database Food524DB [27] were created from existing pub-
licly available food image databases: Food-101, UEC-Food256
and VIREO Food-172. Moreover, there are several food im-
age databases that have collected food images from specific
types of cuisines. For example, Chen [28] and ChineseFoodNet
[29] represent the Chinese cuisine, FFoCat [30] and MedGR-
Food [31] refer to Mediterranean food, Indian food database
[32] contains images with local food dishes, while [33], [34],
[35] present databases with images of fruits and vegetables.
FLD-469 [36] refers to Japanese food, while FoodX-251 [37],
Menu-Match [38], UPMC Food-101 [39], NutriNet [40] and
UNICT-FD889 [41] consist of a mix of eastern and western
food images. Moreover, a critical feature of the food image
database is whether it is used for classification [42], [43], [44],
[45] or segmentation tasks [46], [47], [48], [49], [50], [51]. For
example, Food201-Segmented [52] contains segmented images
from Food-101 dataset for the USA cuisine. Also, an important
element for the classifier is the way the pictures were acquired,

namely whether they were taken in a controlled environment (in
terms of lighting conditions and the food’s image background)
or in a free environment. In addition, with the increasing use of
deep learning methods for image classification, the food image
databases must contain a large number of images per class to
support training of a deep learning model. Furthermore, the
diversity of the images contained in a class leads to a more
advanced model, which can classify food even if it has been
cooked in a similar way. Fig. 2 presents sample images from
four food image databases.

The techniques used in the later stages of food image-
based analysis nutrition systems, emphasize the need to create
databases that contain a large number of images for each food
class. It may be easier nowadays to collect the images for a
large food image database, due to the tendency to capture food
images using smartphones and to the existence of many images
in social networks. Although, there is a plethora of food image
databases, we note that there are no food image databases related
to healthy diet patterns. In addition, there exist a few annotated
databases, mainly referring to the Japanese cuisine, which could
be used in the segmentation and classification tasks (Fig. 3).
Fig. 4 illustrates the size (number of images) of existing food
image databases for different types of cuisine annotated by
the associated method of constructions. We observe that the
majority of databases belong to generic and Asian cuisine, while
a large number of them are either collected from the web or
created using other databases. Finally, it is worth mentioning
that there is no benchmark food image database for general
classification purposes. As food has no borders and we live in
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Fig. 3. Type of cuisine distribution according to the number of classes
and how they are used.

Fig. 4. Size of existing databases for different types of cuisine anno-
tated by the means of food image collection.

multicultural societies, it is needed to create a large food image
database, that will include different types of cuisines, to allow
the development of systems and applications that will be able to
detect and calculate the amount of as many foods as possible.
Therefore, the creation of an annotated food image dataset that
would take into account the type of cuisine could include foods
with the same name but from different regions. For example, it
is possible for an annotated food image database to contain the
same food name and characterize it additionally by its cuisine
or its region. Therefore, the creation of an annotated food image
dataset that would take into account the type of cuisine could
include foods with the same name but from different regions.
For example, it is possible for an annotated food image database
to contain the same food name and characterize it additionally
by its cuisine or its region. Table II summarizes the most
representative food image databases, and their most significant
features.

III. FOOD IMAGE SEGMENTATION

Segmentation is the initial step required to identify food and
refers to the process of localization and extracting regions that
have different colour and texture features. The purpose of food
image segmentation is to localize a food item or the food items (if
there is more than one) present in an image, and to separate them
from the background or other food items [24]. When the image
contains more than one food, food segmentation is considered a
necessary step in dietary assessment systems. It is a challenging
task to segment foods that overlap each other, or foods that have
an indeterminate shape, or foods that do not have strong colour or
texture features in contrast with the other food items in a plate.
In addition, the lighting conditions, under which an image is
taken, can affect the segmentation step by creating shadows and
reflections [17]. Although segmentation is a difficult process, the
accuracy of segmentation directly affects the effectiveness of the
subsequent steps, such as the classification and volume estima-
tion. The main metrics for assessing food image segmentation
are the Intersection over Union – IoU:

IoU =
Ytrue ∩ Ypred

Ytrue ∪ Ypred
, (1)

where Ytrue is the ground truth of the food image and Ypred is
the prediction mask; the meanIoU for multiclass segmentation:

meanIoU =
1

N

N∑
i = 1

IoUi, (2)

where N is the number of food classes; and the pixel accuracy:

Pixelaccuracy =
TP + TN

TP + TN + FP + FN
, (3)

where True Positive (TP) represents a pixel that is correctly
predicted to belong to the given class, True Negative (TN)
represents a pixel that is correctly identified as not belonging
to the given class, False Positive (FP) represents a pixel that
is wrongly predicted to belong to the given class and False
Negative (FN) represents a pixel that is wrongly identified as
not belonging to the given class.

Several methods have been proposed to address issues in
food image segmentation. An initial classification of methods is:
(i) semi-automatic food segmentation, (ii) automatic ML with
handcrafted feature extraction, and (iii) automatic ML with deep
learning feature extraction.

In several studies, the use of semi-automatic techniques for
food segmentation is preferred, where the user is asked to select
regions of interest in the image, the foreground and the back-
ground (Fig. 5). The results of semi-automatic techniques are
highly accurate, distinguishing details of each food item in the
image, as the user knows the exact boundaries of food items con-
tained in the image/tray [53], [54], [55], [56]. Hassannejad et al.
[57], used a customized interactive graph cut algorithm. Initially,
the user imposes a number of hard constraints to segmentation,
by marking some pixels. Then they use the Gaussian mixture
model and K-Means to generate image clusters and initialize
the graph. Finally, an iterative graph cut algorithm is used to
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TABLE II
FOOD IMAGES DATABASES

Fig. 5. Example of food image segmentation using the GrabCut al-
gorithm. The blue rectangle represents the region of interest, the white
lines represent the foreground and the black lines represents the back-
ground.

segment the food image. The users who were familiar with the
application achieved up to 93% accuracy (images with less than
5% of false segmented pixels), while the users who were not
familiar achieved 88% accuracy.

In automatic food segmentation methods with handcrafted
feature extraction, the user only needs to capture the image.
Then, existing image processing techniques are employed to
solve the segmentation problem by making assumptions about
the shape, colour and number of food items in the plate. These
approaches use algorithms and techniques to extract texture,
shape and colour features, such as the J measure-based seg-
mentation (JSEG), the Normalize cuts (NCut) [58], or region
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Fig. 6. An instance segmentation model.

merging and growing [59]. For example, Anthimopoulos et al.
[60] suggested the use of a five-step food segmentation algo-
rithm based on colour information: CIELAB conversion, pyra-
midal mean-shift filtering, region growing, region merging and
plate detection/background subtraction. The proposed method
achieves an 88.5% segmentation accuracy.

In recent years, deep learning approaches [61], [62], [63],
[64] and Convolutional Neural Networks (CNNs) [65] in some
cases have shown state of the art performance in computer vision
tasks, allowing the use of automated food image segmentation
methods. In these approaches the segmentation models consist
of two main parts: (i) the first part, acts as an encoder by
extracting a large number of features from the image, while
(ii) the second part act as decoder and is responsible for image
segmentation (Fig. 6). Several popular CNNs models, such as
ResNet50 [66], [67] and InceptionV3 [68] are used as the back-
bone network in the encoder, while well-known architectures,
such as Fully Convolutional Network (FCN) [69] and DeepLab
[70], are used as a decoder. Shimoda and Yanai [71], presented a
method to make consistency between a food segmentation model
and a plate segmentation model. More specifically, they used
Class Activation Mapping (CAM), which is one of the basic
visualization techniques of CNNs. A food category classifier
can highlight food regions containing no plate regions, while
a food/non-food category classifier can highlight food regions
including plate regions. They demonstrated that they boosted
the accuracy of weakly-supervised food segmentation. In a
recent study, Wu et al. [49] proposed a novel fully automatic
semantic segmentation method consisting of a recipe learning
module and an image segmentation module. They used a Long
short-term memory (LSTM) network as the encoder and the
vision transformer architecture as the decoder and they achieved
0.439 mIoU in the FoodSeg103 database. In a new study, Nguyen
and Ngo [72] presented an instance segmentation model for
multiclass segmentation, using the terrace representation for
food items. They employed the panoptic quality metric, a com-
bination of IoU and pixel accuracy metrics, which achieved a
score 0.693. Although the segmentation step is not necessary in
several dietary assessment systems, we observe that the studies
using the semi-automated segmentation method result in better
performance. However, this leads to a delay in calculating the
nutritional composition, as it requires interaction with user of

Fig. 7. The counts of segmentation approaches in dietary assessment
systems.

the system. In automated food segmentation, the use of deep
learning techniques has resulted in better performance compared
to handcrafted techniques. Instance segmentation is a technique
that has been used on a small scale (Fig. 7) in food image segmen-
tation and could further improve the segmentation performance
of dietary assessment systems. Moreover, it can be used to
segment multiple foods in an image, allowing the development
of more realistic applications, as each dish tends to have more
than one food items. This presupposes the use of annotated
food image databases, as it is a requisite to build segmentation
models based on deep learning techniques. In recent studies,
the food image segmentation step is omitted and in some others
the performance is not reported. In other studies, although the
performance of the methods used to segment food images is
high and improves the classification accuracy, there are still
open issues related to cases where mixed or overlapping foods
exist. In these cases, the use of state-of-the-art segmentation
techniques, such as semantic and instance segmentation, can be
used to improve performance and increase accuracy in the clas-
sification step. In Table III, the main segmentation techniques
are summarized.

IV. FOOD IMAGE CLASSIFICATION

Food image classification is a complex process that may be
affected by many factors. For instance, the way food is cooked
or if other food items, like sauce, covering the main food are
present. Provided that the results of classification highly affect
the effectiveness of next steps (the food volume estimation step
and the food nutritional composition step), researchers have
developed various techniques and methods to improve classi-
fication accuracy. The training of the classifier is affected by the
number and quality of images used in the training phase, so the
food database plays a crucial role in this process. Moreover,
the techniques used to extract the features of the images, through
which the images are recognized, greatly affect the accuracy
of the classifier. The most basic metrics used for classification
models are top-1 and top-5 accuracy. Top-1 accuracy is the ac-
curacy where true class matches with the most probable classes
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TABLE III
FOOD IMAGE SEGMENTATION APPROACHES

predicted by the model, defined as:

Classificationaccuracy=
number of correct predictions

number of all predictions
,

(4)
Top-5 accuracy is the accuracy where true class matches with

any one of the 5 most probable classes predicted by the model.
Other known metrics for classification task are:

Precision = TP/ (TP + FP ) , (5)

Recall = TP/ (TP + FN) , (6)

F1− Score =
2× (Precision×Recall)

Precision+Recall
. (7)

The task of food image recognition can be divided into two
categories: traditional machine learning approach with hand-
crafted features and deep learning approach using convolutional
neural networks (Fig. 8).

A. Traditional Machine Learning Approaches

Approaches that fall into this category are differentiated based
on the technique chosen to extract the image features and, on
the classifier selected for their classification. Feature extraction
is the process in which the most representative features of an
image are extracted, creating the corresponding feature vector.
There are several feature extraction algorithms, such as speeded-
up robust features (SURF), scale invariant feature transform
(SIFT), local binary patterns (LBP) [73], Gabor filter [74] and
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Fig. 8. A deep learning classification model of food images.

TABLE IV
TRADITIONAL CLASSIFICATION APPROACHES

histogram of oriented gradients (HOG). In numerous approaches
the feature extraction is performed by a combination of the
above algorithms, improving the classification accuracy. The
exported features then, feed a classifier for training the prediction
model, based on machine learning algorithms, such as support
vector machine (SVM), bag of features (BoF), random forests
(RF), k-nearest neighbours (kNN) [75] and multiple kernel
learning (MKL). For example, Bossard et al. [23] introduced
a method to mine discriminative parts using RF. To improve
effectiveness of mining and classification, they consider patches
that are adjusted with image superpixels. For each superpixel,
they extracted Dense SURF and L∗a∗b colour features. Then,
they train a multi-class SVM for final classification, with an
average accuracy 50.8% in Food-101 image dataset. In another
study, Kawano and Yanai [76] proposed a food recognition
system that can identify 256 food categories using the food
image database UEC-Food256. They applied RootHoG and
colour features and coded them into a Fisher Vector to train
one-vs-all linear classifier, with top-1 accuracy 50.1% and 74.4%
top-5 accuracy. Pouladzadech et al. [74], classified 30 food
classes using a cloud-based SVM classifier, achieving 94.5%
accuracy. They used a combination of features, including colour,
texture, size and shape, while most prevailing methods use only

colour and shape features. Table IV summarizes traditional food
classification approaches and their main characteristics.

B. Deep Learning Approaches

The CNN is a class of deep neural networks (DNNs); it consti-
tutes the state-of-the-art method in image recognition. They are
most used to analyse visual imagery and are frequently working
behind the scenes (hidden layers) in image classification. A
CNN convolves learned features with input data and uses 2D
convolutional layers. This means that this type of network is ideal
for processing 2D images. Compared to other image classifica-
tion algorithms, CNNs actually use very little pre-processing. A
CNN works by extracting features from images. This eliminates
the need for manual feature extraction. The features are not
trained but they are learned while the network is trained on
a set of images. This makes deep learning models extremely
accurate for computer vision tasks. CNNs learn feature detection
through tens or hundreds of hidden layers. Each layer increases
the complexity of the learned features.

Several studies use pre-trained CNN models [77], [78], [79],
[80], [81], [82] to classify food images, such as Inception V3
[83], [84] and EfficientNet [85], [86]. Moreover, fine-tuning
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Fig. 9. Boxplot distribution of top-1 accuracy of deep learning-based
food recognition algorithms for different food image databases.

[87], transfer learning [88] and data augmentation techniques
are applied to improve the accuracy of classification models.
Definitely, the last years, deep learning is the state of the art for
food image classification [89]. Hassannejad et al. [90], evaluated
a fine-tuned version of Inception V3 model, increasing the
accuracy and decreasing the computational cost. In particular,
they achieved 81.5%, 76.2% and 88.3% top-1 accuracy, on UEC-
Food100, UEC-Food256 and Food-101 databases, respectively.
In addition, they achieved 97.3%, 92.6% and 96.9% top-5 accu-
racy on UEC-Food100, UEC-Food256 and Food-101 databases,
respectively. In another study, they have built a DNN model
consisting of two stages: The first stage is a residual network,
encoding generic visual depictions of food images, while the
second stage is a slice network with a slice convolutional layer
capturing the vertical food features. The extracted features are
linked and fed to the fully connected layers that give out the
classification prediction. Tan and Le [91], proposed a new CNN
scaling architecture, the EfficientNet. They scaled up the depth,
width and resolution of the network, outperforming the state-
of-the-art deep learning studies. EfficientNet-B7 achieves 93%
accuracy in the Food-101 dataset. In several deep learning-based
studies for food recognition, it is observed that the evaluation
of the models is performed in the databases of food images:
UEC-Food100 [92], UEC-Food256 [93], Food-101 [94] and
VIREO-172 [95].

Fig. 9 shows the box plots of top-1 accuracy achieved by
deep learning approaches for existing food image databases. We
observe the top-1 accuracy features a high interquartile range for
the UEC-Food256 and Food-101 databases; this is an indication
of the complexity characterising multi-class problems. On the
other hand, a higher and less spread top-1 accuracy obtained for
databases with a small number of classes or focused on specific
tasks. Fig. 10 presents the percentage usage of existing food
image databases as development datasets in food recognition,
where databases with a large number of classes being used more
often. In addition, a considerable amount of studies (18%) do
not refer any information about the used databases, diminishing
their replicability potential. We observe that the Food-101 is

Fig. 10. Percentage use of food image databases in food recognition-
related studies.

the database with the highest percentage, while newer databases
have used very little. Table V presents the main characteris-
tics of deep learning approaches applied in food image clas-
sification. We can observe that the accuracy of conventional
classification models can be improved by combining feature
extraction algorithms. Moreover, the combination of different
classifiers seems to work better than using only one classifier.
In addition, we notice that the traditional approaches are used
on small food datasets where deep learning techniques cannot
be applied, and it is obvious that deep learning techniques for
food image recognition outperform the traditional ones [19].
Although CNNs were firstly used to extract features that feed a
classifier, in recent years only deep learning models have been
used to classify food images. Furthermore, we note that there is
a tendency to use deeper learning networks to train food image
classification models (for example, the EfficientNet B-7 consists
of 813 layers). However, the need of computing power seems to
limit the possibilities of such an approach. In the future, with the
ever-increasing computing power to train deep learning models
(e.g., deep learning cloud servers) and to build deeper networks,
combined with training in larger datasets, their performance can
be further improved.

V. FOOD VOLUME ESTIMATION

The last step in food nutritional composition systems com-
prises the estimation of foods quantity and the analysis of their
nutritional composition, such as carbohydrates, proteins, fat
and total calories. Accurate estimation of the amount of food,
assumes that the previous stages of the segmentation and recog-
nition of the food have been accomplished correctly. Then, using
appropriate approaches, such as 3D reconstruction, pre-build
shape templates, perspective transformation, depth camera and
deep learning techniques, the volume of food is estimated. This
is a demanding process which in most cases requires a specific
number of photos and a specific way of taking them, a controlled
environment and in many cases dedicated cameras for capturing
food images. In fact, calculating the nutritional composition of
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TABLE V
DEEP LEARNING CLASSIFICATION APPROACHES

a food is a challenging task, even for nutritionists. This is why in
many nutritional estimation systems; it is considered appropriate
to have a reference object to determine the depth of the image.
The metrics which are used to evaluate the volume of food are:
the mean absolute error (MAE):

MAE =
1

n

n∑
j = 1

|Vreal − Vest| , (8)

the mean absolute percentage error (MAPE):

MAPEi =
1

n

n∑
j = 1

∣∣∣∣
Vreal − Vest

Vreal

∣∣∣∣ ∗ 100, (9)

and the root mean square error (RMSE):

RMSE =
1

n

√√√√
n∑

j = 1

(Vreal − Vest)
2, (10)

where Vreal is the real volume of food, Vest is the estimated
volume and n is the total number of foods. Having estimated
the amount of food, using local food composition databases, its
nutritional composition can be calculated.

Several studies require taking two or more images of the
food for its 3D reconstruction [96], [97]. The first step in
these studies is the feature points extraction, using appropriate
feature extraction algorithms, among others SIFT and SURF.
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Fig. 11. Dense reconstruction steps of two captured images.

Then, the relative camera pose is estimated between the captured
images. Furthermore, reference objects, with known dimen-
sions, are used to estimate the scale of the image, for instance a
reference card. Consequently, dense stereo matching is utilized
for 3D food reconstruction, projecting the image coordinate
system to the world coordinate. The next step is to estimate
the volume of the food by removing the background from the
image and keeping only the food in it. Finally, the nutritional
composition of the food is analysed using the relevant nutrient
database, such as the USDA Food and Nutrient Database for
Dietary Assessment (FNDDS) [98]. Dehais et al. [99], estimated
the volume of multi-food meals by capturing two images, with
the food placed inside an elliptical plate and a reference card
placed next to it. The proposed system comprised of three stages.
The first stage is extrinsic calibration (computation of camera
rotation and translation matrices) which is performed in three
steps: salient point matching, relative pose extraction and scale
extraction. The second stage is dense reconstruction, which also
consists of three steps: rectification of the images, stereo match-
ing and point cloud generation (Fig. 11). Volume estimation is
the final stage, which consists of the following steps: food sur-
face extraction, dish surface extraction and volume calculation.
The system was evaluated on 77 food dishes of known volume,
and achieved MAPE from 8.2 - 9.8% in two different datasets.
It is worth mentioning that the researchers in order to extract the
relative pose, modified the classical Random sample consensus
(RANSAC) algorithm by including local optimization and an
adaptive threshold estimation method. 3D food reconstruction
is a methodology that can be used in a food of any shape and in
capturing food images in a non-controlled environment. How-
ever, the need to capture at least two images, as well as to extract
the features using image processing algorithms, such as SIFT
or SURF, makes the methodology sensitive to the acquisition
of images and make the process significantly slower, affecting
food volume estimation accuracy.

Some studies suggest the use of specific geometrical shapes
or templates (for example spherical and cylindrical objects)
to reconstruct the food image from the 2D space into the 3D
space from a single image [100], [101], [102]. Moreover, they
utilize a fiducial marker (a checkboard pattern or a reference
card) to obtain the camera parameters and provide a reference

for the object scale and pose of each food item. The require-
ment for predefined geometrical shapes or templates for the
3D reconstruction of food, renders these methods extremely
difficult to use in systems for daily dietary monitoring, because
of the different and irregular shapes that food items present. For
instance, in [103], the dimensions of the reference object used
by the user must be pre-registered, to be able to calculate the
real size of the food region. They assume that the food portion
height is correlated with the food size, and they estimate calories
of food items directly from the food size. For this purpose, they
utilize quadratic curve estimation of food calories based on their
2D size. The quadratic curve of each food is calculated based on
data annotated with real food calories. This approach gives good
results in foods that have a regular shape, such as lasagna and
cheesecake. Otherwise, the calculation of the amount of food is
inaccurate and must be used in conjunction with methodologies
for volume estimation of food having irregular shape. For food
items that have irregular 3D shapes, researchers suggest using
area-based volume estimation methods from a single image
[104], [105]. The pinhole camera model provides a perspective
transformation from the 3D plane to the 2D plane [106]. Per-
spective transformation is a linear projection where 3D objects
are projected on a picture plane. This causes distant objects to
appear smaller the nearest ones and also means that lines which
are parallel appear to intersect in the projected image. In order
to accurately determine the food region, the 2D image should
be rectified, so that the projective distortion may be removed.
In this case, the existence of a reference object in the 2D image
is a prerequisite [107]. In, [108] they have proposed a system
which requires the user’s thumb placed beside the dish when
capturing the picture. Then the system, which already knows
the dimensions of user’s thumb, can calculate the food area of
each food item, and multiplies the total area of food (TA) by the
depth (d) of the image to estimate its volume. The advantage
of perspective transformation methodology is that it can handle
irregular food shapes based on a single image. Its disadvantages
are that it requires a special capture of food images and that the
distance cannot be computed accurately.

In order to obtain the depth of the food image, the use of
special devices and sensors is suggested in some studies. In
[109], new generation smartphone cameras (Time of Flight



KONSTANTAKOPOULOS et al.: REVIEW OF IMAGE-BASED FOOD RECOGNITION AND VOLUME ESTIMATION AI SYSTEMS 147

Fig. 12. Percentage use of each volume estimation approach.

(ToF) sensor or depth-sensing camera) were utilized to estimate
depth and distance, where a pair of rear cameras can create the
depth map in real time. The use of an additional depth camera to
calculate the depth makes this approach less popular. However,
with the development of technology which captures 3D images
using smartphones, the depth camera methodology is expected
to dominate in the next years. At the moment, the high cost of
these smartphones prohibits the use of such technology.

In recent years with the ever-increasing use of deep learning
networks in computer vision problems [110], they have been
used in food volume estimation problems. Moreover, the ever-
increasing computing power has allowed the use of Generative
Adversarial Networks (GANs) to estimate the amount of food
[111], providing a new dimension in the solution of this problem.
In [112], a CNN is employed to deduce the depth from RGB food
images to be used in Bread Units (BU) regression. This is why
they have created a large- scale dataset of around 9 K different
RGB-D images of 60 western dishes taken using a Microsoft
Kinect v2 sensor. They have proved that depth maps from RGB
images can replace RGB-D input data at high importance for the
BU regression task. In another study [113], GANs are utilized to
estimate food energy distribution. For the GANs training, they
have created a food image dataset, which consists of 1875 paired
images, based on ground truth food labels and segmentation
masks for each food image including energy information corre-
lated with the food image. The average energy estimation error is
10.89%. In Fig. 12 we can observe a quasi-even use of different
food volume estimation approaches, except for depth-camera
-based ones, with deep learning and perspective transformation
covering each 25% of the studies. Table VI summarizes the main
food volume estimation approaches, along with the techniques
used to estimate the amount of food and their performance.

VI. DISCUSSION

The 21st century is characterized as the century of data ex-
plosion. With the AI and the Internet of Things (IoT) becoming
omnipresent technologies, we now have a huge amount of data

being created. Since the enormous volume of image data we
receive is not structured, we rely on advanced techniques, such
as machine learning for efficient image analysis. Food image
database, food image segmentation, food classification and food
volume estimation are parts of image analysis and can be used to
dietary assessment systems as part of mobile health (mHealth)
applications, capturing images through a smartphone. This is
what today is used and it is easy to use by most of the people and
of all ages to capture photos and more specifically food images,
that will offer the possibility of continuous recording of health
data in real time. The use of mobile devices and cloud technology
to monitor health data and sharing it with physicians, can lead
to faster and less misdiagnosis of diseases, such as diabetes and
CVDs. In vision-based dietary assessment systems, all stages
are important towards building a reliable integrated system for
food nutrition analysis. Although the dietary assessment systems
have been researched for many years, several challenges remain
to be explored.

The way food images are captured plays an important role in
the individual steps of these systems. For both the creation of the
databases and their input in the food analysis systems, the way
the images are taken affects the performance of segmentation,
classification, and volume estimation. In the database creation,
similar foods must be captured in a way that emphasizes their
different features. To input food images in the dietary assessment
system, many applications require capturing images from spe-
cific shooting angles [99] and with specific objects placed next
to them [108]. These prerequisites make it difficult to use these
applications and prevent users from employing them, which
renders it imperative to create simpler systems.

In food image databases, the use of deep learning techniques
for food recognition tends to create databases with the largest
possible number of images for each food class. However, the
existing databases are limited to the number of food classes, de-
pending on the dietary habits of the database constructor. Thus,
there is a necessity to create a generic food image database which
covers as many food categories as possible and represents the
types of food from all cuisines. The collection of food images and
the creation of food image databases is an easier task nowadays,
due to the habit of capturing and posting images on social media.
However, creating a database that will additionally include the
ingredients of the food or its weight, is still a demanding task.
Furthermore, creating an annotated database of food images
using their weight in addition to the type of food, will help build
better and more accurate models for the next steps of nutritional
analysis systems. Also, one possible way to increase the number
of images per food class is to use GANS models. Finally, it
is worth mentioning that the acquisition of databases remains
difficult, and the creation of a unified food image database cannot
be achieved.

In several recent studies, the step of food image segmentation
is omitted and in some others the performance of this step is
not reported. In other studies, although the performance of the
methods used to segment food images is high and improves the
classification accuracy, there are still open issues related to cases
where there are mixed foods. There are also open issues in cases
where lighting conditions can create shadows or reflections in the
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TABLE VI
FOOD VOLUME ESTIMATION APPROACHES
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TABLE VII
COMPARISON OF EXISTING REVIEW STUDIES

image or blurring the food items contained in the image. In these
cases, the use of state-of-the-art segmentation techniques, such
as semantic and instance segmentation, can be used to improve
the performance of this step and improve the efficiency to the
classification step.

Studies have shown that deep learning techniques perform
better than traditional food image classification techniques and
that is the reason why they are considered the state-of-the-art
methods for food image classification. To classify food images,
as mentioned above, databases with a large number of food
images are required. This requirement becomes even bigger for
deep learning techniques, where the number of images in the
database affects the performance of the food image classification
system. In addition, blurred images, inadequate lighting condi-
tions when capturing them and the different ways of cooking
the same food, can lead to misidentification of the food. The use
of deeper classification models and the application of transfer

learning, fine tuning, and data augmentation techniques, could
improve the accuracy of deep learning classification models. The
use of pre-trained DNNs in existing food image databases could
lead to the construction of models with better accuracy and even
lower loss.

Volume and nutrient estimation are the most challenging
task in automated vision-based dietary assessment systems.
The controlled environment for capturing food images, taking
multiple photos, the inability to estimate the volume of food with
weak texture features, for instance yogurt, and the creation of
databases according to the techniques used in each study, render
the estimation of the amount of food through images the most
demanding stage for nutrient analysis systems. In addition, the
need to use a reference object or the use of a depth camera to cal-
culate the scale and quantity of food, limits their possibility for
extensive use. Moreover, food estimation techniques based on
geometric patterns allow volume estimation to be calculated in
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only few foods which have a specific shape. Finally, although the
recent use of deep learning techniques in food volume estimation
was a very promising approach, studies have shown that they do
not outperform the existing techniques. In the 3D reconstruction
approach, CNNs could be used instead of image processing
algorithms to extract the features, significantly increasing the
number of matched features and improving the reconstruction
of food 3D point cloud. One possible approach that would solve
many problems regarding the way images are captured, the
number of images required and the depth sensors needed would
be to build a machine learning model on an annotated food image
database with regard to the weight of the food items.

Considering the continuous technological development and
the techniques of recording data, the use of alternative ways to
enter data and information related to the food consumed (for
example via speech or text), could help optimize the perfor-
mance of nutritional analysis systems. In particular, combining
traditional food recognition and quantity estimation techniques
with voice and text input and processing techniques could further
improve the performance of nutritional assessment systems. In
addition, using advanced deep learning techniques and algo-
rithms, such as reinforcement learning, it is possible to build
dietary assessment systems based on personalized nutrition,
providing dynamic dietary recommendations by monitoring the
user’s environment and aiming to optimize a reward function.

Table VII provides a comparative assessment of existing
review studies including our work with respect to the elements
of dietary assessment systems that are reviewed and assessed
therein. Considering the level of information (quality, quantity,
and granularity) provided by the existing reviews, herein, we
aimed at improving the completeness of the information by
reviewing all the elements of such a system (Sections II-V)
and unbiasedly capturing all the different classes of meth-
ods/techniques/algorithms that have been proposed over the last
10 years in the specified research topic. In this direction, the
above discussion of both the strengths and limitations of the
existing approaches alongside the identification of solutions
to their shortcomings aimed at strengthening future research
works.

VII. CONCLUSION

This review study assessed and contrasted the methods con-
stituting the intelligence logic of a dietary assessment system
aiming at providing to the reader the potentialities of the existing
approaches. First, we highlighted the need for annotated food
image databases including meals from multiple cuisines and
with adequate size per class in view of their use as training/test
sets in image segmentation or image classification tasks. Second,
we stressed the potential of instance and semantic image seg-
mentation approaches to augment the performance of food clas-
sification models orchestrated under the same pipeline. Third,
we verified, as it was expected, the superiority of deep learning
architectures in classifying the content of food images over
conventional machine learning algorithms, and the tendency
of increasing the number of hidden layers towards increasing
the accuracy of predictions. Finally, further annotation of food

images (e.g., with respect to their weight) could complement the
current functionality of food volume estimation approaches.
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