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Abstract—Heart rate variability (HRV) is an important
metric with a variety of applications in clinical situations
such as cardiovascular diseases, diabetes mellitus, and
mental health. HRV data can be potentially obtained from
electrocardiography and photoplethysmography signals,
then computational techniques such as signal filtering and
data segmentation are used to process the sampled data for
calculating HRV measures. However, uncertainties arising
from data acquisition, computational models, and physi-
ological factors can lead to degraded signal quality and
affect HRV analysis. Therefore, it is crucial to address these
uncertainties and develop advanced models for HRV anal-
ysis. Although several reviews of HRV analysis exist, they
primarily focus on clinical applications, trends in HRV meth-
ods, or specific aspects of uncertainties such as measure-
ment noise. This paper provides a comprehensive review of
uncertainties in HRV analysis, quantifies their impacts, and
outlines potential solutions. To the best of our knowledge,
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this is the first study that presents a holistic review of
uncertainties in HRV methods and quantifies their impacts
on HRV measures from an engineer’s perspective. This re-
view is essential for developing robust and reliable models,
and could serve as a valuable future reference in the field,
particularly for dealing with uncertainties in HRV analysis.

Index Terms—Heart rate variability, measurement uncer-
tainty, motion artifact, computational uncertainty, impact
quantification.

[. INTRODUCTION

ONITORING and analysing heart rate (HR) can provide
M valuable information about an individual’s health status.
The physiological basis and measurement of HR have been
extensively studied in both healthy individuals and those with
various diseases [1]. Heart rate variability (HRV) refers to the
variation in the time interval between consecutive heartbeats
indicated by the oscillation in heart periods [2]. It is considered
a quantitative marker for assessing adequate cardiac regulation
by the autonomic nervous system (ANS) in response to physical
and psychological stimuli [3], [4]. HRV is also affected by the
activity of the sinoatrial node (SAN), the natural pacemaker of
the heart [5]. HRV is therefore widely used as a non-invasive
parameter in healthcare applications, such as cardiovascular
anomalies [6], critical care [7], and mental health disorders [8].
Generally, higher values of HRV parameters are associated
with good health [9]. For instance, a higher value of the root mean
square of successive normal-to-normal intervals (RMSSD) has
been linked to better self-rated health [10]. Conversely, lower
HRYV values are often considered pathological and associated
with reduced regulatory capacity [11]. For example, the decline
in frequency-domain HRV measures has been observed in older
people with an increase in all-cause mortality [12]. For these
reasons, HRV has been used to monitor physical and psycho-
logical variables in various pathologies, such as critical care
medicine [7], cancer patients [13], diabetes mellitus [14], bipolar
disorder [15], irritable bowel syndrome [16], sleep apnea [17],
myocardial infarction [6], silent stroke [18], depression [8], and
psychotropic medication [19]. It can be seen that numerous
studies supported the use of HRV as an important tool for the
diagnosis and monitoring a variety of clinical diseases.
The most common methods to obtain HRV data are through
electrocardiography (ECG) and photoplethysmography (PPG)
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signals. However, ECG signals are often contaminated by noise
and artifacts, which can subsequently affect the HRV analy-
sis [20]. On the other hand, PPG is an optical-based technique,
which is similarly vulnerable to noise and artifacts, especially
when data is collected from wrist-worn wearable devices [21].
In addition, a variety of physiological factors can potentially
affect HRV indices, such as age, weight, body mass index (BMI),
body position, respiration rate, circadian rhythms, physiological
states, and the effects of medications [13], [16], [22]. Given
these different types of uncertainties and their impact on HRV
analysis, it is essential to quantify their effects to develop robust
and reliable models for the analysis of HRV data.

The computation of HRV measures is a complex process
that involves multiple computational procedures, including data
denoising, outlier removal, cardiac cycle detection, missing
data estimation, data segmentation, resampling, and spectral
analysis [3]. Each of these procedures can be implemented
using different techniques, and their combination can lead to
uncertainties in the analysis of HRV data. For instance, the HRV
data can be analysed using short-term or long-term segments, but
the two types of HRV measures are generally not interchange-
able [23], [24]. Given the impact of these computational tech-
niques, there have been studies focusing on addressing specific
types of uncertainties in the analysis of HRV data, such as noise
and motion artifact removal [25], [26], [27], electromyogram
interference [28], uncertainties in QRS complex detection [29],
and the effect of limited sampling frequency [30].

Previous studies have developed a variety of techniques to
simulate and analyse uncertainties in the analysis of HRV
data, such as the spectro-temporal HRV analysis [31], Gaussian
modelling [32], Monte Carlo simulation [33], Kalman filter-
ing [34], non-linear noise reduction [35], and Bayesian deep
learning [36]. Given the different types of measurement uncer-
tainties and computational techniques, it is important to provide
a comprehensive review of these uncertainties and quantify their
impacts on HRV indices.

This work aims to provide a comprehensive survey of un-
certainties and computational techniques in HRV analysis, and
quantify the impacts of these uncertainties on HRV measures
from an engineer’s perspective. This review informs researchers
and practitioners about the various sources of uncertainty
in HRV measurements and computational procedures, which
would help facilitate the development of robust and reliable
methods using HRV in healthcare applications. The review may
also serve as a reference for the analysis of HRV data, providing
potential solutions to mitigate the impact of uncertainties.

[I. ACQUISITION AND MEASUREMENT OF HRV

HRV refers to the fluctuation in time intervals between adja-
cent heartbeats, which can be measured through different types
of signal recordings [2]. The standard approach to derive HRV
datais through the use of ECG recordings, which utilise multiple
electrodes placed on the skin to measure the electrical activities
of the heart [37]. Alternatively, the PPG technique uses an
optical method to describe changes in pulse rate over time and
is commonly used for measuring HRV data [38]. Apart from
the ECG and PPG signals, there are also other types of signals
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Fig. 1. lllustration of deriving HRV data from ECG and PPG signals,
(a) RR intervals in the ECG signal, and (b) PP intervals in the PPG
signal. N.U.: Normalised units.

that can be used to derive HRV data, such as the ballistocardio-
graph (BCG) [39], heart sound signal [40], Doppler radar [41],
and camera-based assessment, e.g., imaging-PPG and video-
PPG [42]. In the following sections, we describe two major types
of signals (i.e., ECG and PPG) for HRV measurement.

A. HRV From ECG Signal

HRYV can be determined by analysing HR data obtained from
ECG signals, using specialized software for HRV calculation
such as the PhysioNet’s HRV Toolbox [43], Kubios HRV [44],
and pyHRV [45]. To derive HRV data from ECG signals, the
R-peaks in the signal must be detected using appropriate QRS
algorithms. For example, in Fig. 1(a), there are eight R-peaks
in the ECG data; The beat-to-beat intervals can then be com-
puted between the consecutive R-peaks; Next, HRV data can be
obtained by processing the calculated RR intervals, using inter-
polation methods and data resampling to produce a consistently
sampled RR tachogram for further analysis [46].

B. HRV From PPG Signal

In recent years, there has been a growing interest in devel-
oping alternative methods to measure HRV data using low-cost
wearable devices [1]. One of such methods is the use of PPG
sensor, which consists of light sources and photodetectors to
assess the amount of light absorbed or reflected by blood vessels
in living tissue and detect volumetric changes in peripheral
blood circulation [38]. Then, the pulse rate variability (PRV)
can be computed from the PPG signal, and previous studies have
demonstrated the potential of using PRV as a surrogate for HRV
data [1], [37]. To derive the PRV data, as shown in Fig. 1(b), the
pulse-to-pulse interval (PPI) or inter-beat interval (IBI) can be
calculated from the PPG signal, and then it is straightforward to
calculate the PRV data from the PPIs. The simplicity of this
technique, cost-effectiveness, ease of signal acquisition, and
remote monitoring capabilities are apparent advantages of PPG
over the gold standard ECG for the estimation of HRV data.
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TABLE | TABLE Il
TIME-DOMAIN HRV MEASURES FREQUENCY-DOMAIN HRV MEASURES
Name Description Name Description

Mean value of normal-to-normal (NN) interval time
series.

meanNN (ms)

SDNN (ms) Standard deviation of all NN intervals during a 24-
hour period.

SDANN (ms) Standard deviation of the averages of NN intervals
in all 5-min segments of the entire recording.

SDSD (ms) Standard deviation of differences between adjacent
NN intervals.

RMSSD (ms) Square root of the mean squared differences of
successive NN intervals.

PNNS5O0 (%) The number of interval differences of successive NN

intervals > 50 ms with respect to the total number
of NN intervals as a percentage.

HRV triangular
index

The integral of the density of RR interval histogram
divided by its height for 24-hour recordings.

C. Measurement of HRV

HRYV analysis involves calculating meaningful variables from
the RR or PP intervals in different time segments, such as
long-term (24 hours or more), short-term (around 5 minutes),
and ultra-short-term (less than 5 minutes) [37]. However, longer
recording periods are better suited for representing slower car-
diac fluctuations and the response of the cardiovascular system
to environmental stimuli and workloads [47]. Therefore, short-
term and ultra-short-term HRV values are generally not inter-
changeable with long-term values [47]. HRV variables can be
evaluated using time-domain, frequency-domain, and non-linear
analysis. We discuss some widely used HRV measures below,
but for a more detailed description of these variables, we refer
the reader to [3], [47].

Time-domain HRV indices quantify the variability in the
time intervals between successive heartbeats. Widely used time-
domain features are summarized in Table I, which include the
mean value of normal-to-normal (NN) intervals (meanNN),
the standard deviation of NN intervals over a 24-hour period
(SDNN), the standard deviation of differences between adjacent
NN intervals (SDSD), the standard deviation of the averages
of NN intervals of all 5-minute segments (SDANN), the per-
centage of interval differences of successive NN intervals larger
than 50 ms with respect to the total number of NN intervals
(pNN50), and the HRV triangular index [47], [48], [49], [50].
Because some of these time-domain measures are correlated, it
is generally recommended to use specific indices for different
HRV assessment purposes. For example, the SDNN and HRV
triangular index can be used to estimate the overall HRV data,
the SDANN can be used for the long-term components of
HRV estimation, and the RMSSD can be used to estimate the
short-term components of HRV data [3].

Frequency-domain analysis of HRV involves transforming the
time-series data of RR intervals into the frequency domain, and
the resulting power spectrum can be further categorized into
several frequency bands as shown in Table II [47], [50]. The
power within each band reflects the activity of different physi-
ological systems that influence heart rate, such as sympathetic

ULF power (ms?) The power in the ultra low frequency band (< 0.003

Hz) in the frequency spectrum.

VLF power (ms?) The power in the very low frequency band (0.003 -

0.04 Hz).

The power in the low frequency band (0.04 - 0.15
Hz).

The power in the high frequency band (0.15 - 0.4 Hz).

LF power (ms?)

HF power (ms?)

LF/HF The ratio between the low frequency power and the
high frequency power.

P (ms?) The total power of the density spectrum.

LFn The normalized LF power with the formula of LFn =
LF/(LF + HF).

HFn The normalized HF power with the formula of HFn
= HF/(LF + HF).

LF/P The ratio between the low frequency power and the
total power.

HF/P The ratio between the high frequency power and the

total power.

and parasympathetic nervous systems [3]. It is worth noting that
frequency-domain HRV analysis can be performed across short-
term or long-term recordings. The recommended recording pe-
riods for frequency-domain HRV measures are as follows [47],
[51]: the very-low-frequency (VLF) band (0.0033-0.04 Hz)
requires a recording period of at least 5 minutes, but maybe
over 24 hours; the low-frequency (LF) band (0.04-0.15 Hz) is
typically recorded over a minimum period of 2 minutes; the
high-frequency (HF) (0.15-0.40 Hz) is conventionally recorded
over a minimum period of 1 minute. For the ultra-low-frequency
(ULF) band, which is below 0.003 Hz, the index should be
calculated for at least 24 hours or a longer period [51].

Non-linear HRV features provide insights into the complex
non-linear dynamics of the cardiovascular system, which are
influenced by various physiological variables, such as hemo-
dynamic, electrophysiological, and humoral factors, as well as
autonomic and central nervous regulations [3]. Table III presents
some widely used non-linear HRV measures [52], [53]. Notably,
some studies investigated the relationship between non-linear
and spectral HRV analyses, and suggested that the coefficient «
of the detrended fluctuation analysis (DFA) could be described
by frequency-weighted spectral analysis, where the DFA method
is a standard approach to assess long-range correlations embed-
ded in non-stationary time series data [54].

We note that the same mathematical formula can be used
to calculate both short-term and long-term heart rate variability
(HRV) variables, but they have different physiological meanings
and cannot be substituted for each other [55]. For example,
24-hour data recordings capture slow fluctuations in circadian
rhythms, core body temperature, metabolism, sleep cycle, and
renin-angiotensin system contributions. As a result, HRV mea-
sures calculated from 24-hour recordings can guide biofeed-
back training for clinical and optimal performance [47]. Long-
term data recordings are typically used to assess autonomic
nervous system (ANS) responses during normal daily activities
in both healthy and unwell individuals, as well as in response
to therapeutic interventions [56]. In contrast, short-term HRV
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TABLE IlI
NON-LINEAR HRV MEASURES

Name Description

CD The correlation dimension (CD) estimates the minimum
number of variables that are required to construct a model
of system dynamics.

ay The short-term fractal scaling exponent and calculated
over 4 ~ 16 beats.

(o) The long-term fractal scaling exponent and calculated
over 16 ~ 64 beats.

SD1 (ms) The standard deviation perpendicular to the line of iden-
tity in the Poincaré plot, which is a scattergram with
plotting each RR interval against the previous interval.

SD2 (ms) The standard deviation along the line of identity in the
Poincaré plot.

SD1/SD2 The ratio between SD1 and SD2.

ApEn The approximate entropy and it measures the regularity
and complexity of a time series.

SampEn The sample entropy and it also measures the regularity
and complexity of a time series. It provides a less biased
and more reliable measurement.

DFA a3 It describes the short-term fluctuations in the detrended
fluctuation analysis, which extracts the correlations be-
tween successive heart beat intervals over different time
scales.

DFA aq It presents the long-term fluctuations in the detrended

fluctuation analysis.

measures have practical advantages, such as easy application
in out-of-hospital or laboratory settings and simplified data
processing [57]. As a result, short-term HRV measures are
more commonly used as indicated in literature [47], [48], [52].
Moreover, advances in wearable sensors and mobile monitoring
systems have led to an increase in ambulatory acquired HRV
data, resulting in a shift towards analysing ultra-short-term HRV
features [57]. This shiftis largely due to real-life data constraints;
even conventional 5-minute HRV recordings may be impractical
to obtain in out-of-clinic environments [58]. However, there is
currently a lack of rigorous methods to assess the validity of short
recordings and to identify reliable ultra-short HRV features in
controlled settings.

[1l. UNCERTAINTIES IN HRV DATA ANALYSIS AND POTENTIAL
SOLUTIONS

There are a variety of uncertainties that can affect the anal-
ysis of HRV data. For example, observational errors in the
data acquisition, e.g., baseline wandering, motion artifacts, and
electromyographic (EMGQG) interference; Meanwhile, there are
also uncertainties arising from computational models in HRV
analysis, e.g., QRS complex detection and data segmentation;
In addition, some physiological factors such as age, gender, and
BMI may also have impacts on the analysis of HRV data.

We note that there are different definitions of uncertainties.
For example, the research in [59], [60] described uncertainty as
the potential deficiency in any phase or activity of the process
which can be characterized as not definite, not known, or not
reliable. The uncertainties can be divided into model uncertainty
(i.e., epistemic uncertainty), and data uncertainty (i.e., aleatoric
uncertainty) [61]. To be more specific, they can be summarised

as uncertainties related to technology, incomplete knowledge,
and clinical effectiveness [62]. To this end, we sort out the
different types of uncertainties in the analysis of HRV data,
and divide them into three subsections, (i) uncertainties in data
measurement, (if) uncertainties in computational modelling, and
(iii) influence on HRV indices from physiological factors. As
shown in Fig. 2, we provide an overall diagram of reviewing
the different types of uncertainties in the analysis of HRV data.
In the following subsections, we review these uncertainties in
details.

A. Uncertainties in Data Acquisition

As introduced earlier, HRV data can be derived from ECG
or PPG signals. For both the two methods, the data acquisition
process can be easily contaminated by noise and artifacts, e.g.,
motion artifacts. Although these contaminants can be reduced
using hardware and software techniques during the experimental
setup, it is unrealistic to remove all possible contaminants,
and they would have effects on the subsequent HRV analysis.
As summarised in Table IV, typical measurement uncertainties
that occur during signal recording include baseline wandering,
electromyogram (EMG) interference, electrode contact noise,
lead placement, sampling frequency, and motion artifacts [25],
[64], [65]; Meanwhile, there are measurement uncertainties in
using different light sources and measurement locations for PPG
signal acquisition [65], [66]. These errors can lead to poor signal
quality and affect the analysis of HRV data.

Uncertainties in ECG Measurement:

1) Baseline Wandering in ECG Measurement: The base-
line wandering (BW), also known as drift, is a commonly
seen noise during signal recording, which is usually caused
by respiration or movement of the subject [67]. For example,
the BW in ECG measurement can be caused by the rotation
of the heart’s electrical axis during the respiratory cycle, which
changes the thoracic impedance distribution and affects the ECG
measurements [21].

Generally, the BW noise would affect the detection of peak
values in the signal. For example, if the BW is large, it may lead
to clipping of R peaks, resulting in immeasurable HRV [68]. The
BW noise is alow-frequency artifact at frequencies ranging from
0.15t0 0.3 Hz (i.e., <1 Hz) [69], and represented as a sinusoidal
component added to the measured signal. Therefore, the BW
noise can be processed using a high pass filter with a cutoff
frequency greater than 1 Hz [70]. There are also a variety of
advanced filtering techniques that can be used to process the BW
noise, such as adaptive filtering [71], and signal decomposition
techniques [72].

2) Powerline Interference: The powerline interference in
ECG measurements is mainly generated by the displacement
current through a capacitive coupling between the human body
and the power line [73]. The interference is usually characterised
as a high-frequency noise with the frequency of 50 + 0.2 Hz
(or 60 Hz), and an amplitude of up to 50% of peak-to-peak
amplitudes in the measured signal [69]. In a conventional ECG
configuration with three or more electrodes, the powerline inter-
ference can be reduced using an additional reference electrode
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Fig. 2. The overall diagram of reviewing uncertainties in the analysis of HRV data.

TABLE IV
MEASUREMENT UNCERTAINTIES IN HRV ANALYSIS

Uncertainty types Description and possible solutions

Baseline wandering The baseline wandering usually comes from respiration and has frequencies drifting between 0.15 Hz and 0.3 Hz (i.e.
<1 Hz) [20]. It could be eliminated by selecting a frequency value greater than 1 Hz as the lower cutoff frequency
[70].

EMG interference EMG interference is generated from muscle contractions with frequencies from 5 Hz to 500 Hz [25]. Measuring
multiple ECG leads combined with adaptive filtering techniques could be used to suppress the interference [81], [82].

Electrode pops Electrode pops are common during body movements. They could be eliminated by adding electrode gel or reapplication
of the problem electrode when taking a recording [83].

Light sources for The wavelength of light source for PPG signal has influences on HRV [66]. Red light-based PPG is generally used in

acquiring PPG research and for routine clinical examination [65], [84]; while green light-based PPG signal instead is more widely

used for smartwatch-based HR measurements [66].

Sensor placement The ECG leads I, II, and V2 are widely used for HRV analysis [85]; and in terms of PPG signal, by investigating
the impact of seven different anatomical sites on measuring PPG signal, it was found that the upper arm showed less
artifacts than signals acquired from peripherals [38], [66], [86].

Motion artifacts MA is a major interference for both ECG and PPG signals. In particular, the ECG measured with dry electrodes is
more sensitive to MA [87]. Generally, MA has an overlap of frequency range with PPG signals [88], [89]. Numerous
advanced signal processing techniques can be used to process the MA [25], [90}-[94].
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or the driven-right-leg (DRL) technique [74]; In the weara-
ble ECG monitoring with two electrodes, the powerline inter-
ference may corrupt the quality of ECG recording severely [73],
and the noise can be mitigated using some advanced hard-
ware design, such as the ECG amplifier with a common-mode
charge pump (CMCP) [75], and a biosignal read-out circuit with
common-mode impedance compensation [76]. Soft computa-
tional techniques have also been widely used to reduce powerline
interference, such as digital filters (e.g., FIR and IIR filters) [ 77],
adaptive filters [78], wavelet transform (WT) [79], and empirical
mode decomposition (EMD) [72].

3) EMG Interference: The EMG interference is generated
from muscle contractions, and it usually has an average ampli-
tude of 10% full scale deflection (FSD) on the measurements,
i.e., ECG data [25]. The EMG signal has a broad range of
frequency bands, and it sometimes overlaps the useful frequency
range of ECG signal [80]. As a result, a simple band-pass filter
may be not adequate to remove the interference. Given that the
EMG signal collected on the skin surface is localised in nature,
the EMG interference in different ECG leads may be uncorre-
lated because of their different locations on the body. Therefore,
the EMG interference can be suppressed by measuring multiple
ECG leads combined with adaptive filtering techniques [81],
[82].

4) Electrode Pop or Contact Noise: The electrode contact
noise is caused by the loss of contact between the electrode
and skin, for example, the electrode being nearly or completely
pulled off the skin [20]. Electrode pops are common during
body movements, where the signal manifests as sharp changes
with periods of around 1 s. These errors could be eliminated by
adding electrode gel or reapplication of the problem electrode
when taking a recording. Afterwards, the artifact can generally
be handled by switching to an alternative signal that does not
come from the problem electrode [83].

5) Placement of ECG Leads: The standard 12-lead ECG
recordings are measured from different locations of the chest
(precordial), wrists, and ankles on the body surface. Typically,
the ECG leads I, II, and V2 are widely used for HRV analy-
sis [85]. There are studies investigating the effect of measure-
ment locations on the QRS complex of ECG signals [95], [96],
where the detection of QRS complex has substantial effects on
the quality of HRV data. In particular, by analysing the clinical
body surface potential map (BSPM) data with 120-lead ECGs,
the study showed that the best locations for QRS complex are
around the chest electrodes of the standard precordial V2, V3,
and V4 ECG leads [95]; The results provide useful indications
for the development of wireless ECG measurement systems.

6) Sampling Frequency of ECG Signal: The sampling
frequency at which the ECG signal is digitised is important
in deriving HRV indices [97]. For example, low sampling
frequencies could distort the R-peak waveform, and the distor-
tion will then propagate during QRS detection and therefore af-
fect the HRV measures. In particular, the pNN50 is demonstrated
as a sensitive HRV measure for low sampling frequencies [23],
[30]. Some research showed that the uncertainty of spectral
HRV indices is proportional to the inverse of the sampling
frequency, and the bias is proportional to the inverse of the

square sampling frequency [98]. The Task Force of The Eu-
ropean Society of Cardiology and The North American Society
of Pacing and Electrophysiology indicated that a low sampling
frequency might produce jitters in estimating the R-wave fiducial
points [3], which will then considerably alter the HRV spectral
estimation, and thus the optimal range of sampling frequency is
recommended as 250 to 500 Hz or perhaps higher [3].

7) Motion Artifacts in ECG Measurement: Motion artifact
(MA) refers to the uncertainty caused by the relative movement
of the sensor measurement with respect to the skin [99], [100].
MA has long been a problem in both the ECG and PPG measure-
ments, which will in turn affect the HRV or PRV data that are
derived from these signals. However, the ECG signal measures
physiologic biopotentials with a frequency range from 0.05 (or
0.5) Hz to 100 (or 150) Hz [25], [101], and the PPG uses an
optical approach to measure the volumetric variations of blood
circulation with a frequency band from 0.5 to 4 Hz [88], [89].
Therefore, the MA has different impacts on the two types of
signals, and we discuss them in different subsections.

In particular, MA during the ECG measurement is introduced
by the electrode motion, which causes deformations of the skin
around the electrode site, and in turn causes changes in the
electrical characteristics of the skin around the electrode [20].
MA poses a major challenge in the long-term cardiac monitoring
using wearables [102], and it is more abrupt and distinct in
nature as opposed to the slow baseline wandering caused due
to respiration [70].

ECG signal can be measured with wet or dry electrodes [87],
where the wet electrode such as Ag/AgCl electrode is widely
used in medical applications with excellent signal acquisition
quality, it uses a conductive gel that acts as the electrolyte of the
electrode and reduces the contact impedance; In comparison,
the dry contact electrode is widely used in wearable device, it
connected directly to the skin and therefore is more sensitive to
MA [87]. Previous study showed that the light abrasion of skin
with fine sandpaper is an effective way to reduce MA [103],
[104]; other techniques such as extracting electrode-tissue con-
tact resistance and reactance can be used to monitor MA [87],
[105], and accelerometers can be used as reference signals to
reduce the MA [106]. In addition, there are many advanced
signal processing techniques that can be used to reduce the effect
of MA, which will be discussed in the latter section.

Uncertainties in PPG Measurement:

1) Baseline Wandering in PPG Measurement: The BW
noise in the PPG measurement is also caused by the respiratory
rate, muscle tremor, and physiological changes. However, dif-
ferent from the chances of impedance distribution during ECG
measurement, the BW in PPG measurement is due to changes
in tissue blood volume, which can be caused by the changes
in intrathoracic pressure transmitted through the arterial tree,
and vasoconstriction of arteries during inhalation transferring
blood to the veins [21], [107]. Similarly, the above discussed
techniques in processing BW of ECG measurements can also be
applied to process the noise in PPG data [71], [72].

2) Measurement Locations of PPG Signal: In terms of
PPG signal, the measurement locations will also have an influ-
ence on signal quality, and consequently affect the estimation of
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HRYV data [38], [66]. Previous studies investigated the influence
from different measuring sites of PPG signals, such as the right
thumb, right forefinger, right middle finger, left thumb, left fore-
finger, left middle finger, right wrist (posterior), right wrist (an-
terior), left wrist (posterior), left wrist (anterior), forehead, nasal
bridge, right ear, left ear, right ankle, left ankle, manubrium, and
xiphoid process [66], [108]. Among these different locations for
PPG measurement, it was found that the fingers, ears, and nose
reveal higher perfusion than other sites. However, the selection
of suitable measuring sites is related to the choice of light
sources. For instance, the pulse amplitude of the green-light
PPG signal at the upper arm was larger than the peripheral sites;
while the infrared amplitude shows no significant differences
across measurement sites in arms, wrists, and fingers [66].

3) Effects of Light Sources on PPG Signal: PPG sensors
emit light onto the skin, and measure the pulse rate by detecting
the amount of light transmitted or reflected. The quality of PPG
signal has a strong relationship with the light sources, because
it estimates changes in blood volume based on the light absorp-
tion characteristics of hemoglobin. Therefore, the variations of
different wavelengths of light sources have effects on the HRV
data that are derived on the PPG signal [109]. For example,
some studies investigated the effect of different light sources
of PPG signals, including blue, green, red; and near-infrared
light in the reflectance mode, and red and near-infrared light
in the transmittance mode [65], [110]. The results suggested
that blue and green lights followed by near-infrared light in
reflectance mode are the recommended settings to measure HR
using PPG techniques [110]. In addition, some research used
a multi-wavelength PPG module by including different types
of lights, i.e., blue, green, yellow and infrared; and it was
demonstrated that the model achieved more accurate estimation
than traditional PPG techniques [111].

4) Sampling Frequency of PPG Signal: The sampling rate
also has effects on the HRV data when using PPG signal.
Previous studies investigated the impact of different sampling
frequencies (i.e., 1,000, 500, 250, 125, 100, 50, and 25 Hz) on
acquiring PPG signals, where the data were acquired from the
forehead and finger using red and infrared lights [112]. The
study showed that the relative errors in the time and frequency
HRYV indices increase with the decrease of sampling rates [112].
There are also studies indicating that for time domain analysis
100 Hz sampling rate is required for accurate PRV analysis
without interpolation in normal variability series, and for fre-
quency domain analysis 10 Hz can be sufficient with cubic spline
interpolation [113].

5) Motion Artifacts in PPG Measurement: The quality of
PPG signal is highly influenced by MA, this is because MA
generally has a frequency range of 0.01-10 Hz [114], which
overlaps the frequency range for PPG signals of 0.5-4 Hz [88],
[89], making it difficult to remove MA without affecting the
PPG signal; The uncertainty from MA will in turn affect the
subsequent PRV analysis. Different from MA in ECG signal,
the interference in PGG signal is generated due to the movement
between the photoelectric sensor and the skin, which can be
caused by voluntary or involuntary subject movement, such
as people’s unconscious movement, respiration, and extrusion

between the skin and the photoelectric sensor [115]. Generally,
MA in PPG data can be denoised using a reference signal
collected from accelerometers [116], optical sensors [117], or
impedance sensors [118]; and it also can be compensated using
some advanced sensor design, such as the dual-channel organic
photodiode (OPD) sensor as presented in [119].

Numerous signal processing techniques have been developed
to reduce MA in both the ECG and PPG signals, such as
filter-based techniques, time-frequency analysis, blind source
separation, and machine learning-based algorithms [120], [121].
As shown in Table V, we summarise these different types of
techniques for MA removal.

(a) MA Removal Using Adaptive Filtering: Adaptive filtering
techniques generally use a reference signal that has a high
correlation with motion, and then it is possible to weaken the
MA and obtain a clean signal. The reference signal may be
obtained by accelerometers [116], skin stretch sensors [129],
optical sensors [117], and impedance sensors [118] as mentioned
above. Nevertheless, if the reference signal is not available from
an auxiliary sensor, synthetic techniques can also be used to
produce a reference signal [130]. With the reference signal at
hand, the adaptive least mean square (LMS) algorithm [122],
recursive least square (RLS) adaptive filter [90], and adaptive
tracking (AT) [123] can estimate the clean signal. The adaptive
filter is easy to implement, but the major drawback of this
technique is the need of a supplementary signal, which increases
the complexity of the system [120].

(b) MA Removal Using Time-Frequency Techniques: Time-
frequency techniques have been extensively used to remove
artifacts in biomedical signals, as they can present both the
time and frequency information of a signal. The widely used
wavelet transform (WT) technique decomposes a signal into a
series of sub-signals with multiple lower resolutions, and then
removes the artifacts by processing the wavelet coefficients [25].
The empirical mode decomposition (EMD) algorithm is another
useful non-stationary signal processing technique. It decom-
poses the signal into multiple intrinsic mode functions with
well-defined instantaneous frequencies, and enables estimating
the HR data from the distorted signals with the decomposed
components [91]. Other techniques such as the short time Fourier
transform (STFT) [131], and the variational mode decomposi-
tion (VMD) [132] has also been used for MA removal.

(c) MA Removal Using Blind Source Separation: The blind
source separation (BSS) refers to the recovery of source signals
from a set of observed mixtures with superimposed noise [133].
The BSS model is generally expressed algebraically in terms
of matrix factorisation, and the original signal sources and
MA can be separated once an unmixing matrix is determined
by the BSS model [120]. Based on some assumptions on the
source signals and the mixture matrices, different approaches of
BSS can be implemented, including the independent component
analysis (ICA) [124], principal component analysis (PCA) [92],
canonical correlation analysis (CCA) [93], and non-negative
matrix factorisation (NMF) [125].

(d) MA Removal Using Other Advanced Techniques: Ma-
chine learning approaches have been demonstrated as powerful
techniques for MA removal [134]. The support vector machine
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TABLE V
TECHNIQUES TO REDUCE MOTION ARTIFACTS IN HRV DATA ANALYSIS

Category Description and techniques

Adaptive filtering meth-

Adaptive filtering techniques use a reference signal (from an auxiliary sensor or a synthetic signal) to weaken MA. Widely

ods used techniques include adaptive least mean square (LMS) algorithm [122], recursive least square (RLS) adaptive filter

[90], and adaptive tracking (AT) [123].

Time-frequency
techniques

Blind source separation
(BSS)

Time-frequency techniques, e.g. WT [25] and EMD [91], are usually not implemented independently, they are used
combining other techniques (e.g., the adaptive filter [123]) to enhance the abilities of MA removal.

The BSS techniques assume the original signal sources and MA can be separated [120], these techniques include
independent component analysis (ICA) [124], principal component analysis (PCA) [92], canonical correlation analysis

(CCA) [93], and non-negative matrix factorization (NMF) [125].

Machine learning tech-
niques
model [128].

Many machine learning approaches have been developed for MA removal, such as multi-layer perceptron [126], support
vector machine [127], fuzzy inference system [126], Bayesian learning-based probabilistic approach [94], and deep learning

TABLE VI
UNCERTAINTIES IN HRV ANALYSIS FROM COMPUTATIONAL MODELS

Uncertainty types

Description and solutions

QRS complex detection

PPI detection

Missing data processing

Data resampling rate

Data segmentation

The detection techniques for QRS complex in ECG signals include the amplitude threshold [137], the first derivative
[138], digital filters [139], time-frequency representation [140], and geometry analysis [141]; It is possible to obtain
more reliable HRV results by combining multiple detection techniques [29].

The PPI detectors for PPG signal include adaptive threshold approach [142], template matching approach [143],
moving average filter [144], and waveform delineator [145]. The middle-amplitude point, the apex point of the first
derivative, and the tangent intersection point were suitable fiducial points for PRV data analysis [146].

The mean NN and RMSSD were the most robust for the missing HR intervals, and pNN50 is the most sensitive
parameter to missing data [147], [148]. It is suggested the interpolation of missing data on time produces more
reliable HRV estimations than interpolation on duration [149].

The resampling rate of HRV series can range from 1 to 10 Hz. It is indicated that the sampling rate of 8 Hz and
above would be appropriate for subjects with HR > 117 bpm, e.g., newborns; 6 Hz is suitable for subjects with 90
< HR < 117 bpm; and 4 Hz is sufficient for for HR < 90 bpm 4 Hz [150].

Long-term HRV analysis is more stable than short-term analysis, but it is expensive to obtain long-term recordings.
Ultra-short-term HRV values, such as 10 s segment can estimate mean HR; a 60 s segment can estimate SDNN,

RMSSD; and a 90 s segment can be used to estimate LF power, SD1, and SD2 [24], [136].

was applied to identify high confident heartbeats from MA cor-
rupted ECG signal in wearable applications [127]. A Bayesian
learning-based probabilistic approach was developed to estimate
HRV from artifacts distorted PPG signal recorded by wearable
devices [94]. A real-time modelling method was developed for
MA detection and PPG signals reconstruction using real-time
modelling based on multilayer perceptron (MLP), radial basis
function (RBF) artificial neural networks (ANN), and adaptive-
neuro fuzzy inference system (ANFIS) [126]. A deep learn-
ing model with the convolutional neural networks (CNN) and
long-short term memory (LSTM) was developed to estimate HR
information and perform biometric identification from a single-
channel PPG signal collected in an ambulant environment [128].
We note that these different types of models are usually not
implemented independently for MA removal, instead, they can
be implemented combining with other techniques (e.g., signal
decomposition and adaptive filtering) to enhance the abilities of
MA removal [91].

B. Uncertainties in Computational Modelling

After data acquisition, the HRV data can be obtained using
a variety of computational procedures, such as cardiac cycle
detection, missing value imputation, data filtering, resampling,
segmentation, and spectral estimation. However, these compu-
tational processes may produce potential uncertainties in the
analysis of HRV data [135]. For example, an unreliable detection
of peak values from ECG or PPG signals would affect the HRV

parameters, and the length of data segmentation would also have
an impact on the time- or frequency-domain HRV indices [24],
[136]. As shown in Table VI, we summarise the uncertainties
from computational modelling, and we discuss the details in the
following subsections.

1) QRS Complex Detection of ECG Signal: The accurate
detection of QRS complex from the ECG signal is the basis
for the efficient analysis of HRV data [151]. Previous research
investigated the impact of the QRS detection process on time-
domain, frequency-domain, and non-linear HRV parameters
using the Monte Carlo simulation technique [135]. The results
indicated that the pNN50 and frequency-domain indices were
the most sensitive indices; while the most robust indices were
time-domain parameters as well as the short-term and long-term
slopes of the DFA index [135]. We note that many techniques
have been developed for the detection of QRS complex, such
as the amplitude threshold technique [137], the first derivative
method [138], digital filtering [139], time-frequency represen-
tation [140], spectral analysis [152], geometry analysis [141],
and learning-based techniques [153]. For the different types
of QRS detectors, it was suggested that the time-domain tech-
niques are straightforward to compute but lack sufficient in-
formation, and time-frequency representation approaches could
be considered a better option over geometry-based methods.
In addition, previous study suggested that more reliable HRV
results can be obtained by combining multiple QRS detection
techniques [29].
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2) Pulse-to-Pulse Interval Detection of PPG Signal: Sim-
ilar to the detection of QRS complex in ECG signal, the detection
of PPIs is also important for the analysis of PPG-based HRV
data [154], [155]. Widely used detectors for the PPG signal
include adaptive threshold approach [142], template matching
technique [143], moving average filter [144], and waveform
delineator [145]. In particular, previous study compared three
different techniques for pulse rate detection, and the results
indicated that the traditional maximum peak detector had a
high accuracy for the pulse rate estimation; the moving average
filter can be used as an alternative algorithm; while the template
matching technique had the worst performance [144]. We note
that many different fiducial points can be used for the detection
of pulse-to-pulse intervals, such as the apex point, line-medium
point, interpolate medium point, and the basal point [112], [146].
It was demonstrated that when using the line-medium points as
fiducial points for the finger PRV signal with a sampling rate
of 25 Hz, the estimation of the power of LF index has a small
estimation error [112]. However, when using line-medium or
medium interpolate points as fiducial points, there are no signif-
icant changes in HRV indices between data sampled from 50 Hz
and 1,000 Hz for finger and forehead PPGs [112]. Moreover, it
was indicated that the middle-amplitude point, the apex point
of the first derivative, and the tangent intersection point were
the most suitable fiducial points for the PRV data analysis,
which obtained low estimation errors between PRV and HRV
indices [146].

3) Missing Data and Estimation Techniques: Missing
data is a common type of uncertainty in the analysis of HRV
data. Some research evaluated the effect of missing values on
HRV data, and compared HRV measures derived from RR
intervals with missing data and indices from a complete 5-min
measurement [147]; and the results indicated that in terms of
the root-mean-squared relative error (RMSRE) with a threshold
of less than 10%, it was acceptable that the duration of missing
data was approximate 140.6 s for the SDNN, 175.6 s for the
RMSSD, 35.5 s for the pNNS50, 285 s for the meanNN, and 0.9 s
for almost all the frequency-domain HRV indices [147].

We note that there are a variety of techniques that can be used
to impute missing values in the HRV data. For example, it would
be straightforward to estimate missing data using interpolation
methods, such as the nearest neighbour approach (NNR), linear,
quadratic, spline cubic, and piecewise cubic Hermite (PCH)
interpolation methods [33], [149]. In terms of frequency-domain
HRV features, previous research indicated that the spline and
PCH interpolation methods have better performance than the
NNR and linear interpolation [33]; In particular, the PCH in-
terpolation has better estimation performance than the spline
method on estimating the LF index; and the spline interpolation
produces a low error than the PCH interpolation for a small
duration of missing data on estimating the HF index. However,
the errors caused by spline interpolation are larger than those
caused by PCH method when the missing data duration is more
than 60 s [33]. Previous study investigated the impact of miss-
ing data on time-domain HRV features, such as the meanNN,
SDNN, SDSD, RMSSD, and pNN50; The results indicated that
the meanNN was the most robust parameter to missing data, and
pNNS50 was the most sensitive index to missing data [148].

In addition, some studies investigated the impact of missing
values and interpretation techniques on estimating non-linear
HRYV measures, such as the Poincaré plot, detrended fluctuation,
and entropy analysis [156]. The results showed that among these
non-linear HRV parameters, SD1 and SD2 obtained by Poincaré
plot analysis were the most robust parameters to the missing data.
However, comparing with time- and frequency-domain HRV
parameters, the estimation errors of non-linear HRV parame-
ters were relatively high. Therefore, apart from the SD1 and
SD2 parameters derived from the Poincaré plot analysis, other
parameters were not recommended for an accurate non-linear
HRYV analysis with missing data [156].

In terms of imputation strategies for missing data estimation,
previous studies investigated two types of different approaches,
i.e., interpolation of RR intervals on time (i.e., the timestamp
when the heartbeats happen) and on the duration (i.e., the du-
ration of the heartbeats) [149], and the results showed that the
interpolation of missing data on time can produce more reliable
HRYV estimations than the interpolation on duration [149]. Other
than using interpolation techniques for missing data estimation,
we note that machine learning methods such as deep recurrent
neural networks, and mathematical tools have also been used to
estimate missing values for the analysis of HRV data [157].

4) Frequency Rate for Data Resampling: The identified
intervals between heartbeats are usually non-uniform sampled,
and the sequence of the time intervals is generally resampled
for spectral analysis. The resampling rate can range from 1 to
10 Hz, however, the 4 Hz remains the preferred rate for spectral
HRYV applications [150], [158]. Previous studies compared the
resampling rates of 1 Hz and 4 Hz for spectral HRV analysis,
and showed that there were small estimation errors between
the two resampling frequencies for spectral indices [158]; In
particular, compared the rate of 1 to 4 Hz, the normalized
LF (LFnu), normalized HF (HFnu), and the ratio of LFnu to
HFnu obtained the mean relative errors (MRE) of 3.7%, 15.3%
and 16.4%, respectively [158]. In addition, by investigating a
variety of resampling frequencies (e.g., 2, 4, 6, 8, and 10 Hz) for
HRYV data analysis [150]; the study suggested that the selection
of resampling rate should consider the mean and minimum
heartbeat intervals. For example, the resampling rate of 8 Hz and
above would be appropriate for subjects with HR > 117 bpm,
e.g., newborns; the rate of 6 Hz is suitable for subjects with 90
< HR < 117 bpm; and the rate of 4 Hz is sufficient for HR <
90 bpm [150].

5) Duration of Data Segmentation: HRV can be analysed
with data segments from short durations to very long recordings,
depending on the features of interests. For example, the HRV
task force suggested that the short-term 5-min recordings and
nominal 24-hour long-term recordings would be appropriate for
time-domain HRV measures [3]. However, for the frequency-
domain analysis, the VLF assessed from short-term recordings
is dubious, and should be avoided when interpreting the power
spectral density (PSD) of short-term ECGs [3]. Some research
indicated that long-term HRV analysis is more stable than short-
term analysis, but it is more expensive and time-consuming
to obtain long-term recordings. Previous study suggested that
the short-term HRV analysis can be used to track the changes
of cardiovascular autonomic function across minutes, while
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the long-term HRV analysis should be preferred for depicting
changes across hours to even more extended periods [23].

There was also research investigating HRV parameters de-
rived from ultra-short-term (UST) data segments, i.e., <5
mins [24]. By comparing HRV parameters derived from data
segments with 10, 20, 30, 60, 90, 120, 180, and 240 s record-
ings, the research suggested that the segment of 60 s achieved
an acceptable estimation of SDNN, RMSSD, and pNN50; the
segment of 90 s can be used to estimate the LF power, SD1,
and SD2; and the segment of 120 s can be used to estimate
the HRV triangular index and DFA «; [24], [136]. However, it
was indicated that factors such as age, health conditions, and
techniques for artifact processing may have a greater impact
on UST HRV measurements than on longer recordings [47];
and therefore the routine use of UST HRV measurements in
medicine, performance, and personal fitness assessment need
more detailed investigations [159].

6) Methods for Spectral Estimation: Generally, there are
two types of approaches that can be used to estimate the spectral
of HRV data, i.e., non-parametric and parametric methods [33],
[160]. In the non-parametric method, the PSD can be calculated
directly from the signal data, and there are two widely used
non-parametric methods; (i) The first type of non-parametric
methods uses the fast Fourier transform (FFT) to calculate the
spectral power; (ii) The second type of non-parametric methods
is based on Welch’s periodogram [33], the method uses a window
function (e.g., Hamming window) to calculate periodogram for
each data segment, and then computes the averaged periodogram
for the data [160]. In the parametric method, the PSD is calcu-
lated from the frequency response of the transfer function of a
linear system [33], and there are also two types of parametric
methods; (i) The first parametric approach is the Yule-Walker
method, it uses the lagged-product autocorrelation to estimate
the parameters of AR model [161]; (ii) The second parametric
approach is the Burg method, which fits the AR model by
minimizing the forward and backward prediction errors [33]. It
is noted that other than using the resampled time series data for
HRYV analysis, the Lomb-Scargle (LS) periodogram is also used
for the estimation of HRV metrics, which requires no resampling
of unevenly sampled signals [33]. Both the non-parametric and
parametric methods are widely used to calculate PSD for spectral
analysis of HRV data. However, when comparing the two types
of PSD estimation methods, previous research indicated that
the parametric methods can provide smoother spectrum than
the non-parametric methods [160]. In terms of the two types
of parametric methods, the Burg method was demonstrated
with good properties, e.g., guaranteed stability, and therefore
the method is often advised for the estimation of AR model in
practice [161].

C. Influence From Physiological Factors

In addition to the uncertainties in data measurement and
computational methods, as discussed in the previous sections,
there are also physiological factors that would affect the analysis
of HRV data, such as age, gender, and BMI [162]. For example,
it was reported that age plays an important role in women’s

TABLE VII
PHYSIOLOGICAL FACTORS IN HRV ANALYSIS

Types Description and the impact

Age The values of HRV measures decrease with progressing
age [164]. Short-term HRV indices are significantly age-
dependent, and the greatest influence was observed in the
25 to 54 years old group [48].

Gender The gender difference has less impact than age on HRV [168].
Some research indicated that females had higher values of
several frequency-domain HRV indices than males, and the
gender difference would gradually disappear after the age of

40-50 years old [23], [48].

It is observed that the SDNN, pNN50, and RMSSD had lower
values in women with a BMI value less than 19 kg/m?2 or
greater than 30 kg/m? [163]; while some research indicated
there was no significant difference in HRV indices between
the normal, overweight, and obese groups [162].

BMI

cardiac autonomic modulation, followed by the BMI, and these
modulations will have an influence on the analysis of HRV
data [163]. We provide a brief summary of the impacts of
physiological factors in Table VII, and discuss the details in
the following subsections.

1) Age: It is well established that the values of HRV in-
dices decrease with a progressing age [164]. For example, by
investigating the impact of confounding factors on HRV in-
dices in 653 subjects without heart diseases, and it indicated
that most of time- and frequency-domain HRV parameters
decrease with ageing [162]; In particular, the decreasing rate
was 6.6 ms/decade for the SDNN, and 4.4 ms/decade for the
SDANN [162], [165]. Previous study also indicated that almost
all short-term HRV indices were significantly age-dependent,
and the greatest influence was observed in the population with
ages ranging from 25 to 54 years [48].

We note that many existing studies focused on investigat-
ing HRV indices for adults. However, HRV parameters can
be quite different for the pediatric population, in particular
infants/neonates. This is because children usually exhibit higher
HR and higher variations of HR than adults, which will have
effects on the subsequent analysis of HRV data [166]. Previous
study investigated normal subjects with ages from 1 mo to 24
years in different conditions, such as awake, active, and quiet
sleep, and it observed the age dependence of HRV; In particular,
an increase in LF, HF, and total power from O - 6 years, followed
by a decrease to 24 years [167].

2) Gender: Gender dependencies were observed in several
short-term HRV indices, and significant differences were ob-
served between males and females for the resting HR, RR-
intervals, and frequency-domain HRV parameters [164]. It was
reported that females had higher total power and HF power,
but lower LF power and LF/HF ratio than males; However, the
gender difference would gradually disappear after the age of 40
— 50 years old [23], [48]. A meta-analysis examined 50 HRV
measures for healthy participants, and showed that compared to
men, women had higher mean HR, lower SDNN, and SDNN
index values, particularly for 24-hour studies [169]; For the
frequency-domain HRV indices, the results showed that women
had lower total, VLF, and LF power, but greater HF power [47],
[169]. However, some research indicated no significant gender
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differences in time-domain HRV parameters [164]. For example,
the SDNN had a higher value in females than in males, but it
did not reach a statistically significant level [168]; Meanwhile,
it showed that compared to age, the gender difference was
indicated with less impact on HRV indices [168]. Therefore, it
was suggested that we should keep in mind the effect of gender
differences particularly in the spectral analysis of HRV data [23].

3) BMI: The BMI is considered as another factor of inter-
vention in autonomic system regulation, which will clinically
translate into HRV parameters. For example, previous research
found an increase in the mean NN, SDNN, SDANN indices, and
LF and HF components after weight loss [170]. In particular, it
was observed that the SDNN, pNN50, and RMSSD had lower
values in women with BMI values less than 19 kg/m? or greater
than 30 kg/m? [163]. However, another study indicated that there
was no significant difference in either the time- or frequency-
domain HRV indices between the normal, overweight, and obese
groups [162]. Therefore, the impact of BMI on HRV parameters
needs more detailed investigation.

V. UNCERTAINTY CHARACTERISATION AND QUANTIFICATION
A. Characterisation of Measurement Noises

Given the distinctive features and impacts of the variety of
measurement noises, it is important to characterise the nature of
different types of these interferences. Conventionally, except for
the sudden abrupt interference, most noises can be assumed to
be Gaussian (white) with flat frequency spectra [20]. However,
many real-world noises are non-stationary, and they have non-
flat spectral density functions, e.g., coloured noise [171], [172].

The term of coloured noise refers to any non-white noise sig-
nal with non-constant spectra, and the spectral density function
of the coloured noise is a function of the frequency [173]. For
example, the pink noise is known as flicker noise, which presents
in almost all electronics [174]. The spectra of pink noise are
inversely proportional to the frequency, and it indicates that the
pink noise is a significant noise source at low frequencies [175],
[176]. The log power spectrum provides an index to characterise
the coloured noise with its slope such that [20], [177],

S(f) ~1/f", (1)

where, S(f) represents the PSD function, and f is the spec-
tral frequency. The parameter [ is the slope of the log power
spectrum, which determines the colour of the signal.
e If B = 0, the signal is regarded as white (Gaussian) noise,
and it has a flat spectrum;
e If 5 =1, it is known as pink noise (flicker noise), and is
related to the observation noise;
e [f 8 = 2, itis the electrode movement noise with a Brow-
nian motion-like form, known as brown noise.

The white noise is a sequence of uncorrelated random vari-
ables with zero mean and finite variance, and it has an equal
intensity at different frequencies and a constant PSD value; In
contrast, the pink noise is the signal with a frequency spectrum
inversely proportional to the frequency of the signal [178].
During the data acquisition, the chopper stabilisation technique
is widely used to reduce pink noise. Other techniques, such
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Fig. 3. Coloured noise in ECG signals. (a) Original ECG signal,
(b) ECG signal contaminated by pink noise, (c) ECG signal contami-
nated by brown noise, (d) PSD comparison of the two types of noises.

as auto-zeroing and correlated double sampling, can also be
used to reduce pink noise [175]. Other than the pink noise,
the Brown noise relates to the baseline wander and electrode
motion artifacts [171], [176], and the removal of MA has been
extensively discussed in Section III-A.

Anillustration of the impact of coloured noise is demonstrated
in Fig. 3. The original ECG signal is shown in Fig. 3(a). We
use the simulator as described in [173] to generate the coloured
noise, and the value of signal-to-noise ratio (SNR) is set as
3 dB. Fig. 3(b) indicates the contaminated ECG signal by the
pink noise, and Fig. 3(c) shows the contaminated signal by the
brown noise. The PSD analysis of the two types of noises is
demonstrated in Fig. 3(d). It can be seen from Fig. 3(d) that
the slopes of the pink and brown noises match well with the
characteristics as described in (1). When comparing Fig. 3(b)
and (c), given the SNR of the two types of noises, it seems
the ECG signal is more contaminated by the pink noise than
the brown noise. This finding agrees with previous study that
the whiter the noise, the more significant distortion for a given
SNR value [20].

In addition, previous research indicated that the ultra-low and
very low frequencies of the HRV spectra over 24 hours had
a characteristic of 1/f shape that comes from the activity of
the sinoatrial node [179]; While the ANS contribution might
be modelled as a stochastic process of white noise with two
periodic components at the characteristics baroreceptor and
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respiratory peaks in the low- and high-frequency bands [5].
However, itis noted that the shape of the spectrum may be altered
due to measurement uncertainties, for example, the presence
of missing data dampens low frequencies and enhances high
frequencies [149].

B. Uncertainty Quantification and Sensitivity Analysis

Uncertainty quantification (UQ) and sensitivity analysis (SA)
are techniques that can quantify how these uncertainties will
affect the model performance, and therefore the techniques can
help to develop trustworthy models [180]. The UQ and SA have
been investigated in many scientific areas, such as cardiovas-
cular modelling [181], material science [182], mechanical sys-
tems [183], and astrophysics [184]. However, there are limited
studies focusing on quantifying uncertainties for the analysis
of HRV data. For example, a previous study used artificially
generated data to quantify the impact of resampling and beat re-
placement in HRV spectral analysis [185]. This section outlines
the concept, procedures, and techniques for the implementation
of UQ and SA in various areas.

1) The Conceptof UQ and SA: The UQ s aprocess thatde-
termines uncertainties in estimated parameters given uncertain-
ties in the model formulation and experimental measurements,
as well as estimates how uncertainties in model inputs affect
the model output [186]. The UQ can be generally described by
statistical moments, percentiles, and confidence intervals, which
can be calculated by the frequentist approach, Gaussian process,
and Bayesian method [186], [187]. While the SA includes the
global and local assessment [180], and the aim of SA is to
quantify the contribution to the output of particular uncertain
inputs and their interactions. The SA can be described by the
first and second-order sensitivity indices, and the total sensitivity
indices to consider the interaction effects [188].

2) Procedures of UQ and SA: Some research outlined the
procedures for the UQ and SA in system modelling [189]. For
example, a two-step method was suggested for the analysis.
First, the SA is conducted to identify the key parameters whose
tolerances contribute the most to the parametric uncertainty of
the selected design variables; Second, quantifying the effect of
increasing the model inputs on the estimated total uncertainty,
and the predictive capability of the simulation models [189]. In
addition, a more detailed framework was introduced for the UQ
and SA, the workflow consisted of the following steps [188],
including (i) Identification of the output of interest; (ii) Iden-
tification and assessment of the distribution of the uncertain
inputs; (iii) Sampling of the input space to acquire samples;
(iv) Evaluation of the deterministic model; (v) Calculation of
UQ and SA measures; and (vi) Assessment of convergence of
UQ and SA measures.

3) Techniques for UQ and SA: Numerous techniques have
been developed to qualify uncertainty and analyse sensitivity
in system modelling. The most straightforward technique for
UQ and SA is the stochastic simulation, the method has been
applied to capture uncertainties in the quantities that determine
model behaviour, and provide probabilistic representations of
model parameters [190]. The technique has been used to quantify

the effect of inherent uncertainties from the cardiac output on
the sensitivity of a human compliant arterial network response,
and investigate the sensitivity of the pulse pressure and waves
reflection magnitude over the arterial tree for different model
uncertainties [191].

As an example, the patient-specific simulations were per-
formed to investigate the UQ and SA of left ventricular (LV)
function during the full cardiac cycle [192], which were imple-
mented with the following procedures, (i) the research first de-
veloped the cardiac simulation with three models, i.e., constitu-
tive model, active stress model, and circulatory model; (i7) then,
the polynomial chaos expansion method was used to accelerate
the UQ analysis [193], where the uncertainties were considered
in the constitutive model. Statistical measures computed from
the polynomial expansion were used to quantify the impact of
the input uncertainties; and (ii7) the Sobol sensitivity indices
were used to perform the SA analysis [193], i.e., investigating
the contribution of input parameters in the variability of model
outputs. The implementation of UQ and SA in this research
quantified the influence of uncertainties in the input parameters
and geometry of a cardiac computational model on the prediction
of clinical interests [192].

The Multilevel Monte Carlo method has also been applied for
UQ in stochastic multi-scale systems. The technique has been
used to evaluate the impact of computational uncertainties from
alimited sampling rate and the process of QRS detection in HRV
analysis [135]. Previous research indicated that the simulation
improved the precision of identifying polynomial chaos expan-
sions versus the traditional heuristic approach, and lowered the
computational cost of UQ [194]. In another example, the Gaus-
sian process-based Markov chain Monte Carlo approach was
used to quantify uncertainties of model parameters in cardiac
electrophysiology; the model provided posterior distributions
of model parameters, and it can be used to identify potential
factors contributing to parameter uncertainties [195].

In addition to the above simulation techniques, the Bayesian
approach is also an efficient technique in performing the UQ
and SA. The uncertainties can be first evaluated using sta-
tistical methods, e.g., moment estimation. Then the Bayesian
approach can be used to compute the posterior probability
for the quantification [196]. The method was used for model
optimisation with respect to the predictive mean and variance,
which takes into account both the data density and measurement
uncertainties [184]. Other approaches, such as the fuzzy-set
theory was applied to estimate the probabilities of uncertainties
of the model input [183]; Mathematical techniques, e.g., the
Lipschitz constant estimator, were used to calculate the bounds
of parameter uncertainties [187].

V. DISCUSSION

HRYV has emerged as an important indicator in healthcare,
and there are many existing reviews focusing on summarising
clinical applications of HRV measures [7], [13], [15], [16]. It
is understood that HRV indices are derived from biomedical
signals using a variety of computational techniques. However,
uncertainties from the signal measurement and computational
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approaches will have substantial effects on HRV analysis. We
therefore summarise these different types of uncertainties in
HRYV, and provide the review as a reference to engineers when
processing HRV data. To the best of our knowledge, this would
be the first comprehensive review to cover different sources of
uncertainties that may affect the analysis of HRV data, quantify
their impact, and outline the potential solutions.

There are a variety of signals that can be used to calculate HRV
data, and we limited the discussion of measurement uncertainties
from ECG and PPG signals in this review, which are two major
sources to derive HRV data. It is understood that ECG and
PPG sensors use distinct principles for data measurement, and
therefore they can be affected by different types of measurement
uncertainties. For example, the electrical interference may pro-
duce undesirable effects on ECG signals, but it is not applicable
to PPG data. Meanwhile, some research investigated the use
of PRV as an alternative to HRV, and indicated that it would
be sufficiently accurate to use PRV as an estimation of HRV
for healthy people (and mostly younger) at rest condition [37];
However, physical activity and mental stressors may impair the
agreement of PRV and HRV measures.

It is a complex process to calculate HRV parameters using a
variety of procedures, such as the computation of beat-to-beat in-
tervals, missing data estimation, data resampling, segmentation,
and spectral estimation. In addition, each of these computational
procedures can be implemented using different approaches, and
therefore the combination of these techniques produces uncer-
tainties in the results of HRV analysis. We note that the selection
of optimal techniques for the computation of HRV has a strong
relation to the data source. For example, ECG signals acquired in
primary care usually have short-time durations, therefore, they
are suitable to calculate short-term or ultra-short-term HRV pa-
rameters; In comparison, when using wearables for continuous
monitoring, the standard 5-min data segments or long-term HRV
can be derived from the measurements.

We note that other than age, gender, and BMI, there are also
many factors that could potentially affect the analysis of HRV
data, such as diet and environmental conditions [197]. Mean-
while, it is known that the consumption of caffeinated drinks
stimulates the ANS system and impacts cardiovascular activi-
ties [198]. In terms of the impact of smoking, previous research
indicated that acute, chronic active, and passive smoking may
generate marked disruptions in the normal ANS functioning,
which can be characterised by an increased sympathetic drive,
reduced HRV, and parasympathetic modulation [199], [200].
There are also studies investigating the use of HRV parameters
to evaluate the physical training of athletes [201], and the results
indicated that time-domain HRV measures are more consistent
than frequency-domain in describing the chronic cardiovascular
autonomic adaptations; In particular, the mean and standard
deviation of RR intervals are the most consistent measures [201].

We highlight that the different types of uncertainties have
correlations in the analysis of HRV data. For example, MA may
produce missing values in the data measurements, and they also
would affect the accurate detection of the QRS complex. It is
therefore proper guidelines should be proposed to investigate
and quantify their impacts on the results of HRV analysis.
Our discussed techniques for uncertainty quantification and

sensitivity analysis provide promising approaches to identify the
important factors and quantify their impact on HRV data. For
instance, with a human-based electromechanical model [202],
it is possible to identify important HRV measures and quantify
uncertainties (e.g., coming from computational approaches) in
the healthcare management of cardiac diseases.

VI. CONCLUSION

HRYV has emerged as an important tool in healthcare, including
the diagnosis of cardiovascular diseases, screening of diabetes
mellitus, and monitoring of psychiatric disorders. This survey
provides a comprehensive review of uncertainties that can im-
pact HRV analysis and affect healthcare outcomes, including
measurement noises in HRV data analysis, computational mod-
elling of HRV data, and physiological factors. Then, we evaluate
the technical solutions to address these uncertainties and provide
potential suggestions accordingly. Finally, we discuss the pos-
sible approaches to quantify the impacts of these uncertainties.
The review could be used as a reference for researchers and
practitioners, providing insights into future research directions
in HRV data analysis.
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