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Abstracit—At the beginning of the COVID-19 pandemic,
there was significant hype about the potential impact of
artificial intelligence (Al) tools in combatting COVID-19 on
diagnosis, prognosis, or surveillance. However, Al tools
have not yet been widely successful. One of the key reason
is the COVID-19 pandemic has demanded faster real-time
development of Al-driven clinical and health support tools,
including rapid data collection, algorithm development, val-
idation, and deployment. However, there was not enough
time for proper data quality control. Learning from the hard
lessons in COVID-19, we summarize the important health
data quality challenges during COVID-19 pandemic such
as lack of data standardization, missing data, tabulation er-
rors, and noise and artifact. Then we conduct a systematic
investigation of computational methods that address these
issues, including emerging novel advanced Al data quality
control methods that achieve better data quality outcomes
and, in some cases, simplify or automate the data cleaning
process. We hope this article can assist healthcare commu-
nity to improve health data quality going forward with novel
Al development.
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[. INTRODUCTION

HE Coronavirus Disease 2019 (COVID-19) pandemic has
T caused significant morbidity and mortality around the
world, which prompted artificial intelligence (Al) research to
develop software tools to help combat the disease. However,
most of these tools have been largely unsuccessful due to
the limited availability of high-quality, large-scale, and timely
data to investigators [1], [2], [3]. Although large quantities of
COVID-19 health data have been collected in real-time since
the beginning of the pandemic, data collection was generally
siloed and many public repositories contained unreliable or
unharmonized datasets [2]. Al tools developed using dirty data
can be biased and fail upon validation or deployment (Fig. 1,
Suppl. Fig. 1), leading to an opportunity cost in terms of the
possibility for enhanced technology-driven COVID-19 surveil-
lance, triaging, diagnosis, and prognosis. In this review, we
expand on our previous data quality control reviews [5], [6],
[7]1, [8], [9], [10], our past research on data quality [5], [6],
[11], [12], [13], [14], [15] and our previous work discussing
state-of-the-art Al methods contextualized in the COVID-19
pandemic [4]. We discuss four common data quality issues: a)
lack of data standardization of data from different sources, b)
missing data, c) tabulation errors, and d) noise and artifacts. For
each data quality issue, we describe how this issue is relevant
to COVID-19 health data and provide a systematic review of
advanced quality control tools that address the issue with su-
perior performance compared to classical methods. These four
categories span several large, national datasets collected for the
purpose of COVID-19 public health surveillance that present
unique challenges in approaching quality control depending on
the data modality and its potential source of error. Accordingly,
in each section we discuss the classical and advanced approaches
particular to the most common data modalities relevant to the
main quality control topic. Other critical aspects of health data
quality control for machine learning include such topics as data
safety, class imbalance, data duplication and many more general
best practices for handling data. To stay within the scope of our
literature search, however, our discussion will center on the four
main categories and data modalities introduced above. A select
non-exhaustive set of available COVID-19 health datasets is
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Fig. 1. (Left) Impact of the COVID-19 Pandemic on the Development Cycle of Al-Based Health Informatics Tools. Data collected during the

pandemic were of generally poor quality with high-quality data being restricted to select research institutions. The high demand for rapid machine
learning algorithm development often conflicted with more time-consuming quality control standards, resulting in poor model performance on
real-world data and overall slower Al tool deployment. More details in Suppl. Fig. 1. (Right) Common Deep Learning-Based Concepts for Advanced
Data Quality Control Tools. This figure illustrates the four major concepts relevant to different advanced quality control methods. Each concept
branches into the data modalities that are commonly affected followed by specific approaches used to address the main quality control issue.
Abbreviations: GAN = generative adversarial network, CNN = convolutional neural network, RNN = recurrent neural network, GP = Gaussian
process, ECG = electrocardiogram, CT = computed tomography, EHRs = electronic health records.

TABLE |
RELEVANT DATA QUALITY ISSUES FOR COMMON COVID-19 HEALTH DATA SOURCES AND EXAMPLES OF AVAILABLE DATASETS

Data Source Missing | Noise/Artifact Tabulation Lack of Dataset Examples
Data Standardization

Wearables Data Yes Yes Yes (waveform) N/A DETECT [16], Stanford Wearables Study [17],
TemPredict [18], [19], Achievement App [20]

Medical Image Yes Yes N/A Yes National COVID-19 Chest Image Database [21]

Data
EHR Data Yes N/A Yes Yes UK Biobank [22], N3C [23], NHS-TRE [22]
Audio Data Yes Yes N/A Yes COUGHVID [24], Coswara [25], NoCoCoDa
[26], Cambridge [27]

described in Table I (short version), with a more detailed version
available in Suppl. Table I.

lI. PRISMA FRAMEWORK

We used the Preferred Reporting Items for Systematic Re-
views and Meta Analyses (PRISMA) framework (Fig. 2) to
systematically identify and review original research articles
presenting novel deep learning-based approaches towards data
quality control, specifically focusing on the following data qual-
ity issues: missing data, noise and artifact, tabulation errors,
and lack of data standardization. The systematic database search
included Scopus, PubMed, and the Institute for Electrical and
Electronics Engineers (IEEE). The search was restricted to ar-
ticles published on or after 2018 that contained the terms listed
in Suppl. Table II. The search included terms listed in a) the
abstract, title, or article keywords for Scopus, b) the abstract or
title only for PubMed, or c) the abstract only for IEEE. All 3,345
articles found across all three databases for the different search
terms were saved into a table. An additional set of 239 articles
were found using approaches that did not involve a database
search, such as ancestry and descendance approaches. The total
number of articles after combining these was 3,584. After re-
moving any duplicated entries, the total number of articles was

2,517. The first round of screening involved screening by title.
Exclusion criteria included review papers, articles that were not
written in English, and articles not related to deep learning or
data quality control. After the first round of screening, a total
of 2,199 articles were excluded and 318 were included. Further
detailed inclusion and exclusion criteria are described in Suppl.
Table II1.

[Il. QUALITY CONTROL FOR LACK OF DATA
STANDARDIZATION

Data standardization refers to harmonizing data from different
sources into a cohesive dataset for use in downstream analyses.
Lack of standardization is a major challenge for EHR data
because different healthcare systems and clinics can use different
EHR software with different data formats and data field. A key
example of the lack of consistent COVID-19 EHR data across
institutions is illustrated by the work of the Consortium for Clin-
ical Characterization of COVID-19 by EHR (4CE) [28], which s
one of hundreds of efforts to aggregate COVID-19 data. The re-
searchers collected aggregated data from 100 hospitals in several
different countries, and found substantial differences between
the datasets, such as variations in units for certain data fields,
different code systems used for laboratory tests and diagnoses,
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Fig. 2. PRISMA Framework. 'Inclusion and exclusion criteria are de-
scribed in more detail in Suppl. Table III.

and the lack of meta data on hospital specific reference ranges.
Lack of standardization is also a significant challenge with
medical image data, and this has been especially problematic for
COVID-19 related research. Publicly available databases were
set up that allowed anyone to upload COVID-19 chest X-ray or
CT images, and many of the uploaded datasets contained images
from heterogeneous sources [2]. Images produced in different
healthcare institutions might use different scanning machines,
settings, or protocols that influence the image, making it possible
for a machine learning algorithm to learn a biased or incorrect
classification rule from the data. A summary of how the issue
of lack of data standardization is relevant for various types of
COVID-19 health data is presented in Table I (short version)
Suppl. Table IV (detailed).

The following subsections provide a detailed analysis of clas-
sical and advanced approaches to manage standardization issues,
with a focus on EHR and medical image data. Specific examples
of comparisons between classical and advanced methods, along
with an illustration of the issue of lack of standardization,
are detailed in Suppl. Fig. 2. Advanced methods are further
summarized in Suppl. Table V and Fig. 1 (Right), with a visual
timeline presented in Fig. 3. The issue of lack of standardization
is further visualized in Fig. 4.

A. Classical Approaches for Handling
Unstandardized Data

EHR data standardization challenges are in part being over-
come using standards such as HL7’s Fast Healthcare Interop-
erability Resources (FHIR) [29] and SMART-on-FHIR [30]

that harmonize EHR data from different sources to facilitate
data sharing. For researchers aiming to harmonize distinct EHR
datasets that are not already harmonized through a unified data
sharing framework such as FHIR, significant pre-processing
needs to be done to transform the data into standardized for-
mats. This can be a generally time-consuming and manual task,
requiring syntactic and semantic data transformations. Syntactic
data transformations consist of transforming the data from one
format to another, such as changing a data table from a long and
narrow format to a short and wide format [31], as exemplified in
Suppl. Fig. 3. These transformations typically require the user to
specify the total scope of the operations allowed in a table, such
as splitting or merging columns, or string manipulations. On the
other hand, semantic data transformations require the need for
external information such as a mapping from ICD-10 codes to
disease names for diagnoses, as shown in Suppl. Fig. 4.

For medical image standardization, the Digital Imaging and
Communications in Medicine (DICOM) Standard [32] is a
framework developed to allow for easy image storage and ex-
change for medical images from diverse vendors. The DICOM
Grayscale Standard Display Function (GSDF) has been shown
to increase visual consistency across medical images, but only
improves the luminance response, which is just one of many
factors that influence the quality of a medical image, including
reflection, spatial resolution, noise, geometrical distortions, dis-
play chromaticity, veiling glare, and temporal response [33].
Thus, DICOM GSDF is useful for medical image standard-
ization but not the most extensive solution. Another classical
approach is using histogram matching [34], [35], which involves
transferring a source image into a target domain by setting up an
intensity histogram for each image domain and then matching
the histograms between two images. This has been used to
standardize the luminance value and saturation distributions
for different images, but has sub-optimal performance, does
not consider all factors that influence image quality, and can
sometimes produce artifacts [34], [35].

B. Advanced Approaches for Handling
Unstandardized Data

Recent advances have facilitated use of datasets from diverse
sources for jointly training machine learning models, without the
need to share data, hence having the potential to save researchers
significant time and effort that would otherwise be spent on man-
ual data harmonization. In 2017, Google published a blog post
introducing an approach called Federated Learning (FL) [36],
which allows for a centralized machine learning model to be
jointly trained across several distributed clients without the
need for data sharing. Because data sharing is avoided, each
healthcare institution (i.e., client) utilizes its own siloed dataset
for training the joint model, and thus an added advantage is that
there is no need to manually combine and harmonize the health-
care data from each independent institution into a standardized
dataset. While FL precludes the need to manually combine and
harmonize data from different clients for joint model training, an
important consideration is that the distribution of data between
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Fig. 3. A brief timeline of major advancements in state-of-the-art methods for data quality control. Abbreviations: VAE = variational autoencoder,
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clients is generally statistically heterogeneous and thus non-
LLD, posing challenges for model convergence [37]. However,
methods have recently been developed to address these issues
in FL whilst continuing to avoid the need for data sharing [37],
[38], [39].

Recently, FL has been successfully applied for training a
COVID-19 prognosis clinical decision support algorithm using
chest X-ray and electronic health records from a large number. of
healthcare institutions. A FL multi-modal neural network model
called EXAM (Electronic medical record chest X-ray Artificial
intelligence Model) [40] was trained to predict the future oxygen
requirements and 24 or 72-hour prognosis of COVID-19 patients
using data from 20 different healthcare institutions without the
need for data sharing or harmonization. Model training consisted
of several “rounds”, each of which required training locally using
each institution’s private data and servers for one epoch, and then
sending the updated model parameters for all the local models
back to a centralized server to be aggregated. The FL approach
enabled use of large quantities of data, allowing EXAM to
generalize and achieve a 16% average improvement in AUC
over the models trained individually at each site. It serves as
an example of how machine learning models can be used to
jointly train machine learning models without the need to share
data, thus precluding the need for the time- and effort-intensive
process of manually combining and harmonizing the data. While
FL is not itself a tool for data harmonization, it enables machine
learning models to be trained across large numbers of institutions
with private datasets, while precluding the need to harmonize the
data to begin with.

Issues with medical image standardization can be addressed
using novel image-to-image translation approaches. This field
was launched with a seminal work by Isola et al. published
in 2016 (Pix2Pix [41]), which uses a conditional generative
adversarial network (cGAN) neural architecture to learn a loss
function for a mapping from an input image in one domain to an
output image in another domain. The model allows input black
and white images to be converted into output color images, or
input daylight photos to be transferred into the equivalent night-
time photo, for example. A standard GAN comprises a generator
subnetwork that generates samples from random input data and
a discriminator that takes as input both real and synthesized
samples and classifies whether a given sample is real. Both
the generator and discriminator have contrasting objectives,
where the goal of the generator is to produce samples that the
discriminator incorrectly classifies as being real. To better adapt
standard GANs for image-to-image translation tasks, cGANs
use labeled (i.e., paired) training examples, whereby the label
image is the version of the input image in the desired domain
and the generator learns to produce a new image conditioned
on the label image. While cGAN was one of the first models
designed for image translation tasks, it is limited by the need
for paired training examples, which are not generally readily
available in medical image datasets. After the introduction of
Pix2Pix, many works in medical imaging followed suit with
GAN-based algorithms for image-to-image translation. For ex-
ample, Wolterink et al. [42] and Emami et al. [43] used GANs
to generate synthetic computed tomography (CT) images from

input magnetic resonance (MR) images. Recent works have also
used GANSs to generate MR [44] or CT [45], [46] images from
positron emission tomography (PET) images.

A novel GAN architecture called CycleGAN was introduced
in 2017 by Zhu et al. [47] and allows for image-to-image
translation without the need for paired training examples. Unlike
previous approaches, which might require training samples to be
images of the same patient to be taken using MR and CT imag-
ing techniques (i.e., paired samples), for example, CycleGAN
uses information about the distribution of images from the two
different domains, thus precluding the need for the paired sam-
ples. Specifically, to train this model, unpaired training example
images from both the source domain and the desired domain
are needed. There are two generators, one of which generates
synthetic samples of one domain using input samples from the
other domain and the other which reconstructs the input from the
synthetic samples. In addition to the standard GAN adversarial
loss, CycleGAN also uses two cycle consistency loss terms,
each of which minimizes the reconstruction loss of translating
each synthetic image back to its original source domain. This
loss term enables image-to-image translation without the need
for paired samples. Recent works in medical image-to-image
translation are based on this architecture, such as CyTran [48]
and the work by Wolterink et al. [42].

While many of these algorithms have shown success in trans-
lating medical images from one image modality to another,
GANSs (especially CycleGANs) have the potential to also be
used to standardize images from different hospital institutions
or scanning machines. Even for two datasets with the same
type of image (i.e., CT scan), there might be variations in the
parameters used by the technician or the manufacturer of the
machine. CyTran was developed to generate contrast CT images
from non-contrast images, which can be useful for the stan-
dardization of images from different sources taken with these
different settings. Translating between contrast and non-contrast
CT images is a particularly challenging task because it requires
a model to effectively recognize tissue types, organ structures,
and/or tumors, which can have different radio density measure-
ments between the types of images. To address this challenge,
CyTran combines a CycleGAN framework with a convolutional
transformer block to generate images, enabling the model to
simultaneously recognize large-scale global structural aspects
of the images while translating them to the desired CT contrast
style. When tested for style transfer with varying pairs of contrast
phases (i.e., native to venous, native to arterial), CyTran achieved
a consistently higher structural similarity index measure (SSIM)
compared to Pix2Pix and CycleGAN, indicating an improved
ability to retain structural information between contrast phases.
It also achieved a lower RMSE and achieved the best overall
subjective evaluation by physicians in terms of translated image
quality. While this method was specifically focused on CT con-
trast style transfer, it may be a promising approach for broader
CT image standardization tasks. Recently, STAN-CT [49] was
developed as a novel end-to-end framework for CT image
standardization. STAN-CT uses both a GAN framework and
a DICOM synthesis framework. DICOM CT images are used as
input and are then translated into a standardized distribution of
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CT image patches using the GAN, after which the standardized
image patches undergo basic quality control, integrated back into
the full image, and saved in the DICOM format. This end-to-end
solution can significantly assist with CT image standardization
for the purposes of COVID-19 research. It builds on a previous
method (GANai) developed by Liang et al. in 2018 [35]. Both
methods have improved standardization for image texture fea-
tures such as contrast, correlation, homogeneity, energy, and
correlation, compared to histogram matching, and once pre-
trained, can be useful tools for researchers. Another work by
Zunair et al. [50] directly addressed the issue of limited publicly
available COVID-19 chest X-ray data by developing a synthetic
chest X-ray image dataset using CycleGAN which translates
non-COVID-19 patient images to COVID-19 patient images.
This approach can potentially be useful when the available
COVID-19 image data are heterogeneous and from diverse or
unknown original sources. Overall, deep GAN-based image-
to-image translation methods are allowing for improved and
more versatile CT image standardization than was previously
possible. Whereas classical approaches such as Digital Imaging
and Communications in Medicine (DICOM) Grayscale Stan-
dard Display Function (GSDF) and histogram matching can
standardize certain aspects of images such as luminance values,
GAN-based methods have dramatically broadened the scope of
what is possible for image standardization, allowing for image
translation between different medical image styles, CT contrast
styles, and more. This can help address some of the most preva-
lent data quality issues in COVID-19 Al research. Similarly, FL
is a breakthrough approach that enables broad, large-scale Al
tool development and validation without the need for manual
data harmonization, which has been a major roadblock during
the pandemic.

V. QUALITY CONTROL FOR MISSING DATA

The problem of missing data is a significant data quality
issue with COVID-19 health data from various sources. For
example, a recent study on the quality of a dataset containing
EHRs and COVID-19 test results for thousands of patients in
Portugal (“SINAVE-Med”) found over 90% of the data were
missing for important features such as the date of patients’ first
positive laboratory test results or the indication of whether or
not a positive case required intensive care unit (ICU) admis-
sion [51]. Another study on the use of wearable devices for
COVID-19 research found that many patients stop wearing their
devices or let the charge expire during the time when they are
symptomatic [17], and, despite its prevalence in multiple large
datasets, potential audio clipping in crowdsourced COVID-19
cough data can impact the reliability of time-frequency repre-
sentations in discriminative neural networks and lead to poor
diagnostic performance as well [52]. A summary of how the
issue of missing data is relevant for various types of COVID-19
health data is presented in Table I (short version) and Suppl.
Table IV (detailed).

The following subsections describe classical and advanced
approaches towards handling missing data, with a focus on

static (i.e., tabular) and time series data, including a few meth-
ods specific to audio waveform data. Examples of classical
and advanced methods and their comparisons in performance
are illustrated in Suppl. Fig. 5. Advanced methods are further
summarized in Suppl. Table V and Fig. 1 (Right), with a visual
timeline presented in Fig. 3. The issue of missing data is further
visualized in Fig. 4.

A. Classical Approaches for Handling Missing Data

Missing data can be addressed using complete case analysis or
imputation. Complete case analysis, also known as case deletion,
involves deleting samples that contain incomplete data across all
or most features of interest, or deleting features with incomplete
data across all or most samples. Although it is a simple and
common approach, it is generally not recommended, especially
if there is a high quantity of missing data, because removing
samples can lead to a loss of statistical power. Imputation
involves entering an estimate for an unknown missing value.
The simplest imputation method involves imputing missing
values for a given feature as the mean, median, or mode of
the non-missing data for that feature or as a constant value.
However, simple imputation can change the distribution of the
data and bias downstream analyses. There are several common
imputation algorithms developed for time series datasets, the
simplest of which involves imputing the missing values as the
value of the known observation that occurred either immediately
before or immediately after the missing values (also described as
“last observation carried forward; LOCF” or “next observation
carried backward; NOCB” [53]). More sophisticated classical
multivariate static and time series data imputation frameworks
are summarized in Suppl. Tables VI and VII, respectively.

B. Advanced Approaches for Handling Missing Data
(Static Data)

Deep learning-based methods have recently been developed
that achieve state-of-the-art imputation performance for multi-
variate static and time series data. For static tabular data impu-
tation, successful models have recently been developed using
generative adversarial networks (GANs) [54] and autoencoders.
In 2018, Generative Adversarial Imputation Nets (GAIN) was
published by Yoon et al. as the first GAN-based algorithm for
missing static data imputation [55]. The model uses a gener-
ator that imputes the missing values for each sample, and a
discriminator that is trained to identify which values for each
sample are known observed values and which are imputed by
the generator. The model is trained until the discriminator can
no longer differentiate between known and imputed values.
Specifically, the user inputs the original data matrix (samples
by features), where missing values are set to zero. Using this
matrix, two other matrices are created - a random matrix, which
sets all non-missing values to zero and sets each missing value to
arandom number, and a mask matrix, which sets all non-missing
values to one and missing values to zero. The generator uses
all three to produce an imputed samples by features matrix.
The model uses another generator subnetwork ("hint generator’)
that produces an encoded “hint” matrix based on just the mask
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matrix, enabling the discriminator to utilize information about
the pattern of missingness in the original dataset. Finally, in
contrast to a standard GAN discriminator which classifies an
entire sample as real or synthetic, using cross-entropy loss to
distinguish between real and synthesized values for each sample.
The outcome is an adversarial model that imputes missing values
until they can no longer be distinguished from known values
in a dataset. When tested on several datasets, GAIN achieved
significantly improved imputation performance compared to
classical methods such as multivariate imputation by chained
equations (MICE) and expectation maximization. When datasets
were imputed using various methods and then used as input into
a logistic regression algorithm, the classification performance
was highest when GAIN was used as the imputation method. In
2019, MisGAN [56], which also uses GANs for imputation,
was introduced. Using the Fréchet Inception Distance (FID)
as an evaluation metric, MisGAN was found to consistently
outperform GAIN across various datasets, especially at higher
missing rates over 70%. However, the authors tested MisGAN
with only image datasets, and its comparative performance to
GAIN for tabular data may differ. Both algorithms are applicable
to data missing completely at random (MCAR), which means
that there is no relationship between the features or variables in
the data and the missing values. In contrast, Multiple Imputation
using Denoising Autoencoders (MIDA) was introduced as one of
the first autoencoder-based methods for imputation and does not
rely on the MCAR assumption, allowing for broader applicabil-
ity [57]. Denoising autoencoders (DAEs) are similar to standard
autoencoders in that input data is reconstructed through a series
of encoding and decoding hidden layers, however they differ
in that the input is corrupted (i.e., by setting values randomly to
zero, adding noise, etc.). MIDA is structured such that the encod-
ing and decoding layers are of sequentially higher dimensions
than the input data, enabling better imputation performance.
The original dataset is input into the model with missing values
initially imputed as the univariate mean (for numerical data)
or mode (for categorical data) of each feature column, and the
output is the fully imputed representation. When various datasets
with data not MCAR were imputed using both MIDA and MICE
and then used for downstream classification or regression tasks,
model performance was generally better when using MIDA
for imputation. However, MIDA was not compared to other
state-of-the-art deep learning imputation methods, so its com-
parative performance to GAIN or MisGAN is unclear. Another
disadvantage of GAIN is that it was designed for continuous and
binary data types but not for other data such as mixed numerical
(i.e., continuous real-value, discrete count data) or nominal (i.e.,
categorical and ordinal). Nazabal et al. published their work
on HI-VAE [58] in 2018 as a variational autoencoder-based
imputation framework which can be applied for a broader set
of data types under the MCAR assumption and is particularly
suitable for datasets with nominal variables. Since then, novel
autoencoder-based static imputation methods continue to be
introduced [59], [60], [61], [62]. A few of these static deep
learning-based imputation methods are further summarized in
Suppl. Table VIII.

C. Advanced Approaches for Handling Missing Data
(Time Series Data)

The development of multivariate time series imputation
algorithms using deep learning is a larger and fast-growing
field of research and is centered on the models developed using
concepts from recurrent neural networks (RNNs), Gaussian
processes (GPs), variational autoencoders (VAEs [63]), and
GANs (Suppl. Table IX). While RNNs have been developed
for handling missing time series data since the late 1990 s and
early 2000 s, more recently in 2016, a model based on gated
recurrent units (GRUs) called GRU-D [64] was developed as
an end-to-end RNN framework for classification tasks using
incomplete input time series data. GRU-D uses information
about which values are observed or missing and patterns of
missingness over time to improve classification prediction.
Specifically, the model comprises a modified GRU structure
that contains two trainable decay mechanisms (input and hidden
decay) and that uses a mask vector for each sample for each
time point that zeroes out missing values. The input decay uses
information about the time interval during which an input feature
is missing to decay the last observed value towards the mean,
and uses these decayed values to impute missing data points.
The hidden decay term is applied to the hidden state of the
previous time point. Together, these modifications result in more
fine-tuned imputation than traditional approaches and enable
the RNN to be trained end-to-end with missing data. GRU-D
was shown to have state-of-the-art performance compared to
classical baseline methods when applied to the MIMIC- III
intensive care unit and PhysioNet datasets. For example, when
GRU-D was used for classification with MIMIC-III data, model
area under the curve (AUC) increased by nearly 3% compared
to when the dataset was imputed using LOCF and then trained
using a standard GRU-based neural network. Another work by
Yoon et al., M-RNN [65], uses a neural network architecture
comprising bidirectional RNN layers that interpolate missing
values within each data stream (i.e., each univariate time series
sequence in a multivariate time series dataset) using known
values in the same sequence, followed by a fully connected layer
with dropout that uses information across different data streams
to impute the missing values in each data stream. The dropout
allows the model to capture the uncertainty in the imputed data,
allowing for more robust imputation results, and the interpola-
tion and imputation blocks allow for more robust performance
for frequently and infrequently sampled data, respectively.
When compared to classical methods such as spline or cubic
interpolation and to advanced methods including GRU-D,
M-RNN achieves consistently better imputation performance
across various datasets, as measured by root mean squared error
(RMSE) loss. Interestingly, despite having superior imputation
performance, datasets imputed with M-RNN did not achieve
significantly higher prediction accuracy when the imputed
dataset was used for downstream classification tasks. When the
model was modified to include binary cross-entropy loss as an
end-to-end imputation and classification method like GRU-D,
it achieved significantly improved classification accuracy
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compared to all baselines including GRU-D, especially at
higher missing rates up to 90%. This suggests that end-to-end
deep learning models that jointly perform imputation and
classification or regression tasks appear to have better overall
performance. In 2018, Cao et al. introduced another end-to-end
RNN-based model called Bidirectional Recurrent Imputation
for Time Series (BRITS) [66], which uses a bidirectional RNN
graph to improve the imputation accuracy. BRITS achieves
significantly improved classification performance compared
to GRU-D and M-RNN, with an average increase in AUC of
0.025 and 0.030 respectively, across two separate datasets. This
model was later applied for use in wearables data imputation
with a modified regularization term, where the authors were
successfully able to use BRITS to impute missing values
for features such as steps and heart rate, achieving better
performance than baselines such as k-NN or SOFTIMPUTE,
even with features that had 50% missing values [67]. In 2020,
Variational-Recurrent Imputation Network (V-RIN) [68]
was introduced as an end-to-end model comprising a
VAE-based imputation subnetwork connected to an RNN-based
imputation subnetwork that can be trained for a classification or
regression taskand that leverages information about imputation
uncertainty. In particular, the VAE subnetwork takes as input
multi-dimensional vectors for each patient sample for each
time stamp, with missing values zeroed out. The decoding layer
outputs an imputed representation of each input vector and is
used to generate an uncertainty matrix comprising standard
deviation values for each imputed feature, where a higher
standard deviation implies a greater imputation uncertainty and
all non-missing features have zero uncertainty. For each time
point, this matrix, along with the representation, a mask matrix,
and a time stamp matrix, are fed into the RNN subnetwork,
which comprises a novel version of the GRU-D structure slightly
modified to incorporate an uncertainty decay term that leverages
information from the uncertainty matrix. V-RIN achieves better
performance compared to M-RNN, BRITS, and GRU-D for a
mortality prediction task using both Physionet and MIMIC-III
datasets.

The growth in GAN-based multivariate time series imputation
models was spearheaded by the introduction of GRUI-GAN
by Luo et al. in 2018 as the first model to use a GAN for
time series imputation [69]. They introduced a novel RNN cell
(GRUI) which considers time lags incurred by irregularly sam-
pled data and is included in the discriminator and generator of the
GAN. This allows the model to learn the relationships between
observed and unobserved data, and the temporal information.
One of the disadvantages of GRUI-GAN is that it is based on a
two-stage framework which can be time-consuming to run [70].
First it trains a GAN to generate samples and then it searches for
generated samples that are most similar to each original input
sample that contains missing values. In 2019, E2GAN (End-to-
End Generative Adversarial Network) [70] was proposed as a
one-stage method for multivariate time series imputation using
GANs, which improves training efficiency. E>GAN generally
achieved improved imputation performance across various miss-
ing rates compared to GRUI-GAN and classical methods and
achieved significantly improved AUCs for mortality prediction

when imputed datasets were used for classification with various
classifiers including support vector machine, logistic regression,
and RNN. E’GAN is not an end-to-end joint imputation and
classification model but still achieved improved performance
over BRITS (AUC increased by 0.02) for mortality prediction
using a healthcare dataset. In 2021, Miao et al. expanded on
this work by introducing SSGAN [71], which comprises a
generator, a discriminator, and a semi-supervised classifier that
iteratively classifies unlabeled time series data and is based on
a bi-directional RNN model like BRITS [71]. SSGAN achieved
significantly improved imputation performance compared to
BRITS and E>*GAN as measured by RMSE loss. Although
SSGAN is not an end-to-end imputation and classification or
regression model, datasets imputed using this method and then
used for downstream RNN-based learning tasks still achieved
better prediction performance than BRITS and all other base-
lines, with a 17.2% improvement over BRITS for one of the
datasets tested.

Wasserstein GANs (WGANSs) were also introduced in 2017 to
address implementation issues occurring in regular GANs [72].
Originally, GANSs often relied on a loss function using Jensen-
Shannon Divergence (JSD) that often produced training issues
such as a vanishing gradient, which can occur when JSD is
locally saturated and the loss function can no longer accurately
update the generator, or mode collapse where a generator’s
settings collapse to one mode and produce the same outputs [72].
WGANS address this issue by replacing JSD with Wasserstein
distance (WD) in the loss function thereby avoiding mode col-
lapse and vanishing gradients due to the fact WD is continuous
and converges on a linear function that prevents discriminator
saturation [72].

Variants of WGANS have since been used to restore missing
audio data through ‘audio inpainting’. For example, Ebner &
Eltelt 2020 approached the issue of long audio gaps (200 ms)
through a dual-discriminator WGAN (D2WGAN) that showed
improvement over the original WGAN model [73]. This im-
provement is due to the inclusion of two discriminators, each
tasked to discriminate overlapping audio samples with either
short (1 s) or long (2.5 s) missing data bordering real audio.
The advantage of this approach then is the inclusion of more
correlated information about the missing data and as such audio
from the D2WGAN was subjectively scored for higher restora-
tion quality than the original method. Likewise, GACELA [74],
a long audio gap inpainter, was recently developed based on a
conditional GAN (cGAN) with a Wassterstein loss to synthesize
even longer, context-dependent audio gaps up to 1500 ms. Older
GAN-based [75], [76] and neural network [77], [78], [79],
[80] solutions have also been developed in aan attempt to fill
progressively longer audio gaps over time.

A few multivariate time series imputation algorithms have
been developed in recent years that use GPs and VAEs, including
GP-VAE [81], SGP-VAE [82], and L-VAE [83]. For example,
GP-VAE (2020), the first algorithm that uses both concepts for
time series imputation, models the low-dimensional represen-
tation of time series data based on a GP and showed improved
imputation performance over baselines including HI-VAE and
classical methods such as LOCF [81]. When datasets imputed
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by GP-VAE were used for classification with logistic regres-
sion, it performed better than baselines. L-VAE achieved better
predictive performance than BRITS, GRUI-GAN, GP-VAE, and
other baselines, making it among the best-performing time series
imputation methods published to date.

Other multivariate time series imputation methods pub-
lished in 2020 and 2021 have been developed using novel
approaches, including random drop [84], transformers [85], self-
attention [86], and conditional score-based diffusion [87] mod-
els. For example, Random Drop Imputation with Self-Training
(RDIS) [84] is an ensemble model that takes an incomplete
dataset as input and then generates synthetic datasets by ran-
domly selecting and labeling known values as “missing”. The
objective of the model is explicitly to learn to impute these
“missing” values for each dataset, meanwhile generating values
for the actual missing data points in each ensemble component.
The entropy of all imputed values is then computed, and imputed
values for all data points with entropy below a given threshold
are used as pseudo-labels for a subsequent self-training task to
impute missing values from the original dataset. RDIS achieved
improved imputation performance compared to M-RNN and
BRITS. Another model, Global and Local Time Series Impu-
tation with Multi-directional Attention Learning [86] (GLIMA)
comprises local and global RNN layers followed by a multi-
directional self-attention layer. GLIMA achieves improved per-
formance over GRU-D, M-RNN, BRITS, GRUI-GAN, and
E2GAN when the dataset was imputed and then used for various
classifiers including RNN, support vector machine (SVM), and
logistic regression (LR).

Overall, deep learning-based static and time series imputation
models have been widely successful, with significantly better
imputation performance and improved robustness to higher
missing rates compared to classical methods. Furthermore, many
of these are end-to-end methods that combine imputation and
downstream learning, allowing users to train their models on
incomplete data in one step, which would not otherwise be
possible.

V. QUALITY CONTROL FOR TABULATION ERRORS

For structured tabular data, such as electronic health records
or public health surveillance datasets, an important data quality
consideration is the presence of errors, which can impact the
accuracy of downstream data analyses, even when using robust
machine learning algorithms [88]. Tabulation errors can be het-
erogeneous and may comprise incorrect values, uninterpretable
values (ex. typos), inconsistent use of diagnostic or medications
coding systems (ex. ICD-9 vs. ICD-10) or inputting data with
the wrong units. A summary of how the issue of tabulation errors
relevant for various types of COVID-19 health data is presented
in Table I (short version) and Suppl. Table IV (detailed).

The following subsections describe classical and advanced
methods for handling tabulation errors, with a focus on both
quantitative and qualitative error detection methods applicable
for static (i.e., tabular) data. Suppl. Fig. 6 provides examples
of tabulation errors and classical and advanced quality control
methods, as well as performance comparisons between these

methods. Advanced methods are further summarized in Suppl.
Table V and Fig. 1 (Right), with a visual timeline presented
in Fig. 3. The issue of tabulation errors is further visualized in
Fig. 4.

A. Classical Approaches for Handling Tabulation Errors

Handling tabulation errors can be a manual and time-
consuming task. Errors can be detected using quantitative or
qualitative approaches. Quantitative error detection involves
identifying outliers in a dataset, as described in Suppl. Table
X. Qualitative error detection involves specifying logical pat-
terns or relational constraints for observations or features in the
dataset and using those to identify violations in the dataset [89].
These relational constraint rules are typically defined by domain
experts and are summarized in Suppl. Table XI.

B. Advanced Approaches for Handling Tabulation Errors
(Quantitative Error Detection)

Neural networks have been used for outlier detection from
the early 2000s [90]. More advanced deep learning models have
been developed in recent years based on progress in the neural
networks research field. In 2016, the first ensemble autoencoder
model for outlier detection (RandNet) was introduced for tabular
data [91]. They set up the ensemble with several autoencoders,
each with random connections between neurons dropped to
make the models different enough from each other. Each autoen-
coder of the ensemble is trained independently, and the recon-
struction error (“outlier score”) for each sample point for each
autoencoder is calculated. The final outlier score for each sample
is the median score obtained from all ensemble components
and is used to train a supervised classifier to identify labeled
outlier points. This model achieved a significantly higher outlier
classification accuracy (92.87%) on various datasets compared
to classical baselines such as local outlier factor (LOF, 50.63%).
Deep Autoencoding Gaussian Mixture Model [92] (DAGMM)
was later introduced as an unsupervised end-to-end anomaly
detection method combining an autoencoder with a Gaussian
Mixture Model (GMM). The latent representation and recon-
struction error from the autoencoder are then modeled using the
GMM to evaluate the energy or likelihood of each input sample.
DAGMM achieved an improved F1 score for outlier classifica-
tion compared to various baselines across several datasets. In
2017, Schlegl et al. [93] introduced the first deep generative
adversarial network (GAN) for anomaly detection which was
originally applied to image data but was then shown by Zenati
et al. to be applicable to tabular data [94] as well. A standard
convolutional GAN is initially trained using normal data with-
out anomalies, with the objective of minimizing residual and
discriminator loss terms that are designed to enable the model
to better learn the statistical distribution of “normal” data. These
loss terms are included as part of an “anomaly score,” which,
upon running the trained model with both normal and anomalous
samples, will return a high score for samples that do not resemble
the normal data. In subsequent years, additional GAN-based
outlier detection models were developed and applied to tabular
data, including the works by Zenati et al. [94] in 2018 and Liu
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etal. [95] in 2019 (“Multiple Objectives Generative Adversarial
Active Learning”, MO-GAAL). The model by Zenati et al.
outperformed that of Schlegl et al. in terms of precision, recall
and F1 score for tabular outlier classification, and performed
comparably to DAGMM. MO-GAAL uses multiple generators
with different objectives to model the distribution of the dataset
and generate potential outlier data points. As the model is trained
using both normal and anomalous samples through multiple
iterations, the discriminator starts to learn the distribution of the
input data and learns the boundary between normal and anoma-
lous data samples. MO-GAAL was compared to many classical
outlier detection methods (i.e., distance-based, clustering-based,
density-based, angle-based, and classification-based methods)
across various datasets using the Friedman test and had the
highest average rank in terms of overall performance. In 2019,
adVAE (self-adversarial variational autoencoder) [96] was de-
veloped by Wang et al. and used a Gaussian transformer network
to generate outlier latent variables, as well as encoder and
generator subnetworks, both of which can discriminate between
normal and outlier latent variables. This model outperformed
MO-GAAL for outlier classification performance across almost
all datasets tested. Many other deep learning-based works have
been published for outlier detection [97], [98], [99] and this
continues to be a rapidly growing field of research [100]. Mean-
while, there continues to be growth in development of novel sta-
tistical algorithms for outlier detection that do not involve deep
learning, including density-based [101], graph-based [102], and
ensemble-based [103] methods.

C. Advanced Approaches for Handling Tabulation Errors
(Qualitative Error Detection)

In recent years, qualitative error detection tools have emerged
that can automatically define integrity constraints, discover in-
tegrity constraint violations in a given dataset [104], [105], [106],
and either provide suggestions on potential errors to repair or
fix the errors automatically [89]. Given how time-consuming,
complex, and prone to errors process of qualitative error de-
tection can be, these algorithms have the potential to have a
significant impact on data quality for many different research
applications. Examples of recently developed cutting edge ma-
chine learning algorithms for error repair are described in Suppl.
Table XII. In 2013, FASTDC [105] was developed to discover
denial constraints from the dataset, which precludes added time
and effort needed for a user to do this manually. Also in 2013,
Chu et al. developed Holistic Data Cleaning (Holistic) [107],
the first approach to data cleaning that integrates data from
heterogeneous integrity constraint rules to identify and repair
errors based on constraint violations. In this work, the user
provides pre-specified data quality or integrity constraint rules,
and the algorithm automatically finds and repairs violations.
Another model, KATARA [108], uses an external knowledge
base to identify qualitative errors in a dataset and then suggests to
the user a set of possible repairs. In 2016, ActiveClean [109] was
developed as an iterative data cleaning framework developed
for convex-loss machine learning applications, such as support
vector machines, linear regression, or logistic regression. The

user specifies the model of interest, and the machine learning
model is iteratively trained. In each iteration, ActiveClean sug-
gests to the user what data may need to be repaired and the
user then manually repairs the data using value transformations
or filtering operations. Thus, ActiveClean uses data from the
model performance to improve repair suggestions, leading to
more successful data cleaning.

In 2017, HoloClean [110] was developed as a probabilistic
framework which takes as input a dirty dataset, an external
reference knowledgebase, and user-defined integrity constraints,
and finds and automatically repairs errors in the dataset. It does
this using an error detection module, which utilizes integrity
constraints and the external data to detect outlier and identify
repairs, a compilation module, which compiles data as features
in a probabilistic graphical model, and a repair module, which
repairs data using probabilistic inference on the graphical model.
To measure data cleaning performance, each value in each origi-
nal dataset used for benchmarking was manually labeled as cor-
rect or incorrect and then precision, recall, and F1 score for the
repaired dataset were calculated after data cleaning. HoloClean
had better performance compared to previous baselines includ-
ing Holistic and KATARA. For example, for a healthcare dataset,
HoloClean achieved an F1 score of 0.832, compared to 0.435
and 0.379 for Holistic and KATARA, and was successful for
all datasets whereas other methods had extremely long runtimes
or failed to identify certain types of errors. Other frameworks,
such as PIClean [111] and MLNClean [112], followed suit with
similar approaches. PIClean (2019) is a probabilistic interactive
data cleaning system that uses relations between data columns to
identify potential dataset errors and repairs. The suggestions are
provided to users, which can then be confirmed or rejected, and
user feedback is used to improve the performance of the model.
It is more interactive with the user compared to HoloClean. In
2019, another system (MLNClean) was developed using Markov
logic networks (MLNs) to clean the dataset by identifying both
schema-level and instance-level errors. Like HoloClean, it re-
quires domain experts to specify integrity constraints. However,
it achieves consistently improved error detection performance
compared to HoloClean even at greater error percentages and
is also consistently faster. More recently, Rotom [113] was
developed, which is a platform that leverages data augmentation
and uses transformer [114], meta-learning, and self-supervised
learning concepts to detect qualitative errors. It requires the user
to provide a small number of labeled training examples that
are known to be incorrect but achieves good performance for
error detection. Rotom was compared to other data augmen-
tation frameworks, but its performance compared to previous
state-of-the-art data cleaning methods was not discussed.

Overall, these methods are promising in that they not only
save researchers significant time and effort compared to manual
qualitative data cleaning but also achieve good consistent error
detection or repair performance.

VI. QUALITY CONTROL FOR NOISE AND ARTIFACTS

Noise and artifacts can occur in waveform and medical image
data (Table I Suppl. Table IV). They can interfere with relevant
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physiological signals and thus pose a significant quality issue
for researchers working with COVID-19 healthcare data. For
waveform and medical image data, we focus the discussion
on waveform data including electrocardiogram (ECG) signals,
audio data and medical image data including X-ray or computed
tomography (CT) images, respectively, which are most relevant
for COVID-19 related research. ECG waveforms have been
shown to be associated with COVID-19 cardiovascular compli-
cations [115], and several deep learning algorithms have recently
been developed that can detect [115] or predict [116] these using
ECG waveform data. Similarly, respiratory-related audio mea-
surements related to speech or coughing sounds have been used
to diagnose positive cases — although reliant on typically noisy
and imbalanced datasets. Several publications have used the syn-
thetic minority over-sampling technique (SMOTE) to address
the overrepresentation of non-COVID19 subjects in otherwise
large datasets (i.e., Coswara and Sarcos datasets) [117], [118],
[119]. This common issue and its solutions, however, are out of
the topical scope of our discussion. X-ray and CT images have
also emerged as important data sources for Al tool development
for COVID-19 screening and diagnosis. Low-dose chest CT
(LDCT) scans have also been discussed as an alternative to
normal-dose CT scans for COVID-19 routine practice to reduce
the added risk to the patient [120], [121].

The following subsections detail key classical and advanced
methods to handle noise and artifacts, with a focus on ECG
waveform data (i.e., ECG, audio) and CT image data. Exam-
ples of these methods and comparisons between classical and
advanced approaches are visualized in Suppl. Fig. 7. Advanced
methods are further summarized in Suppl. Table IV and Fig. 1
(Right), with a visual timeline presented in Fig. 3. The issue of
noise and artifacts is further visualized in Fig. 4.

A. Waveform Noise and Artifacts (Classical Approaches)

Waveforms are continuous data points collected over time
and are generally obtained from sensors such as photoplethys-
mograms (PPGs), accelerometers, thermometers, touch sensors,
and gyroscopes. They can be highly susceptible to noise and
various types of artifacts including motion artifacts and elec-
tromagnetic interference (EMI). Classical waveform de-noising
methods include empirical mode decomposition, adaptive filter-
ing, and wavelet transforms (WT). Classical signal processing
methods are not always optimal for improving ECG signal
quality. Methods such as empirical mode decomposition (EMD)
are suboptimal because they might remove true signals from
ECGs, and adaptive filters such as normalized least mean squares
(LMS) require a reference noise signal, which cannot always
be obtained. Although WT methods are widely used for ECG
de-noising, they work in the frequency domain and cannot
always distinguish true signals from artifacts when the artifacts
morphologically resemble the true signal, leading to residual
noise in some cases.

One of the most common data quality issues addressed in
audio analysis is removing background noise from a poor signal-
to-noise ratio (SNR) to enhance speech recognition or audio
quality. There are a variety of sources that contribute to a low

SNR such as acoustic, environmental or distorted sounds. Mul-
tiple classical approaches to audio denoising include Weiner fil-
tering [122], [123], spectral subtraction [124], [125], minimum
mean squared error (MMSE) estimation [126] and optimally-
modified log-spectral amplitude (OM-LSA) estimation [127].
However, these methods can sometimes introduce additional ar-
tifacts, such as the generation of "musical noise’ through spectral
subtraction due to the flat, short-time noise spectrum estimate
that is subtracted from the whole spectrum [124]. Additionally,
common among these approaches is the use mel frequency
cepstral coefficients (MFCCs) as representational features and
an outcome in voice recognition that is a more uniform, but less
recognizable speech spectrum [128], [129].

B. Waveform Noise and Artifacts (Advanced
Approaches)

Since the mid-2010s, a small but growing research field
has developed to investigate how deep learning models can be
used to for ECG de-noising, to achieve better performance than
traditional approaches. For example, in 2016, Xiong et al. [130]
developed the first de-noising autoencoder (DAE) for ECG sig-
nal de-noising using wavelet transform. They artificially added
baseline wander (BW), muscle artifact (MA), and electrode
motion (EM) artifacts to clean signals and then did a wavelet
transform as a first de-noising step. The de-noised signal was
then input into the encoding and decoding layers of the DAE
to remove the residual noise and to output the clean signal. The
resulting signal quality was significantly improved compared
to WT, Stockwell transform, and other baselines. For example,
for muscle artifact-corrupted ECG signals with signal-to-noise
ratios (SNRs) of 5 decibels (dB), the signals de-noised using
the proposed method achieved SNRs of 1.93 dB higher than
those de-noised with WT (18.16 dB and 16.23 dB respectively).
In 2019, Wang et al. [131] further developed a first generative
adversarial network (GAN) approach towards ECG de-noising,
where the generator subnetwork is trained to de-noise ECG
waveform signals and the discriminator is trained to differentiate
between de-noised signals and the original clean signal. The
objective of the model is for the discriminator to be unable to ade-
quately distinguish the de-noised signals from the original clean
signals. This model achieved superior performance compared to
WT for all common ECG artifacts tested at varying input noise
levels. For example, WT improved the SNR of MA-corrupted
signals from 5 dB to 18.16 dB, whereas the de-noised signals
from the proposed method had a much higher SNR of 37.23 dB.
This constitutes a 105% higher SNR compared to WT, which
is significantly greater than the 12% improvement in SNR over
WT from using the Xiong et al. method.

In 2018, Antczak developed the first recurrent neural network
(RNN) for ECG signal de-noising using long short-term memory
(LSTM) units and incorporating a de-noising autoencoder [132].
The input into the model was a pre-processed ECG signal nor-
malized to zero mean, separated into samples where each sample
comprised 600 time stamped data points in the signal. They
pre-trained their model on synthetic data and then achieved good
performance on actual ECG signals. While simple bandpass and



64

IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 16, 2023

WT filters performed best for signals with smaller noise levels
(SNR greater than —7 dB), the RNN consistently performed best
with more noisy signals. Arsene et al. more recently developed
ECG de-noising models using convolutional neural networks
(CNNs) [133],[134], and found that CNN-based models achieve
better performance than a LSTM model they trained. Chiang
etal. [135] developed a convolutional denoising autoencoder and
emphasized the superior performance of convolutional layers
for ECG de-noising. In 2020, Casas et al. [136] developed an
autoencoder-based adversarial network applicable to ECG and
other waveforms that uses a noisy signal as input and through
encoding and decoding convolutional layers, it outputs a clean
signal. Meanwhile, the discriminator of the model is trained
to differentiate between clean and noisy signals using the inner
hidden layer of the autoencoder. While this was not compared to
other deep learning-based ECG de-noising methods, it was able
to improve the SNR of noisy signals from —6.72 dB to 5.30 dB,
compared to WT which only achieved a SNR of —5.90 dB.
Another recent model developed by Zubair et al. [137] was
designed specifically to remove motion artifacts from ECGs. The
model comprises an RNN which de-noised the input ECG sig-
nals, followed by a standard deep neural network that resulted in
a clean signal without artifacts. In general, these deep learning-
based approaches perform significantly better than classical
methods.

Although there is a significant level of interest in automated
COVID-19 detection using cough, sound and speech data, mul-
tiple authors report the presence of background noise which,
despite having been been reduced using classical audio de-
noising methods such as spectral noise gating and data aug-
mentation via time stretching, can still persist [119], [138],
[139]. However, many different types and combinations of deep
learning methods have been employed to resolve the same
issue including CNNs [140], RNNs [141], [142], [143], and
GANSs [144], [145], [146]. Deep learning methods for denoising
audio commonly rely on a long-mel spectrograms for feature
representation; however, some authors contend that while this
method of compression and normalization can reduce training
set size and training time, there may be an advantage to using
raw waveform data for synthesizing higher quality sound and
for future applications that avoid information loss but rely on
more computational resources.

C. Medical Image Noise and Artifacts (Classical
Approaches)

LDCT scans reduce patients’ exposure to high levels of ra-
diation compared to normal-dose images (NDCT), but simulta-
neously compromise the quality of the image. The added noise
and artifacts in these images can make it challenging to use them
for machine learning tasks if not properly managed. Common
types of artifacts found in LDCT, NDCT, and X-Ray images
are summarized in Suppl. Table XIII. Classical approaches for
handling LDCT noise and artifacts in the image domain include
non-local means [147], [148], dictionary learning [149], and
block matching 3D methods [150], which became popular in
the early 2010s (Suppl. Fig. 8).

D. Medical Image Noise and Artifacts (Advanced
Approaches)

In recent years, there has been rapid growth in development
of state-of-the-art deep learning-based tools to remove noise
or artifacts from CT images in the image domain, after the
image is reconstructed from the waveform domain. In 2017,
Chen et al. [151] developed the first deep learning model for
LDCT image de-noising from the image domain. They used
a convolutional neural network (CNN) to map LDCT images
to normal-dose versions of those images and achieved a peak
signal-to-noise ratio (PSNR) and subjective quality rating com-
parable to that of block matching 3D. Also in 2017, Yang
etal. (WGAN-VGQG) [152] and Wolterink et al. [153] developed
some of the first generative adversarial network-based mod-
els for LDCT de-noising. Although WGAN-VGG performed
worse than dictionary reconstruction, in terms of PSMR and
structural similarity index measure (SSIM), it is advantageous
because it does not procure unintentional image blurring or waxy
or blocky artifacts and achieved significantly better subjective
quality ratings by radiologists. In the same year, Chen et al.
introduced Residual Encoder-Decoder Convolutional Neural
Network (RED-CNN) [154], which used both autoencoder and
convolutional neural network-based architecture concepts. The
model comprises a series of convolutional encoding layers fol-
lowed by deconvolutional decoding layers to remove noise from
LDCT images. The encoding layers filter noise from the original
image, whereas the decoding layers and shortcut connections
between encoding and decoding layers are used to recover
structural details from the image. Based on qualitative analysis
of image quality by experienced radiologists, images de-noised
using RED-CNN had improved artifact reduction, noise sup-
pression, contrast retention, lesion discrimination, and overall
quality compared to baseline methods such as dictionary learn-
ing, non-local means, and the previously published algorithm
by Chen et al. Unlike previous deep learning image de-noising
models, RED-CNN also had improved PNSR compared to all
baselines. In 2018, Structurally-Similar Multi-Scale Generative
Adversarial Network (SMGAN-3D) [155] was also introduced
as novel GAN-based model for LDCT image de-noising, but
it did not achieve significant improvements over RED-CNN.
Dilated Residual Learning (DRL) [156] is a CNN-based model
introduced in 2019 which uses an edge detection convolution
layer to identify object boundaries and uses dilated convolution
layers to capture more contextual information from the input
image in fewer layers to make computation less expensive.
These modifications enabled it to achieve superior performance
compared to the original Chen et al. model [151].

Most recently, in 2021, Eformer [157] was introduced for
medical image de-noising and achieved state-of-the-art perfor-
mance over baselines on the American Association of Physicists
in Medicine (AAPM) Low-Dose CT Grand Challenge Dataset,
including RED-CNN. Eformer is the first transformer-based
model for medical image de-noising and is applicable not only
to LDCT but to other types of medical images as well. It uses an
encoder-decoder network with transformer blocks and integrates
Sobel-Feldman filters for edge enhancement. Eformer surpasses
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all baseline state-of-the-art models tested in terms of PSNR
and RMSE, with a nearly 3% higher PSNR and 12% lower
RMSE than RED-CNN. This continues to be an active area
of research with new models building on previous ones and
achieving improved performance [158], [159], [160]. A few
models have been specifically designed to handle metal [161] or
motion [162] artifacts in CT scans or general image modalities.
For example, in 2017, DeblurGAN [162] was introduced to
correct motion artifacts, and in 2019, Liao et al. introduced
the Artifact Disentanglement Network (ADN) [163] for metal
artifact reduction from CT images.

Many general image de-noising algorithms can also be ap-
plied to medical images. For example, a highly cited general
image de-noising algorithm, Noise2Noise [164], was developed
in 2018 and was able to de-noise images without access to
clean training example images and has been successfully ap-
plied to remove noise from magnetic resonance (MR) images.
MedGAN [45] is another such GAN-based algorithm that ap-
pears to be broadly applicable but that was tested with positron
emission tomography (PET) images. This model introduces a
novel generator architecture that links together several convo-
lutional encoder-decoder subnetworks with skip connections to
enhance the resolution of the generated images. Additionally, a
feature extraction subnetwork is introduced that is pre-trained
using synthetic samples and input samples of the target domain,
with loss terms that minimize the differences between the gener-
ated and target domain styles. These novel contributions enable
MedGAN to translate noisy input images into de-noised versions
of the same images. Suppl. Table XIV provides a summary of
some of the deep learning algorithms for medical image noise
and artifact removal published in recent years, with a focus
on those applicable to CT scans, which are commonly being
used for COVID-19 research applications. Suppl. Table XV
illustrates the role of deep learning in the reconstruction process
for producing high quality images.

Apart from image noise and artifact, low resolution is also
a common image quality issue in which the image can appear
blurry [165] and thus difficult to interpret. It is important to
note that state-of-the-art deep learning algorithms have been
developed to improve the resolution of input images using
deep convolutional neural networks [166], [167], unfolding
networks [168], transformer networks [169], and more.

VIl. FUTURE DIRECTIONS

For each of the four data quality issues discussed in this
review, we identified key trends in quality control COVID-19
data that are likely to persist moving forward (Suppl. Fig. 9). To
address the problem of lack of data standardization, both genera-
tive neural network models and federated learning architectures
have enabled levels of standardization that were not previously
possible. Generative models such as GANs have expanded the
scope of what is possible with medical image standardization
using classical approaches such as DICOM GSDF and histogram
matching, enabling translation between different image styles,
CT contrast styles, and more. Federated learning is a powerful
methodology that precludes the need to directly harmonize data

from different sources prior to combining the data into a machine
learning model for training, enabling data science researchers
to train models with large-scale multi-institutional data without
the added time and effort needed to manually standardize the
data. We anticipate that the use of these tools will continue
and expand moving forward. We anticipate that there will be
continued growth in the use of advanced deep neural network
architectures for static and time series data imputation, for
managing noise and artifacts in waveform and medical image
data, and for detecting outliers. We also expect that advanced
probabilistic graphical models and automated approaches will
increasingly be used to detect and correct qualitative errors.

VIIl. CONCLUSION

This review summarizes a selection of novel state-of-the-art
data quality control methods being developed to address the
issues of lack of standardization, missing data, tabular errors, and
noise and artifact. Broader leveraging of these tools across the
COVID-19 research community can lead to better-performing
algorithms powered by better-quality data.
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