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Abstract—Despite the myriad peer-reviewed papers
demonstrating novel Artificial Intelligence (AI)-based so-
lutions to COVID-19 challenges during the pandemic, few
have made a significant clinical impact, especially in di-
agnosis and disease precision staging. One major cause
for such low impact is the lack of model transparency, sig-
nificantly limiting the AI adoption in real clinical practice.
To solve this problem, AI models need to be explained to
users. Thus, we have conducted a comprehensive study of
Explainable Artificial Intelligence (XAI) using PRISMA tech-
nology. Our findings suggest that XAI can improve model
performance, instill trust in the users, and assist users in
decision-making. In this systematic review, we introduce
common XAI techniques and their utility with specific ex-
amples of their application. We discuss the evaluation of
XAI results because it is an important step for maximizing
the value of AI-based clinical decision support systems.
Additionally, we present the traditional, modern, and ad-
vanced XAI models to demonstrate the evolution of novel
techniques. Finally, we provide a best practice guideline
that developers can refer to during the model experimen-
tation. We also offer potential solutions with specific ex-
amples for common challenges in AI model experimenta-
tion. This comprehensive review, hopefully, can promote AI
adoption in biomedicine and healthcare.
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I. INTRODUCTION

CORONAVIRUS disease 2019 (COVID-19) has become a
worldwide phenomenon with over 545 million cases and

claiming over six million lives [1]. Medical imaging, such as
X-ray and computed tomography (CT), and electronic health
records have been used in addition to molecular tests for diag-
nosing and precision staging patients potentially infected with
COVID-19 [2]–[4]. The need for fast COVID-19 detection has
led to a massive number of state-of-art Artificial Intelligence
(AI) solutions to alleviate this clinical burden [3], [5]. Unfortu-
nately, very few have succeeded in making a real impact [6]. As
the world transitions from disease detection and containment
to maximizing patient care outcomes, AI solutions must also
improve. In preparing for the future pandemic, we must get
lessons learned from this pandemic process. One such big lesson
is why many successful models published before have failed
to make a meaningful clinical impact. The low AI adoption
in clinical decision support is due to the lack of transparency
in AI model development, and the lack of interpretability of
their results. Thus, physicians and other healthcare practitioners
are often reluctant to adopt high-performing yet black-box AI
systems. For AI developers, without explaining AI, there exists
a high risk of generating models relying on noise instead of
real, clinically-meaningful signals [7]–[9], and the ability of
researchers and model developers to identify potential pitfalls
and avenues for improvement is also very limited.

Explainable artificial intelligence (XAI) is a collection of
processes and methods that enables human users to comprehend
and trust machine learning algorithms’ results [10]. XAI tech-
niques improve the transparency of AI models, which leads to
more clinical decision-making confidence and more real-world
adoption of AI. Clinicians benefit from XAI by gaining insight
into how the AI models reach solutions from clinical data, as
shown in Fig. 1.

In general, the goals of AI-based solutions for clinical set-
tings are: to achieve high performance, to instill user trust, and
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Fig. 1. Problem statement and motivation of XAI in clinical applications. (a) From a model development perspective, XAI techniques enhance
the transparency of AI models, allowing for more confident clinical decision-making and increasing the real-world utility of AI approaches. (b) From
a clinical perspective, clinicians can benefit from XAI by gaining insight into how the AI models reach solutions from clinical data. (c) The term
“interpretability” refers to a property of AI systems in which the process by which they arrive at a conclusion is easily understood. K-nearest
neighbors, decision trees, logistic regression, linear models, and rule-based models are all popular interpretable machine learning methods.
Explainable AI is frequently used to refer to methods (usually post-hoc) for enhancing comprehension of black-box models such as neutral networks
and ensemble models. Explainable AI methods attempt to summarize the rationale for a model’s behavior or to generate insights into the underlying
cause of a model’s decision. Both interpretability and explainability are frequently used interchangeably, and both seek to shed light on the model’s
credibility. In this review, we will focus on XAI methods used in clinical settings. (d) AI-based clinical solutions should meet three criteria: achieve
high performance, instill user trust, and generate user response, all of which demonstrate the importance of XAI in clinical applications.

to reflect user response. Specifically, the model should have
achieved sufficient performance at their task on a real-world
dataset not used during the training process in order to be
considered for real-world use. Guidelines for establishing and
reporting real-world clinical trial performance can be found in
the SPIRIT-AI [11] and CONSORT-AI [12] guidelines. Trust in
the AI solution may be established with XAI, especially when
visual feedback is provided to the user on important metrics used
to obtain the model prediction. Finally, no solution is effective if
it does not result in a change in user response. This response may
include a change in the treatment plan, patient prioritization,
or diagnosis. This response must be consistent with clinical
expertise and evidence-based protocols.

To address low AI adoption, we will mainly focus on XAI
solutions to improve end-user trust. Model performance and
user interfaces are also mentioned where appropriate. XAI can
allow for validation of extracted features, confirm heuristics,
identify patient subgroups, and generate novel biomarkers [13].
In addition, XAI can also support research conclusions and guide
research field advancement by identifying avenues of model
performance improvement. We hope to contribute a unique
resource for biomedical engineers working on healthcare-related
challenges so that their AI models have a better potential for a
positive clinical impact.

In this systematic review, we describe XAI utility during
COVID-19. We illustrate how the XAI-based studies applica-
ble to COVID-19 were selected using the Preferred Reporting
Items on Systematic Reviews and Meta-analysis (PRISMA)
model [14] and exclusivity criteria (see Fig. 2). Upon review of
the current literature leveraging AI for COVID-19 detection and
risk assessment, XAI is strongly needed for clinical adoption.
The remainder of this paper is structured as follows: Section II
provides a comprehensive overview of the XAI approaches used
to support AI-enabled clinical decision support systems during
COVID-19 pandemic; Section III describes the existing evalua-
tion pipelines of XAI methods; Section IV and V summarize the
contribution of this paper, provide a schema of the integration of
explainable AI module in both model development and clinical
practice, and discuss potential challenges and future work of
XAI. We have presented a comprehensive review of current
efforts in solving existing and future pandemic challenges with
XAI approaches.

II. XAI METHODS IN COVID-19 APPLICATIONS

In this section, we introduce XAI approaches used to support
AI-enabled clinical decision support systems. We categorize
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Fig. 2. PRISMA chart for systematic paper selection and quality
assessment.

them as follows: data augmentation, outcome prediction, un-
supervised clustering, and image segmentation. Moreover, we
organized XAI methods according to the underlying theory
within each task, as shown in Fig. 3. Additional technical details
and clinical applications will be discussed below.

A. Data Augmentation

The need for labeled data for model training was highlighted
in the early stages of the COVID-19 pandemic. This was also
a point in time where AI-based solutions could have made the
most impact by supplementing scarce public datasets. Future
pandemics will likely result in the same urgency for labeled
data, and AI-solutions would greatly benefit from synthetic
data augmentation. Generative Adversarial Networks (GAN) are
used to supplement available labeled COVID radiology data with
synthetic images and labels. This allows for improved model
training with limited labeled datasets by increasing the number
of labeled images available for training. Example of classical and
modern data augmentation approaches with model interpretation
is shown in Fig. 4.

Singh et al. tested a wide variety of GAN models to generate
synthetic X-ray images while training a COVID-19 detection
deep learning model named COVIDscreen [15]. They compared
the quality of four different GAN-based X-ray image genera-
tors including Wasserstein GAN (WGAN), least squares GAN
(LSGAN), auxiliary classifier GAN (ACGAN), and deep con-
volutional GAN. They visualized the resulting synthetic X-ray
images and showed that WGAN produces visibly higher quality
images than the tested alternatives. To the best of our knowl-
edge, this was the first publication to show successful X-ray

image generation for COVID-19 data augmentation. A signifi-
cant limitation of this study was that, although they generated
realistic X-ray images using WGAN, they did not leverage this
additional data to improve their classifier performance. This is
likely due to the lack of label generation during image synthesis
which prevents the use of their synthetic images for supervised
learning approaches. Despite this limitation, their success in
generating synthetic clinical images from a limited COVID-19
dataset illustrated the feasibility of this approach for future
work.

Waheed et al. [16] train an Auxiliary Classifier Generative
Adversarial Network (ACGAN) to generate synthetic X-ray
images. ACGANS take both a label and noise as input to generate
new images with known labels. Using COVID-19 status as the
label, the proposed model CovidGAN is able to generate normal
and COVID-19 images. They train a convolutional neural net-
work (CNN) COVID-19 classifier and compare its performance
when trained on a real labeled dataset and a dataset augmented
with synthetic images from CovidGAN. They demonstrate that
augmentation of their labeled dataset with synthetic images
improves classifier performance from 85% to 95% classification
accuracy.

Loey et al. [17] trained four CNN classifiers to detect COVID-
19 within chest CT images. Synthetic CT images were gen-
erated with a conditional GAN (CGAN). They compared the
performance of each classifier when trained with four different
datasets. Training datasets include: the original dataset alone,
the original with morphological augmentation, the original with
synthetic images, and the original with morphological aug-
mented combined with synthetic images. They demonstrated
that the best classifier ResNet50 was trained on the original
dataset with morphological enhancement and balanced accuracy
of 82.64%.

Although GANs are widely used for clinical image genera-
tion, XAI techniques are not commonly used to understand how
they generate the final images from the latent space. Without
XAI, it is difficult to detect potential biases in generated images.
This is especially important when models are trained on small
clinical datasets and subject to a wide range of confounding
variables, such as hospital-specific signal properties associated
with COVID-19 diagnosis. The following novel XAI techniques
allow for the interpretation of the GAN latent space in order to
understand how sampling of the latent space affects the final
image.

Voynov and Babenko [18] created a GAN learning scheme
to maximize the interpretability of the GAN latent space. This
approach allows the latent space to describe a set of independent
image transformations. They showed that this latent space can
be visually interpreted and manipulated to generate synthetic
images with specific properties (e.g., object rotation, background
blur, zoom, etc.). Their method produced synthetic images with
interpretable latent space sampling effects across a wide range
of datasets, including MNIST, AnimeFaces, CelebA-HQ, and
BigGAN. They show that their interpretation of the latent space
can be used to create images with specific properties including
zoom, background blur, hair type, skin type, glasses, and many
others. These properties were specific to the dataset the GANs
were trained on.
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Fig. 3. A brief summary of significant milestones in the development of XAI methods. According to their underlying theory, we classified
these popular XAI methods into six categories: perturbation-based, activation-based, gradient-based, mixed-based, attention-based, and latent
space interpretation. In the early stages of XAI development, perturbation-based, activation-based, and gradient-based methods are critical for
model interpretation and generation of explanations. Recent years have seen significant advancements in mixed-based methods (combination
of activation- and gradient-based methods), attention mechanisms, and latent space interpretations, all of which have played a significant role in
medical XAI.

Fig. 4. Examples of classical and modern XAI approaches in clinical data augmentation tasks. It is common to see K-Nearest Neighbors (KNN) [22]
interpolation and other classic approaches used in place of more complex modern solutions [18] when performing data augmentation due to a dearth
of real-world examples of their successes and failures. The modern approach may result in data bias that is difficult to comprehend without more
real-world examples. The trend in data augmentation has been to increase the number of features and the complexity of data transformations in
order to more accurately model the underlying distribution of real data.

Härkönen et al. [19] also sought to utilize the GAN latent
space for image synthesis with specific properties. Instead of
re-training models to isolate latent space axis of greatest in-
terpretation, they take existing GANs and identify explainable
latent space axes. This allowed them to modify an image’s
properties, such as converting concrete to grass and changing the
color of an object. Principal component analysis (PCA), which
requires no additional model training, was used to extract the

interpretable latent space axes. This technique could also be
used to modify image properties such as adding wrinkles and
gray hair to a person while retaining the original image’s label.
This methodology allowed the synthesis of additional labeled
images containing known object properties.

GANs used to generate additional radiology images can
be interpreted to determine the most interpretable directions.
This would enable users to deduce which image properties the
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Fig. 5. Examples of classical and modern XAI approaches in clinical decision support system. For the task of disease diagnosis, the trend has
been to create visualizations of input importance that can be used with a wide variety of popular deep learning models (model-agnostic) [23], [24].
This is in contrast to early XAI approaches [25], which emphasized model-specific solutions in order to improve interpretability.

generator has been trained to reproduce. There is also the po-
tential to identify latent space directions that are significantly
associated with the presence of COVID-19 infection. Examining
these vectors may aid in the development of a more complete un-
derstanding of COVID-19 disease pathology. Non-COVID-19
directions can be used to alter labeled images without affecting
their class labels, allowing for the addition of interpretable
noise to datasets. This augmentation method improves classifier
performance by training on a larger variety of images, thereby
reducing the likelihood of overfitting.

The latent space of COVID-19 GANs are not being examined
enough for interpretable features. This is a missed opportu-
nity to identify novel COVID-specific image properties. Using
XAI to understand latent space effects on image generation
would also allow generation of images with desired proper-
ties. XAI also allows examination of image transformation
“directions” such as object rotation and zoom to ensure that
they are independent, and uncorrelated with potential sources
of confounding, such as scanner model, hospital source, and
technician bias. In future pandemics, reliable and explain-
able synthetic data augmentation approaches may facilitate the
training of high-performing AI models to help in the clinical
arena.

In addition to data augmentation, synthetic examples can be
used to improve model robustness to outliers. Rahman et al.
showed that many COVID-19 diagnostic models are vulnera-
ble to attacks by adversarial examples [20]. Palatnik de Sousa
et al. [21] also demonstrated the utility of adding random colored
artifacts to CT images to identify model architecture which are
most robust to such perturbation. This illustrates the importance
of robust validation of models prior to their integration within

clinical settings. XAI may also be used to verify the validity
of models’ approach to guard against such unexpected, and
potentially harmful, results.

B. Outcome Prediction

Due to their rapid acquisition times and accessibility, imaging
modalities such as X-rays and CT scans have aided clinicians
tremendously in diagnosing COVID-19. Radiographic signs,
such as airspace opacity, ground-glass opacity, and subsequent
consolidation, aid in the diagnosis of COVID-19. However,
medical images contain hundreds of slices making diagnosis
difficult for clinicians. COVID-19 also exhibits similarities to
a variety of other types of pneumonia, posing an additional
challenge for clinicians. Although AI-based clinical decision
support systems outperform conventional models that have been
adapted for clinical use, clinicians frequently lack trust in or
understanding of them due to unknown risks, posing a signifi-
cant barrier to widespread adoption. In the context of outcome
prediction, we define conventional models as SVMs, tree-based
approaches, and logistic regression. Thus, XAI-assisted diag-
nosis via radiological imaging is highly desirable, as it can be
viewed as an explainable image classification task for distin-
guishing COVID-19 from other pneumonia and healthy subjects,
as shown in Fig. 5. Another important clinical application in
outcome predication task is risk prediction. Clinicians and re-
searchers use Electronic Health Records (EHRs) to predict risk
of adverse clinical events, such as mortality or ICU readmission,
and to identify top-ranking clinical features to mitigate negative
consequences.
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Fig. 6. Overview of Outcome Prediction XAI Approaches: Perturbation, Activation, Gradient, Mixed, and Attention-based. A) Permutation-based
approach compares the model outcome between an original image, and the image with a region masked (e.g., with a black rectangle). If ablation of a
region results in a change in model output, then the regions are considered to be important for correct image labelling. B) Activation-based approach
identifies the regions of the input image which result in the highest neuron activation for producing a specified model label. C) Gradient-based
approach back-propagates the final label onto the input image to identify important image regions for each label. D) Mixed-based approach combines
activation and gradient-based approaches to improve the resolution of the activation-based region importance by weighing it with the gradients
calculated as in the gradient-based approach. E) Attention-based approach learns important image regions during model training and uses this
attention map to improve the final model prediction.

Interpretation by feature scoring, also known as saliency,
relevance, or feature attribution, is the most common XAI
strategy in outcome prediction. Interpretation by feature scoring
finds evidence supporting individual predictions by calculating
importance scores associated with each feature of the input.
Specifically, given an input, we need to find a vector of impor-
tance scores that is the same size as the input. In general, feature
scoring can be grouped into five categories: perturbation-based,
activation-based, gradient-based, mixed-based (combination of
activation-based and gradient-based), and attention-based ap-
proaches, as shown in Fig. 6.

1) Perturbation-Based Approach: Perturbation is the sim-
plest way to analyze the effect of changing the input features
on the output of an AI model. This can be implemented by
removing, masking, or modifying certain input features, running
the forward pass, and then measuring the difference from the
original output. The input features affecting the output the most
are ranked as the most important features.

Permutation- or occlusion-based methods measure the im-
portance of a feature by calculating the increase in the model’s
prediction error after permuting the feature. A feature occlusion
study was performed by [26] to show the influence of occluding
regions of the input image to the confidence score predicted by
the CNN model. The occlusion map was computed by replacing
a small area of the image with a pure white patch and generating a
prediction on the occluded image. While systematically sliding
the white patch across the whole image, the prediction score
on the occluded image was recorded as an individual pixel of
the corresponding occlusion map. In biomedical application,
Tang et al. [27] utilized occlusion mapping to demonstrate that
networks learn patterns agreeing with accepted pathological
features in Alzheimer’s disease. Similarly, Hamon et al. [28] also
implemented the occlusion map to indicate decision relevant
regions in the chest X-ray image from a pneumonia use case
scenario. In multi-modal integration studies [29]–[31], feature
permutation and occlusion techniques also played a crucial role
in determining the relative importance of different biomedical
data modalities for the final prediction.

In the COVID-19 imaging applications, Gomes et al. [32] pre-
sented an interpretable method for extracting semantic features
(e.g., ‘Consolidation’, ‘Alveolar’, ‘Effusion’, etc.) from X-ray
images that correlate to severity from a dataset with patient ICU

admission labels. A decision tree was implemented to analyze
extracted features and provide interpretable results. Researchers
mitigate the effects of overfitting through pruning mechanisms,
which could limit the number of samples in tree leaves to
reduce model complexity and dimensionality. The interpretable
findings indicated that patients with features ‘Bi-lateral’ and
‘Peripheral’ showed a higher chance to be admitted into the
ICU. Casiraghi et al. [33] calculated COVID-19 patient risk for
significant complications from radiographic features extracted
using deep learning and non-imaging features. A novel feature
selection method was performed by combining the Boruta algo-
rithm [34] and a permutation-based feature selector embedded
in Random Forests via a five-fold cross-validation strategy. The
most important features were then used to train a final random
forest model to predict risk. In order to maximize final model
interpretability, they generated a sequence of steps to generate
an association decision tree from the final random forest model.
The final association tree is easily interpretable by experts and
could be used in emergency departments to provide rapid and
accurate risk prediction for COVID-19 patients.

Another perturbation-based approach is Shapley value sam-
pling [35], which estimates input feature importance via
sampling and re-running the model. Calculating these Shap-
ley feature importance values is computationally expensive
as the network has to be run for each sample and feature
(sample × number of features) times. Lunberg et al. [36]
proposed a fast implementation for tree-based models named
SHapley Additive exPlanation (SHAP) to boost the calculation
process. By formulating the data features as players in a coalition
game, Shapley values can be computed to learn to distribute
the payout fairly. SHAP has demonstrated its efficacy in the
medical domain to explain clinical decision-making both from
image [37] and non-image [38] inputs and has also been well
explored for COVID-19 cases [39]–[43].

Similarly, Local Interpretable Model-Agnostic Explanations
(LIME) [44] is a procedure that enables an understanding of how
the input features of a deep learning model affect its predictions.
For instance, LIME determines the set of super-pixels (a patch
of pixels) that have the most grounded relationship with a pre-
diction label when used for image classification. LIME performs
clarifications by creating a new dataset of random perturbations
(each with its own forecast) around the occasion and then fitting



GIUSTE et al.: EXPLAINABLE ARTIFICIAL INTELLIGENCE METHODS IN COMBATING PANDEMICS: A SYSTEMATIC REVIEW 11

a weighted neighborhood proxy model. Typically, this neighbor-
hood model is a simpler one with natural interpretability, such
as a linear regression model. LIME generates perturbations by
turning on and off a subset of the super-pixels in the image. To
derive a representation that is understandable by humans, LIME
tries to find the importance of contiguous superpixels in a source
image towards the output class. It has been widely implemented
in COVID-19 diagnosis tasks [41], [45]–[48] to further explain
the process of feature extraction, which contributes to a better
understanding of what features in CT/X-ray images charac-
terize the onset of COVID-19. Ahsan et al. [45] implemented
LIME to interpret top features in COVID-19 X-ray imaging and
build trust in an AI framework to distinguish between patients
with COVID-19 symptoms with other patients. Similarly, Ong
et al. [41] implemented both SHAP and LIME to expound and
interpret how Squeezenet performs COVID-19 classification
and highlight the area of interest where they can help to increase
the transparency and the interpretability of the deep model.

2) Activation-Based Approach: Interpreting layer-wise
feature importance of a CNN is simpler in the first layer which
generally learns the high-level textures and edges. However,
as we move deeper into the CNN, the importance of specific
layers towards a particular prediction is hard to summarize and
visualize since parameters of subsequent layers are influenced
by that of the previous layers. Hence, preliminary research tried
to understand the neuronal activations to input instances as well
as individual filters of specific layers.

Activation-based approaches identify important regions in
a forward pass by obtaining or approximating the activations
of intermediate variables in a deep learning model. Because
extracted features within deep layers are closer to the classifi-
cation layer, they capture more class-discriminative information
than those in bottom layers. Erhan et al. [49] focused on input
patterns which maximize a given hidden unit activation called
Activation Maximization to express feature importance of deep
learning models. Zhou et al. [50] proposed Class Activation
Maps (CAM), which used global average pooling to calculate
the spatial average of feature maps in the last convolutional layer
of a CNN. Han et al. [51] proposed an attention-based deep 3D
multiple instance learning (AD3D-MIL) to semantically gener-
ate deep 3D instance following the potential infection regions.
Additionally, AD3D-MIL used an attention-based pooling to
gain insight into each instance’s contribution over a broader
spectrum, allowing for more in-depth analysis. In comparison
to conventional CAM, AD3D-MIL was capable of precisely
detecting COVID-19 infection regions via key instances in 3D
models. It achieved an accurate and interpretable COVID-19
screening that has the potential to be generalized to large-scale
screening in clinical practice.

3) Gradient-Based Approach: Gradient-based approaches
identify important features by evaluating gradients of an input
through back-propagation. The intuition behind this idea is that
input features with large gradients have the largest effects on
predictions. Simonyan et al. [52] constructed the importance
map of input features by calculating the absolute value of partial
derivatives of class score with respect to the input through back-
propagation. However, feature importance calculated above

could be noisy because of the saturation problems caused by
the existence of non-linear operations such as rectified linear
units (ReLU). That is, changes in gradients could be removed in
a backward pass if the input to ReLU are negative. To address
this issue, several modifications to the way ReLU is handled
have been proposed. Springenberg et al. [53] proposed guided
back-propagation by combining standard back-propagation with
the “deconvnet” approach: gradients are retained only when both
the bottom input and top gradients are positive. The ’deconvnet’
function inverts the data flow of a CNN given a high-level
feature map, going from neuron activations in the given layer to
an image. Thus, guided back-propagation can sharpen feature
importance scores when compared to back-propagation using
vanilla gradients.

Layer-wise Relevance Propagation (LRP) proposed by Bach
et al. [54] is also used to find relevance scores for individual
features in the input data by decomposing the output predictions
of the DL models. The relevance score for each input feature
is calculated by back-propagating the class scores of an output
class node towards the input layer. The propagation follows a
strict conservation property whereby a equal redistribution of
relevance received by a neuron must be enforced. In COVID-19
X-ray imaging, LRP was implemented in DL models to provide
explanations of diagnosis predictions and identify the critical
regions on patients chest [55], [56].

Saliency map generation in deep neural networks were first
introduced by Simonyan et al. [52] as a way of computing the
gradient of the output class category with respect to an input
image. By visualizing the gradients, a fair summary of pixel
importance can be achieved by studying which positive gradients
had more of an influence on the output. Shamout et al. [57]
proposed a a data-driven approach for automatic prediction of
deterioration risk using a deep neural network that learns from
chest X-ray images and a gradient boosting model that learns
from routine clinical variables. To illustrate the interpretability
of proposed model, they performed the saliency maps for all time
windows (24, 48, 72, and 96 h) to highlight regions that contain
visual patterns such as airspace opacities and consolidation,
which are correlated with clinical deterioration. These saliency
maps could be used to guide the extraction of six regions of
interest patches from the entire image, each of which is then
assigned a score indicating its relevance to the prediction task.
Similarly, [58]–[62] also include saliency maps as an explainable
deliverable to interpret deep models and find potential infection
regions in COVID-19 diagnosis and detection.

4) Mixed-Based Approach: Both activation-based and
gradient-based methods have their own set of benefits and draw-
backs. Specifically, activation-based methods generate feature
scores that are more class discriminative, but they suffer from
the coarse resolution of importance scores. On the other hand,
although gradient-based methods produce fine resolution of fea-
ture scores, they tend not to show ability to differentiate between
classes. Gradient-based and activation-based approaches could
be combined to produce both fine and discriminative features
importance scores.

Gradient-weighted Class Activation Mapping (Grad-
CAM) [23] proposed by Selvaraju et al. uses the gradients
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flowing down to the last convolutional layer to multiply
CAM from a forward pass. The resolution is enhanced by
multiplying Grad-CAM with guided-backpropagated gradients.
It allows class-specific query of an input image as well as
counterfactual explanations which highlights regions in the
image which negatively contribute to a particular model output.
Grad-CAM++ [63] replaces the globally averaged gradients
in Grad-CAM with a weighted average of the pixel-wise
gradients since the weights of pixels contribute to the final
prediction, which leads to better visual explanations of CNN
model predictions. It addresses the shortcomings of Grad-CAM,
especially multiple occurrences of a class in an image and poor
object localization.

Due to the vanishing non-linearity of classifiers, CAM is often
unsuitable for interpreting deep learning models in COVID-
19 image classification tasks. Grad-CAM and Grad-CAM++
improved the CAM operation for deeper CNNs and better
visualizations and are usually considered the most popular inter-
pretation strategy in COVID-19 automatic diagnosis on radio-
graphic imaging [64]–[70]. Additionally, Oh et al. [71] proposed
patch-wise deep learning architecture to investigate potential
biomarkers in X-ray images and find the globally distributed
localized intensity variation, which can be a discriminatory
feature for COVID-19. They extended the idea of Grad-CAM
to a novel probabilistic Grad-CAM that took patch-wise disease
probability into account, resulting in more precise interpretable
saliency maps that are strongly correlated with radiological
findings.

5) Attention-Based Approach: Attention mechanism is a
critical component of human perception, as it enables humans
to selectively focus on critical portions of an image rather
than processing the entire scene. Simulating the human vi-
sual system’s selective attention mechanism is also critical for
comprehending the mechanisms underlying black-box neural
networks. Attention mechanism has been widely applied to
computer vision applications [24], endowing the model with
several new characteristics: 1) determine which portion of the
inputs to focus on; 2) allocate limited computing resources to
more critical components.

The efficacy of attention mechanism has been demonstrated
in a variety of medical image analysis tasks. Specifically, sev-
eral state-of-the-art methods have been proposed to leverage
attention mechanisms in order to improve the discriminative
capability of classification models for both X-ray and CT image
analysis tasks [72]–[77]. In COVID-19 diagnosis, Shi et al. [76]
proposed an explainable attention-transfer classification model
based on a knowledge distillation network structure to address
the difficulties associated with automatically differentiating
COVID-19 and community-acquired pneumonia from healthy
lungs in radiographic imaging. Extensive experiments on public
radiographic datasets demonstrated the explainability of the
proposed attention module in diagnosing COVID-19. Similarly,
Zhang et al. [77] developed an end-to-end multiple-input deep
convolutional attention network (MIDCAN) by leveraging the
effectiveness of the convolutional block attention module [78]
to generate model explanation as well as improve model perfor-
mance.

In addition to medical imaging, the attention mechanism
is also useful in other feature interpretation setting, such as
unstructured clinical notes with natural language processing
(NLP) [79]–[81]. Diagnostic coding of clinical notes is a task
that aims to provide patients with a coded summary of their
disease-related information. Recently, Dong et al. [80] proposed
a novel Hierarchical Label-wise Attention Network (HLAN)
to automate a medical coding process and to interpret model
prediction results by evaluating the attention weights at word and
sentence level. The label-wise attention scores in the proposed
HLAN model provide comprehensive and robust explanation to
support the prediction. Zhang et al. [81] proposed Patient2Vec
to learn interpretable deep representations and predict risk of
hospitalization on EHR data. The backbones of the model are
gated recurrent units (GRU) and a hierarchical attention mech-
anism that learn and interpret the importance of clinical events
on individual patients.

However, the attention mechanism continues to struggle when
confronted with missing codes, rare labels, or clinical notes
containing subtle errors. Additionally, clinical notes in real-
world clinical practice frequently contain multiple sentences,
and it is unknown how well the attention mechanism would
function when interpreting multiple sentences. Additionally,
external domain knowledge in the medical field is required to
verify interpretation results. In general, the attention mechanism
has enormous potential for emphasizing critical features and
fostering trust in clinical practice.

C. Unsupervised Clustering

Development of an AI-based diagnosis system for COVID-
19 was different from traditional epidemiological challenges:
in the early stage of a new disease there is limited amounts
of available data, especially diagnostic information [82]. The
major downside of traditional deep learning methods is that they
largely rely on the availability of labeled data, while COVID-
19 datasets often contain incomplete or inaccurate labels. In
biomedical applications, unsupervised learning has the benefit
of not needing labeled data to train, extract features, and cluster
data, which makes it a great candidate for COVID-19 diagnosis
(see Fig. 7).

The application of unsupervised learning approaches, espe-
cially clustering techniques, represents a powerful means of
data exploration. Discovering underlying data characteristics,
grouping similar measurements together, and identifying pat-
terns of interest are some of the applications which can be
tackled through clustering. Being unsupervised, clustering does
not always provide clear and precise insight into the produced
output, especially when the input data structure and distribution
are complex and unlabeled. Applying XAI can allow researchers
to understand the reasons leading to a particular decision under
clinical scenarios and suggest an explanation to the clustering
results for the end-users.

Recent advances in Auto-Encoders (AEs) have shown their
ability to learn strong feature representations for image clus-
tering [83]–[85]. By designing the constraint of the distance
between data and cluster centers well, Song et al. [83] artificially
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Fig. 7. Examples of classical and modern XAI approaches in unsupervised clustering task. Unsupervised clustering has benefited from the use
of latent spaces generated by deep learning models to generate sample similarities. This shift from the conventional approach of calculating input
feature distances enables the use of custom transformations to optimize the space in which similarity is measured. This can result in improved
sample disentanglement.

re-aligned each point in the latent space of an AE to its nearest
class neighbors during training to obtain a stable and compact
representation suitable for clustering. Lim et al. [84] generalize
Song’s approach by introducing a Bayesian Gaussian mixture
model for clustering in the latent space and replacing the input
points with probability distributions which can better capture
more hidden variables and hyperparameters. Prasad et al. [85]
introduced a Gaussian Mixture prior to help clustering based on
Variational Auto-Encoders to efficiently learn data distribution
and discriminate between different clusters in a latent space.

In addition to guided feature representation achieved by AEs,
King et al. [86] applied chest X-ray images of COVID-19
patients to a Self-Organizing Feature Map (SOFM) and found a
distinct classification between COVID-19 and healthy patients.
SOFM was first proposed to provide data visualization to cluster
unlabeled X-ray images as well as reducing the dimensions
of data to a map to understand high dimensional data. SOFM
applied competitive learning to selectively tune the output neu-
rons to the classes of the input patterns and then cluster their
weights in locations respective to each other based off the feature
similarities. They demonstrate that image clustering methods,
specifically with SOFM networks, can cluster COVID-19 chest
X-ray images and extract their features successfully to generate
explainable results.

Yadav [87] proposed a deep unsupervised framework called
Lung-GANs to learn interpretable representations of lung dis-
ease images using only unlabeled data and classify COVID-19
from chest CT and X-ray images. They extracted the lung
features learned by the model to train a support vector machine

(SVM) and a stacking classifier and demonstrated the perfor-
mance of proposed unsupervised models in lung disease classi-
fication. They visualized the features learned by Lung-GANs to
interpret deep models and empirically evaluate its effectiveness
in classifying lung diseases.

Singh et al. [88] used image embedding generated from a pro-
totypical part network (ProtoPNet) inspired network to calculate
similarities and differences of X-ray image patches to known
examples of pathology and healthy patches. This metric was then
used to classify subjects into COVID-19 positive, pneumonia,
or healthy classes.

The task of image clustering in COVID-19 and other clinical
scenarios naturally requires good feature representation to cap-
ture the distribution of the data and subsequently differentiate
one category from one another. In general, unsupervised cluster-
ing is an XAI technique which can be implemented to validate
that images cluster in meaningful groups and facilitate expert
annotation by extrapolating labels within samples belonging to
the same cluster, when labels need be estimated.

D. Image Segmentation

Segmentation algorithms make pixel-level classifications of
images and the overall segmentation produced provide insight
into the decisions of the model. In the realm of XAI, im-
age segmentation itself can be considered highly interpretable.
Therefore, explanations of the segmentation process are cur-
rently not widely explored for medical image analysis. In the
current climate, segmentation algorithms function as useful tools
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Fig. 8. Examples of classical and modern XAI approaches in image segmentation task. Segmentation models have progressed from being highly
interpretable (when simple color thresholds are used) to requiring numerous nonlinear transformations to generate the final segmentation. Although
XAI approaches to image segmentation are not widely used, recent techniques have used the model activation maps generated by deep layers to
identify significant associations with the final segmentation.

for isolating regions significant to COVID-19 diagnosis or for
determining infection severity. Application of explainable AI
techniques to segmentation techniques could provide valuable
information to improve COVID-19 segmentation approaches, as
shown in Fig. 8.

Current COVID-19 segmentation approaches often use con-
volutional neural networks to delineate the regions of interest.
One example of this model was developed by Saeedizadeh
et al. for segmenting CT images of COVID-19 patients based
on U-Net, which they call TV-UNet [89]. The framework was
trained to detect ground glass regions on the pixel level, which
are indicative of infected regions, and to segment them from
normal tissue. TV-UNet differs from regular U-Net by the
addition of an explicit regularization term in the training loss
function which the authors report improves connectivity for
predicted segmentations. Their model was trained on a COVID
CT segmentation dataset with three different types of ground
truth masks and reported an average DICE coefficient score of
0.864 and an average precision of 0.94. However, the results of
the segmentation algorithm do not provide any intuition on why
the model made the decisions it did. Part of this is due to the
black box nature of U-Net. The residual connections between
layers are inherently obscure to human intuition which makes it
difficult to understand how U-Net decided to apply the labels.
Application of a technique that explains the model’s decision-
making process could provide information on possible biases in
the model and ways to improve it. Pennisi et al. [90] achieved
sensitivity and specificity of COVID-19 lesion categorization

of over 90% using a combination of lung lobe segmentation
followed by lesion classification. In addition, they also created
a clinician-facing user interface to visualize model prediction.
This expert oversight was leveraged to improve future prediction
by integrating clinician feedback through the same user interface
(expert in the loop). Wang et al. [91] proposed an interpretable
DeepSC-COVID designed with 3 subnets: a cross-task feature
subnet for feature extraction, a 3D lesion subnet for lesion
segmentation, and a classification subnet for disease diagnosis.
Different from the single-scale self-attention constrained mech-
anism [24], they implemented multi-scale attention constraint
to generate more fine-grained visualization maps for potential
infections.

Image morphology-based segmentation approaches are not as
common within the context of COVID-19 image segmentation,
but they do exist. An example from [92] demonstrates the
successful use of an maximum entropy threshold segmentation-
based method along with fundamental image processing tech-
niques, such as erosion and dilation, to isolate a final lung-only
binary mask. These lung masks can also be used to generate
bounding boxes to limit classification to regions surrounding,
and including, lung tissue [93]. In addition to lesion segmenta-
tion, some approaches first segment lung tissue prior to classi-
fication or further segmentation of clinically-relevant lesions.
Jadhav et al. utilized this approach to allow radiologists to
use a user-interface to view the two and three-dimensional CT
regions used for the classification task with a saliency map
overlay [94]. This combination of XAI approaches sought to
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increase radiologist trust of classification predictions by gaining
multiple visual insights of the automated workflow.

Natekar et al. described one such method of explaining seg-
mentation algorithms known as network dissection [95]. Their
focus was on explaining segmentations done on MR images of
brain tumors with U-Net, but the techniques could be applicable
to COVID-19 segmentation. They explain network dissection as
follows: for a single filter in a single layer, collect the activation
maps of all input images and determine the pixel-level distribu-
tion over the entire dataset. In CNNs, individual filters can focus
on learning specific areas or features in an image, however, it is
not clear from the outside which filter does which. Dissecting the
network would make the purpose of each filter clearer and allow
for better understanding of the decisions made by the model.
Application to COVID-19 algorithms such as TV-UNet could
allow for visualization of specific features that the model looks
for to make a segmentation decision, thereby increasing user
confidence in the model.

Another COVID-19 segmentation approach is the joint clas-
sification and segmentation diagnosis system developed by Wu
et al. [58]. In their framework, they include an explainable clas-
sification model and segmentation model that work together to
provide diagnosis prediction for COVID-19. Their segmentation
is done via an encoder-decoder architecture based on VGG-16,
plus the addition of an Enhanced Feature Module to the encoder
which the authors proposed to improve the extracted feature
maps. They trained and tested their model on a private COVID
dataset and reported a DICE coefficient score of 0.783. Typically,
image segmentation tasks are used to help explain classification
decisions but the authors of this paper extend this idea by
having the classification also help explain the segmentation.
The segmentation algorithm references information from the
classifier by merging their feature maps together to improve
its decisions but this also helps indicate the reasoning behind
the decisions made when producing segmentation. Utilizing
classification information to help train and explain segmentation
is an avenue which merits further exploration.

III. EVALUATION OF EXPLAINABLE AI METHODS

Qualitative visualization plays an important role in evaluating
XAI methods. For biomedical applications, qualitative evalua-
tion focuses on whether visualization can align with established
knowledge. For instance, expert radiologists can assess how well
the generated attention map identifies image regions of high
diagnostic relevance [96]. Based on the previous work [97],
a guideline for evaluating XAI methods from both model be-
havior and human understanding perspectives is proposed and
illustrated in Fig. 9.

Although qualitative evaluation is important, quantitative
evaluation of interpretation is still desirable, which can be
obtained through either user study or automatic approaches.
When conducting user studies, target users (e.g., physicians for
medical applications) perform specific tasks with and without
the assistance of visual interpretation in order to quantify the
efficacy of model explanations. For example, clinicians will be
asked to differentiate between cases involving original images

Fig. 9. Evaluation of model explainability. To assess the generation
of explanations and the revealing of model behaviors, it is critical to
consider their correctness, completeness, and robustness. When evalu-
ating explanation representations, it is critical to consider their clarity of
presentation, their generalizability, and their simplicity of form.

and those involving images with visual interpretation. Then,
improvement in performance is measured with the assistance
of visual interpretation. User studies could be considered as one
of the most reliable approaches for evaluating interpretability,
if they are designed to resemble real application scenarios.
However, conducting such user studies are expensive and time-
consuming, especially for biomedical applications.

When evaluating the generation of explanations, an alter-
native approach is to use automatic evaluation, which acts as
a proxy for user research without involving real users. Zeilar
and Fergus first introduced the idea of the occlusion experi-
ment [26], in which portions of input images were systematically
occluded by a grey square for monitoring the performance of
deep learning models. Samek et al. [98] further formalized the
occlusion experiments by introducing a procedure called “pixel
flipping”, which destroys data points ordered by their feature
importance scores and compares the decrease in classification
metrics among multiple interpretation methods. A larger de-
crease in the metrics suggests a better interpretation method.
Because occlusion experiments are model agnostic, they can
be used as an objective measure for interpretation methods.
On the other hand, the occlusion experiments can not serve
as objective evaluation for perturbation-based feature scoring
methods, such as Randomized Input Sampling for Explanation
(RISE) [99], that perturb input directly to identify important
features.

Apart from occlusion studies, metrics such as R-squared
for the global surrogate model could also be used to evalu-
ate the model interpretation. A global surrogate model is an
interpretable model (e.g., linear models, decision tree, etc.)
that is trained to approximate the predictions of a black-box
model [100]. We can draw conclusions about the black-box
model by examining how well the surrogate model can mimic
the behavior of the original black-box model. The R-squared
measure is one way to determine how well the surrogate
model replicates the black-box model, which can be inter-
preted as the percentage of variance captured by the surrogate
model. If it is close to 1, the interpretable model closely ap-
proximates the black-box model’s behavior, which indicates
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TABLE I
SUMMARY OF XAI METHODS IN CLINICAL APPLICATIONS

the feasibility of replacing the complex model with the in-
terpretable model. If the R-squared is close to zero, the in-
terpretable model does not adequately explain the black-box
model.

Besides correctness and completeness, the evaluation for ro-
bustness of model interpretability remains challenging without
human intervention. Lin et al. [101] proposed an adversarial at-
tack to evaluate the robustness of interpretability in XAI methods
by checking whether they can detect backdoor triggers present
in the input. Researchers employed data poisoning to create
trojaned models and generated saliency maps that will highlight
the trigger to evaluates the saliency map output using three quan-
titative evaluation metrics (IoU, recovery rate, and recovering
difference).

Quantitative evaluation of data synthesis is still in its in-
fancy. DeVries et al. [102] designed an evaluation metric,
named Fréchet Joint Distance (FJD), for the quality of images
generated by conditional GAN based on visual quality, intra-
conditioning diversity, and conditional consistency. Assuming
the joint distribution of hidden space and labels are Gaussian,
they used FJD to compare the mean and variance between real
and generated images. Recently, Yang et al. [103] created a
ground-truth dataset consisting of mosaic natural images for
interpretation methods and tried to unify the evaluation of both
feature scoring and data synthesis methods. Their aforemen-
tioned methods are early in their developmental stage, even
for natural images, and ways to adopt them into biomedical
images and other biomedical data modalities remains an ongoing
challenge.

IV. DISCUSSION

Upon review of the existing works leveraging XAI to fa-
cilitate the interpretation of AI-based COVID-19 solutions to

clinical challenges, we have identified key features present in
papers which have made substantial impacts in the field. Table I
summarizes the XAI techniques used in COVID-19 related
clinical applications covered in this work. Furthermore, inspired
by [104], we summarize these findings and references to exam-
ple implementations in a checklist of important considerations
during the process of AI-based experimental design, as shown
in Table II.

A. Checklist for AI-Enabled Clinical Applications

Using the framework values of performance, user trust, and
user response, we noticed the need for incorporating clinical
insights throughout the study design process. This includes un-
derstanding the factors influencing response variables in the real
world, as illustrated in Haimovich et al. [105] when they stated
that ICU admission was not an ideal outcome variable due to site-
specific and time-dependent patient admission requirements.
Clinical input may also be obtained during and after model
optimization via real-time expert feedback [90] and during im-
plementation via expert-facing user interfaces [42]. In addition
to web-based applications, visualizing sample clusters [67], [87]
and feature importance metrics [33], [71], [80] can offer users
without expertise in data analysis an option of understanding the
decision-making process of otherwise obscure models.

A very common approach to generating easily-interpretable
models is to optimize a decision tree approach to define a clear
decision-making process using available features [4], [32], [33],
[106]. This approach is also similar to widely-used clinical
guidelines to generate fast and consistent metrics for patient
triage and management [107], [108].

Validating feature importance ranking by using multiple
methods, such as tree-based importance metrics and Shapley
values, can establish features lists which are consistent between
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TABLE II
CHECKLIST FOR AI-ENABLED CLINICAL DECISION SUPPORT SYSTEMS

approaches to prevent spurious rankings [105]. This may be
especially important if the list will be used for feature selection
or simplified feature visualizations, such as displaying only the
odds ratios for the most important features.

Comparison of multiple competing models is often neces-
sary to generate high-performance solutions. We noticed the
widespread use of cross validation when authors sought to con-
duct these comparisons [46], [105], [106], [109]. Cross valida-
tion is easier to implement when models are quickly trained and
tested, but this approach may also be used with more complex
models to ensure robust comparisons.

In the quest for easily interpretable results, it is common to
see accuracy being reported as a model performance metric.
Although accuracy is understood by model developers and end-
users alike, it should be avoided when significant data imbalance
is present. Examples of works using appropriate performance
metrics include [109], [110]. More robust metrics include Area
Under the Receiver Operating Curve (AUROC) and Matthews
Correlation Coefficient (MCC), the latter being appropriate even
in highly imbalanced binary classification tasks [111].

An often overlooked aspect of model development is the
potential for adversarial attack within the final implementation
context. Cyber attacks on hospital systems are depressingly
common with a notable rise in frequency over time [112]. As
research tools make their way into the hospital it may become
important to understand the vulnerability of models to potential
future attacks. Therefore, we included this component to our
checklist alongside a recent illustration of adversarial testing
approaches [20].

B. Challenges and Solutions

With any clinical informatics work there will be challenges.
Often these will arise due to issues with the dataset being used,
especially if it was derived from real-world data. After our
review of the literature, we summarized common challenges and
potential solutions, including example works which successfully
solve the problem (see Table II).

Early in the pandemic, there was a scarcity of reliable data
available to the general scientific community. This resulted in
a significant need for data imputation in order to fill in missing
values to maximize the utility of existing data [59]. Poor data
quality also affected model performance and artifact correction
techniques were implemented [64]. Imbalanced classes were

frequently found within COVID-19 datasets due to the accessi-
bility of normal samples relative to COVID-19 positive cases.
Data augmentation was found to alleviate this problem in some
cases by generating additional samples of the underrepresented
class [65].

Lack of expert annotation of key regions of pathology in
imaging data created the need for weakly supervised learning
models capable of generalizing small ground truth datasets [51],
[71]. Without expert insight, it was often necessary to identify
features capable of differentiating between similar phenotypes
(e.g., bacterial versus viral pneumonia). This problem was fre-
quently solved via key feature extraction [51], [58], [60], [61],
[64], [66], [69], [71]. In the case of complex disease phenotypes,
multi-modality data were integrated to leverage data obtained
from consistent or complementary sources [57]. Ensuring model
generalizability requires robust external validation. Data leakage
occurs when testing/external dataset information is used during
the model design or optimization process. The likelihood of this
occurring can be reduced by isolating the test dataset during
hyperparameter selection and model training. Special care must
be taken to avoid including data derived from the same patient
in both the test and training datasets. There exists significant
within-patient correlation of features, even across samples. This
data leakage may allow models to learn patient-specific patterns
which are not generalizable to other patients, resulting in poor
performance in the real-world [45], [60], [64], [66].

In addition, XAI may lead to unclear results, either due to
inconsistent feature importance ranking or nonspecific image
highlighting. In these cases, it is often a good idea to re-establish
the quality of the preprocessing pipeline [67], [68]. When train-
ing is inefficient, transfer learning may be used to take advantage
of prior parameter optimization on similar problems [56], [70].

Ultimately, we designed this checklist to help both academic
researchers in general, and clinical data scientists specifically.
We summarize the integration of XAI in both settings, along
with its benefits in Fig. 10.

C. Evolution of XAI Methods

XAI techniques have developed quickly in recent years to
meet the evolving needs of AI researchers and the end-users
of their models. Although it is easy to fall into the trap of
believing that more recent models are objectively better than
their more classic counterparts, it is important to understand
that each model was designed to improve our understanding
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Fig. 10. Summary of insights gained for designing an AI development workflow. We provide a checklist of considerations to make early in the
experimental design process in order to avoid common problems. Additionally, we provide a list of common issues encountered when working with
clinical data and discuss several common solutions that may assist the reader when working with these data.

of different facets of AI-solutions. For example, in the task of
data augmentation, it is common to see K-Nearest Neighbors
interpolation and other classic approaches used instead of more
complex modern solutions. This is in part because the more
classic approach has been around for longer, and its pitfalls
have been well established. The modern approach may result
in data bias which may be difficult to understand due to the
lack of real-world examples of their successes and failures. The
trend for data augmentation has been to increase the number
of considered factors and complexity of data transformations
to better model the underlying data distribution of real-world
samples.

Clinical decision support is a very common setting to find
AI-solutions in need of explanation. For the task of disease
diagnosis, the trend has been to generate input importance
visualizations which can be used across a wide range of common
deep learning models. This is in contrast to early XAI ap-
proaches which relied on model-specific solutions to improve in-
terpretability. XAI in risk prediction for clinical decision support
has trended towards generating sample-specific explanations.
These may provide the end user with a custom answer to the
question of “why did this sample get the score that it did?”.
This is especially useful in the clinical setting where precision
medicine is becoming the standard, and patient-specific expla-
nations for risk scores are vital.

Additionally, depending on the problem scope, XAI methods
can be classified into global methods that provide a unified global
explanation for the overall model behavior and local methods
that provide explanations for each individual instance [100]. In
local interpretation methods, XAI methods attempt to accurately
describe individual sample predictions as the sum of feature
effects; for example, LIME explains individual predictions by
replacing a locally interpretable surrogate model for the complex
model; Shapley values attempt to fairly assign the prediction to
individual features. In contrast to local interpretation methods,
global methods such as SHAP feature importance, coefficient of
regression models, and permutation-based feature importance
are frequently expressed as expected values based on the distri-
bution of the data in order to investigate the knowledge encoded
in the model and its effect on predictions [116]. Depending on the
scope of the problem, clinicians may consider different levels of
interpretability. Local methods show the explanation for specific
instances, whereas global methods can generalize over the entire
cohort. Global interpretable features, for example, were derived
from global interpretation methods to generate a risk score for

in-hospital mortality [117], and local explanations were used
to investigate COVID-19 progression prediction for individual
patients [106].

Unsupervised clustering has benefited from the use of deep
learning model latent spaces for their generation of sample
similarities. This shift from the classical input feature distance
approaches allows custom transformations to optimize the space
within which similarity is measured. This can result in better
disentanglement of samples [118].

Image segmentation approaches have increased in complexity
in recent years due to models such as U-Net and its variants.
Models have gone from highly interpretable (if using simple
color thresholds) to involving many nonlinear transformations
to produce the final segmentation. XAI approaches for image
segmentation are still not commonly used, but recent techniques
have leveraged the model activation maps produced by deep
layers to identify significant associations with final deep learning
model output [119]. XAI approaches will continue to adapt as
models continue to become better optimized for different tasks.
XAI will likely cover a much wider range of approaches to meet
the needs of end-users and regulatory agencies.

In future work, with the decrease of COVID-19 incidence and
increase of vaccine supply, risk stratification will become vital
to determine optimal treatment plan. We also hope our focus
of XAI within the ongoing COVID-19 pandemic may increase
the relevance of our insights to future disease outbreaks. The
framework we provided can be used across common AI-tasks
and may improve the clinical implementation of these solutions,
especially in the early stages of infection.

V. CONCLUSION

The recent confluence of large-scale public healthcare
datasets combined with the rapid increase of computing capacity
has resulted in a noteworthy increase in AI-based solutions for
clinical decision-making. However, making these AI solutions
adopted in clinical practice is slow. In this work, we reviewed
XAI approaches that can increase AI adoption based on lessons
learned from COVID-19 and presented future trends with in-
sights. Clinical informatics is generally risk-averse, which cre-
ates the need for AI developers in the field to understand how AI-
based decisions are reached. This understanding would provide
two key benefits: i) increasing confidence that a deep learning
model is unbiased and relies on relevant features to accomplish
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desired tasks and ii) detecting biases or discovering new knowl-
edge if the generated explanations elucidate previously-hidden
patterns in the data. Meanwhile, clinicians and healthcare prac-
titioners will benefit from the model transparency and result
interpretation enabled by XAI to understand the black-box
decision-making. This could increase the trustworthiness and
accountability of AI solutions and promote their adoption in
the clinical workflow. Ultimately, the implementation of XAI
techniques will accelerate the translation of data-driven analytic
solutions to improve the quality of patient care.
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