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Abstraci— Fetal phonocardiography (fPCG) is receiv-
ing attention as it is a promising method for continuous
fetal monitoring due to its non-invasive and passive na-
ture. However, it suffers from the interference from various
sources, overlapping the desired signal in the time and fre-
quency domains. This paper introduces the state-of-the-art
methods used for fPCG signal extraction and processing,
as well as means of detection and classification of various
features defining fetal health state. It also provides an ex-
tensive summary of remaining challenges, along with the
practical insights and suggestions for the future research
directions.

Index Terms—Fetal phonocardiography, fPCG extraction,
non-invasive fetal monitoring, signal processing.

[. INTRODUCTION

ETAL phonocardiography (fPCG) is a monitoring tech-
F nique used to assess fetal well-being during pregnancy and
childbirth. It is a graphical record of fetal heart sounds (fHS)
measured on the surface of the mother’s body. In essence, it is a
modern form of auscultation technique, which is one of the old-
est techniques of fetal surveillance. The great advantage of fPCG
is that it provides additional diagnostic information on some
congenital heart diseases that cannot be obtained by other mon-
itoring methods, such as cardiotocography (CTG), fetal elec-
trocardiography (fECG), magnetocardiography (fMCG) [1]. It
allows, for example, early detection of extrasystoles, murmurs,
bigeminal and trigeminal atrial contractions, intrauterine growth
retardation and other abnormal cardiac functions [2], [3]. More-
over, this method is entirely passive, low-cost and suitable for
continual fetal heart rate (fHR) and maternal heart rate (mHR)
monitoring [4].
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The signal is recorded by probes that can detect the mechani-
cal vibrations caused by the fetal heart. Among the most popular
sensing probes are microphones [5], but there are also other
means of sensors based on optical fibers [6], accelerometers [7],
or other alternatives [8]. However, besides the desired fPCG
signal, the probes also record variety of unwanted signals that
affect the resulting signal quality.

The factors affecting the quality of the fPCG signal include
biological effects of the maternal body (signals appearing as
artifacts produced by surrounding organs and tissue, body mo-
tion, respiratory activity, uterine contractions) and also technical
aspects, such as ambient noise or artifacts generated by other
devices. The fPCG signal also varies for different gestation age
(stage of pregnancy) or fetal position, which may change during
asingle measurement. In addition, the intensity of the interfering
signals is higher than the fetal one and they overlap with the
desired signal in the time and frequency domains, which makes
accurate extraction of the fetal component challenging. If the
data collection systems and signal processing methods were
improved, fPCG-based monitoring could become the future
of electronic fetal monitoring removing most of the current
limitations in fetal telemonitoring and e-health [9], [10].

Over the years, many researchers have been introducing meth-
ods for fPCG signal processing and extraction. There have also
been some attempts to provide an overview of this topic [11],
[12]:

e The paper of Kovacs et al. published in 2011 [11] pro-
vides a great introduction to the topic and practical in-
sights by one of the most well-known groups focused
on fPCG. Their paper offers the reader important details
about anatomy and physiology of the fetal heart, thorough
description of the fetal heart sounds, their origin, clinical
use, and additional features needed for diagnostics of
congenital heart defects. On the other hand, the paper
does not cover the topic in terms of signal processing and
analysis methods introduced by other authors and offers
only limited amount of references (26), which are now
quite out-of-date.

¢ In the second available review published in 2017 [12], the
authors presented an overview of the existing fetal moni-
toring methods and highlighted their benefits, limitations
and means of use. The paper provides an extensive survey
of the fHS characteristics in both time and frequency
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Fig. 1. lllustration of the search phrases and selection criteria used in the search strategy.

domains, and insights in modelling of fPCG signal and
associated noise. Compared to the previously mentioned
review, the authors in [12] provided a thorough summary
of available literature covering signal processing and also
classification algorithms proposed by other researchers.
However, the paper lacks a thorough objective comparison
of given methods and practical examples and recommen-
dations.

The review introduced herein provides an extensive critical
review of the available techniques in fPCG signal processing
and analysis and tries to add useful and practical information
that was missing in the previous reviews. It includes clinical
insights, practical challenges, and recommendations on sensor
placement or evaluation metrics so it may be of use particularly
for the early-stage researchers interested in fPCG monitoring.
Finally, it summarizes remaining challenges and reveals recent
advances in this area along with several promising directions of
future research.

Google Scholar, PubMed, and Scopus search engines were
used to find relevant references. The selection criteria for the
references to be included involved phrases combining terms
from the field of fetal phonocardiography: “Fetal phonocar-
diography,” “Fetal heart sounds,” and “Fetal heart murmurs”
with terms from the field of signal processing: “Extraction,”
“Processing,” “Analysis,” “Detection,” and “Classification” A
total of 15 queries were created and used in the literature search,
as indicated in Fig. 1. Research articles that were published
before 2000 and most conference papers were excluded from the
search. Thus, only journal articles and high-ranked conference
papers published between 2000-2022 were used.

A. Fetal PCG Signal Characteristics

The fetal heart produces narrow frequency band acoustic
signals of low intensity caused by its transmission through the
maternal tissue. These sounds are generated by the opening and
closing of heart valves and blood flow [13]. We distinguish four
heart sounds (HSs) in both adult and fetal PCG, while the third
and fourth sounds are practically undetectable [3]. As illustrated
in Fig. 2, the first HS (S1) is generated by the closure of the
mitral and tricuspid valves during systole. The second HS (S2)
is generated by the closure of the aortic and pulmonary valves
during diastole.

In general, S1 has a higher amplitude, lower frequency, and
longer duration than S2. The systolic time interval occurring
between S1 and S2 sounds is generally shorter than diastolic
(between S2 and S1). Fetal and maternal HSs can be considered
as almost periodic, narrowband signals. The frequency of fHS

S2 S2

Closure of
aortic/pulmonary
valves (diastole)

Closure of
atrioventricular
valves (systole)

Systole Diastole Systole Diastole

(a) ustration of the fPCG signal origin and feature characteristics
in time domain.

First heart sound

\ 30
J weks
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Second heart sound
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N
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(b) Frequency characteristics of the S1 and S2 sounds for different
stages of pregnancy (30, 38, and 40 weeks).

Fig. 2. Example of the fPCG signal in time and frequency domain [14].

is in the range from 20 to 110 Hz and maternal HS (mHS) is
in the range from 10 to 40 Hz [11], [12]. Fig. 2(a) shows an
example of the fPCG signal in time domain illustrating its origin
while Fig. 2(b) depicts its frequency spectra of both S1 and S2
sounds corresponding to different stages of pregnancy. However,
in the clinical practice, it is nearly impossible to distinguish
the individual sounds S1 and S2 in such an interference signal
without professional experience [15].

For this reason, methods for automatic identification of the
individual fHSs have been presented in the past. They were
mainly based on the thresholding and conditioning according
to the physiological properties of the heart cycle [16], [17],
but also other alternatives proved to be effective, such as those
using spectrogram [18] or a combination of scalogram and
physiological properties of fPCG [19].

Unlike in fPCG research, advanced methods have been tested
in adult PCG based mainly on artificial intelligence and machine
learning [20]. Very promising results were achieved with the
automated identification of S1 and S2, for example, when using
deep neural networks [21], [22] or support vector machines [23],
[24].

Other important features of fPCG signal are murmurs, man-
ifesting as abnormal HSs. Their identification contributes to
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(b) Frequency characteristics of the S1 and S2 sounds for different
stages of pregnancy (30, 38, and 40 weeks).

Fig. 3. Examples of the noise present in the fPCG monitoring in time
and frequency domains [27], [28].

the early detection of congenital heart defects. The presence of
heart murmurs is in most cases associated with a pathology that
changes the blood flow from laminar to turbulent causing the
tissue vibrations [25]. Pathological murmurs can be detected
after the first trimester, i.e. in the 12th week of pregnancy.
For murmurs, the intensity and frequency are always deter-
mined [11], [25]. The detection of murmurs is further discussed
in Section III-D.

B. Noise Definition

As illustrated in Fig. 3, in fPCG based monitoring, we face
the problem of the occurrence of a large number of interfering
signals, which are sensed along with the desired fPCG signal.
As defined in [26], the most significant types of interference
include following signals:

e Sensor and background noise (SBN) - this category in-
cludes the noise that is not produced by the fetal or ma-
ternal body. These types of interference are random white
Gaussian broadband signals. They occur at all frequencies

during recording and lead to significant changes in the
acquired signal.

® Shear noise - is caused by the sensor movement during
recording.

® Ambient noise - is the external noise originating from the
environment (for example, sum of speech, acoustic noise
caused by electronic appliances, and other sounds). The
noise can be minimized by careful positioning the mea-
suring device and ensuring its contact with the subject’s
skin [26].

Acoustic noise produced by fetal body - corresponds to the
various activity of the fetal body (both physiological and patho-
logical). Besides outputs such as fetal cough, hiccups, or organs’
activity, main categories include:

— Fetal respiration (fR) - although the fetal lungs are func-
tional only after birth, they produce respiratory move-
ments. Fetal respiration is a low-frequency periodic signal
with a range of inspiratory and expiratory pressure com-
ponents in the range from 0.3 to 1.5 Hz.

— Fetal motion artifacts (fM) - arise from the movement
of the limbs or the head of the fetus in the frequency
range from O to 25 Hz. These artifacts include hiccups
or respiratory movements of the fetus’ lungs, which are
already described above.

® Acoustic noise produced by maternal body - maternal res-
piratory artifacts, maternal digestive sounds, mHS, uterine
contractions or maternal motion (mM).

— Maternal respiration (mR) - is a low-frequency signal
generated by the maternal breathing. This noise covers
the frequency band from 0.2 to 0.5 Hz [29].

— Maternal heart sounds (mHS) - are sounds generated by
the activity of the maternal heart. However, when related
to the fetal monitoring, its definition is not as simple as
that. For example, in [28], the authors describe mHS as a
regular periodic signal known as a maternal pulse derived
from the sound of blood flow in maternal arteries covering
the frequency band 8-25 Hz and having a higher amplitude
than fHS, fR, and mR. Contrary, in [30], the authors inter-
preted mHS as umbilical cord sounds. Moreover, in [27],
the authors interpreted mHS as the signal derived from
aortic/placental sounds with a frequency range up to 10 Hz.
Finally, in [29], the authors interpret mHS as a periodic
pulse wave originating from the sound of aortic blood flow,
where the frequency range is between 10 and 50 Hz.

— Uterine contraction (UC) - is type of interference occur-
ring in the abdominally sensed PCG signal (aPCG) and is
caused by the uterine muscles contracting during the labor
but also before it. The frequency, intensity and duration of
UCs are highly related to the week of pregnancy. They
generally occur 2-5 times every 10 minutes and their
duration varies from 15 to 70 s.

Possible artifacts can then be eliminated by selecting a suitable
filtration method and its optimal setting, more in Sections III
and I'V-A, respectively. The frequency ranges of the individual
disturbances are illustrated in Fig. 3(b). The above-mentioned
types of noise and their parameters are also summarized in
Table I.
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TABLE |

SUMMARY OF THE FPCG SIGNAL COMPONENTS AND ARTIFACTS [12], [26]

Component  Frequency range (Hz) Time duration

Relative amplitude

Effect on aPCG signal

fHS 15-110 Continuous SBN, fR, < fHS < mHS, mR, fM - S1 and S2 sounds
™M 0-25 135 SBN < fM < fR, fHS ,mHS, mR - changes in fHR, broadband

noise superimposed on fPCG
fR 0.3-1.5 Continuous SBN < fR < fHS, mHS, mR, fM - baseline fluctuations and deviations in fPCG signal
mHS 10-50 Continuous SBN. fR. fM, mR < mHS - overlap with fHS in time and frequ@cy domain,

- unwanted morphological changes in fPCG
mR 02-0.5 Continuous  SBN, fR, fHS, fM < mR < mHS - baseline wander
- fHR variations

ucC 0.2-0.5 15-60 s - -
SBN Broadband Continuous SBN < R, fHS, mHS, mM - change in mean value and variation of fPCG

[I. SIGNAL QUALITY ASSESSMENT

The main focus of this review is on methods for signal
processing and analysis in fPCG. These methods will be intro-
duced and discussed in detail in Section III. However, to properly
evaluate and compare their effectivity, we first need to introduce
associated metrics and available open-access datasets used for
the experiments.

A. Evaluation Metrics

The quality of the fPCG signal extraction can be evaluated
subjectively or objectively. The subjective assessment can be
performed visually by evaluating the fPCG morphology and the
amount of the artifacts and/or noise remaining. In the case of
fPCG, it can also be evaluated by listening to the signals. In con-
trast, objective evaluation is carried out by means of evaluation
metrics that use an information provided by an ideal reference
signal (in case of synthetic signals) or reference annotations (in
case of real records). Following objective signal quality indices
have been used among the literature:

e Signal-to-noise ratio (SNR) - is used to evaluate the ratio
between the useful signal and the noise, its unit is the
decibel (dB). The usual practice is to calculate the SNR
of the input (unfiltered) signal, and the output (filtered)
signal, i.e. SN Ry, and SN R, respectively. The differ-
ence between those values tells us about the success of the

filtration. The following equations are used to determine
the SN R;,, and SN Ry [31]:

Z%;i (Sref(m))z
Z%:_ll (8in(m) — spet(m))

Som ] (svet(m))?

SMY (sa1e(m) — sree(m))”

@)

SNRin = 1010g10 29 (1)

SNROut - 10 loglo

where M is the number of samples of the reference signal
(sref), the input signal containing interference (SN R;y)
and the signal after filtering using the specific method
(sait)- It is important to note that the SN R parameter
can only be used in case of artificial recordings since
the reference (ideal) signal is available. In the case of
real records, the reference usually refers to the heart beat
annotations, not a signal, and thus (1) and (2) could not be
used.

® Mean Square Error (MSE) - is metric derived from the

square of Euclidean distance (see (3)). Its value is always
a positive; the higher the value, the higher the error (i.e.
lower the filtration quality).

n

MSE = % > (sse(i) = seer (). 3)

i=1

Root Mean Square Error (RMSE) - is a parameter that
indicates the degree of difference between the ideal fPCG
values and estimated ones. The closer the RMSE value is
to zero, the more accurate the filtration result is.

RMSE = VMSE = % D (ssneli) = sper(i))*.
i=1

“)
Percentage RMS Difference (PRD) - is one of the quality
indicators often used in ECG compression [32]. It is there-
fore useful in assessing the visual quality (morphological
accuracy) of the output signal in comparison with the
reference.

PRD = Tt [Sref(i)_sﬁ“(i)f-loo (5)
N S Seef (1) '

Correlation coefficient - this parameter reflects the rela-
tionship between the original signal and the filtered one.
The value of the correlation coefficient ranges from O to 1
and shows the similarity of the shape of these two signals.
A higher correlation coefficient means a lower deforma-
tion of the signal shape after filtering.

Statistical evaluation of HS detection - accurate detection
of S1 (or S2) sounds, corresponding to the individual heart
beats, is crucial for the fHR determination. Following in-
dices can be used to assess this: Sensitivity (SE), Accuracy
(ACC), Positive Predictive Value (PPV), and F1 score,
which is a harmonic mean of SE and PPV. The parameters
are defined as follows:

TP
ACC =75 TrprEN W ©)
TP
SE=7p N 10 Q0
TP
PPV =——"_ .1
v TP+ FP 00, ®)
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TABLE Il
SUMMARY OF AVAILABLE FPCG DATABASES

Name Type Device Pregnancies Twins Recordings Fs

SFPDB Synthetic Generator - - 37 1 kHz
SUFHSDB Real Digital JABES Electronic Stethoscope 109 7 119 16 kHz or 44.1 kHz
FPCGDB Real Fetaphon Monitoring System by Pentavox 26 - 26 333 Hz

Time (s)

Fig. 4. Example of the parameters (TP, FP, FN) used for statistical
evaluation on a real fPCG signal. The reference annotation values are
marked as green dots with the interval of +50 ms around it is indicated
by a dashed line; the values detected on the filtered signal are marked
as red dots.

PV - T
Pl _o. PPV SE _ 2.TP

"PPV+SE 2. TP+FP+FN

100,

where TP (true positive) represents the correct detection
of S1 (or S2), FP (false positive) indicates an incorrect
indication of the presence of S1 (or S2), and FN (false
negative) corresponds to the missed S1 (or S2). As illus-
trated in Fig. 4, TP, TN, and FP can be determined in
case of both synthetic and real recordings. In both cases,
the annotations regarding HS position must be available.
A true positive (TP) value is then defined as a correctly
detected S1 sound, which had to be detected in given time
interval (most often +-50 ms) before/after the correspond-
ing S1 sound in the reference recording (annotations). In
synthetic recordings, these reference annotations can be
acquired by automatic detection from the ideal signal. In
real signals, these annotations must be provided by the
authors of the database. Most often, they are created by
manual selection of the heart beats by several independent
experts (to ensure reliability) or by comparing it with other
signal considered as gold standard, for example invasive
(direct) fetal ECG signal [33].

B. Available Databases

The unified publicly available databases to test and evaluate
the fPCG extraction methods are an essential part of the fPCG
research. Unfortunately, the number of databases containing
fPCG recordings is still very limited. Currently, there are only
three databases available at PhysioBank containing real data
and one database containing synthetic data. The real data can be
found in Fetal PCGs database [34] and Shiraz University Fetal
Heart Sounds Database [34], [35], while the synthetic ones in
Simulated Fetal PCGs database [3], [34]. A short description

of the available databases is given below and summarized in
Table II.

1) Shiraz University Fetal Heart Sounds Database
(SUFHSDB) - contains fetal and maternal PCG
recordings from 109 pregnant women from 16 to 47 years
old (mean =+ SD: 29.3 £ 5.8 years) with Body Mass Index
(BMI) from 19.5 to 38.9 (mean & SD: 29.2 £ 4). The
signals were acquired with a digital JABES Electronic
stethoscope (GS Technology Co. Ltd., South Korea) [35].
The data set includes 7 cases of twin pregnancies. In
these cases the data were collected twice according to the
locations advised by the gynecologist. Audacity cross-
platform audio software was used for recording and edit-
ing the signals on a PC. In summary, 99 subjects had
one signal recorded, three subjects had two signals and
seven cases of twins were recorded individually, resulting
in total of 119 total recordings, each about 90 s long.
The sampling rate was generally 16 kHz with 16-bit
ADC and a few recordings at 44.1 kHz. The data was
recorded in wide-band mode of the digital stethoscope,
with a frequency response of 20 Hz to 1 kHz. This data
set also provides maternal PCG data (mPCG): in total
of 92 mPCG signals from 91 subjects (90 subjects had
one mPCG signal recorded while one had two recordings
carried out).

2) Simulated Fetal Phonocardiograms Database (SFPDB or

simfpcgdb) - this data set is a series of artificial fPCG
signals simulating various scenarios (e.g. physiological
and pathological fetal states) and recording conditions,
generated by a simulator introduced in [3].
Simulated PCGs were generated as a sequence of frames,
each including simulated S1 and S2 sounds. The fetal
HSs were corrupted by noise and artifacts at various
levels, such as mHSs, maternal body organs sound (due
to maternal digestion, respiratory muscular movements,
placental blood turbulence), fetal movements, surround-
ing environment and additive white Gaussian noise.

3) Fetal PCGs Database (FPCGDB) - includes series of
26 physiological fPCG recordings from different preg-
nant women in the final stages of pregnancy (gestational
week between 31 and 40). The recordings were acquired
by a portable PCG device (Fetaphon Monitoring System
by Pentavox). The data were digitized with a sampling
frequency of 333 Hz at 8-bits ADC. These signals were
used to design a fPCG simulator and to develop and test
algorithms for fHR extraction [3].

In general, the synthetic data are important especially in the
initial stages of the research and development. A simulator
generating fPCG signals is able to simulate the physiological and
pathological conditions of the fetus by simply adjusting system
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TABLE IlI
OVERVIEW OF BAND-PASS FILTERS USED FOR FPCG PRE-PROCESSING

Authors, year, source Filter order = Bandwidth Data source
Zhang et al. (2018) [4] 6th 20-200 Hz UBabycare device
Fuadina et al. (2019) [36] Not specified 30-80 Hz Synthetic data from [3]
Tomassini et al. (2019) [37] 3th 20-120 Hz Synthetic and real data from [3, 35]
Dia et al. (2019) [38] Not specified ~ 20-200 Hz  Cardio-microphone (MLT201, ADInstruments)
Vican et al. (2021) [39] 8th 50-150 Hz Microphone Behringer ECM8000

parameters. Pathological records are particularly important for
the development because they enable to test the methods in un-
expected conditions. However, in the clinical practice, it is often
impossible to acquire them since the measurement is stopped
when a pathology is detected (i.e. the unborn is endangered)
and the delivery is ended surgically via Caesarean section. The
disadvantage of real recordings compared to synthetic ones is
also the absence of a reference signal which makes the evaluation
of the filtration accuracy more challenging.

[ll. FETAL PCG SIGNAL PROCESSING AND ANALYSIS

As mentioned in I-B, the fPCG signal sensed on the maternal
abdomen can obtain various type of noise. To obtain all of the
diagnostically important information, there are several steps
that need to be undertaken. These steps are as follows and
will be introduced and extensively discussed in the following
subsections:

1) Pre-processing —noise suppression in the pre-processing
stage usually involves linear filtration (low pass, high pass
or notch filters) to acquire only the desired frequency
bands.

2) fPCG extraction — in order to obtain a high quality fPCG
signal, a number of studies have been presented dealing
with methods for fPCG extraction (see III-B).

3) HS detection — the fHSs are detected in the filtered fPCG
signal. Some authors introduced extensive fPCG extrac-
tion systems that already involve specific algorithms for
fPCG signals detection while others used separate detec-
tors to obtain fHSs for evaluation purposes (see III-C).

4) Feature extraction and classification —involves extraction
of other features besides fHSs and additional analysis (see
1I-D).

A. Pre-Processing

Pre-processing is an essential part of signal processing. It is
used to remove the components of the signal, which correspond
to noise, and thus enhance the quality of the desired signal.
The unwanted components to be removed include, for example,
broadband noise signals, motion artifacts, or breathing activity
(see Section I-B).

For fPCG pre-processing, band-pass filter is usually used to
preserve only the useful frequency range of the signal. Most
of studies use Butterworth filter but its order and the signal
bandwidth that is retained varies slightly across studies from
20 to 200 Hz, see Table III. However, some studies use other
techniques for pre-processing such as Wiener filter [40], wavelet
transform [41] or moving average.

B. Extraction Methods

Before any analysis can take place, it is necessary to extract
the fPCG signal from the composite abdominal mixture. Many
methods have been introduced and their accuracy is often eval-
uated using fHR calculation or other metrics, see Section II-A.
Herein, we provide an overview and comparison of the most
popular methods for fPCG signal extraction from the composite
aPCG signal.

1) Spectral subtraction - restores spectrum magnitude of the
wanted signal in an additive noise through subtraction of
the average noise spectrum from the noisy signal. The
noise spectrum is usually acquired and updated from
the periods when there is only noise but no signal. This
method assumes that noise is a stationary process and the
noise spectrum does not change too much between the
update periods [12].

® Chen et al. [42] created a device with simplified spectral
subtraction and amplitude modulation technique for elim-
ination of noise from fPCG signal and for fHR real-time
monitoring. They tested this approach in 41 subjects in
37th to 38th week of pregnancy. Their device could clearly
detect fHS in 75% of the subjects, which is significantly
lower comparing to the Doppler technique. Thus, as the
authors concluded, their device can be used as a supple-
mentary tool, but not as substitution for the ultrasound
device.

2) Fourier transform (FT) - FT is used to convert the sig-
nal from time to frequency domain. The FT-based filter
attenuates or amplifies specific frequency components
according to the given purpose. The process is finalized
by the inverse FT, where the signal is reconstructed with
the changes applied [43]. The FT is commonly used in
the biological signal processing, however, it is not really
suitable for fPCG processing. There is only one paper
focused on this issue available:

e Mittra et al. [18] used a simple Short Time FT (STFT)
method for analyzing fPCG signal in the time-frequency
domain. They showed STFT based spectrograms and con-
cluded that this method can become an important diagnos-
tic tool in prediction of the prenatal anomalies.

3) Wavelet transform (WT) - is a frequently tested and very
effective method able to suppress noise when its setting
is optimized for given purpose. Contrary to the FT, WT
treats frequency logarithmically which corresponds to the
acoustic perception of the human body and therefore
is more suitable for the analysis of the sound-related
signals [44]. It decomposes the input signal into a set
of wavelets — a wave-like oscillations with two basic
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properties: scale, which relates to the signal’s frequency,
and location, which defines its position in time. In the
WT-based filtering, one should pay attention to selecting
suitable set of the parameters, such as the wavelet base
(e.g. Daubechiens or Coiflets) or level of decomposi-
tion [33]. Moreover, the effectiveness of WT-based filter
can be further increased by combining this algorithm with
other filtration methods.

e Song et al. [45] developed a passive acoustic device for

real-time fHR monitoring. The fHS were detected using
the WT, de-noised and reconstructed. The Coiflet wavelet
base and five levels of decomposition were used for the
filtration, when the level most corrupted by noise was
not used for the reconstruction. The device was tested on
41 pregnant women (37th to 40th week of pregnancy).
They concluded that Coiflet WT significantly improves
SNR so that fHR can be determined even in a noisy
environment.

Chourasia et al. [46] designed a new WT-based algorithm
optimized for fPCG signals. This method uses a quadratic
mirror filter bank designed accordingly to the fPCG signal
characteristics involving low and high-pass filtration in the
decomposition phase and the reconstruction phase. The
basic features of this method comprise speed in conver-
gence from infinity to 0, regularity, and orthogonality. This
method has a small number of coefficients in high-pass
subbands and, in the low-pass subband, it allows intact
signal singularities, transitions, and edges. Their results
show that this method outperforms the existing wavelet
bases and preserves physiological information contained
in the original fPCG signal.

Kovacs et al. in [47] presented a complex heuristic method
for the fPCG extraction and reliable fHR variability eval-
uation using a combination of autocorrelation (AT) tech-
nique, WT, and matching pursuit (MP). The functionality
of the algorithm was tested on 25 real fPCG signals sensed
directly on the abdomen of pregnant women at 34 weeks
of gestation. The signals were further adjusted with a
band-pass filter in the range of 25—-100 Hz and resampled
to a sampling frequency of 333 Hz. The overall accuracy
ranged from 92.9 to 98.5%.

Varady et al. [9] introduced the fTCG extraction method
based on WT. The proposed method was tested on real
records measured by an electronic stethoscope developed
by the author. The sensed signals were evaluated subjec-
tively by a cardiologist by listening. The authors do not
report any statistical results.

Vaisman et al. introduced an adaptive wavelet transform
(AWT) as a method for fPCG signal processing in [10]. To
test the method, they used real fPCG records obtained from
14 pregnant women in the 36—40th week of pregnancy. The
overall accuracy of the method was evaluated based on the
ability of the method to fit fHR trace. The results showed an
accuracy of 94-98.5%, including highly disturbed cases.

Koutsiana et al. presented a system using WT and fractal
dimension (WT-FD) method in [16]. The efficiency of
the WT-FD method in fHS extraction was tested on 19

artificial fPCG signals generated for the purpose of this
study, with additive noise up to (3 dB), and on signals from
the SIMFPCGDB database. The results showed promis-
ing performance in identifying the correct location and
morphology of fHS and achieved an overall accuracy of
89%.

Strazza et al. proposed PCG-Delineator as an algorithm
for detection S1 and S2 sounds [17]. This method is based
on WT and uses a Coif4 mother wavelet with 7 levels of
decomposition. To verify the functionality of the proposed
system, 37 fPCG signals from the SIMFPCGDB database
were used. The performance of the algorithm was evalu-
ated according to the statistical parameters SE and PPV.
The results show that the accuracy of S1 detection was
on average 88% according to the SE parameter and 91%
according to the PPV parameter. For the S2 detection, the
values of the SE and PPV were 77% and 99%, respectively.
Tomassini et al. provided comparative analysis of WT-
based filters in [37]. They tested three wavelet bases
(Coif4, Db4, and SymS8), two threshold rules (Soft, Hard),
and three threshold algorithms (Universal, Rigorous and
Minimax). Using these parameters and their combinations,
they created in total of 18 different fPCG filters. Indi-
vidual filters were tested on 37 simulated records from
the SIMFPCGDB database and 119 real records from the
SUFHSDB database. Their performances were evaluated
using the SNR parameter and also by the reliability in
estimating fHR from the filtered fPCG signal. Accord-
ing to the authors, the best results (for both groups of
tested data) were obtained by combining the Coif4 wavelet
base with the Soft thresholding rule and the Universal
thresholding algorithm, as it was able to maintain the fHR
value with respect to the reference (Refrpr = 138.7,
SIMypgr = 139.6, SUyrpr = 140.5), see Table IV.
Faradisa et al. in [48] dealt with the filtering of the
fPCG signal using a WT-based filter on the data from the
SUFHSDB database. The authors tested different types of
wavelet bases (Coif3, Sym5, and Db6), thresholding (Soft,
Hard) and the type of thresholding algorithm (Universal,
Minimax, SURE). The filtration efficacy was evaluated us-
ing the MSE parameter. Contrary to Tomassini et al. [37],
the authors achieved the best results (lowest value of
MSE) when applying the Coif3 wavelet with the SURE
thresholding algorithm and the Hard threshold parameter.
Strazza et al. tested a new extraction method based on
WT multi-level decomposition in [49]. The filtering was
carried out using Coif4 base with 9 levels of decompo-
sition (called PCG-Decompositor), and soft-thresholding
denoising technique (STDT) on 119 real fPCG records
from the SUFHSDB database. The efficacy of the method
was evaluated in terms of SNR, RMSE and the ability
of the method to estimate the value of fHR with respect
to the CTG reference. The authors state that there was
a significant increase in SNR after the application of the
PCG-Decompositor. In addition, when comparing with the
method based on STDT, the PCG-Decompositor shows
a lower dispersion (RMSE = 0.7 dB) than the STDT
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TABLE IV

COMPARISON OF THE AVAILABLE FPCG EXTRACTION METHODS

Authors, year, source

Filtration method

Data source

Results of experiments

Varady et al. (2001) [9]

WT + Adaptive
coefficient thresholding

Two electret
microphones

Spectral Subtraction

Panasonic microphone

fHS detection accuracy

Chen ef al. (2006) [42] + AM modulation omni-directional 75%
Song et al. (2006) [45] WT Acoustic sensor -
. PCG piezoelectric transducer
Jimenes and James (2008) [58] FastICA (TK701T, Nihon Kohden) -
Self-made electronic

stethoscope (piezoelectric i ; .

Mittra et al. (2009) [18] sensor)+ reference RMS-real RMS-pathological

STFT . h d simulated S1: 16.7 S1: 10.4

microphone and simulate: S 126 294

pathological data

‘Warbhe et al. (2010) [56] EMD-SVD-FEICA Microphone —
Kovacs et al. (2011) [47] AT-WT-MP Fetaphon-2000 ACC "fgszl;_l;‘;?m“ %)
) Self-made SE of S1 detection (%)
Balogh et al. (2011) [62] WVD electronic stethoscope 90
o Electret microphone ACC of S1 detection (%)
Vaisman et al. (2012) [10] AWT encapsulated in conical interface 94-98.5
Own simuated
. and real data .
Chourasia er al. (2012) [63] NME sensed by wircless SNR sim. (dB) SNR real (dB)
o 23.55 21.42
data acquisition system
. FIR filter + Piezopolymer Energy LF (mV*) VF energy (mV?)
Zahorian et al. (2012) [64] Autocorrelation pressure sensor 1281.36 2627.64
Cesarelli e al. (2013) [3] BPE-TEO Own simulated dataset ACCof 1 deection (%)
MSE
. WT: own wave-Soft-Rigrsure . 0.49
Chourasia et al. (2013) [46] WT: own wave-Soft-Minimax Own simulated dataset 0.55
WT: own wave-Soft-Sqtwolog 0.56
1 [/
Samieinasab ef al. (2015) [35] SCBSS SUFHSDB (50 recordings) ACC of Sglef(;gm‘m (%)
SNR (dB) MSE
LMS 1.36 1.79-107°
—6
Potdar et al. (2015) [61] NLMS Not specified 1.34 4.51-10
DLMS 151 1.81-107°
RLS 20.69 4.86-1077
QRD-RLS 0.0025 1.09 - 1072
Tang et al. (2016) [65] CFS SIMFPCGDB Aceuraey e (%)
. Own simulated Accuracy rate (%)
Koutsiana er al. (2017) [16] WT-FD dataset/SIMFPCGDB 39
SNR (dB) PPV (%)  SE (%) RMSE
Martinek ez al. (2017) [6] LMS Own simulated dataset 7.77 94.24 98.08 0.033
NLMS 7.88 97.15 98.41 0.030
SE of S1 detection (%) SE of detection S2 (%)
. 88 77
Strazza et al. (2018) [17] PCG-Delineator SIMFPCGDB PPV of ST defection (%) PPV of detection S2 (%)
91 99
SNR (dB) PRD (%)
Kahankova et al. (2018) [60] LMS Own simulated dataset 2.682 14.843
DLMS 2.586 15.247
fHR (bpm) SNR (dB)
ref. 140.2/140.5 ref. 0.7/15.6
Tomassini et al. (2019) [37] WT: Coif 4-Soft-Universal SIMFPCGDB / SUFHSDB 138.7/139.6 25.9/22.9
WT: Db 4-Soft-Universal 139.2/139.1 26.3/22.9
WT: Sym 8-Soft-Universal 138.6/139.4 25.9/22.9
fHR (bpm)(ref. 140.5) RMSE (dB)
Strazza et al. (2019) [49] STDT SUFHSDB 146.6 1.2
PCG-Decompositor 140.6 0.7
s Cardio-microphone Accuracy of fHR detection (%)
Dia et al. (2019) [38] NMF (MLT201, ADInstruments) 84-91
MSE
. WT: Sym 5-Hard-SURE 0.000227
Faradisa et al. (2020) [48] WT: Coif 3-Soft-SURE SUFHSDB 0.000204
WT: Coif 3-Hard-SURE 0.000150

Tomassini er al. (2020) [19]

AdvFPCG-Delineator
PCG-Delineator

SIMFPCGDB / SUFHSDB

fHR (bpm) (ref. 140-140/135-149)
139-140/138-145
140-141/135-145

Huimin ez al. (2020) [66] EMD-LWT-HT SUFHSDB ﬂg;—(lbg(;n)
ACC of SI detection (%)
. EMD . 46.55-100
Martinek ef al. (2020) [54] EEMD Own simulated dataset 89.02-100
AWT 97.37-100
Accuracy of S1 detection (%)
EMD-RE Microphone Behringer 74.13
Vican er al. (2021) [39] EMD-LR EoMsoon 68.45
EMD-Linear SVC 68.31
EMD-MLP 71.12
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(RMSE = 1.2 dB), which confirmed the effectiveness of
the new PCG-Decompositor method.

Tomassini et al. proposed the AdvFPCG-Delineator
in [19] and tested it on two publicly available databases
(37 records from SIMFPCGDB and 119 records from
SUFHSDB). The performance of the proposed method
was evaluated in terms of the accuracy in determining the
fHR value, which was calculated from the interval S1-S1
(or S2-S2) and compared with the CTG reference. The au-
thors also compared this new method with the previously
created PCG-Delieator introduced in [17], which differs
only in the absence of scalogram calculation. The authors
state that the application of AdvFPCG-Delineator enabled
the identification of S1 and S2 in the resulting fPCG
signal. Compared to the PCG-Delineator proposed earlier,
the accuracy of fHR determination was increased from
92.81099.9% for SIMFPCGDB data and from 83.5t0 99.4
% for data from the SUFHSDB database.

4) Empirical mode decomposition (EMD) -is a filtering tech-

nique suitable for non-stationary and nonlinear signals.
The input signal is decomposed into so-called intrinsic
mode functions (IMFs) representing a certain frequency
band [50]. The principle of the method is based on the
detection of the upper and lower envelope of the signal
by detecting local maxima and minima. Subsequently,
the mean of envelopes is calculated, which is further
subtracted from the input signal. As with the WT, its
optimal setting is crucial for this method. According to the
results achieved by several authors [51]-[53], this method
can very well suppress low-frequency interference.

e In [54], Martinek et al. proposed the study comparing

different extraction methods: the EMD, ensemble EMD
(EEMD), and adaptive wavelet transform (AWT) methods
for fPCG signal extraction. The methods were tested on
a synthetic dataset created for the purpose of this study
containing one ideal reference (true fPCG signal) and 12
composed aPCG signals corresponding to 12 different
virtual sensing probes on maternal abdomen [55]. The
extraction was evaluated by determining the accuracy of
S1 sound detection and fHR determination. The accuracy
of the tested methods was determined using the SNR,
ACC, SE, and PPV parameters. The authors state that
the best results were achieved when applying the AWT
method, which achieved average values of parameters
ACC =99.34%, SE = 99.49%, PPV = 99.85% and F1
= 99.67%.

Warbhe et al. introduced a single-channel method com-
bining EMD, singular value decomposition (SVD), and
efficient version of ICA (EFICA) [56]. The combination
of all methods was tested on real records and led to
efficient extraction of fPCG from noisy signals. Although
the authors did not publish statistical results, they stated
that they could clearly identify the S1 and S2.

5) Blind source separation methods - blind source separation
(BSS) enables to separate linearly independent source
signals from a set of linear and instantaneous mixed
signals based on the statistical analysis of the signal. The

benefit is that the system needs no information about the
source signals or the mixing process [57]. Among the
most well-known and widely used BSS methods are, for
example Principal component analysis (PCA) or Indepen-
dent component analysis (ICA):

e Jimenez and James [58] proposed FastICA algorithm

for extraction of fHS from single channel aPCG called
SCICA. Firstly, an appropriate matrix of delays was con-
structed, then multiple independent components were cal-
culated, and, finally, the components were projected back
onto the measurement space and grouped using K-means
method (i.e. the components associated to fHS were cho-
sen). The experiments on three single-channel aPCG from
pregnant women between the 36-40th week of pregnancy
were used to evaluate the methods. The results show that
this method clearly identified fHS from input signals. The
paper introduces a thorough explanation and discussion of
this extraction method. However, an overall evaluation of
the achieved results is missing.

Soysa et al. [40] used the Wiener filter for preprocessing
of fPCG signal, PCA for extracting an accurate fHS and a
subspace separation technique for fHS abnormality detec-
tion. In preprocessing, they used a subspace-Wiener filter
which proved to be useful to achieve better results - PCA
then performs better in fHS analysis and reveals more in-
formation. By selecting appropriate subspace eigenvector
pairs, the subspace tool was able to detect the abnormali-
ties of fHS. This approach can provide a lot of information
hidden in fPCG signal.

6) Adaptive filters, which are self-learning filters changing

their parameters depending on the change in the parame-
ters of the input signal, are also very popular. These types
of filters allow filtering interference from the useful signal
if it changes its parameters over time or its parameters are
not known in advance [59].

® The least mean square (LMS) and delayed least mean

square (DLMS) filters for fPCG extraction were pre-
sented in [60]. The author tested the extraction systems
on synthetic dataset to optimize the filter settings using
the objective parameters (filter length M and step size p).
Their results show that the tested LMS-based algorithms
work efficiently when set in the range of M <70, 130>
and p¢ = 0.015-0.1, while for ¢+ > 0.5 the system became
unstable. However, the authors also state that these find-
ings need to be confirmed on the real fPCG signals.

The LMS and normalized LMS (NLMS) algorithms were
also tested in study [6]. The testing was performed on
synthetic recordings and evaluated using the signal qual-
ity indices (SNR and RMSE) and objective metrics (SE
and PPV) to assess its ability to determine fHR. The
authors concluded that NLMS algorithm outperformed the
latter algorithm in determining the fHR, while the LMS
algorithm achieved better results according to the SNR
and RMSE.

Algorithms based on LMS and RLS based methods
were tested in [61]. The quality of fPCG extraction was
evaluated using the SNR and MSE metrics. The authors
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point out the advantages of the LMS algorithm, such as its
simplicity in a stationary environment and its robustness.
On the other hand, the RLS algorithm is more suitable
for non-stationary environments with a high degree of
convergence, but at the cost of higher complexity. The
authors did not specify the dataset used to conduct the
experiments.

7) Wigner ville distribution (WVD) - is a time-frequency

transformation tool which provides good localizations for
all the times and frequencies simultaneously. This method
loses phase information, so WVD is not commonly used
for signal de-noising. In fPCG analysis, WVD is set
for characterizing fHS by their instantaneous frequen-
cies [62].

Balogh et al., 2011 [62] used WVD for identification of
murmur and for investigation of the splitting interval of S2
sound. They concluded that WVD is reliable even in case
of noisy records and that this method can identify murmurs
or extract discriminative features with high precision.

8) Non-negative matrix factorization (NMF) - this method

utilizes the non-negative matrix factorization algorithm
and serves for removal of unwanted noise from the pro-
cessed signal. It is not an effective method for signal
processing but can be used as a classifier for de-noised
signals [63].

® Chourasia et al. [63] used NMF for fPCG de-noising. They

tested the effectiveness of this method on simulated and
real-time fPCG signals and concluded that this method
improves SNR in the range of 12 to 30 dB, so this method
is useful for assessment of fetal well-being.

¢ In [38], N. Dia et al. proposed a new method based on

NME. To verify the proposed algorithm, the authors used
their own records, which were obtained from four pregnant
women between the 38th and 39th week of pregnancy.
Signals were recorded using a cardiomicrophone located
on the mother’s abdomen. In two subjects, the CTG signal
was recorded simultaneously with the fPCG signals so it
could be used as a reference. The fPCG signals were sam-
pled at 1000 Hz and preprocessed with band-pass filter in
the range of 20-200 Hz. The performance of the proposed
system was verified by the accuracy of determining the
fHR value with respect to the CTG reference only for the
first 2 records.

9) Combination of different techniques - each method is

associated with certain advantages and limitations. There-
fore, many authors proposed systems that consisted of
more than one signal processing methods to increase the
quality of the fPCG extraction:

e Zahorian et al. [64] developed a dual transmission model

of fHS. They applied autocorrelation technique for the
determination of fHR from fPCG signal. They concluded
that the properties of the resulting signal depend on the
fetal position. The experiment on 12 patients showed that
this model is suitable for fHR determination.

In [3], the authors focused on the development of an
fPCG signal generator, which will allow simulating
various physiological and pathological conditions of the

fetus, but also testing the algorithm of fHR extraction
from fPCG. The developed extraction algorithm is based
on a combination of band-pass filter (34-54 Hz), Teager
Energy Operator (TEO) and a non-linear time operator
for the detection of S1. The authors state that the accuracy
of the proposed extraction method according to the ACC
parameter is between 68—99%.

e Tang et al. [65] proposed a method of cyclic frequency
spectrum (CFES) for fHR monitoring using the frequency
of repetition of HS, which can be extracted from peaks
in the cyclic frequency spectrum without detection of
sound pulses and noise reduction. Simulated signals from
the SIMFPCGDB database were used to test CFS perfor-
mance. The evaluation of the performance of the proposed
method was performed on the basis of the statistical pa-
rameter ACC.

e Huimin et al. [66] introduced a combination of EMD
and lifting wavelet transform (LWT) methods to suppress
the fPCG noise. Subsequently, the spectrum of the signal
envelope was obtained by Hilbert transform (HT), and
the resulting fHR values were obtained by the cepstrum
method. The method was tested on 20 real records obtained
from women between 30 and 40 weeks of pregnancy. The
authors did not publish statistical results, only stated that
the determined value of fHR was accurate.

e Samieinasab and Sameni [35] proposed a single-channel
fPCG extraction method based on single channel blind
source separation (SCBSS) combining EMD, NMF, and
clustering algorithms. The method was tested on 50 real
records and the concurrently measured CTG trace was
used as a reference. The accuracy of the algorithm in de-
termining fHR was 83-100% with respect to the reference.

® A combination of EMD and machine learning techniques
has been reported by Vican et al. in [39]. The algorithms
were tested on fPCG data recorded on 7 subjects in
third trimester with a microphone and evaluated using
simultaneously recorded fHR trace by means of portable
Doppler device. The EMD method was used to extract
signal features (statistical and spectral), which were used
together with conventional audio features for subsequent
estimation and classification and S1. Random forest (RF),
logistic regression (LR), linear support vector classifier
(SVC) and multilayer perceptron (MLP) were used for
classification. The most effective was the combination of
EMD and RF, which achieved an accuracy of 74.13% in
the S1 detection.

Objective comparison of the results of these studies is rel-
atively difficult, since there are currently not enough suitable
databases with fPCG records of a good quality with proper
annotations of fHSs. Therefore, many authors use synthetic
data for their experiments, however, the results acquired in
synthetic data significantly differ from those obtained in real data
experiments, see example of the analysis in Fig. 5. Another prob-
lem when comparing these results is that the authors use different
evaluation parameters. Some authors do not even evaluate their
results by mean of objective statistical parameters and provide
only graphical outputs of extracted fPCG signals in the results.
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Time (s) Time (s)

(a) Simulated signals. (b) Real signals.

Fig. 5. Example of the filtration carried out using the same systems
(EMD, EEMD, and WT).

coif2 coif3 coifd coif5
db2 db3 db4 dbs S1 S1

Fig. 6. Example of different mother wavelets (Coiflets, Daubechiens,
Symlets) in comparison with the fPCG signal shape.

According to the literature review, the greatest development
in the field of fPCG signal extraction was achieved by WT-
based methods. The authors of the above studies agree that if this
method is optimally set, it can effectively filter out the disturbed
PCG signal, which can then be used to determine the variability
of the fetal heart rate. In most cases [17], [37], [49], [67], the
studies conclude that the most appropriate is the use of a4th order
Cotflet, since it is the closest one to the morphology of the desired
signal, see Fig. 6. However, the methods of individual authors
differ in the levels of decomposition, the type of thresholding
and the thresholding algorithm used.

When evaluating the results obtained with synthetic and real
data, following can be stated:

e All the methods tested on the synthetic data reduce the
noise contained in the signal to some extent. The filtered
signal can then be used to determine the fHR.

® The quality of the extracted signal from real data depends
on their quality, the location of the measuring probes, the
gestation age and position of the fetus and the effects
of the artifacts. If the input signal contains a significant
amount of noise, it is almost not possible to eliminate it
completely. The extraction of the fPCG signal is thus more
difficult, and this may cause incorrect determination of the
instantaneous fHR and the course of the fHR over time.

If we compare the results of experiments reported by
Tomassini in [19], [37] and by Strazza in [49], where the
authors used the same evaluation parameters and the same
dataset from the SUFHSDB database, we can state that the
PCG-Decompositor method described in [49] achieved the best
results compared to the reference. However, the other tested
methods of these authors did not perform significantly worse
and deviated a maximum of £3 bpm from the reference value.

Time (s)

(a) Input signal with the envelope detected using Hilbert transform.

0 1 2 3 4 5
Time (s)

(b) Smoothed envelope using FIR filter (LPF with cut-off fre-
quency 40 Hz) together with a set threshold for detection of S1
and S2.

S'SZ

S
S S S S S S, S, S S 1
I S, 2 IS2 'S, 'S, S, S, S S, lsz S,

Time (s)
(c) Input signal with the fHSs above threshold detected.

Fig. 7. Steps of fHS detection using the detector based on Hilbert
transform.

C. Heart Sounds Detection

Once the fPCG signal is extracted, fHS detection can be
performed to obtain information about fHR and other important
clinical parameters. Accurate detection of fHS is a critical factor
indetermining fHR. Contrary to R-peak detection in ECG signal,
which is more prominent and easier to distinguish by a detector,
HS detection is more challenging even in the filtered data [68].
The detectors need to be tailor-made for the given purpose —
some authors [47], [55] deal only with the detection of the S1,
while others deal with the detection of both S1 and S2,e.g. [17],
[19], [69]-[71]. Both approaches are sufficient to determine
fHR.

Among the simplest detection algorithms are based on creat-
ing an envelope and searching the local maxima in the signal.
As an illustration, we provide the outputs of a detector based on
the Hilbert transform (see Fig. 7), consisting of several steps:

® Envelope creation - the envelope of the input fPCG signal
is obtained using the Hilbert transform. The estimated
envelope is then smoothed using a low-pass FIR filter (see
Fig. 7(a));

® Thresholding - a threshold calculated as 20% of the am-
plitude of the 5th highest peak in the signal envelope is
determined (see Fig. 7(b)); local maxima (peaks) exceed-
ing this threshold are determined.

® Classification - decision algorithm is introduced to remove
redundant peaks based on a minimum distance of 100 ms
between the detected peaks. Finally, the classification of
S1 and S2 based on the physiological condition that the
systolic interval between S1 and S2 is shorter than the
diastolic interval between S2 and S1 (see Fig. 7(c)).

Currently, a relatively large number of studies are focused on
accurate detection of S1 and S2 in the adults’ PCG signal. An
extensive summary of all possible HS detection techniques can
be found e.g. in [72], [73]. Fortunately, most of these advanced
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TABLE V
SUMMARY OF FPCG FEATURE EXTRACTION AND CLASSIFICATION METHODS

Authors, year, source Method Purpose Data type Data source
£ ot s Correlation Cardiac murmurs . Telemedicine fetal monitor in
Kovics et al. (2009) [80] method detection Real comparison with ECHO and CTG
Kovidcs et al. (2010) [47] Combmamn of multistage Cardiac
autocorrelation, WT, concordance and
L murmurs Real Fetaphon-2000
an individual model-based .
. . detection
correlation algorithm
A. T. Balogh (2012) [25] Analysis of Detection and classification
systolic of card}ac murmurs Real Fetaphon-2000
envelope for diagnosis of
properties congenital heart diseases
Kovécs et al. (2020) [82] Segmented Structures with Fetal Breathing Real Acoustic

Frequency Splitting

Movement Detection

sensor

methods can also be used to detect fHS in the extracted fPCG
signal. These include for example methods based on energy
detection and analysis [69]-[71], [74], [75], duration-dependent
hidden Markov model (DHMM) [76], Hilbert transform [77],
Gaussian regression [78], or EEMD algorithm in combination
with the kurtosis features [79].

D. Feature Extraction and Classification Methods

As mentioned above, the fPCG method as an additional mon-
itoring technique is of great importance in the early diagnosis of
some fetal heart diseases that are not normally detected during
pregnancy. These are mainly heart murmurs. However, PCG
also allows the indication of other abnormalities of fetal heart
function, e.g. heart rhythm irregularities such as extrasystole,
arrhythmias, bradycardia and tachycardia. In the case of fPCG,
one is also able to detect fetal breathing movements by select-
ing 0.7-1.2 Hz spectral components of the rhythm repetition
rate [80], [81]. Such monitoring is important since the absence of
fetal breathing movements is associated with intrauterine growth
restriction [82].

Several types of methods for the detection and classification
of cardiac murmurs have been investigated in PCG monitoring
in adults. The aim of the studies was to verify and subse-
quently design a system for automatic classification of cardiac
signals from the PCG signal. For example, methods based on
the principle of detection based on fractal features [83]—[85],
or methods based on the principle of neural networks were
tested, see [86], [87]. In [29], the authors test the detection of
cardiac murmurs caused by mitral regurgitation, mitral stenosis
or aortic regurgitation from the PCG signal using the adaptive-
neuro fuzzy inference system (ANFIS) and Hidden Markov
Model (HMM) based classifiers. In [88], DWT and Shannon
entropy were used for segmentation as a property in a classifier
based on the ANFIS algorithm. Furthermore, detection based on
dynamic parameters of various time-frequency representations
was introduced in [89], [90]. In [91], screening of murmurs in
newborns using the WT and the K-means clustering method
is proposed. There are a number of other publications on the
classification of murmurs, see [92]-[95]. All these studies deal
with PCG recordings of children and adults. These techniques
can only be partially used to extract fHS, as there are large
differences between fetal and postnatal PCG signals, which is
a limitation. The main differences include, in particular, much

narrower bandwidth of the fetal PCG signal due to attenuation
caused by maternal tissues and the lower SNR.

Under normal circumstances, we distinguish only two HS in
the fPCG signal due to the action of the valves (S1 and S2).
In the case of certain morphological abnormalities, murmurs
appear as a result of turbulent blood flow. The detection of a
murmur is very difficult because noise from multiple sources
damages the sound signal of the fetus’ heart at low intensity.
The automated murmur detection method relies on the fact that
if a murmur is present, it occurs in almost all cardiac cycles,
usually at a similar point in time, duration, and envelope shape,
while noise does not correlate with heart rate. Table V provides
an overview of following publications dealing with the issue
of detection and evaluation of cardiac murmurs from the fPCG
signal:

® In[80] (2009), Kovics ef al. dealed with perinatal screen-
ing of heart murmur using fPCG. Signals were obtained
from a total of 820 pregnant women in the 28th - 40th
week of pregnancy. One group of data was measured using
a telemedicine fetal monitor at home and the other one
after a planned examination by fetal echocardiography.
In both cases, a 20-minute CTG recording was also per-
formed. The measured signals were then analyzed by a
signal processing program based on multiple cycles of the
recorded signal in order to find the signal shapes that are
systematically repeated at the same time intervals (e.g.
between wave S1 and S2). The search is based on the
correlation method. During the screening, 43 occurrences
of murmurs were detected out of all 820 cases. Their
causes were subsequently identified using ECHO and
subsequent infant examination. The results showed that
a large proportion of the murmurs found were innocent
murmurs (28 of 43 cases), but there were also murmurs
caused by ventricular septal defect, murmurs due to atrial
septal defect, or murmurs due to aortic or mitral stenosis.
The authors state that fPCG is a suitable tool for the
detection of heart murmurs and severe heart defects in
perinatal age.

e Kovics et al. [47] (2010) presented a heuristic method for
evaluating fHS simultaneously with the combination of
the multistage autocorrelation method, WT, concordance
and an individual model-based correlation algorithm. In
this study, more than 3,000 acoustic signals were recorded
with a Fetaphon-2000 phonocardiographic CTG device.
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The authors used 25 random records and applied the above
methods and their combinations. The individual methods
show quality results, but their combination provides the
highest hit rate at the expense of higher computational
requirements. The authors conclude that this combination
can achieve reliable HR and murmur detection even in the
case of noisy recordings.

e A. T. Balogh (2012) in [25] presents the principles of
detection of heart murmurs in the fetuses and preterm
infants with ductus arteriosus. The fetal audio signal was
recorded using the telemetry fetal monitoring system using
Fetaphon-2000 device to collect aPCG signals introduced
in [47]. The measurement was also supplemented by the
simultaneously recorded CTG trace. A heuristic method
using the principles of correlation or WT was developed
for fPCG extraction. Fractal characters are used to classify
murmurs. The proposed method therefore uses the cy-
clostationarity of the signal. The algorithm calculates the
envelope of the systolic segment based on local extremes.
Analysis of certain envelope properties (such as shape,
maximum and average value, maximum and average rate
of change) allows more accurate murmur detection. The
author further states that despite the verification of this
method as a possible detector of heart murmurs, further
research is needed to quantitatively improve the sensitivity
and specificity of the proposed method.

¢ Finally, in[82], Kovacs et al. proposed an algoritm for fetal
breathing movement detection. To analyze the individual
episodes, the authors split the frequency band into single
test frequencies. To differentiate the desired features from
the disturbing signals (e.g. hiccups, body rotation and
limb movements), the starting points of the fetal breathing
movements are characterized by an approximation pro-
cess.

The fPCG feature extraction and classification is an important
topic because it could open up new possibilities for prenatal
coronary heart disease screening for comprehensive fetal exam-
inations, especially in the low-risk population. In addition, the
equipment needed to record fPCG is inexpensive and therefore
readily available. Although methods of detecting heart disease
can be applied in the second half of the second trimester at the
earliest, early detection of possible cardiac pathologies could
contribute to a well-prepared delivery and early postnatal treat-
ment.

[V. DISCUSSION

The aim of this section is to summarize and discuss further
challenges and future directions in the field of fetal phonocar-
diography. The main challenges can be summarized as follows:

e Optimization of the methods - there are several remaining
signal processing problems associated with high amount
of undesired signals with overlapping frequency bands,
and low magnitude of the fetal signal compared to the sur-
rounding noise. Although many authors achieved promis-
ing results, there are still considerable number of lim-
itations of each method. This can be overcome when

the methods are either combined or optimized for given
purpose yet taking into consideration variable nature of
the noise associated with fPCG signal. This problem is
further discussed in Section IV-A.

® Sensor placement - varying sensor placement on mother’s
abdomen due to changes in fetal position. The incorrect
probe placement is also closely correlated with attenuation
of detected sounds as it passes through the environment
(fetal fluid, uterine contractions, fetal limbs, etc.). This
challenge is further discussed in Section IV-B.

® Lack of databases - the lack of quality data to train and test
the methods is one of the main reasons for slow progress
in this field, as discussed in Section II-B. It is the main
drawback for the development of the methods based on
artificial intelligence or machine learning. These methods
require high amount of input data to train a successful
model and also to test them. These methods have the
potential to improve the accuracy of the classification of
the fetal pathological states, which is a great challenge in
the today’s clinical practice, see Section III-D.

A. Algorithm Optimization

Algorithm optimization is a process in which parameters
affecting the quality of filtration are set so that the obtained signal
extraction results are as accurate as possible. It should be noted
that the optimal setting is different for each signal and depends
on many criteria such as: the type of method used, the sampling
frequency or the location of the sensors for sensing the signal.
Optimal parameters can be found, for example, by heuristic
methods, manual search, or grid search [33]. So far, only a small
number of publications dealing with the issue of optimization
of filtration parameters during fPCG signal extraction have been
published. A more detailed description of selected publications
dealing with the issue is below.

® In [60], a method for optimizing LMS-based algorithms
(LMS and DLMS) for fPCG extraction is presented. The
experiments were performed on synthetic data generated
by a generator introduced in [96]. The SNR (%) and PRD
(%) parameters were used to evaluate the filtration quality.
The optimal choice of the size of the filter parameters (M
and p) for both tested algorithms was performed by means
of anetwork search. First, the value of the parameter ;1 was
optimized. During this step, the value of the parameter M
was set to a constant value M = 100, while the value of the
parameter p ranged from 0.0001 to 1. Subsequently, the
values of SNR and PRD were calculated. When the SNR
value was the highest, the optimal setting of the parameter
1 was obtained. The optimization of the parameter M
proceeded in the same way. The optimal value of the
parameter M was determined for 4 and the variable from
1 to 500. After finding the optimal solution, the extraction
of the fPCG signal was performed. The results showed
that both optimized algorithms were able to effectively
suppress the parent component. The authors state that the
subject of further research will be the verification of the
optimized system on real data.
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¢ In [67], a study dealing with the optimal setting of the
filter for fPCG signal extraction using the WT is presented.
The optimal choice of parameters depends on several
factors, namely the type of wavelet, the level of decompo-
sition, the threshold method and the type of thresholding.
Only Haar, Daubechies, Symlets and Coiflets orthogonal
wavelets were used for testing since they allow the use of
a fast algorithm. Decomposition levels from 1 to 10 and 4
threshold rules were tested for each wavelet. Although
there was no evidence that a single wavelet was best
suited to suppress the parent component, there were some
wavelets that were slightly better than others. Experimen-
tal results showed that Coif4, Coif5, Dbll1, Dbi4, Db20,
Sym9, Symli1, and SymI4 showed better results. The use
of five levels of decomposition proved to be adequate. Soft
thresholds definitely outperformed hard ones, and of the
4 threshold selection rules, minimax and SURE achieved
the best results. In the future, the authors want to test the
conformity monitoring method as a possible method of
fPCG extraction.

Currently, optimizing filter parameter settings is not a fully
explored topic. Many publications on the extraction of fPCG
or fHS signals from aPCG signals sensed from the surface of
the mother’s abdomen use various filtering methods. However,
most authors do not deal with the issue of optimization or do not
mention it. For most publications, testing is performed randomly,
using a number of methods and alternatives, from which the one
that achieves the best results is subsequently selected (see [37],
[48]).

However, the optimization of individual parameters could also
take place in a similar way as we suggest in [97] during fECG
signal extraction, when the optimal optimization is searched
using a 3D optimization graph so that variable values are set
for individual parameters in a certain range after e.g. 0.1 steps.
Based on the F1 parameter, the best setting for the given record
was then searched.

As already mentioned, the research in the field of optimization
of fPCG signal extraction algorithms has not been sufficiently
undertaken. However, available studies suggest that it could
significantly contribute to increasing the accuracy of fPCG
signal extraction and thus the determination of fHR, which is
an essential indicator in clinical practice. Therefore, we see the
potential to test the optimization of individual filtration methods
that are used to extract fPCG from aPCG.

B. Sensor Placement

As mentioned above, the location of the aPCG signal from
the surface of the mother’s abdomen varies during pregnancy
depending on the position of the fetus. The sensor deployment
will to some extent also affect the quality of the extraction
of fPCG and fHR. The sensor placement has not yet been
standardized. In general, it is not possible to precisely determine
the optimal position of the sensor, as it depends on the variable
position of the fetus. As a result, the sensor is usually located
based on the experience of a physician. Generally, fPCG signal
of the best quality can be detected where the fetal back is in direct

(b) (©

Fig. 8. Optimal placement of the sensor according to the fetal position.
(a) Example of the vertex position. (b) Example of the Breech position.
(c) Deployment according to stage of pregnancy: Early stage (12-24
weeks, position 1, 2, and 3), Middle stage (24-32 weeks, position 1, 3,
4, 5), Late stage (32—40 weeks, positions 1, 3, 6, 7).

contact with the mother’s abdomen [98]. Conversely, when the
fetal signals are recorded from the locations on the maternal
abdomen that are further from the fetal heart, their intensity is
much lower and quality worse. Although this solution allows us
to obtain relatively good signals, it means having different sensor
positions for different women at various stages of pregnancy.
However, there are some guidelines available for the physicians,
as illustrated in Fig. 8.

One of the possible solutions is creating a universal device
using multiple sensors for fPCG monitoring, from which only
the best ones are selected. We now provide an overview of studies
dealing with the position of sensors when capturing their own
data.

e J. Zuckerwar et al. (1993) [99] gradually proposed three
options for the placement of piezopolymer pressure sen-
sors for monitoring fHS. In the first version, the authors
used only one sensor located in the lower abdomen of
the mother. The second version already contained three
sensors placed linearly next to each other. The third version
contained a seven-member array of sensors.

® M. Samenisab et al. (2015) [35] sensed aPCG signals using
only one sensor located on the underside of the maternal
abdomen. Specifically, it was an electronic stethoscope
JABES. The position of the sensor was variable depending
on the current position of the fetus in the uterus. The data
measured in this way were subsequently published for
the needs of other scientific teams so that they could test
their methods and extraction systems on them, e.g. for the
determination of fHR. Today, these signals are contained
in the SUFHSDB database.

® The problem with the location of the sensors was solved by
A Khandoker ez al. (2018) [100] by creating a four-channel
fPCG monitor using 4 audio transducers placed on the
mother’s abdomen in a cross. Thus, this system provides
at least one quality aPCG record without affecting the
position of the fetus in the uterus. The functionality of
the system was tested on 15 pregnant women with a ges-
tational age of 33—40 weeks. Cardiac activity recordings
with fPCG and fECG were compared and very promising
results were obtained.
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® Y. Yaoetal. (2020) [101] presented the PARIS monitoring
system for the continuous sensing of fHS, which are fur-
ther converted to fHR. In this case, fHS are sensed by three
acoustic sensors located on the mother’s abdomen in the
shape of a triangle. The authors state that the application
of three sensors is quite sufficient to obtain a quality fPCG
signal. A convolutional neural network (CNN) is then used
to locate the signal source, which determines in which of
the nine regions the fetal heart is located. The measuring
system was subsequently tested on 16 pregnant women
aged 22 to 44 years. The results of the experiments show
that PARIS makes it possible to measure the fHR with an
average error of 4.3 beats per minute.

Limited number of studies have been focused on the issue
of optimizing the location of sensors for sensing high-quality
fPCG signals. From Table IV summarizing the overview of
fPCG extraction methods and their results, it can be observed
that a relatively large group of authors tested their proposed
methods on their own real data. However, most of them do not
indicate how the signal sensors were arranged. That is why we
certainly see the potential for further research here.

V. FUTURE DIRECTIONS

Several studies have already shown that non-invasive fPCG
or fECG are a very effective alternatives to the Doppler-based
CTG ([35], [102]-[105]). These methods provide additional
information to fHR, which cannot be obtained by conventional
CTG monitoring, such as detection of abnormalities in fetal heart
function (murmurs, split effect, extrasystoles, arrhythmias), pre-
diction of congenital heart and developmental defects, or de-
termination of fetal position in the uterus. However, both fetal
ECG and PCG have a number of disadvantages. For example,
NI-fECG signals are difficult to detect between the 28th and
32nd week of pregnancy, when vernix caseosa forms around
the fetus [33]. The quality of the fPCG signal is affected by
surrounding acoustic sounds and the location of the fetus relative
to the sensor. The results are also significantly affected by BMI,
because the sensitivity of the sensors is proportional to the
thickness of the patient’s abdominal wall [33]. These and other
problems of non-invasive fetal monitoring could be solved by a
combining of individual monitoring techniques. An interesting
idea is to combine the fECG and fPCG measurement since both
waveforms manifest the same phases of the cardiac cycle. The
combination of fPCG-fECG methods would be extremely also
advantageous for its feasibility and low cost. This could have
huge benefits not only in home care but also in future clinical
practice. Several authors have already addressed this issue:

e In [106], Ruffo et al. considered the idea of using a
combined fECG-fPCG system for fetal monitoring. They
provided several examples of extracted fECG and fPCG
signals obtained by combined monitoring. The authors
state that by monitoring the time interval between e.g. the
P wave in fECG and the S1 wave in fPCG, it is possible
to obtain information on fetal circulating impedance. By
monitoring the variable time period, it would then be
possible to identify the endangered fetus. As this is only

Fig. 9. Example of a commercially available device based on concur-
rent PCG and ECG monitoring: Invu sensor band by Nuvo [108].

a proposal for the possibility of using such a combined
method, there are no more detailed descriptions of the
experiments performed (e.g. description of the data on
which the system was verified, or the location of sensors
or filtering methods for signal conditioning).

e In [102], Gobillot et al. introduced a preliminary study
on non-invasive fetal monitoring using PCG and ECG.
The signals were sensed by electrophysiological sensors
(ECG) and microphone acoustic sensors (PCG) simulta-
neously with CTG recording. The aim of this study was to
increase the reliability of fHR monitoring and to verify the
use of this non-invasive multimodal monitoring technique
in clinical practice. The system was tested on 7 pregnant
women between the 24th and 39th week of pregnancy
with normal BMI. These results show the feasibility of
this approach, but further development is needed before it
can be used in everyday obstetric practice. The future goal
of the authors is to develop a reliable robust device that
connects ECG and PCG in order to effectively monitor
fHR.

e This approachis used in the commercially available device
called Invu (NUVO Inc.), the first remote monitoring
system approved by the the United States’ Food and Drug
Administration. This system contains 4 acoustic and 8
electrical sensors located in a wearable belt (see Fig. 9.
In[107], Mhajna et al. tested this system on 147 volunteers
with gestational age from 35 to 40 weeks. The aim of the
study was to compare the fHR and mHR data obtained by
Invu with the CTG traces measured simultaneously. The
raw data from each Invu wearable belt sensor is sent to the
mobile device via Bluetooth for analysis. It consists of data
validation, signal pre-processing and interference filtering,
HR detection from fECG and fPCG independently of
each other, and fusion of acquired heartbeats from fECG
and fPCG signals to calculate fHR and mHR curves.
Statistical parameters of correlation mean difference and
Bland-Altman analysis were used to compare the output
from the Invu and CTG systems. The results showed that
there was a significant correlation between fHR from Invu
and CTG (r = 0.92). Estimation of mHR using Invu also
performed well in comparison with CTG, where the degree
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of correlation between the two signals was found to be
r = 0.97. The authors state that although the fHR and
mHR outputs were sensed by the Invu system using differ-
ent methods, the results were very similar to the outputs
obtained with current standard monitoring techniques.

These studies show that the system using a combination of
fPCG and fECG is functional and is a promising alternative
to the CTG method. This combination not only provides even
more accurate information on the current state of the fetus (than
when this information is captured by different methods inde-
pendently), but also increases the sensitivity and specificity of
the monitoring technique, especially in cases where fECG-only
fHR monitoring is not completely possibly due to the formation
of sebum on the surface of the fetal body.

Furthermore, there is the possibility of continuous monitor-
ing of fHR (e.g. 24-hour recording) for the detection of fetal
arrhythmias or recording of other heart disorders even in the
early period of pregnancy. The music of the distant future is no
longer the development of a reliable device that will serve for
the so-called eHealth, or in the home environment as a simple
home monitor fHR (as an Invu device). Combinations of other
methods, such as fPCG with fMCG, do not appear to be tested or
have not been published. However, it is possible that the use of
fMCG for these purposes is not entirely attractive due to the size
of the equipment, the price or the complexity of the equipment
required [106].

VI. CONCLUSION

Fetal phonocardiography is a promising method for fetal
monitoring which is both non-invasive and passive. This makes it
suitable for continuous monitoring of heart rate variability com-
pared to the techniques currently used in the clinical practice.
Moreover, it provides information about mechanical activity of
the fetal heart, that is not contained in the other rising method,
fetal electrocardiography. The greatest issue associated with this
method is the interference from various sources, overlapping the
desired signal in the time and frequency domain. As summarized
herein, there have been many attempts to solve this issue and
great amount of advanced signal processing methods introduced
in the past decade. The most successful and prevalent method for
fPCG signal extraction and processing is the wavelet transform,
but other methods also achieved promising results. So far, very
few methods based on artificial intelligence or machine learning
have been tested in the field of fPCG. This is caused mainly due
to lack of data that these methods require. Nevertheless, these
methods could achieve good results especially in classification
tasks. The future research should focus on combining individual
methods of fetal monitoring (such as fetal electrocardiography)
and signal processing and thus minimizing their limitations
and enabling accurate automatic detection of abnormalities and
classification of fetal health in clinical practice but also in home
monitoring.

APPENDIX A
LIST OF ABBREVIATIONS
ACC accuracy.

ANFIS
aPCG
AT
AWT
BMI
BSS
CFS
CNN
CTG
dB
DHMM
DLMS
EEMD
EFICA

EMD
F1

FD
fECG
fHR
fHS
M
fMCG
FN

FP
fPCG
FPCGDB
fR

FT
HMM
HS
HT
ICA
IMF
IUGR
LMS
LR
LWT
mHR
mHS
MLP
mM
MP
mPCG
mR
MSE
NLMS
NMF
PCA
PPV
PRD
RF
RMSE
S1

S2
SBN

adaptive-neuro fuzzy inference system.
abdominal phonocardiography.
autocorrelation.

adaptive wavelet transform.

body mass index.

blind source separation.

cyclic frequency spectrum.
convolutional neural network.
cardiotocography.

decibel.

duration-dependent hidden Markov model.
delayed least mean square.

ensemble empirical mode decomposition.
efficient version of independent component anal-
ysis.

empirical mode decomposition.
harmonic mean of sensitivity and positive predic-
tive value.

fractal dimension.

fetal electrocardiography.

fetal heart rate.

fetal heart sounds.

fetal motion.

fetal magnetocardiography.

false negative.

false positive.

fetal phonocardiography.

fetal phonocardiograms database.

fetal respiration.

Fourier transform.

hidden Markov model.

heart sounds.

Hilbert transform.

independent component analysis.
intrinsic mode function.

intrauterine growth retardation.

least mean square.

logistic regression.

lifting wavelet transform.

maternal heart rate.

maternal heart sounds.

multilayer perceptron.

maternal motion.

matching pursuit.

maternal phonocardiography.

maternal respiration.

mean square error.

normalized least mean square.
non-negative matrix factorization.
principal component analysis.

positive predictive value.

percentage root-mean-square difference.
random forest.

root mean square error.

first heart sound.

second heart sound.

sensor and background noise.
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SCBSS single channel blind source separation.

SE sensitivity.

SFPDB simulated fetal phonocardiograms database.
SNR signal-to-noise ratio.

STDT soft-thresholding denoising technique.
SUFHSDB Shiraz university fetal heart sounds database.
SvC support vector classifier.

SVD singular value decomposition.

TEO teager energy operator.

TP true positive.

ucC uterine contraction.

WT wavelet transform.

WVD Wigner ville distribution.
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