
A Requirement-Driven Mechanism for the
Management of Distributed Infrastructures

Souheil Khaddaj and Bippin Makoond

Abstract—The emergence of new service oriented distributed models has raised a number of challenges particularly in relation to the

management of distributed infrastructures in dynamic environments, such as the Cloud with changing availability of resources, services

and quality of services. In such an environment it is very important that users and applications have some level of assurance that their

requirements can be satisfied while trying to optimize the usage of the available resources. This paper presents a new requirement-

driven decision making mechanism that is based on a quality assured load balancer for distributed computing systems. We evaluate

the approach and demonstrate how it can adapt to user requirements and to the capacity of available resources.

Index Terms—Analytical hierarchy process, distributed systems, cloud computing, load balancers, quality of service (QoS)

Ç

1 INTRODUCTION

THE advancement of computing and information technol-
ogy has been driven not only by the continuous improve-

ment in hardware infrastructures but also by the development
of new operating environments. Indeed over a relatively short
period of time, there has been a shift from monolithic infra-
structures and applications, to distributed services mainly in
the form of CloudComputing [1], [2], [3] and Service Oriented
Architecture (SOA) [4], [5]. However, the shift toward a real
utility computing model requires meeting not only users’
functional requirements but also their non-functional require-
ments in the form of Quality of Service (QoS), which is becom-
ing essential with themove toward service orientation.

The universal acceptance of the service oriented approach
and of the continuous decentralisation and distribution of soft-
ware, hardware, and human resources depends on a number
of fundamental factors including the ability to provide desired
QoS on resources assembled dynamically from enterprises,
service providers and customer systems. Quality of Service,
which in this context refers to key quality factors and attributes
of system infrastructure [6], [7], [8], is the ability of an applica-
tion to have some level of assurance that user requirements
can be satisfied. It can be seen in the form of Service Level
Agreement (SLA) between clients and suppliers to provide a
service at a specified cost and within a guaranteed time frame
[9], [10]. Moreover, the development of service-oriented infra-
structures, such as those supporting the Cloud Computing
model, require efficient management services with adaptable
load distribution capabilities that are driven by user demand.

Although there have been several attempts at designing dis-
tributed management systems with QoS driven scheduling
algorithms [11], [12], [13], [14], [15], themajority suffer from the
fact that they are mainly system-centric and do not necessarily
meet the wide range of user requirements and their expecta-
tions to obtain a high quality of service, i.e., they are not user-
centric, indeed many distributed systems historically have
weighed heavily on one requirement namely performance and
more recently on availability. Even when decisions and sched-
uling were based onmultiple requirements (multi-criteria), the
constructed utility functions were optimised to maximise the
overall utility of distributed systems [16], [17]. Moreover, most
management systems do not support formal dynamic valida-
tion of meeting user requirements, neither they are able to pre-
dict the expected system behaviours under a specific working
environment. Thus, major challenges remain in the organisa-
tion, management and optimisation of distributed infrastruc-
tures on the supplier side (system-centric) while meeting the
user’smany and diverse requirements (user-centric).

This paper proposes a new multi-criteria decision making
mechanism, called the BipRyt algorithm, for themanagement,
distribution, control and optimisation of systems resources
within distributed systems and which enforces an assured
QoS. In fact, it is a combination of two brokering components;
a system centric broker that optimises the supplier’s resources
and a user-centric broker that ensures meeting the user
requirements and implementing SLAs. It is an empowerment
strategy that provides autonomy to several parts of a system
and its novelties lie in the ability to use a multitude of quality
attributes for decision making, a set of quality guidelines
from the user and applying a reinforcement model to validate
these guidelines, when required.

We start by discussing distributed resource management
and user requirements. Then, the core components of the
BipRyt algorithm are presentedwith a focus on resource alloc-
ation and load balancing that are driven by user requirements.
The results of a number of experiments, comparing the BipRyt
algorithm with other load balancing strategies, are analysed.
We concludewith some suggestions for futurework.

� S. Khaddaj is with the School of Computer Science and Mathematics,
Kingston University, Kingston upon Thames KT1 2EE, United Kingdom.
E-mail: s.khaddaj@kingston.ac.uk.

� B. Makoond is with Cognizant Technology Solutions Haymarket House,
28-29 Haymarket, London SW1Y 4SP, United Kingdom.
E-mail: bippin.makoond@cognizant.com.

Manuscript received 31 Oct. 2015; revised 16 July 2016; accepted 24 July
2016. Date of publication 8 Sept. 2016; date of current version 6 Feb. 2019.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2016.2598338

20 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2019

1939-1374 � 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9477-4290
https://orcid.org/0000-0001-9477-4290
https://orcid.org/0000-0001-9477-4290
https://orcid.org/0000-0001-9477-4290
https://orcid.org/0000-0001-9477-4290
mailto:
mailto:

2 RESOURCE MANAGEMENT AND USER

REQUIREMENTS

In order to meet service level agreement demands the man-
agement of system resources requires built-in decision mak-
ing mechanisms that not only ensure that user requirements
are met but also that the goals of service providers and the
optimisation of resource usage are realised. However, since
resource management encompasses a wide range of differ-
ent scenarios, the decision making for SLAs is a complex
procedure, which is particularly true in Cloud environ-
ments. Attempts at the simplification of decision-making
meant that many SLAs guarantee some QoS typically avail-
ability but not necessarily others such as response time.

2.1 Resource Management and Load Balancing

Decision making mechanisms for resource management
and load balancing algorithms have been intensively stud-
ied since the early days of parallel and distributed systems,
with a large number of papers, surveys and books have
been published in the literature [18], [19], [20], [21], [22],
[23]. Recently, a number of these algorithms have been
adopted in virtual infrastructures and Cloud Computing
[24], [25], [26], [27]. Such an extensive research has been
driven by the criticality of the load balancing issue, the vast
number of applications and their diversity, the continuous
evolution of the distributed architectures with their wide
variety and heterogeneousity, and the developed and com-
monly used programming paradigms. The application
domains range from science and engineering to enterprise
computing, e.g., from scientific simulation [28] to semantic
services [29]. The infrastructures range from Cluster to Grid
and Cloud Computing [30], and the programming para-
digms range from procedural and object oriented to parallel
and service oriented paradigms [31], [32]. Thus, fundamen-
tally the choice, and suitability, of load balancing algorithms
has been driven by the applications and underlying archi-
tectures. Consequently, some of the developed algorithms
were more suitable for early parallel machines and clusters
while others are more suitable for Grids and Clouds.

Over the years there have been many different classifica-
tions of load balancing algorithms, which very broadly can
be categorised as static or dynamic [22], [33], [34], [36]. In
static load balancing, all information regarding all resources
and tasks is known in advance thus workload distribution
is based on the knowledge of the system [37], [38]. In
Dynamic load balancing tasks are allocated to resources as
they arrive i.e. dynamically [39], [40]. More specific load bal-
ancing strategies have also been studied including, central-
ized or distributed, local or global, cooperative and non-
cooperative, approximate and heuristic, hierarchical etc.
[35], [41], [42], and many theories and techniques were used
such as game theory, genetic algorithms and fuzzy logic
[43], [44], [45]. There are many advantages and disadvan-
tages in each of the above strategies, thus adopting any of
the algorithms should very much depend on applications
requirements and underlying infrastructure.

However, many decision-making strategies are based on a
single requirement i.e., one quality attribute, regardless of its
impact on other attributes, for instance: response time, least
connections, Round Robin etc. Recently, mechanisms for

dealing with energy efficiency requirements have received a
lot of attention [46], with major constraints on cost and reli-
ability. In addition a number of works on web services have
attempted to deal with QoS aspects [47], [48], [49] but they
have focused on the SOAparadigm.Other service computing
approaches have focused on multi-criteria requirement cap-
ture but not much on resource management [50], [51]. How-
ever, with the emergence of Cloud Computing, as a new
service driven distributed computing paradigm, QoS aspects
and SLA have become essential. These include the use of
MAPE (Monitoring, Analysis, Planning, Execution) loop for
the management of cloud infrastructures [57]. Although the
majority of works have focused on the Infrastructure as a Ser-
vice (IaaS) layer some QoS aspects have also been considered
at other layers such Platform as a Service (PaaS) [62], [63].
But, many challenges remain as PaaS interacts with both IaaS
and SaaS (Software as a Service) with considerable focus on
the QoS of the infrastructure [64]. Overall, most QoS works
have concentrated on a limited number of quality attributes
mainly availability and performability and many still rely on
the Round Robin load balancer to manage their workload
which does not offer an optimal solution [58], [59], [60], [61].
In summary, many of the approaches only partially meet
user requirements, and those that attempted tomeet multiple
requirementsweremainly focused onmaximising global sys-
tem utilisations while meeting the minimum needs of user
applications and requirements [16], [17].

2.2 User Requirements Capture

User requirements particularly in terms of QoS have changed
from the early days of distributed computing when perfor-
mance, and perhaps scalability, were the most important fac-
tors, and now includes a wider range of quality factors such
as reliability, availability, usability etc. Thus, QoS-based
scheduling became very important particularly in enterprise
applications. However, the analysis of diverse user require-
ments is a multi-criteria problem and require a multi-criteria
decisionmaking approach. In thisworkwe adopt theAnalyti-
cal Hierarchy Process, which seems to have replaced other
approaches such as Multi Attribute Utility Theory due to its
theoretical soundness [53], [55]. By using AHP, the require-
ments engineer can also confirm the consistency and reliabil-
ity of the result and prevent subjective judgment errors.

In summary AHP is used in decision making, 1) to elicit
preferences for certain objectives comparatively to other
objectives and 2) to give the best (or several best), solution
(s) from a range of potential solutions. As shown in Fig. 1,
there are a number of steps in the AHP process

1. Define the problem with its main objectives.
2. Lay out the elements of the problem as hierarchy.
3. Establish element comparison within matrices.
4. Calculate element priorities and consistency check.
5. Calculate the priorities and produce a priority vector.

The AHP represents a weight matrix that maps attributes
against attributes using the Saaty scale of prioritization
(Table 1) for assigning the values of importance to each
attribute. AHP also provides a Consistency Index (CI) and
Consistency Ratio (CR), based on the maximum eigenvalue
(Perron root) of the matrix �max, to validate the consistency
of the AHP results [53], [54].

KHADDAJ AND MAKOOND: A REQUIREMENT-DRIVEN MECHANISM FOR THE MANAGEMENT OF DISTRIBUTED INFRASTRUCTURES 21

Moreover, in order to ensure that the values, which are
assigned to attributes, represent robust and accurate analyt-
ical values, a combination of CI and CR indexes are factored
into the process to ensure that the achieved results are
within an acceptable range of values. However, the range
depends on the number of attributes that are compared
(Table 2).

Using AHP analysis we are proposing a new multi-crite-
ria mechanism, namely the BipRyt algorithm, that takes into
account many quality attributes while preserving the over-
all quality of the system by continuously assessing the
impact of the attributes against each other. The mechanism
establishes its decisions by combining quality attributes. It
is implemented on a new concept called run time quality
assurance which ensures that quality attributes are pre-
served at any time and any cost.

3 THE MECHANICS OF THE BIPRYT ALGORITHM

The BipRyt algorithm is a decision-making mechanism based
on the availability of computational resources, associated
rules of usage, and defined rules for a specific user, group of
users or the system as a whole. It is based the price-driven
model [56] and it allows for the optimisation of resources dur-
ing the system life cycle. This is achieved through a rule-
based system where the rules can be local or global. Part of
the mechanism’s responsibility is to manage conflicts among
the rules, focusing on the problems of racing condition and
resource starvation, and hence providing a balance between
the two axes. There are five basic principles in thismechanism

1. All software components or software agents con-
sumes resources during execution.

2. Each software agent has several resources such as
CPU, memory, and bandwidth. Each resource is
associated with a quality attribute. For example, if
the resource is processor, the associated attribute is

CPU time (processing time), which is measured in
ticks or seconds while an attribute such as memory
is measured in gigabytes.

3. A quality attribute of a resource can be assigned a
numerical value called energy level representing the
level of a resource consumption that are measured at
periodic intervals, for example 50 percent of CPU
time or 75 percent of memory size.

4. The health of the system depends on the energy lev-
els, which have to be measured and controlled. A
healthy system is attained by avoiding the starvation
or overloading of resources, consumption of which
can be measured using energy levels.

5. The energy levels decrease as the resources are con-
sumed and increase when resources are released.

We now introduce two core modules of BipRyt, namely
the Perceiver and Decider. The Perceiver is the part of the
software agent that collects snapshots of information on the
energy levels of each resource that are consumed at periodic
intervals. The Perceiver, hence, builds up a history of energy
levels for each Quality of Service, which is then fed to the
Decider. The Decider performs some statistical analysis
over the recorded quality attributes and cross references the
quality model with the QoS priority. Depending on the
results, the Decider decides which agent is the healthiest to
handle or process more information in the system.

3.1 Perceiver

Within the system the software agents receive data to be
processed, which consume a defined number of resources.
Each software agent has a list of resources and each
resource represents a quality attribute, which has its own
container. The quality attributes are represented in terms of
energy levels, which are held in the quality containers.
These containers have numerical values, which determine
how much energy every agent has for a particular quality
attribute. The list of resources is the same for all agents
(CPU, memory etc.) but the resources’ capacities can be dif-
ferent for different agents, for example different memory
size. Moreover, all agents process the same quality attrib-
utes as derived from user requirements, but depending on
the available resources the energy levels, for the same attri-
bute, on different agents might be different.

In addition, the containers do not only link the energy
level to a numerical value but also create a number of energy
level areas defining the risk values of meeting, or not meet-
ing, quality requirements. In fact a quality container is parti-
tioned in three distinct areas. There is the Low Risk Area
(LRA), Medium Risk Area (MRA) and the High Risk Area
(HRA). HRA means that the value of a particular quality
attribute has dropped to a level that constitutes a high risk
for the system. For example, if a CPU hits say 90 percent
usage, this indicates HRA, which is fed to the Decider to
avoid node overloading. On the other hand LRA means that
the value of a given quality attribute has reached a level that

TABLE 1
The Saaty Rating Scale

Level of Importance Description

1 Equal importance
3 Somewhat more important
5 Much more important
7 Very much more important
9 Absolutely more important.
2, 4, 6, 8 Intermediate values

Fig. 1. AHP process flow.

TABLE 2
Consistency Index Matrix

No of Attributes 1 2 3 4 5 6 7 8

CI 0.0 0.0 0.58 0.90 1.12 1.24 1.32 1.41

22 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2019

shows a low risk, which is fed to the decider to avoid node
starvation. The objective is to meet user requirements by
avoiding the HRA region through intelligent management
and distribution of workload across the quality attributes. It
is important to note that all agents follow the same model as
shown in Fig. 2.

At system run time the energy level rises and drops
along the three risk areas. The Perceiver has the ability to
monitor the energy levels of the quality container, which is
represented through a gauge system, connected to each
quality attribute. When energy is consumed, the indicator
on the gauge moves towards the HRA (left). However, as
agents complete the processing, the energy level increases
and added to the container. This will result to the indicator
moving towards the LRA (right). The Perceiver will record
the indicator reading per processed data. When the Decider
requests the information, the Perceiver sends a history of
the indicator values, which builds up a feedback system
based on the usage of quality attributes.

3.2 Decider

The decider is the decision-making module of the BipRyt
algorithm, which is at the core of the system’s resource
management. The success of the decision-making is based
on a number of basic requirements, including not only the
provision of dynamic and efficient services and resources
but also the enforcement of a certain level of QoS to the
users. This responds to the increased QoS provision
requirements, particularly for enterprise and Cloud appli-
cations where there are higher expectations of users to
receive high quality services at an agreed price and agreed
time scale.

In order to meet these requirements suitable user req-
uirements components, for QoS evaluating, matching and
enforcing, and scheduling and load balancing components,
for the management of system resources, are needed. This
can be achieved by a combination of two brokering mod-
ules; a user-centric broker that ensures meeting the user
requirements and a system centric broker that manages and
optimises system resources (Fig. 3).

The user centric broker defines the QoS mapping strategy
of requirements from user to resources and continuously
communicates with the system centric broker. The QoS
mapping defines the minimum capacities or resources,
which are needed to meet user requirements. Examples are

minimum CPU and memory needs, reliability, type of traf-
fic, throughput etc. The QoS mapping can also take into
account other user requirements such as user’s budget and
resource prices.

The other part of the decider is the system centric broker
with permission to access directly the raw resources such as
CPU, memory, and bandwidth through the local manage-
ment system. It should also regularly communicate with the
Perceivers to get updates on their status, the available
resources and level of usage of individual nodes. The
Decider is able to perform some analytical calculations over
the data, gathered from the Perceivers, upon which deci-
sions are made which are taken into account when alloca-
tion resources to meet user requirements.

3.3 The Mechanism

At the initial stage the BipRyt algorithm needs to be aware
of its current operating environment and system configura-
tion, which in this context consists of the nodes with param-
eters such as the number of CPUs, memory size and
bandwidth, representing the system configuration varia-
bles. Thus, it starts by recognising and discovering its cur-
rent system configuration and the status of its nodes; a
process which it repeats continuously thereafter by gather-
ing data from the Perceivers as shown in Fig. 4. When
receiving the list of energy levels from the Perceivers, the
Decider builds an Energy Matrix (EM) of agents by quality
and populates the array with values from the list. The
Matrix is built to reflect both system resources and QoS

Fig. 2. Illustrative model of the perceiver within each agent.

Fig. 3. Illustrative model of the decider.

Fig. 4. BipRyt data gathering process.

KHADDAJ AND MAKOOND: A REQUIREMENT-DRIVEN MECHANISM FOR THE MANAGEMENT OF DISTRIBUTED INFRASTRUCTURES 23

requirements. The Matrix is then normalised followed by
the application of AHP.

As mentioned earlier AHP has been extensively used in
the domain of decision-making and the density of its appli-
cation is at the requirement and design phases of many
engineering projects including the software development
life cycle. Our novelty lies in the fact that we have shifted
the capability of the AHP from being a subjective tool to
embedding it into the dynamics of the system to make deci-
sion at runtime. This is a move from AHP being a planning
tool to being a run time quality assurance tool.

Thus, the process of evaluating quality attributes is auto-
mated, which involve the use of qualitative and quantitative
tools to help the Decider to evaluate non-functional require-
ments, particularly the ones that are Critical to Quality
(CTQ). In order to make the algorithm aware of a given
quality model, the AHP process is integrated within the
mechanism, hence within the program. AHP provides a set
of instructions that are automated through a sequence of
actions, which includes building the quality model, analyz-
ing the model, prioritizing the quality attributes using their
AHP weights, calculating Consistency Index (CI) and Con-
sistency Ratio (CR) using the maximum eigenvalue (Perron
root) of the matrix �max. Human input is reduced to choos-
ing a number (1 - 9) from Table 1 representing the impor-
tance of a particular QoS, which is either extracted (parsed)
from an SLA template or entered directly by the user.

By transferring the responsibility of evaluating the quality
attributes froma design time to run time, the decision-making
has been pushed forward through the development life cycle,
into the system at deployment phases, which result in reduc-
ing the modelling uncertainty as more data became available.
The proposed algorithm embeds the concept within its deci-
sion-makingmatrix. In doing so the BipRyt algorithm follows
a number of steps, which are triggered when the Decider
receives the list of energy levels per quality attribute per
agent. First, the mean of energy level per quality attribute for
each agent is calculated by the Decider. Then, the Decider
builds amean EnergyMatrix of agents by quality:

EM ¼

eða1q1Þ eða1q2Þ eða1q3Þ ::: eða1qmÞ
eða2q1Þ eða2q2Þ eða2q3Þ ::: eða2qmÞ
eða3q1Þ eða3q2Þ eða3q2Þ ::: eða3qmÞ

::: ::: ::: ::: :::
eðanq1Þ eðanq2Þ eðanq3Þ ::: eðanqmÞ

2
66664

3
77775
;

where e is the energy level per quality attribute q per agent
a, n is the number of agents and m is the number of attrib-
utes per agent. The matrix is then normalised by order of
the quality attributes into the Normalised Energy Matrix
(NE).

NE ¼

neða1q1Þ neða1q2Þ neða1q3Þ ::: neða1qmÞ
neða2q1Þ neða2q2Þ neða2q3Þ ::: neða2qmÞ
neða3q1Þ neða3q2Þ neða3q2Þ ::: neða3qmÞ

::: ::: ::: ::: :::
neðanq1Þ neðanq2Þ neðanq3Þ ::: neðanqmÞ

2
66664

3
77775
;

where:

neðaiqjÞ ¼ eðaiqjÞ � 1Pm
j¼1 eðaiqjÞ

for each quality attribute qj.
Finally, in order to assess which quality is most impor-

tant for the system the Decider consults a prioritization
table, which is fabricated by Analytical Hierarchy Process.

Thus, the users configure the AHP by prioritizing their
requirements (R) and quality attributes (according to their
point of views). The input table is then processed to give the
weights of quality attributes (W) under AHP (Fig. 5). The
outcome shows the relative importance of a quality attribute
compare to the others at assessing time.

W ¼
w1

w2

:::
wm

2
664

3
775:

Hence, within the BipRyt operations, each normalised
value of each quality for the agents is multiplied by the cor-
responding quality value. The new values of quality attrib-
utes are added together for each agent. The sum shows the
distribution load of an agent.

Xm
j¼1

ðneðaiqjÞ � wjÞ:

Due to the fact that the distribution is calculated, based
on the priorities of the users and on the energy levels BipRyt
maximizes the opportunity for a system to conform to the
user’s desires or needs in terms of quality requirements.

It is important to note that AHP plays a core part in the
BipRyt algorithm. In fact, there are many advantages in
integrating AHP within the algorithm, many of which have
been discussed earlier. In summary, AHP is used for captur-
ing user requirements, particularly in terms of a multitude
of quality attributes, building a quality model, analyzing
the model and prioritizing the quality attributes, thus help-
ing in making decisions for the welfare of the system. In
addition, AHP instructions are automated and integrated
into the Decider’s code base. Thus, the whole process from

Fig. 5. BipRyt user requirements AHP process.

24 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2019

prioritizing quality requirements to resource allocation can
be automated and optimized.

3.4 Deployment

Having presented the different aspects of the decision-mak-
ing mechanism we move on to the deployment strategy. As
it can be seen in Fig. 4 a traditional centralised solution has
been adopted at this point mainly because it exhibits good
decision making since it is capable of ‘seeing’ the global
view of the entire system. Achieving a good decision-mak-
ing capability in terms of resource management, while
meeting a multitude of user requirements and QoS, is the
primary aim of this work. Therefore, the comparison is
made with other load balancing algorithms also in a central-
ised mode.

Once the suitability of the proposed algorithm and its ben-
efits in terms of decision-making is established, it will be
extended into a distributed strategy with multiple BipRyt
deciders. This will address the lack of scalability and fault
tolerance of the centralised approach. Still, with the low cost
of available hardware it is relatively straight forward to
implement hardware redundancy for the decider i.e., redun-
dant decider in either active/passive mode or active/active
modewhich can improve the reliability of the system.

But, with distributed decision making and multiple
deciders, a cooperation strategy will have to be identified
i.e., are the deciders working cooperatively or non-coopera-
tively. In a non-cooperative environment, individual decid-
ers act autonomously and make decisions regarding their
own user requirements and their own local resources inde-
pendently from other deciders and without consideration of
the decisions impact on the whole of system. In the coopera-
tives case, each decider is responsible for its own part of the
resources and requirements, and is concerned with making

decisions in concert with the other deciders in order to meet
global system requirements.

4 THE ARCHITECTURE MODEL

In this section we explain the generic architectural model
that employs the BipRyt algorithm. BipRyt will manage the
behaviour of the system entities (for instance, the software
agents) and provides a generic decision making mechanism.
Signals (energy levels) from the software agents (Perceivers)
will be recorded by the Decider and statistically evaluated.
Fig. 6 illustrates the generic, abstract architecture and its
various components.

The architecture provides a detailed view of the system
which reflects the high level view shown in Fig. 3, i.e., the
details of the functionality of the inner working of the
Decider as well as the external, to the Decider, components.
At the top level of the architecture are the external compo-
nents that feed information to the Decider which includes
1) The Guideline Adviser, representing the priority values
per quality attributes (w), and Quality Adviser representing
the initial suggested qualities (q) with both advisers repre-
senting user requirements in terms of quality and priority
that feed into the user centric broker of the Decider,
and 2) Unaware Component representing the Perceivers
feeding into the system centric broker of the Decider. Inter-
nally, within the decider, there are a number of different
components some of which are dealing with quality configu-
ration and processing user requirements while others such
as System Observer are processing the regular feed from the
Perceivers. Finally, at the low level of the architecture is the
External System, which receives the directives in the form of
Control Instructions, from the Decision Maker, which can
trigger a change in the external system behaviour.

4.1 Processing User Requirements

At the top level the Guideline Adviser feeds the suggested
priority distribution values to the algorithm. The suggested
priorities are represented by a list of directives from the
Guideline Adviser reflecting its wishes and vision on how
the algorithm should perform and what quality attributes
need to be preserved. This in essence represents the priority
values per quality attribute as defined by the user require-
ments in the form of a table.

Internally, the Guideline Keeper is responsible for keep-
ing and maintaining the directives that were received from
the Guideline Adviser. Directives are fed to the Keeper in the
form of Suggested Priorities, which are provided to any
requesting part of the system through the Priority Evaluator
(PE). The purpose of the PE is to query Suggested Priorities
from the Guideline Keeper and to evaluate them for correct-
ness, completeness and validity. The other function of the PE
is to modify some or all items in the Suggested Priorities list
according to the decisions made. After any potential correc-
tion, PE produces an ultimate Priority list that is the resulting
set of priorities used to make final advices/decisions. It is
also PE’s responsibility to respond and supply the evaluation
results to any requesting part of the system.

Quality Adviser, the second external entity, has the
responsibility of feeding the system with the initial sug-
gested qualities, which represent the Quality Advisers

Fig. 6. Architectural model of the BipRyt system.

KHADDAJ AND MAKOOND: A REQUIREMENT-DRIVEN MECHANISM FOR THE MANAGEMENT OF DISTRIBUTED INFRASTRUCTURES 25

vision of the system. Each item supplied by the Quality
Adviser may or may not be accompanied by Suggested Pri-
orities of the Guideline Advisors.

Internally, the Quality List Keeper is responsible for keep-
ing and maintaining Suggested Qualities list supplied by the
Quality Adviser. It is also the responsibility of the Quality
List Keeper to supply its list of Suggested Qualities to any
requesting part of the system through the Quality List Evalu-
ator (QLE). The purpose of the QLE is to query the Suggested
Quality list and to evaluate them for correctness, complete-
ness and validity. The QLE can modify some or all items in
the Suggested Quality list according to its own observed val-
ues, respond and supply the evaluation results to any
requesting part of the system. Ultimate Quality Attributes
are the resulting set of qualities that the system uses to make
its final advice, derived from the SuggestedQualities.

In summary, user requirements are obtained through
AHP analysis, which is an integral part of the user centric
broker, as tasks arrive. As the identified qualities and priori-
ties are fed through the system, an implicit voting [52], is
deployed by the Quality List Evaluator, Priority List Evalua-
tor in consultation with the Statistical Analyzer. Thus, tasks
receive different priority levels in the allocation/scheduling
processes with the aim of meeting both user requirements
and efficient utilization of the system. Like other resource
allocation decision-making mechanisms, tasks are submit-
ted through a queueing system. The resource allocation pol-
icy is fundamentally based on the weighted and ranked
quality attributes associated with the submitted tasks, and
their priority values, and the ranked hardware resources
(please see Section 4.3 for further discussion).

4.2 Processing System Resources

At the top level is the Unaware Component, an external
entity, which belongs to a system that the algorithm is mak-
ing decisions for. Unaware Component responds to
requests regarding its current state in terms of energy levels
of quality attributes. Unaware components produce Obser-
vation Value list of qualities and report their usage to the
system. Each item in the Observation Value list may or may
not be accompanied by an entry in the Suggested Qualities
provided by Quality Adviser.

Internally, the System Observer is the part of the system
with the purpose of accepting and requesting Observed Val-
ues from one or more Unaware Components. System
Observer responds with its current list of items to any
request from internal components, and performs normalisa-
tion of data gathered which allows operations on balanced
data, thus any further comparisons are performed on
equally scaled values. Then, the Normal Quality Values are
supplied by the System Observer to any component of the
system that requests them and used for further evaluation
of external system behaviour.

Statistical Analyser, another internal part of the system,
requests Observation Values from SystemObserver and per-
forms statistical / historical analysis on the data retrieved.
Based on the results of such analysis, the Statistical Analyser
adjusts Observation Values in such a way that they are better
tuned to represent current (or future) consumption of quality
attributes, and provide such observations to any other part of
the system. The Adjusted Quality Values are derived by the

Statistical Analyser from Normal Quality Values represent-
ing the view of the external system and are used for any fur-
ther calculationwhilemaking decision.

Then, the Entity Evaluator performs evaluation of the beh-
aviour of the external systems andmakes the decisions, which
are used to control their behaviours. The evaluation is carried
out using ultimate Priorities, ultimate Quality Attributes and
Adjusted Quality Value list as arguments. The alignment of
the different visions of the system, the combination, and inter-
action between the different components are dictated by the
BipRyt algorithm inside the Entity Evaluator component.

Finally, the Decision Maker receives the evaluation
report from the Entity Evaluator. Then, it produces a list of
directives (Control Instructions) that are used to regulate
the behaviour of the external system.

4.3 Resource Allocation

Resource management is based on the architectural model
(Fig. 6). Requests for resources, based on user requirements
and the target applications, are processed and resources are
allocated. A target application is considered as a set of inde-
pendent tasks, {Task1, Task2. . . Taskn} each with a set of
Requirements {R1, R2 . . . Rn}, and prioritized Quality attrib-
utes {Q1, Q2 . . . Qm}, represented by a sequence of requests
for Resources {RS1, RS2 . . . RSn} (Fig. 7). The Decider allo-
cates tasks to resources, but if it is unable to allocate the tar-
get resource the tasks are put in a queue based on the
prioritization list.

The resource allocation steps are as follow:

1. Identify and process the high-level user require-
ments in terms of quality attributes, together with
their priority distribution.

2. Identify and gather system energy levels (CPU time,
memory, bandwidth etc.).

3. Construct the matrices described earlier, including
the Energy Matrix and the AHP weight of quality
attributes.

4. Create distribution entries using the statistical analy-
sis of current and historical data.

Fig. 7. A Matching mechanism.

26 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2019

5. Map the quality attributes from the requirements to
the resources by the Decider, using the priority
entries, and allocate tasks to available resources.

6. Check continuously for available resources or any
resources that are about to saturate. If resources are
about to saturate reallocated tasks accordingly.

Resource management is based on dynamic load balanc-
ing using various aspects of real-time (current) and historical
statistical analysis, which produces a ranking of the available
resources and their capacities (energy levels). In addition,
using AHP quality attributes are prioritized and ranked.
Resources that have a better balance, for example with mini-
mum capacities that meet user quality requirements receive
the corresponding proportion of the tasks. Apart from the
ranking based scheduling mechanism a default scheduling
policy FCFS (first come first serve) is deployed for example
for similar ranking. Thus, decision making and scheduling
take into account the multi-objective requirements, therefore
creating a matching mechanism for a balanced tasks alloca-
tion that is both user and system centric. As shown in Fig. 7
the scheduling table contains information relating to both
resources and requirements, categorized by their QoS analy-
sis and resource management, which is based on the
weighted calculation of the QoS that determines the type of
resources to bematchedwith specific tasks.

4.4 Decision Making Processes

A state chart diagram describing a life cycle sample of the
decision-making processes is depicted in Fig. 8. At the initial
stage, the Decider is idle and waits for activation. When acti-
vated, the Decider broadcasts a request, as a query, to each
Perceiver, which in return sends back a list of energy levels
of a software agent. This process requires a Perceiver to take
a number of energy levels, from the indicator reading of the
gauge and push them in a list for each quality attribute per
software agent. The energy levels, measureable parts, can be
used to build and populate the configurable energy matrix
which is then normalised, followed by the application of

AHP thus reflecting user priorities. Distribution entries,
using statistical analysis of current and historical data, are
then created for the resource allocations and sent to individ-
ual agents. The information sent by the Perceivers is essential
for helping the Decider in making decisions regarding
resource allocations. The process is repeated at regular inter-
val and is driven by user requirements.

5 EXPERIMENTS

At the core of decision making in distributed system man-
agement are the scheduling algorithms used by load bal-
ancers to determine load allocation and distribution. These
range from simple algorithms such as Round Robin and
random choice to more sophisticated load balancers that
take into account additional factors such as response times
and the number of active connections. The primary aim of
the experiments is to evaluate BipRyt and compare it with
other decision-making mechanisms.

Round Robin is an even request distribution algorithm
and the basic principle behind it is to distribute the request
forwards (not the load) evenly. On the other hand the
Response Time algorithm uses the system parameters to
determine the load distribution. The Least Connection algo-
rithm maintains a list of active connections (or requests) at
any given time to each receiver. Any sub-sequential
requests are being sent to a receiver that has the least
amount of active requests/connections. However, the above
decision making mechanisms are mainly based on a single
criteria, therefore it is important to also compare BipRyt
with multi-criteria mechanisms such as the Utility Model
proposed in [16], [17].

The experiments are structured by order of 1) testing
the adaptability of the BipRyt algorithm to the AHP trend
2) comparing the AHP trend adaptability of other load bal-
ancing algorithms, and 3) testing how BipRyt adapts to
system capacity against the four algorithms. In all the
experiments data packet in the form of externally generated
message load is selected for the evaluation because it is
1) very dynamic to implement, 2) simple and fast to build
historical data, 3) simple to build data analysis model for
the evaluation, and 4) and it can be manipulated to fix its
intended usage purposes, i.e., it is a controlled environment.

5.1 Experiment 1: Adaptability to AHP Trend

Since BipRyt uses an AHP model, that represents the user’s
quality expectations, to control the behaviour of an
observed system, the aim of the first test is to verify if
BipRyt follows the trend of the AHP configuration (set-
tings), when making decision for a system. The configura-
tion is defined by the user requirements from which the
priorities of the quality attributes are derived.

The assumptions made for this experiment were that
1) the AHP has three quality attributes which are the num-
ber of messages per second representing throughput (Q1),
the response time (Q2) and the CPU processing load (Q3);
2) the user requirements defines the priority level; 3) the
overall system has 11 nodes 4) each node has three quality
containers for each quality attribute mentioned above;
5) each container have three thresholds which correspond
to the HRA, MRA, LRA (see Section 3.1). There is an

Fig. 8. Overview of decision-making processes.

KHADDAJ AND MAKOOND: A REQUIREMENT-DRIVEN MECHANISM FOR THE MANAGEMENT OF DISTRIBUTED INFRASTRUCTURES 27

indicator mark that fluctuates across the areas illustrating
how much energy a particular node has to spend for the
specific quality. This means that the more hits to the high-
risk area for a given quality attribute, the less capable the
system is to preserve the concerned attribute.

In this experiment AHP is used to calculate the quality
priority values (Normalized Weight in Fig. 9), with the
obtained values are Q1 ¼ 0.6, Q2 ¼ 0.2, Q3 ¼ 0.2 (see
Sections 2.2 and 3.3). The system is then exercised for this
particular configuration, and we refer to this as configura-
tion 1. After a run of 175,650 messages received by the sys-
tem, the quality priority of the AHP was changed to a new
configuration, configuration 2 (Fig. 10).

The new obtained values are Q1 ¼ 0.2, Q2 ¼ 0.6, Q3 ¼ 0.2,
and the systemwas exercised again for another run of 175,650
incoming messages. As mentioned earlier (Section 2.2), the
applied AHP process, which is based on user requirements
and priorities, provides a Consistency Index (CI) and a

Consistency Ratio (CR) to validate the consistency of the AHP
results. The rule dictates that CI has to be below 15 percent
and CR below 10 percent for the AHP to be truthful, which is
the case for both configuration 1 and configuration 2 with
�max¼ 3.

As the reader can see, the test was dichotomised into two
configuration setups, and for each of them, we examine the
distribution of the mark of each quality attribute of each
node across the 3 areas of risks. We observed that for config-
uration 1, where Q1 is of highest priority, the number of
HRA hits for Q1, using BipRyt algorithm, is kept to 161 hits
over 175,650 messages resulting to a percentage yield of
0.091 percent, which is very small. Furthermore, when the
BipRyt algorithm was exercised for configuration 2, where
Q2 is of highest priority, we observe that the number of
HRA hits for Q2 is kept to 182 hits over 175,650 messaged
resulting to a percentage yield of 0.10 percent, (see Fig. 11).

The same setup was used to test the adaptability of
Response Time algorithm to the AHP trend on both configu-
rations 1 and 2, (Fig. 12). The results show that the Response
Time algorithm preserves the quality attribute Q2, response
time, regardless of the AHP quality priority. For instance in
the setup of configuration 1, Q1 has highest priority, yet the
algorithm still preserves Q2.

The same setup was used to test the adaptability of Least
Connections algorithm to the AHP trend on both configura-
tions 1 and 2, (see Fig. 13). Since the Least Connections algo-
rithm does not directly depend on the three quality
attributes chosen for the experiments, the algorithm does
not adapt to the AHP trend.

Fig. 9. AHP Configuration 1.

Fig. 10. AHP Configuration 2.

Fig. 11. BipRyt adaptability to AHP trend.

Fig. 12. Response time adaptability to AHP trend.

Fig. 13. Least connections adaptability to AHP trend.

28 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2019

In order to make some baseline comparison a test was
carried out using Round Robin. Only configuration 1 was
used since the algorithm, due to its nature, does not depend
on the chosen quality attributes.

As shown in Fig. 14 the number of hits to the HRA has
considerably increased with Round Robin, for example the
number of HRA hits for Q1 is kept to 50,744 hits over
175,650 messages resulting to a percentage yield of around
29 percent, which is almost 1/3 of the message population.

Finally, the same setup was used to test the adaptability
of the multi-criteria Utility Model [16], [17] to the AHP
trend on both configurations 1 and 2, (see Fig. 15). Since the
Utility Model algorithm focuses on maximizing global
system utilization, while meeting the minimum needs of
user requirements, the algorithm behaviour is similar, to a
certain extent, to Response Time; however, it adapts better
to Q1 but worse to Q2. Overall, it does adapt only partially
to the AHP trend.

Overall the results show that BipRyt adapts better to
AHP trends than the other algorithms. However, since the
Response Time algorithm was designed specifically to oper-
ate on response time (Q2) it preserves Q2 better than the
BipRyt algorithm for configuration 2 where Q2 is of highest
priority. In fact, BipRyt with configuration Q1 ¼ 0, Q2 ¼ 1,
Q3 ¼ 0, behaves in a similar way to Response time. More-
over, Response Time’s overall number of hits is still much
lower than that of Round Robin, since response time (Q2)
does positively influence the other quality attributes, for
example it does indirectly reflect CPU time due to the fact

that if a given node responds faster to a request, this means
that the CPU load is lower.

Using Least Connections the distribution of the HRA hits
resembles the Round Robin, but in a lower order of magni-
tude. The reason for lower hits is again, due to the fact that
Least Connections may also influence attributes such as
CPU time and response time, but not always. For example,
when the load is distributed based on least connections, the
next requests are forwarded to the node with the least con-
nections, hence less messages are being processed on that
node, preserving CPU time. As a result, the number of HRA
hits for CPU time is reduced.

While the Utility Model follows to a certain degree
the Response time, it is better than Response time at meet-
ing overall criteria. But, BipRyt still adapt better than the
Utility Model to user requirements and AHP trend in both
configuration 1 and 2. In summary, the BipRyt algorithm
maximises the opportunity for a system to conform to the
user’s priorities for example in the first configuration Q1,
which has the highest priority, has the best percentage
yield. However, this changes in configuration 2 when Q2
has the highest priority and the best yield. It is clear that
similar results will be achieved if we deploy another config-
uration Q1 ¼ 0.2, Q2 ¼ 0.2, Q3 ¼ 0.6, with now Q3 yielding
the best result this time.

5.2 Experiment 2: Adaptability to the Capacity
of Infrastructure

The aim of this experiment is to check the overall adaptabil-
ity of BipRyt, Response Time, Least Connections, Round
Robin load and the Utility Model balancing algorithms to
the Capacity of the Infrastructure, and to analyze how each
of them distributes the load with heterogeneous nodes
capacities. To achieve this we designed 11 queues, with dif-
ferent configurations and different capacities (Table 3). Each
queue has different buffer size, which represents the mem-
ory capacity of the node. We incorporated a processing
function to emulate latency within the logic of each queue,
which is triggered when a message is loaded into the buffer.
We also simulated input/output by defining write requests
to a mySQL database when a message is being processed,
and we deployed the queue applications on 11 nodes.

As before we started by obtaining the quality priority
from the AHP. So in the experiment we have three quality
attributes, which are CPU Time (Q1), memory usage (Q2)
and number of database I/O (Q3). The obtained quality

Fig. 14. Round Robin adaptability to AHP trend.

Fig. 15. Utility model adaptability to AHP trend.

TABLE 3
System Configuration

Nodes Queue System Buffer Size

0 S0Q0 940,000
1 S1Q1 860,000
2 S2Q2 780,000
3 S3Q3 600,000
4 S4Q4 520,000
5 S5Q5 470,000
6 S6Q6 360,000
7 S7Q7 220,000
8 S8Q8 110,000
9 S9Q9 90,000
10 S10Q10 80,000

KHADDAJ AND MAKOOND: A REQUIREMENT-DRIVEN MECHANISM FOR THE MANAGEMENT OF DISTRIBUTED INFRASTRUCTURES 29

priorities are Q1 ¼ 0.3, Q2 ¼ 0.6 and Q3 ¼ 0.1, and provi-
sioned the BipRyt algorithm.

First, the system runs whilst the maximum buffer capac-
ity of individual queues per nodes is adjusted until there is
no hit to the high-risk area of the quality container, given a
fix number of messages per second. Next, we performed the
calibration of the system overall capacity by adding the
individual load capacity together. Having calibrated the
nodes capacities, the system runs for 10 minutes starting
with the BipRyt algorithm, then, Response Time, Least Con-
nections, Round Robin and finishing with the Utility Model.
At the end of each run, the number of hits to the high-risk
areas for the quality attributes and buffer population, which
defines the memory available, or message load for each
node are recorded. In all the experiments the maximum
capacity of memory and the actual distribution of messages
are represented by the normalized values of the proportion
of buffer sizes and number of messages in relation to their
total aggregated values.

When the systemwas exercisedwith the BipRyt algorithm,
in 10 minutes, 464,038 messages were distributed to the
nodes. As it can be observed in Fig. 16, BipRyt intelligently
balances the incoming load as per maximum capability of the
nodes. The actual distribution follows the trend of the node
capacity, implying that the system is efficient with negligible
number of node message starvation and little packet loss.
Packet loss is reached when the number of message sent to a
node is greater than the buffer size of a given queue.

When the system was exercised with the Response Time
algorithm, in 10 minutes, 1,494,335 messages were distrib-
uted to the nodes. The graph in Fig. 17 shows that the
Response Time algorithm does attempt to follow the trend
of the nodes’ maximum capacities. However, the difference
between the nodes’ maximum capabilities and the actual
distribution of Response Time is still a bit larger than the

difference of the BipRyt algorithm, meaning that there is
still more occurrences of message starvation and packet
loss. This is because the BipRyt algorithm directly preserves
the message load in terms of the quality attribute memory
available. Whereas the Response Time algorithm indirectly
preserves the message load by managing the quality attri-
bute response time which indirectly influences the quality
attribute memory usage.

When the system was exercised with the Least Connec-
tions algorithm, in 10 minutes, 1,583,827 messages were dis-
tributed to the nodes. The graph in Fig. 18 shows that the
trend of the actual distribution for the Least Connections
does not follow the trend of the nodes’ maximum capacities.
This is because Least Connections is not directly influenced
by the three quality attributes defined for this experiment.
Unlike Response Time, Least Connections has little impact
on memory usage and CPU Time. Indeed Least Connections
is not a good measure for CPU Time and load, since one
node may have five connections of 2 megabytes each and a
second one, having two connections of 20 megabytes load
each and due to the fact that the algorithm base its decision
on the number of connections rather than load per connec-
tions, it does not provide a good measure on the quality
attributes CPU load or memory usage. Hence the Least Con-
nections failed to adapt its distribution of message to the
maximum capabilities of the nodes, but still provides a bet-
ter solution than Round Robin.

As Fig. 19 illustrates, due to its simplistic nature, the
Round Robin algorithm distributes the load uniformly
regardless to the quality attributes and themaximum capaci-
ties of the nodes. So at some point in time, Round Robin will
starve some the nodes with highest capacity and overload
the weakest. In such an environment, wherein nodes have
different load capacities, Round Robin is very inefficient
especially for packet loss. In 10 minutes, with Round Robin,

Fig. 16. BipRyt distribution versus system capacity.

Fig. 17. Response time distribution versus system capacity.

Fig. 18. Least connections distribution versus system capacity.

Fig. 19. Round robin distribution versus system capacity.

30 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2019

1,698,771 messages were distributed to the nodes but many
of the packets where rejected by the low performing nodes.

Finally, the same setup was used to check the overall
adaptability of the multi-criteria Utility Model to the Capac-
ity of the Infrastructure. As shown in Fig. 20 the Utility
Model follows the system capacity trends, however, it is still
less adaptable than BipRyt, which has lower message rejec-
tion and node starvation.

A number of further experiments were carried out to eval-
uate and compare the performance of the different algorithms
starting with Fig. 21 showing the number of messages per
second, representing throughput, that were dispatched by the
different load balancers. This shows clearly that Round Robin
(RR) has the highest rate, since it has the least overheads
due to its simplicity, followed by Least Connections (LC),
Response time (RT), UtilityModel (UM) and BipRyt (BR).

However, message rejection rates also follow the same
order i.e., Round Robin has the highest rejection rate and
BipRyt the lowest (Fig. 22). Clearly, similar results can be
obtained when node starvation rate is considered.

Moreover, in order to evaluate the true cost associated
with each of the algorithms rejected messages have to be
taken into account and processed. Thus, in the next experi-
ment the algorithms are evaluated with rejected messages
returning back to the load balancer buffer queue for proc-
essing (Fig. 23). This shows that, despite the additional proc-
essing time noted in Fig. 21, when rejection rate is taken
into account BipRyt shows the best performance followed
by the Utility Model, Response Time, Least Connections
and Round Robin. This reflects the benefits of the algorithm
particularly in heterogeneous environment.

6 CONCLUSION

This paper presented a multi-criteria decision making
mechanism, which has been designed for the management,

distribution and optimization of systems resources. The nov-
elty of the BipRyt algorithm lies in the ability to use a quality
model based on a multitude of quality requirements. The
algorithm was incorporated into a generic architecture,
which can be integrated into any load balancer or scheduler
components for distributed systems.

Moreover, during the design and implementation of the
BipRyt algorithm, we observed that techniques such as the
Analytical Hierarchy Process provide instructions that can
be automated through a sequence of actions. Hence, the
mechanism has been constructed to represent both run time
quality assurance and dynamic quality enforcer. BipRyt
takes into account the user’s perspective of the quality
model, and ensures the system follows the quality trend of
the user. Thus, it preserves the quality attributes while
avoiding nodes overloading or starvation.

To validate the functionality of BipRyt in enforcing a
defined quality model, we presented a case study that imple-
ments this algorithm as a decision-making mechanism. We
tested BipRyt against the Round Robin, Response Time, Least
Connections and Utility Model strategies. The results showed
that BipRyt efficiently distributed the workload especially in
heterogeneous network, with different capability nodes.
However, the use ofmultiple deciders and the impact of larger
and potentially conflicting quality requirements in non-con-
trolled environmentswill be considered in futurework.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility,” Future
Generation Comput. Syst., vol. 25, no. 6, pp. 599–616, 2009.

[2] T. Rings, et al., “Grid and cloud computing: Opportunities for
integration with the next generation network,” J. Grid Comput.,
vol. 7, no. 3, pp. 1572–9814, 2009.

[3] M. Armbrust, et al., “Above the clouds: A Berkeley view of
cloud computing,” EECS Department, University of California,
Berkeley, CA, USA, Tech. Rep. UCB/EECS-2009-28, 2009.

Fig. 22. Rejected messages rate of the five algorithms.

Fig. 23. Processing rate of the five algorithms.

Fig. 20. The utility model distribution versus system capacity.

Fig. 21. Dispatching rate of the five algorithms.

KHADDAJ AND MAKOOND: A REQUIREMENT-DRIVEN MECHANISM FOR THE MANAGEMENT OF DISTRIBUTED INFRASTRUCTURES 31

[4] T. Erl, Service-Oriented Architecture: Concepts, Technology, and
Design. Englewood Cliffs, NJ, USA: Prentice Hall, 2005.

[5] N. M. Josuttis, SOA in Practice. Philadelphia, PA, USA:
O’Reilly, 2007

[6] G. Horgan and S. Khaddaj, “Use of an adaptable quality model in
a production support environment,” Systems Softw., vol. 82,
pp. 730–738, 2009.

[7] S. Khaddaj, “Quality of service issues in distributed component
based environments,” Algorithms Comput. Technol., vol. 4,
pp. 523–531, 2010.

[8] S. Khaddaj and G. Horgan, “The evaluation of software quality
factors in very large information systems,” E-J. Inf. Syst. Eval.,
vol. 7, pp. 43–48, 2004.

[9] S. Khaddaj and H. Nguyen, “Cloud computing: The management
of service level agreements,” in Proc. Int. Conf. Semantic E Business
and Enterprise Computing. SEEC 2010, Excel India Publishers, 2010,
pp. 24–31.

[10] V. Stantchev and C. Schr€opfer, “Negotiating and Enforcing QoS
and SLAs in Grid and Cloud Computing,” in Proc. 4th Int. Conf.
Adv. Grid Pervasive Comput., 2009, pp. 25–35.

[11] Z. Wu, X. Liu, Z. Ni, D. Yuan, and Y. Yang, “A market-oriented
hierarchical scheduling strategy in cloud workflow systems,”
J. Supercomputing, vol. 63, no. 1, pp. 1–38, 2011.

[12] B. Q. Cao, B. Li, and Q. M. Xia, “A service-oriented QoS-assured
and multi-agent cloud computing architecture,” Cloud Computing.
Berlin, Germany: Springer, 2009.

[13] J. Al-Ali, A. Hafid, F. Rana, and W. Walker, “An approach for
quality of service adaptation in service-oriented grids,” Concur-
rency Comput. Practice Experience, vol. 6, no. 5, pp. 401–412, 2004.

[14] D. A. Menasc�e, H. Ruan, and H. Gomaa, “QoS management in
service-oriented architectures,” Performance Eval., vol. 64, no. 7–8,
pp. 646–663, 2007.

[15] H. Nguyen and S. Khaddaj, “A QoS based load balancing frame-
work for large scale elastic distributed systems,” in Proc. 10th Int.
Symp. Distrib. Comput. Appl. Bus. Eng. Sci., 2011, pp. 135–140.

[16] C. Li and L. Li, “Utility-based QoS optimisation strategy for multi-
criteria scheduling on the grid,” J. Parallel Distrib. Comput., vol. 67,
pp. 142–153, 2007.

[17] G. Tang, H. Li, and S. Yao, “The multi-dimensional QoS resources
optimization based on the grid banking model,” in Proc. 2nd Int.
Conf. High Perform. Comput. Appl., 2009, pp. 369–376.

[18] R. Buyya, High Performance Cluster Computing: Architectures and
Systems, Volume 1. Delhi, India: Prentice Hill PTR, 1999.

[19] B. A. Shirazi, K. M. Kavi, and A. R. Hurson, Scheduling and Load
Balancing in Parallel and Distributed Systems. Los Alamitos, CA,
USA: Wiley-IEEE Computer Society Press, 1995.

[20] J. Westbrook, “Load balancing for response time,” Annu. Eur.
Symp. Algorithms, 1995, pp. 355–368.

[21] F. Dong and S. G. Akl, “Scheduling algorithms for grid comput-
ing: state of the art and open problems,” School Comput., Queen’s
Univ., Kingston, ON, Canada, Tech. Rep. 2006-504, 2006.

[22] T. Casavant and J. Kuhl, “A taxonomy of scheduling in general-
purpose distributed computing systems,” IEEE Trans. Softw. Eng.,
vol. 14, no. 2, pp. 141–154, Feb. 1988.

[23] C. Xu and F. C.M. Lau, Load Balancing in Parallel Computers: Theory
and Practice. New York, NY, USA: Springer, 1997.

[24] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” IEEE
Internet Comput., vol. 13, no. 2, pp. 14–22, Nov. 2009.

[25] M. Randles, D. Lamb, and A. Taleb-Bendiab, “A comparative
study into distributed load balancing algorithms for cloud
computing,” in Proc. IEEE 24th Int. Conf. Adv. Inf. Netw. Appl.,
2010, pp. 551–556.

[26] A. Singh, M. Korupolu, and D. Mohapatra, “Server-storage
virtualization: Integration and load balancing in data centers,” in
Proc. ACM/IEEE Conf. Supercomputing, 2008, pp. 53–65.

[27] Y. Fang, F. Wang, and J. Ge, “A task scheduling algorithm based
on load balancing in cloud computing,” in Proc. Int. Conf. Web Inf.
Syst. Mining, 2010, vol. 6318, pp. 271–277.

[28] N. Haider, S. Khaddaj, M. Wilby, and D. Vvedensky, “Parallel
Monte Carlo simulations of epitaxial growth,” Comput. Phys.,
vol. 9, no. 1, pp. 85–96. 1995.

[29] B. Mrohs, “OWL-SF—A distributed semantic service framework,”
in Proc. Workshop Context Awareness Proactive Syst., 2005, pp. 67–79.

[30] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Proc. Grid Comput. Environ.
Workshop, 2008, pp. 1–10.

[31] M. Gabbrielli, Programming Languages: Principles and Paradigms.
Berlin, Germany: Springer, 2010.

[32] M. V. Zelkowitz, Advances in Computers: New Programming
Paradigms. Cambridge, MA, USA: Academic Press, 2005.

[33] H. J. Braun, et al., “A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distrib-
uted computing systems,” J. Parallel Distrib. Comput., vol. 61, no. 6,
pp. 810–837, 2001.

[34] M. H. Willebeek-LeMair and A. P. Reeves, “Strategies for dynamic
load balancing on highly parallel computers,” IEEE Trans. Parallel
Distrib. Syst., vol. 4, no. 9, pp. 979–993, Sep. 1993.

[35] M, Arora, S. K. Das, and R. Biswas, “A decentralized scheduling
and load balancing algorithm for heterogeneous grid environ-
ments,” in Proc. ICPPW’02, 2002, pp. 499–505.

[36] G. Sabin, R. Kettimuthu, A. Rajan, and P. Sadayappan,
“Scheduling of parallel jobs in a heterogeneous multi-site environ-
ment,” in Proc. 9th Int. Workshop Job Scheduling Strategies Parallel
Process., 2003, pp. 87–104.

[37] S. Y. You, H. Y. Kim, D. H. Hwang, and S. C. Kim, “Task schedul-
ing algorithm in GRID considering heterogeneous environment,”
in Proc. Int. Conf. Parallel Distrib. Process. Tech. Appl., 2004,
pp. 240–245.

[38] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive load shar-
ing in homogeneous distributed systems,” IEEE Trans. Softw Eng.,
vol. 12, no. 5, pp. 662–675, May 1986.

[39] A. M. Alakeel, “A Guide to dynamic load balancing in distributed
computer systems,” Int. J. Comput. Sci. Netw. Secur., vol. 10, no. 6,
pp. 153–160, Jun. 2010.

[40] M. Zaki, W. Li, and S. Parthasarathy, “Customized dynamic load
balancing for a network of workstations,” J. Parallel Distrib.
Comput., vol. 43, pp. 156–162, 1997.

[41] T. Kunz, “The influence of different workload descriptions on a
heuristic load balancing scheme,” IEEE Trans. Softw. Eng., vol. 17,
no. 7, pp. 725–730, Aug. 1991.

[42] J. Cao, X. Wang, and S. K. Das, “A framework of using cooperat-
ing mobile agents to achieve load sharing in distributed web
server groups,” Future Generation Comput. Syst., vol. 20, pp. 591–
603, 2004.

[43] D. Grosu and A. T. Chronopoulos, “Noncooperative load balanc-
ing in distributed systems,” J. Parallel Distrib. Comput., vol. 65,
no. 9, pp. 1022–1034, 2005.

[44] A. Y. Zomaya and Y. The, “Observations on using genetic algo-
rithms for dynamic load-balancing,” IEEE Trans. Parallel Distrib.
Syst., vol. 12, no. 9, pp. 899–911, Sep. 2001.

[45] D. Ong and S. Khaddaj, “Intelligent framework for the manage-
ment of distributed architectures,” in Proc. 11th ACIS Int. Softw.
Eng. Artif. Intell. Netw. Parallel/Distrib. Comput., 2010, pp. 187–192.

[46] Y. C. Lee and A. Y. Zomaya, “Energy conscious scheduling
for distributed computing systems under different operating
conditions,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 8,
pp. 1374–1381, Aug. 2011.

[47] V. Stantev, “Effects of replication on web service performance in
WebSphere,” Int. Comput. Sci. Inst., Univ. California, Berkeley,
CA, USA, Tech. Rep. TR-08-003, 2008.

[48] R. Cakubescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and
G. Tamburrelli, “Dynamic QoS management and optimization in
service-based systems,” IEEE Trans. Softw. Eng., vol. 37, no. 3,
pp. 387–409, May/Jun. 2011.

[49] D. Adagna and B. Pernici, “Adaptive service composition in
flexible processes,” IEEE Trans. Softw. Eng., vol. 33, no. 6,
pp 369–384, Jun. 2007.

[50] W. Ma, L. Liu, H. Xie, H. Zhang, and J. Yin, “Preference
model driven services selection,” Adv. Inf. Syst. Eng., vol. 5565,
pp. 216–230, 2009.

[51] H. Xie, L. Liu, and J. Yang, “i�-prefer: Optimizing requirements
elicitation process based on actor preferences,” in Proc. 2009 ACM
Symp. Appl. Comput., 2009, pp. 347–354.

[52] A. Streit, “Evaluation of an unfair decider mechanism for the
self-tuning dynP job scheduler,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp., 2004, pp. 1–11.

[53] T. L. Saaty, The Analytic Hierarchy Process. New York, NY, USA:
McGraw-Hill, 1980.

[54] J. Karlsson, “Software requirements prioritizing,” in Proc. 2nd Int.
Conf. Requirements Eng., 1996, pp. 110–116.

[55] E. H. Forman and S. I. Gass, “The analytic hierarchy process: An
exposition,” Oper. Res., vol. 49, pp. 469–486, 2001.

32 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2019

[56] R. Buyya, “Economic models for resource management and
scheduling in grid computing,” Concurrency Comput., vol. 14,
1507–1542, 2002.

[57] M. Maurer, I. Breskovic, V. C. Emeakaroha, and I. Brandic,
“Revealing the MAPE loop for the autonomic management of
cloud infrastructures,” in Proc. IEEE Symp. Comput. Commun.,
2011, pp. 147–152.

[58] N. Bansal, A. Awasthi, and S. Bansal, “Task scheduling algorithms
with multiple factor in cloud computing environment,” Adv.
Intell. Syst. Comput., vol. 433, pp 619–627, 2016.

[59] M. Masdari, S. ValiKardan, Z. Shahi, and S. I. Azar, “Towards
workflow scheduling in cloud computing: A comprehensive
analysis,” J. Netw. Comput. Appl., vol. 66, pp. 64–82, 2016.

[60] S. Singh and I Chana, “A survey on resource scheduling in cloud
computing: Issues and challenges,” J. Grid Comput., vol. 14, no. 2,
pp. 217–264, 2016.

[61] A. Abdelmaboud, D. N. A. Jawawi, I. Ghani, A. Elsafi, and
B. Kitchenham, “Quality of service approaches in cloud comput-
ing: A systematic mapping study,” J. Syst. Softw., vol. 101,
pp. 159–179, 2015.

[62] C. Tse-Shih, T.-W. Huang, L.-C. Yin, Y.-L. Chen, and Y.-F. Ciou,
“Platform-as-a-service architecture for parallel video analysis in
clouds” in Proc. Int. Comput. Symp. Adv. Intell. Syst. Appl., 2013,
vol. 2, pp. 619–626.

[63] C. Bunch, V. Arora, N. Chohan, C. Krintz, S. Hegde, and
A. Srivastava, “A pluggable autoscaling service for open cloud
PaaS systems,” in Proc. IEEE/ACM 5th Int. Conf. Utility Cloud
Comput., 2012, pp. 191–194.

[64] M. Boniface, et al., “Platform-as-a-service architecture for real-
time quality of service management in clouds,” in Proc. 5th Int.
Conf. Internet Web Appl. Serv., 2010, pp. 155–160.

Souheil Khaddaj received the PhD degree from
the Centre of Parallel Computing, Queen Mary
College. He is a professor of computer science in
the School of Computer Science and Mathemat-
ics, Kingston University - London, where he leads
the Component & Distributed Systems Research
Group (CODIS). His research interests include
distributed computing, service orientation and big
data. He has been involved in the development of
novel technologies for numerous scientific and
business applications. His research interests also

include advanced software engineering techniques and quality assur-
ance. He has been involved in a large number of national and interna-
tional research projects and various industrial partnerships. He also
chaired many international conferences and he has been a keynote
speaker at numerous international events. He has authored/co-authored
more than 200 technical papers and he has also edited/co-edited a num-
ber of books and special issues.

Bippin Makoond received the PhD degree from
Kingston University. Currently he is the managing
director and founder of ZDLC Cognizant Technol-
ogy Solutions, who functions as the Global Inno-
vation Lead for the company’s Banking and
Financial Services practice. His research inter-
ests include quality engineering and service ori-
ented distributed systems. He published many
papers in Journals and Conferences. He also
holds three patents within the domain of Wireless
Distributed Systems and is a visiting scholar at
Kingston University.

KHADDAJ AND MAKOOND: A REQUIREMENT-DRIVEN MECHANISM FOR THE MANAGEMENT OF DISTRIBUTED INFRASTRUCTURES 33

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

