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Abstract— This paper presents a noise suppression system 

designed for unmanned aerial vehicles (UAVs). Searching for 

people using robots is expected to become a useful tool for saving 

lives during disasters. In particular, because UAVs can collect 

information from the air, there has been much research in rescue 

support using UAVs equipped with cameras. However, a 

limitation of cameras is their difficulty in detecting individuals 

concealed in shadows. To solve this problem, we propose the use 

of a listening device on UAVs to detect sounds created by humans. 

This device uses an on-UAV microphone to capture human voices, 

which often get mixed with the sound of the UAV's propellers. This 

mixing presents a major challenge in identifying human voices. In 

this paper, we introduce a method to suppress the UAV propeller 

sound noise from the mix, enhancing the clarity of the human voice. 

Suppression of UAV sound noise is performed by generating 

pseudo-UAV sound based on generative adversarial networks 

(GAN) and reducing the generated pseudo-UAV sound from the 

sound mixture. By conducting various types of experiments, we 

confirmed the effectiveness of our proposal. As a result, we 

established the feasibility of using UAV-based voice processing for 

victim detection at disaster sites. 

 
Index Terms—Generative Adversarial Networks, Victim 

Detection, Rescue Support, UAV Application, Sound Noise 

Suppression 

I. INTRODUCTION 

N recent years, research has focused on utilizing unmanned 

aerial vehicles (UAVs) to assess damage and conduct search 

and rescue operations for victims during natural disasters [1-3]. 

Searching for victims in collapsed houses and rubble, 

particularly in the aftermath of earthquakes, necessitates early 

detection and rapid, accurate response. The use of UAVs in 

such scenarios is critically important and beneficial, as they 

facilitate easy access to areas otherwise difficult to reach due to 

the disaster [4-11]. However, most existing search and rescue 

operations using UAVs rely primarily on visual confirmation 

through images captured by cameras mounted on the UAVs 

[12]. While these approaches allow for assessing the situation 

captured in the video, it is challenging to recognize victims who 

are not visible, such as those trapped under rubble or in the 

camera's blind spots. One study sought to eliminate camera 

blind spots [13] by using two 360° cameras. However, these 
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cameras pose challenges when mounted on UAVs, as the UAV 

itself is often captured in the images. Additionally, the spherical 

lens distorts the visual representation of objects, complicating 

the assessment of immobile victims[14]. A proposed solution 

for victim detection involves using a UAV-mounted voice 

processing system, which includes an onboard microphone and 

speaker. This system broadcasts calls into the disaster area and 

listens for responses using the UAV's microphone. When a 

response is detected, it indicates the presence of a victim [15]. 

However, the challenge lies in the sound captured by the 

microphone, which is a mix of the victim's voice, UAV 

propeller noise, and environmental sounds. Therefore, it's 

crucial to effectively isolate the victim's voice from this mixture 

for accurate detection. Currently, similar studies are underway 

into finding victims based on the voice obtained from 

microphones mounted on UAVs by using a system called 

source separation, in which multiple microphones are used to 

locate the source of a sound separately from the propeller noise 

emitted by the UAV [16-20]. In these systems, however, it is 

not possible to determine the content of the sound source, such 

as the words spoken by the victim, because  it determines only 

the location of the sound source. In addition, all sounds, 

including the propeller noise, are processed in the same way 

regardless of whether they are human or not. Another method 

is to determine the words uttered by the victims using speech 

recognition software [18]. However, the challenge arises 

because the words used for speech recognition are 

predetermined, while the words spoken by a victim vary based 

on the situation. This makes it difficult to recognize phrases 

spoken by victims if they are not already registered in the 

speech recognition software. Furthermore, as the victim's voice 

is processed by the voice recognition software, the UAV 

operator does not hear it directly, preventing them from 

verifying the accuracy of the recognition. The accuracy of voice 

recognition software significantly decreases with the distance 

between the victim and the UAV, as illustrated in Figure 1 [18]. 

In time-critical situations, incorrect decisions can have dire 

consequences, especially for severely injured individuals. 

Therefore, it is recommended to first listen to a victim's voice 

for a more precise assessment of their condition. Listening to 

victims not only helps in accurately understanding their 
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situation but also aids in determining the necessary supplies and 

assistance required, particularly for those in hard-to-reach areas. 

 

 

 
This study aims to process sounds, including the UAV's 

propeller noise, to make the victim's voice audible to the UAV 

operator by suppressing the UAV sound noise from sound 

captured by UAV onboard microphone. This approach allows 

the operator to directly hear the victim's voice, rather than 

relying on indirect detection methods to ascertain the presence 

of a victim. 

A schematic of the victim detection system developed in this 

study is illustrated in Fig. 2, while Fig. 3 depicts the procedure 

for the proposed method of suppressing UAV propeller sound. 

In this research, we utilize the advanced capabilities of 

generative adversarial networks (GANs) [23], a form of AI that 

has recently undergone significant improvements in accuracy, 

to learn various types of data, including images, frequencies and 

so on. Specifically, we utilize GANs to learn and analyze the 

propeller sound noise emitted by UAVs. Using the model 

trained in this manner, we are able to generate pseudo-UAV 

sound. By subtracting this pseudo-UAV sound from the actual 

sound captured by the UAV-mounted microphone, we 

effectively suppress sounds at the same frequency in the real 

UAV sound. Our method holds several advantages over 

traditional signal processing-based noise filters: (1) it more 

precisely suppresses UAV noise within a narrower bandwidth, 

(2) it adapts to fluctuating UAV noise via the learning model, 

and (3) it achieves higher accuracy in UAV noise suppression. 

The method's ability to handle fluctuating UAV noise (above 

(2)) is particularly noteworthy when compared with 

conventional methods. In this study, we apply the Fast Fourier 

Transform (FFT) [22] to the sound of UAV propellers as a 

preprocessing step for GAN-based machine learning, using 

frequency component as training data. This approach, which 

involves learning sound separately on each frequency, is 

distinct from common sound learning methods for speech 

recognition. To the best of our knowledge, this research is 

innovative in adapting sound learning to noise cancellation. 

 

 

 
 

 
Our approach involved several key steps: (1) constructing 

and training a Generative Adversarial Network (GAN) model 

with optimal preprocessing to generate pseudo-UAV sound, (2) 

assessing whether the pseudo-UAV sound produced by the 

model is effective for noise suppression, (3) testing the 

efficiency of the proposed noise suppression process with 

actual mixtures of UAV sound and human voice, (4) designing 

a UAV equipped with the necessary hardware for this study, 

and (5) developing a specialized off-board host service 

computer system, focused on voice learning and generating 

pseudo-UAV sound, as a critical hardware development in this 

study. 

 
Fig. 1.  Sound source separation results of the method proposed by Yamazaki 

et al [18].  

 

 
Fig. 2.  A schematic of the victim detection system.  
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Fig. 3.   Overall flow of human voice detection based on UAV propeller sound 

suppression.  
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This paper is organized into five sections, offering a 

comprehensive overview of the entire project, encompassing 

both software and hardware developments. Section 2 details the 

UAVs used in the study, including their specifications, the 

functionalities of their onboard computer systems, and how 

these systems integrate with a developed off-board service host 

computer system. Section 3 describes the proposed UAV sound 

noise suppression method, focusing on learning theory and 

incorporating mathematical models and expressions related to 

Generative Adversarial Networks (GANs). Section 4 presents 

the experimental results, outlining the data collection, analysis, 

and implications. The paper concludes in Section 5 with a 

summary of the findings, a discussion of the study's limitations, 

and suggestions for future research. 

II. HARDWARE ARCHITECTURE 

Fig. 4 displays the UAV developed for this research. We 

employed a Raspberry Pi and Navio2 as flight controllers for 

the UAV, chosen for their convenience in computer access and 

program development. The UAV is equipped with a 

microphone, essential for future research developments. This 

microphone features a quad array, although in this study, only 

the central microphone was utilized.  

 

 

 
  

In this study, we focus on sound learning and the generation 

of pseudo-UAV sounds, which are conducted on the host 

service computer. Fig. 5 presents an overall diagram of the 

computer system architecture made in our research. Initially, 

attempts were made to process the data using a computer 

mounted on the UAV. However, this approach was abandoned 

due to the limited processing power of the onboard processor. 

As a result, the computer mounted on the UAV was adapted to 

function primarily connecting to a Wi-Fi router. This setup 

enables the transmission of voice data, captured by the onboard 

microphone, to the host computer using the User Datagram 

Protocol (UDP). The audio data was recorded by the onboard 

microphone with a sampling frequency of 16 kHz and a bit 

depth of 16 bits. Excluding the flight controller, all processing 

tasks for both the UAV and the host computer were conducted 

using Python. To enhance GAN processing speed on the host 

computer, a GPU, specifically a NVidia GTX1660, was used in 

conjunction with TensorFlow and Keras for building the 

machine learning models. This system configuration aligns 

with the concept of transitioning UAVs to computers with 

powerful processors for edge computing. 

 

III. UAV SOUND SUPPRESSION PROCESS 

In this study, we propose a noise cancellation technique 

specifically intended to suppress UAV sounds within audio 

recorded by the UAV's microphone. The method entails 

training a machine learning model using authentic UAV sounds 

and subsequently generating a pseudo-UAV sound from this 

model. This artificially created pseudo-UAV sound is then 

subtracted from the audio captured by the UAV's microphone, 

effectively cancelling (suppressing) the UAV sound noise (Fig. 

6).The choice of this method is motivated by the characteristic 

frequency of UAV sounds. 

 
Fig. 4.  Overall view of developed UAV.  
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Fig. 5.  Overview of the on-board hardware and off-board host computer 

architecture.  
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A. UAV Sound Data Characteristic Analysis 

In this study, we observed that the sound produced by the UAV 

varies with each movement, including changes in altitude and 

forward or backward motion. The frequency band of the UAV 

sound tends to rise with increased motor output and fall when 

the output decreases. We recorded and analyzed audio data at 

different motor power levels, under the assumption that the 

audio characteristics change with actual UAV operation. The 

frequency spectrums of the UAV sound at 50%, 75%, and 

100% motor power of a propeller are depicted in Figs. 7(a), 8(a), 

and 9(a) respectively. In these spectrum diagrams, the 

maximum amplitude of the audio data is indicated as f0. 

Additionally, spectrograms of propeller sound, showing time 

and frequency at each motor output level are presented in Figs. 

7(b), 8(b), and 9(b). These spectrograms reveal that the 

frequency components of the UAV sound are relatively stable 

at a constant motor power. Specifically, from Fig. 7, the UAV 

sound at 50% motor power has a prominent component around 

200 Hz. When compared with Figs. 8 and 9, which represent 

75% and 100% motor power respectively, we observed that the 

UAV sound frequency and noise level increase significantly 

with higher power, more than doubling in some cases. However, 

the comparison between 75% and 100% motor power shows a 

frequency shift of about 50 Hz without a substantial change in 

sound volume level. This variability suggests that a simple 

noise filter, which cannot adapt to the fluctuating frequency 

range of a flying UAV's sound, is inadequate. Creating a system 

to automatically adjust the filter's cut-off frequency based on 

varying frequencies is not practical because it relies on audio 

levels and it's hard to accurately suppress UAV sounds. 
Consequently, noise filtering based on conventional signal 

processing is impractical for this application. Thus, based on 

these findings, we opted for a machine learning model that 

learns from data with values on the frequency axis for this study. 

 

 
The technique of employing frequency-dependent audio data 

for training in this study stands in contrast to the models 

typically used in speech recognition, which rely on the 

waveform of speech to identify words. In conventional audio 

learning for speech recognition, words need to be recognizable 

irrespective of the speaker's gender or tone, indicating that 

frequency alone is insufficient for learning. Our study doesn't 

concentrate on recognizing human speech, but rather on 

removing unwanted sounds from a mixture that includes human 

speech to improve the clarity of the speech. Additionally, the 

audio data we aim to train is a continuous standing wave, 

making the use of frequency-dependent data more suitable. 

Therefore, as a preprocessing step, both the training audio data 

captured from the UAV's microphone underwent a Fast Fourier 

Transform (FFT) process. This step converted the time-

dependent data into frequency-dependent data, preparing it for 

the subsequent training phase. 

 

 
Fig. 6.  Outline of the noise canceling (suppression) procedure of this study. 
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Fig. 7. Spectrum and spectrogram analysis of Rotor Motor Power at 50% (a) 

Spectrum of output motor power at 50%. (b) Spectrogram of output motor 

power at 50%.  
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B. Application of GAN for Pseudo-UAV Sound Generation 

This study employs a method known as Conditional GAN 

(CGAN) [24] to learn the sound of UAVs. CGAN, an evolution 

of the GAN method, has been applied in various learning 

contexts [25-27]. In our initial trials using only GAN, the output 

results for pseudo-UAV sound were found to be unsatisfactory, 

particularly in terms of frequency dependence. Consequently, 

we adopted CGAN to introduce specific conditions into the 

training data. Theoretically, since CGAN is derived from GAN, 

its basic structure mirrors that of GAN. Therefore, this section 

first introduces GAN and its learning methodology. 

Typically, the GAN learning method has been used for image 

generation and has not been much used for audio frequency 

learning. In this study, we use the FFT of audio data as a 

preprocessing step for learning, and train each frequency as 

training data. A schematic diagram of the GAN training 

procedure is shown in Fig. 10. The GAN consists of two neural 

networks (NNs): a generator NN model (referred to as the 

Generator) and a discriminator NN (referred to as the 

Discriminator). In a fully trained GAN, the Generator becomes 

proficient enough at creating fake data that the Discriminator 

struggles to distinguish between real and fake inputs. In this 

paper, we train the Generator using the CGAN method, which 

is detailed below, to produce pseudo-UAV sound noise that 

closely adheres to the GAN. Subsequently, the trained 

Generator is utilized to generate pseudo-UAV sound data. The 

objective function of the GAN can be expressed in the form of 

Eq. (1).  

 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) =

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] +

𝐸𝑥~𝑝𝑧(𝑥) [log (1 − 𝐷(𝐺(𝑧)))] (1)

 

 

 In the context of the audio data used in this study, 

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)  represents the expected value for the real UAV 

audio data used in training, and 𝐷(ｘ)  signifies the 

Discriminator's evaluation of this real data. On the other hand, 

 
(a) 

 
(b) 

Fig. 8.  Spectrum and spectrogram analysis of Rotor Motor Power at 75% (a) 

Spectrum of output motor power at 75%. (b) Spectrogram of output motor 

power at 75%. 

  
(a) 
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(b) 

Fig. 9.  Spectrum and spectrogram analysis of Rotor Motor Power at 100% (a) 

Spectrum of output motor power at 100%. (b) Spectrogram of output motor 

power at 100%.  
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𝐸𝑥~𝑝𝑧(𝑥)
 denotes the expected value when pseudo-UAV sound, 

which is synthetically generated by the Generator, is input to 

the Discriminator. Here, 𝐺(𝑧) refers to the pseudo-UAV sound 

created by the Generator from a noise input z, and 𝐷(𝐺(𝑧)) 

indicates the Discriminator's evaluation of this generated sound. 

Essentially, while 𝐷(ｘ)  assesses real audio data,  𝐷(𝐺(𝑧)) 

assesses the authenticity of the pseudo-UAV sound produced 

by the Generator. 

The entire function of eq. (1) forms a min-max game where 

the Generator tries to minimize the function (hence the 

𝑚𝑖𝑛𝐺part) while the Discriminator tries to maximize it (hence 

the 𝑚𝑎𝑥𝐷 part). This adversarial process leads to the Generator 

improving its ability to create data that resembles the real data, 

and the Discriminator improving its ability to differentiate real 

from fake. 

In GAN, a one-dimensional uniform random value is input to 

the input layer of the generator, the output and the training data 

are mutually input to the discriminator, and the correctness is 

judged from the error. The weights of the Generator and 

Discriminator are modified based on the losses incurred. This 

learning technique enhances accuracy through repeated 

iterations and is primarily applied to discover correlations in 

large datasets of image data and to generate AI-created images 

[28-29]. 

 

 
One of the advantages of using GAN in this context is that it 

does not require a large amount of supervised data across 

various output scenarios, which is typically necessary for 

enhancing the accuracy of other machine learning procedures. 

Traditional decision-making processes in machine learning, 

such as regression and classification, require a substantial and 

balanced amount of data for both positive and negative 

outcomes. However, with GAN, only the target data (positive 

data) for training is needed. This makes it particularly suitable 

for training with the specific audio data output by each motor 

of the UAV. 

In this study, the training data have only two dimensions: 

frequency and the value of the level at that time. In addition, 

correlations can easily be determined by the characteristic UAV 

sound. Therefore, the use of a GAN in this study is effective 

both in terms of the amount training data and training time 

required. However, in order to learn the variation of UAV 

sound output by motor according to the varying flight status, we 

built a model partially based on a method called image-to-

image translation with CGAN [30]. In the CGAN method, the 

input layer of the Generator or the input data can be pre-

conditioned to produce arbitrary output results depending on 

the condition. The objective function of CGAN is given by Eq. 

(2) below. 

 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) =

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥, 𝑐)] +

𝐸𝑥~𝑝𝑧(𝑥) [log (1 − 𝐷(𝐺(𝑧, 𝑐)))] (2)

 

 

In this approach, diverging from the standard GAN as described 

in Eq. (1), a condition 𝑐 is incorporated into the training data. 

This modification results in both the Generator and 

Discriminator being trained with the influence of condition 𝑐, 

thereby shaping the training process in specific ways. Other 

symbols in eq. (2) are the same as in Eq. (1).The primary aim 

of this study is to enable the Generator to produce outputs that 

closely match the ground truth. In alignment with this objective, 

the Generator’s loss function is articulated in Eq. (3). 𝐺(𝑥) 

denotes the output of the Generator when it is given noise 𝑥 as 

input while 𝐷(𝐺(𝑥))denotes the output of the Discriminator 

when given 𝐺(𝑥), the output of the Generator. 

 

𝐿(𝐺) = 𝐸𝑥~𝑝𝑧(𝑥) [log (𝑥 − 𝐷(𝐺(𝑥)))] (3) 

 

To ensure that the outputs from the Generator closely resemble 

ground-truth values, the model in this study is trained using 

Generator outputs that mirror the conditions of the input values. 

In the realm of image-to-image translation with CGAN, a 

generator model incorporating L1 regularization is often 

constructed [30]. However, in this study, such a process is 

deemed unnecessary due to the lower dimensionality of the data 

that used. Regarding the generation of pseudo-UAV sound, the 

input to the Generator is actual sound recordings from 

microphones mounted on the UAV. This approach allows the 

pseudo-UAV sound to be generated based on varying UAV 

motor outputs, obviating the need for selecting a specific 

pseudo-sound for each specific scenario. Furthermore, this 

method reduces computer processing requirements as it 

eliminates the necessity for a distinct generator model for each 

case. 

 

 

C. UAV Sound Data Pre-processing for GAN 

Fig. 11 presents an outline of the CGAN utilized in this study. 

 
 

Fig. 10.  Architecture of generative adversarial networks.  
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Fig. 11.  CGAN model used in this study.  
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As a preliminary step, we simplify the data during pre-

processing to enhance the learning of audio data correlations 

more effectively and rapidly. This simplification occurs prior to 

the learning phase, as depicted in Fig. 11. Neural Network (NN) 

training models in machine learning usually require input 

values ranging between 0 and 1, necessitating the normalization 

of the audio data obtained from the microphone. This 

normalization involves taking the absolute value of the audio 

data post-Fast Fourier Transform (FFT), a process outlined in 

Eq. (4). Here, each value of 𝐹(𝑡) corresponds to a particular 

frequency component of the original sound signal. 𝑓(𝑥) is the 

original signal in the time domain. A summation from 𝑥 = 0 to 
𝑁 − 1, where 𝑁 is the total number of samples in the signal. 

The summation is used to calculate each frequency component 

of the sound signal. 

 

𝐹(𝑡) = |∑ 𝑓(𝑥)𝑒𝑥𝑝 (−𝑖
2𝜋𝑡𝑥

𝑁
)

𝑁−1

𝑥=0

| (4) 

 

Although 𝐹(𝑡) in Eq. (4) has negative audio levels and negative 

frequencies, learning with NNs does not allow inputting 

negative values. In order to avoid this problem, we first biased 

all the audio level data so that the audio levels were positive. 

However, this method did not produce the desired learning 

results because the learning model could not capture the 

features. Therefore, the absolute values of all values were used 

as input values during training. In this study, the 16-bit depth 

digital audio data used has a maximum integer value of 65535. 

This value represents the highest possible amplitude in a 16-bit 

audio format. If normalization is performed by simply dividing 

the audio data by the maximum value of 65535, it results in 

excessively small values. This scale reduction makes it 

challenging to distinguish between different frequency 

components, which in turn causes a significant decrease in 

learning accuracy. In addition, when regenerating sound from 

the subtraction output values which is explained in next section, 

a challenge arises because multiplying the 16-bit values results 

in a significant deviation from the expected values, due to the 

small differences between each element's values. To address 

above issues, a preprocessing step was employed in this study. 

This step involves keeping the values of the normalized UAV 

sound data over 70 dB. Simultaneously, all irrelevant 

components in the audio data are set to 0 to focus the learning 

process on pertinent elements. This preprocessing approach is 

detailed in Eq (5), where 𝐹(𝑡) = 𝑋𝑡. 

 

𝑋𝑡 ≤ 70[dB], 𝑋𝑡 = 0  

𝑋𝑡 > 70[𝑑𝐵], 𝑋𝑡 (5) 

 

Furthermore, a low-pass filter (LPF) with a cut-off frequency 

of fc = 40 Hz was used in the low-frequency region to remove 

vibration noise from the UAV flight, added inrush noise due to 

microphone characteristics, and hum noise from the inverter. 

Fig. 12 shows the (a) input waveform, (b) LPF processing, and 

(c) processed waveform. 

 

 

D. UAV Sound Noise Suppression 

The objective of using a CGAN-trained generator model to 

generate pseudo-UAV sound is to process audio captured by a 

 
(a) 

 
 

(b) 

 
(c) 

Fig. 12.  Data preprocessing: (a) Original data; (b) LPF process; (c) Keeping 

the values of the normalized UAV sound data over 70 dB.  

  

LPF
fc = 40 Hz 

70 dB Line 
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microphone on an actual UAV. This pseudo-UAV sound is 

subtracted from the original audio recorded by the same UAV-

mounted microphone. The purpose of this subtraction is to 

suppress the UAV noise, thereby enhancing the clarity of any 

human voices present in the recording. This technique is 

particularly beneficial when the UAV microphone captures 

audio mixed with human voices. The subtraction process is 

detailed in Eq. (6). To elaborate, the absolute value of the sound 

level data for each frequency, captured per second from the 

UAV's microphone, is represented as |𝑋𝑛| =  [𝑋0,  𝑋1,  𝑋2, … ]. 
Similarly, the absolute value of the sound level data for each 

frequency per second for the pseudo-UAV sound, generated by 

the generator model, is represented as  |𝑧𝑛| = [𝑧0, 𝑧1, 𝑧2, … ]. 

The result of subtracting |𝑧𝑛| from |𝑋𝑛| is denoted by 𝜔𝑛 =
[𝜔0, 𝜔1 , 𝜔2, … ], where 𝑛 = [0,1,2, … , 𝑡/2]. 

 

𝜔𝑛 = [
𝜔0

𝜔1

⋮
] = [

𝑋0

𝑋1

⋮
] − [

𝑧0

𝑧1

⋮
] (6) 

 

In the process of manipulating audio data, the values for each 

frequency in 𝜔𝑛  may sometimes become negative. This occurs 

when the pseudo-UAV sound generated by the neural network 

is significantly louder than the actual input audio, resulting in 

an overshoot that is manifested as unwanted sound. Such 

negative values are contrary to the objectives of this research, 

which aims to isolate and enhance desired sounds like human 

speech. To rectify this issue, all negative values in 𝜔𝑛  are 

replaced with zero. This approach effectively prevents the 

reproduction of unwanted sound when the audio data is restored. 

The formal representation of this corrective measure is detailed 

in Eq. (7). 

𝜔𝑛 ≤ 0, 𝜔𝑛 = 0 (7) 

E. Sound Restoration Processing 

After suppressing noise (UAV sound) from the frequency 

data, the next step is to recover the audio data. Initially, the 

time-based audio data were transformed into frequency-based 

data using the Fast Fourier Transform (FFT). To revert these 

frequency-based data back into the time domain, the inverse 

FFT (IFFT) is employed. This transformation is crucial for 

reconstructing the original audio characteristics while 

excluding the noise components that were identified and 

suppressed earlier. Eq. (8) below illustrates the IFFT process, 

representing the discrete FFT as 𝐹(𝑡). Here, 𝑍(𝑡) denotes the 

complex frequency domain representation of the signal 

obtained from the subtraction result. Other symbols are the 

same as in Eq. (4). 

 

𝑓(𝑥) =
1

𝑁
∑ 𝑍(𝑡) exp (𝑖

2𝜋𝑡𝑥

𝑁
)  

𝑁−1

𝑡=0

=
1

𝑁
∑ 𝑍(𝑡) exp (−𝑖

2𝜋𝑡𝑥

𝑁
)

𝑁−1

𝑡=0

(8)

 

 

As shown in Eq. (6), since the value of 𝜔𝑛  is taken as the 

absolute value during the learning process, the positive and 

negative symbols of the original audio data are lost. In this case, 

sound restoration by IFFT is difficult. In the process of sound 

recovery, it's crucial to maintain the correct symbol (positive or 

negative) for each audio data point. To overcome this hardle, in 

our study, we employed the U-Net technique [32][33], as shown 

in Fig. 13. The U-Net method enables the reintegration of 

certain information at both the input and output stages, 

circumventing the learning phase of the GAN's neural network. 

This feature is crucial for preventing the loss of significant data 

during the input process. 

As depicted in Fig. 14, the U-Net system in this study plays 

a key role in ensuring the integrity of the symbol, phase, and 

volume of data. Notably, due to the linear symmetry of the 

frequency values around axis 0 in the FFT, we trained only the 

values on the positive axis of the frequency spectrum. The 

results were then linearly replicated on the negative axis. This 

approach simplifies the process while preserving the accuracy 

of the audio data. As a result, it is possible to use only half of 

the total training data, which greatly reduces the training time 

and processing requirements of the PC used for training.  

 

 

 

IV. EXPERIMENTAL EVALUATION 

A. Experimental Environment 

To verify the effectiveness of the proposed sound 

suppression method, a learning model was used to learn the 

sounds of UAVs and to generate pseudo-UAV sounds at 50%, 

75%, and 100% motor power levels of the rotors. The training 

audio data have a sampling frequency of 16 kHz and a bit depth 

of 16 bits. During the experiments, the UAV was positioned 

approximately 3 meters away from the human subject. This 

distance was considered sufficient for effectively recording the 

human voice, considering the sensitivity of the microphone 

 
Fig. 13.  The basic U-Net architecture. 

  

 
Fig. 14.  The U-Net application of this research.  
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used. The range can be extended by employing a more sensitive 

microphone. The audio data consist of recordings of the UAV 

sound at each motor power level, with 5 minutes of audio data 

used for each training session. Audio data containing a mixture 

of UAV sounds and human voices were also prepared in the 

same manner. Consequently, the model was trained on a dataset 

that included data for each frequency, comprising a total of 300 

data points. 

 
(a) 

 
(b) 

 
(c) 

  

Noise 
Created by 
NN

Canceled 
sounds

-6dB

 
(d) 

Fig. 15. Cancelling (suppression) of UAV sound noise at rotor motor power 

50%. (a) the input audio frequency spectrum and a comparison with the 

frequency spectrum of the pseudo-UAV sound generated by GAN Generator 

model, (b) the frequency spectrum after subtracting the UAV sound, along with 

a comparison with the input audio frequency spectrum, (c) the input audio 

frequency spectrogram, and (d) the frequency spectrogram after cancelling 

(suppressing) the UAV sound.  

 
(a) 

 
(b) 

 

Noise 
Created by 
NN

Canceled 
sounds

-5.5dB
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(c) 

 
(d) 

 

Fig. 16. Cancelling (suppression) of UAV sound noise at rotor motor power 

75%. (a) the input audio frequency spectrum and a comparison with the 

frequency spectrum of the pseudo-UAV sound generated by the GAN 

Generator model, (b) the frequency spectrum after subtracting the UAV sound, 

along with a comparison with the input audio frequency spectrum, (c) the input 

audio frequency spectrogram, and (d) the frequency spectrogram after 

cancelling (suppressing) the UAV sound. 

  

 
(a) 

Noise 
Created by 
NN

 
(b) 

 
(c) 

 
(d) 

Fig. 17.  Cancelling (suppression) of UAV sound noise at rotor motor power 

100%. (a) the input audio frequency spectrum and a comparison with the 

frequency spectrum of the pseudo-UAV sound generated by the GAN 

Generator model, (b) the frequency spectrum after subtracting the UAV sound, 

along with a comparison with the input audio frequency spectrum, (c) the input 

audio frequency spectrogram, and (d) the frequency spectrogram after 

cancelling (suppressing) the UAV sound.  

  

Canceled 
sounds-5dB
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B. Experimental Results 

In this paper, we primarily focus on evaluating the 

suppression of UAV sound. Figures 15, 16, and 17 illustrate: 

(a) the input audio frequency spectrum and a comparison with 

the frequency spectrum of the pseudo-UAV sound generated by 

the proposed Generator model based on GAN, (b) the frequency 

spectrum after subtracting the UAV sound, along with a 

comparison with the input audio frequency spectrum, (c) the 

input audio frequency spectrogram, and (d) the frequency 

spectrogram after cancelling (suppressing) the UAV sound, 

using trained generator models at 50%, 75%, and 100% UAV  
rotor motor power, respectively. 

Comparing Figures 15(a), 16(a), and 17(a), we observe that 

the pseudo-UAV sound is generated along the frequency axis, 

corresponding to the UAV sound component output by each 

motor. Figures 15(b), 16(b), and 17(b) demonstrate that the 

UAV noise-suppression process effectively reduces the UAV 

noise component by an average of -5 dB across all outputs. 

These findings indicate that the machine learning method 

employed for generating pseudo-UAV sound can accurately 

learn the frequency and amplitude levels of the sound noise 

components corresponding to motor's output. The results 

depicted in the frequency-amplitude level graphs reveal that the 

UAV sound noise component is reduced by approximately 5 dB 

on average, a reduction deemed appropriate and effective for 

noise suppression. Upon listening to the restored audio data, we 

perceived a noticeable suppression in the UAV noise level. 

However, it should be noted that this method does not eliminate 

all UAV sound components. 

The sound regeneration process was also tested by generating 

the remaining sound after UAV sound noise suppression, 

particularly focusing on the sound mixture of UAV sound and 

human voice. This process achieved success to a certain degree; 

however, some noise persisted in the remaining audio data. 

Despite this, the audibility of the human voice was notably 

improved. This improvement will enable the application of the 

proposed UAV sound suppression for victim detection 

activities at disaster sites, using on-board UAV microphones. 

The results of these tests can be verified through the video 

attached to this paper. 

All the aforementioned experiments were conducted using a 

specially developed hardware architecture. This setup involved 

connecting a UAV onboard type small computer with the 

offboard host service computer. Throughout these experiments, 

we also verified the implementation capabilities of this 

hardware environment. 

V. CONCLUSION 

In this study, we introduced a novel audio processing method 

and demonstrated its effectiveness in overcoming the 

challenges faced by voice-based systems when utilizing 

Unmanned Aerial Vehicles (UAVs) in disaster scenarios. 

Initially, we developed the necessary hardware architecture, 

establishing a connection between the UAV's onboard small-

type computer and an offboard service host computer. Our 

approach focused on suppressing the sound generated by UAVs 

from a mixture of UAV and human voice sounds, with the aim 

of enhancing the clarity and audibility of the human voice. This 

suppression process entails generating UAV sound using a 

Generative Adversarial Network (GAN) and then subtracting 

this generated sound from the mixed audio. Additionally, we 

present a method for regenerating the residual sound post-

subtraction, employing a U-net architecture. 

In our experiments, pseudo-UAV sounds at varying UAV 

rotor motor powers were generated and subtracted from actual 

audio data comprising both UAV and human voice sounds, to 

assess the system’s efficacy. Our method proved to be 

somewhat effective in amplifying the human voice when mixed 

with UAV sounds. The current performance would be enough 

to apply the proposal for human detection process at disaster 

sites. However, it was observed that some noise still remained 

in the resultant audio. Based on these findings, we plan to 

continue our research, focusing on underlying issues that have 

emerged. Ultimately, our goal is to implement GAN on low-

end edge computers [34], enhancing real-time processing 

capabilities. 
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