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Abstract—Federated Learning (FL) has emerged as a powerful paradigm in Artificial Intelligence, facilitating the parallel training of
Artificial Neural Networks on edge devices while safeguarding data privacy. Nonetheless, to encourage widespread adoption,
Federated Learning Frameworks (FLFs) must tackle (i) the power imbalance between a central authority and its participants, and (ii)
the challenge of equitably measuring and incentivizing contributions. Existing approaches to decentralize and incentivize FL processes
are hindered by (i) computational overhead and (ii) uncertainty in contribution assessment [1], limiting FL’s scalability beyond use cases
where trust between participants and the server is established. This work introduces a cutting-edge, blockchain-enabled federated
learning framework that incorporates Federated Knowledge Distillation (FD) with compressed 1-bit soft-labels, aggregated through a
smart contract. Furthermore, we present the Peer Truth Serum for Federated Distillation (PTSFD), which cultivates an
incentive-compatible ecosystem by rewarding honest participation based on an implicit yet effective comparison of worker
contributions. The primary innovation stems from its lightweight architecture that simultaneously promotes decentralization and
incentivization, addressing critical challenges in contemporary FL approaches.

Index Terms—Federated Learning, Blockchain, Reward Mechanism, Federated Distillation, Decentralized Machine Learning.

✦

1 INTRODUCTION

THE ascent of Machine Learning (ML) has been marked
by a growing emphasis on decentralized and privacy-

preserving solutions. One of the leading solutions, Federated
Learning (FL), allows training of Deep Neural Networks (NNs)
across distributed devices, ensuring data remains localized,
hence addressing privacy concerns. Federated Averaging
(FedAvg) [2], a cornerstone algorithm in FL, achieves
this by aggregating locally trained models to produce a
global model. However, FL’s transformative potential is
curtailed by (i) A trust deficit emanating from the imbalance
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of power between workers and the central server and
(ii) an absent practical reward mechanism to incentivize
worker contributions. Notably, while blockchain’s inherent
transparency and immutability characteristics hold promise
in addressing the trust issue, its effective integration with
FL for scalable deployments has remained elusive [3], [4],
[5]. Furthermore, designing mechanisms that effectively
reward worker contributions without compromising data
privacy remains open research in FL [1], [6]. Comparing
and evaluating worker contributions in FedAvg is non-
trivial since data always stays private [1], [7]. Traditional
solutions like the Leave-one-out [8] or Shapley value
[9], [10] introduce computational overhead and hinge
on a centralized authority, constraining their adoption
in decentralized, blockchain-based solutions. Lastly, the
prohibitive cost of storing vast amounts of data
on blockchain systems, compounded by the intensive
computational demands, means popular methods like
FedAvg struggle to fit within General Purpose Blockchain
Systems (GPBS). This has prompted researchers towards
Application Specific Blockchain Systems (ASBS) or off-chain
aggregation [11], [12], [13], [14], [15] – both bringing their
set of challenges.

1.1 Contributions

In response to these challenges, this work introduces
the Peer Truth Serum for Federated Distillation (PTSFD),
a blockchain-enabled and incentivized FL framework.
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It utilizes Federated Knowledge Distillation (FD) on 1-bit
compressed soft-labels, combined with the Peer Truth
Serum for Crowdsourcing [16], which is adjusted for the
FD case.

1) Incentivization: We present the Peer Truth Serum for
Federated Distillation (PTSFD), an informed-truthful
multi-task peer prediction mechanism tailored for
the FD case. It discerns contributions based on
the correlation of reported 1-bit compressed soft-
labels. This approach drastically reduces storage
requirements, making it particularly suited for
blockchain.

2) Decentralization: The reduced storage requirement
and the simplicity of our method promote
decentralization. The framework can be deployed
on simple smart contracts hosted on prevalent
blockchains, such as the Ethereum Virtual Machine
[3], eliminating the need for specialized ASBS and
simplifying the entire FL process.

3) Scalability and Efficiency: Our method, which
builds upon Federated Knowledge Distillation,
significantly reduces both communication
overheads and blockchain storage needs. This sets
the stage for large-scale, practical FL deployments
without sacrificing efficiency or scalability.

We substantiate our contributions through theoretical
validations and exhaustive experimental analyses. Our
findings reveal a system that maintains a strong incentive-
compatible equilibrium, demonstrating resilience against
adversarial actions. Moreover, it showcases efficiency gains
in storage and communication costs compared to FedAvg
in various FL scenarios. The core of this work lies in
its pioneering architecture, laying the groundwork for a
lightweight, fully decentralized, incentivized, and efficient
Federated Learning paradigm.

Pre-trained teacher- and 
student model perform 
inference on samples 
from a dataset X

KL divergence is calculated 
with probability q (teacher) 
and probability p (student)

KL divergence loss  
to improve the 
student model 

Fig. 1: Knowledge Distillation

2 BACKGROUND AND RELATED WORK

2.1 Federated Averaging

The most common algorithmic approach to FL problems is
FedAvg, where the training process consists of an iteration
of the following steps:

1) The central server selects a subset of clients W ,
which participate in this training round.

2) The central server sends the current model θ to the
selected clients.

3) The selected clients perform local training on their
private data, leading to updated client models θi.

4) The updated models θi ∀i ∈ W ′ are send back to
the central server.

5) The central server aggregates the updated models
to a new global model.

This training paradigm requires a two-way
communication of the model θ (resp. θi) at every iteration,
which can result in significant communication overhead for
state-of-the-art NN models with hundreds of millions of
parameters. To address this challenge, various approaches
have been proposed, including pruning methods [17] and
advanced compression techniques [18], [19], [20], [21],
[22], [23], [24], [25]. However, despite these advances, the
fundamental issue of scaling FedAvg to larger models
remains, impeding the utilization of blockchain for storing
or aggregating models [1].

2.2 Knowledge Distillation and Federated Settings

2.2.1 Knowledge Distillation
Knowledge Distillation (KD), depicted in Figure 1, is a
technique in deep learning where a smaller NN model
(often called the ”student”) is trained to mimic the behavior
of a larger, pre-trained model (referred to as the ”teacher”)
[27]. This is accomplished not by transferring the model
parameters directly, but rather by aligning the output
distributions of both models. Traditional training methods
involve training a model directly on ground-truth labels,
using a cross-entropy loss that measures the discrepancy
between the model’s predictions and these true labels. In
contrast, KD employs a divergence-based loss, such as the
Kullback-Leibler (KL) divergence, to measure the difference
between the student’s predicted probabilities and those of
the teacher model. This divergence provides insights into
how closely the student is able to mimic the behavior of its
teacher. A distinct feature of KD is the use of ”softened”
labels. In traditional classification tasks, hard labels are
used, which unequivocally classify a data point into one
category. However, the teacher model in KD provides ”soft”
labels in the form of probabilities, indicating the confidence
levels across various categories. These probabilities can
be further softened using a temperature parameter T to
yield a smoother distribution, capturing the nuances of
decision boundaries and offering richer guidance to the
student model. This process allows the student to inherit
not just the overt knowledge from the ground-truth labels
but also the implicit, or ”dark”, knowledge embedded
in the teacher model’s predictions. Since only soft-labels
are necessary to perform backpropagation, models with
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Fig. 2: Federated Learning (from [26]) vs. Decentral 1-bit Compressed Federated Distillation on Blockchain.

varying architectures can learn from the teacher. The appeal
of KD lies in its ability to produce compact models
with performance that closely mirrors that of much larger
networks. These compact models are advantageous for
deployment in resource-constrained environments, such as
mobile devices or edge devices, without sacrificing much in
terms of accuracy.With the above foundation in KD, we can
delve deeper into its application in the FL setup, specifically
focusing on Federated Distillation.

2.2.2 Federated Distillation
Drawing from the KD paradigm, Federated Distillation
(FD) [28], [29], [30] extends the soft-label philosophy to
a federated landscape, where the aggregated soft-logits
from workers act akin to the soft-label output from
an overarching teacher model. While FedAvg directly
communicates the model parameters to transfer information
between the central server and the clients, FD uses soft-label
predictions Y pub

i obtained on a separate public distillation
dataset Xpub for this purpose. More precisely, the locally
updated model fθi+∆θi is indirectly communicated to the
central server by sending its predictions on the distillation
dataset, i.e.,

Y pub
i = {fθi+∆θi(x) | x ∈ Xpub}. (1)

Therefore, unlike traditional FL techniques such as
FedAvg that mandate a consistent model structure across
clients due to the aggregation of model parameter updates,
FD does not require a single NN architecture but allows
each worker to adopt a distinct architecture that might be
best suited to its local data- or computational restrictions.
Additionally, instead of with NN parameters, it scales with
the size of the distillation dataset. This characteristic of FD
can lead to communication savings [26], especially for large
models. In this work, we modify a recently proposed, highly
communication-efficient FD method [26], called Compressed
Federated Distillation (CFD), which is based on the multi-
round protocol developed in [28], [30]. In our modified
version of CFD, every client performs the following steps
in each communication round:

1) Train on local datasets and improve model θi = θ+
∆θi using Xpriv

i , Y priv
i .

2) Predict labels Y 1bit
i using the improved model θi

on Xpub to compute soft-labels Y pub
i and perform

1-bit quantization Y 1bit
i = Q1bit(Y pub

i ).
3) Upload the integer-encoded compressed soft-labels

to the smart contract (in a two-step commit-reveal
fashion outlined in Algorithm 3).

4) (Blockchain) Aggregate predictions Y pub
aggr by

majority vote over all Y pub
i .

5) Download the aggregated predictions Y pub
aggr from

the blockchain.
6) Distill the current model θ using Xpub and Y pub

aggr.

The authors of [26] showed that CFD largely reduces
the information necessary for exchange by quantization
Q and the use of a small public distillation dataset (e.g.,
random subset selection). The savings are in the order of
two orders of magnitude when compared to Federated
Distillation, and more than four orders of magnitude when
compared to FedAvg. The possibility to apply binary soft-
label quantization, i.e., Qb with b = 1, ensure three
important properties for a decentralized CFD on Blockchain,
namely

• It reduces the amount of information processed in
the aggregation process heavily.

• It makes contributions by workers explicit and
comparable.

• It supersedes the need for additional encryption like
noise inducing Differential Privacy or computational
heavy secure multiparty computation.

2.3 Blockchain Technology in FL context

Blockchain was initially introduced with Bitcoin by Satoshi
Nakamoto in 2008 [31]. It is referred to as a distributed
ledger managed by nodes in a peer-to-peer network, where
cryptographic links of information ensure resistance to
modification and immutability. The network is governed
by a consensus mechanism [32] among peers, which
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supersedes the need for central coordination. The advent
of general-purpose blockchains [3], with smart contract
functionality supporting Turing-completeness, allows for a
decentralized, immutable, and transparent business logic
atop of blockchain. This technology is able to mitigate open
problems of FL environments due to its inherent properties,
namely:

Decentralization. In server-worker architectures,
workers are exposed to a power imbalance and a single
point of failure. A malicious server could (i) exclude
workers arbitrarily or (ii) withhold reward payments.
Furthermore, a server-worker design is not suitable for an
environment where multiple entities share a common and
equal interest in advancing their respective models. The
decentral property of blockchain systems ensures a federal
system for entities with equal power without the need for a
central server.

Transparency and Immutability. Since every peer in the
system shares the same data, data on blockchain can only be
updated and never deleted. A transparent and immutable
reward logic in an FL context ensures trust on the worker
side. On the other hand, each worker is audited and can
therefore be held accountable for malicious behavior.

Cryptocurrency. Many general-purpose blockchain
systems come with cryptocurrency functionality, e.g., the
option to implement payment schemes within the business
logic of the smart contract. Based on a reward mechanism
of the FL system, workers can be rewarded immediately,
automatically, and deterministically without the need for a
trusted third party.

To analyze Blockchain systems, we categorize them into
two main types:

1) Application Specific Blockchain Systems (ASBS):
Blockchains which have to be adapted to a specific
FL use-case require a novel infrastructure. This
causes overhead in terms of complexity at the
development, deployment, and hence more likely
to introduce vulnerabilities.

2) General Purpose Blockchain Systems (GPBS):
These are limited due to restricted virtual machines
and predefined consensus layers, but allow for easy
development, deployment, and operation utilizing
already existing frameworks [4], [5], [33], [34], [35].

These types can either be public or
permissioned/private. Public blockchains, like Ethereum,
are open networks where anyone can participate, hence
making it expansive to use as every transaction has to be
duplicated by every node in the network. Permissioned
blockchains, such as Hyperledger Fabric [5], restrict
participation to authorized entities, offering a controlled,
efficient, and private environment that may be preferable
for FL scenarios with known and trusted participants.

2.4 Related Work

We focus on related Federated Learning Frameworks (FLF)
that (i) are both decentral and reward participation as
well as (ii) use blockchain at its core to decentralize
FL. That is, parameters are aggregated or stored in a

decentralized way.1 We extended the systematic analysis
established by [1] to compare FL, the application of
Blockchain and the Contribution measurement in Table 1.
Note that the inherent complexity of FLF leads to
heterogeneity in terms of application, overall design, special
focus and details. [36] designs an FL system for home
appliances using blockchain and a new normalization
technique for differential privacy. Similarly, [42] introduces a
regional FL framework for vehicles, integrating a reputation
mechanism and a blockchain-secured trading platform.
Focusing on robust mechanism deisigns, [15], [43] propose
an FL protocol on blockchain using contest theory for
worker engagement. [44] employs a Stackelberg game-
based FL system considering contributions, deadlines, and
upload times. [45] introduces DeepChain, a blockchain-
secured FL framework with a special focus on privacy.
[46] presents a two-layered blockchain for mobile edge
networks. [47] minimizes communication costs in IoT
FL through a double-layer aggregation model. [48]
offers a specialized Democratic Learning (DemL) solution
for on-device learning, including a unique consensus
mechanism. [49] introduces Proof of FL (PoFL), an energy-
efficient blockchain mechanism. [50] provides a secure
FL framework for UAV-assisted sensing, incorporating
differential privacy and reinforcement learning-based
incentives. [51] designs a Mobile Crowdsensing framework
that uses blockchain and edge intelligence for resource-
constrained environments. [52] evaluates participant
contributions transparently in its FL framework. [41]
combines FL and blockchain for secure data sharing in
neural training, using Shapley values for fair rewards.
Lastly, [53] integrates blockchain and model distillation
to accommodate model heterogeneity and enhance
communication efficiency, yet it falls short in detailing
blockchain operations and providing a theoretical analysis.

2.4.1 Incentivization of FLF
Measuring contributions in FL to fairly reward clients
remains an open research challenge [1], [6]. Various metrics
and methods are currently used for this purpose, each
with its own set of challenges and limitations. [44], [48],
[50], rely on self-reported information such as data size to
determine rewards. However, this approach is susceptible
to malicious behavior as false reporting leads to a maximal
return. Alternatives include using similarity measures like
the Euclidean distance of model updates [36], or employing
voting systems for contribution assessment [43], [47].
Despite their utility, these methods lack rigorous theoretical
and experimental validation and are vulnerable to attacks.
Explicit methods like Shapley value [41], [52] or simple test-
set accuracy [42], [49] have been utilized for explicit reward
measurement. However, when applied in a decentralized
context, these explicit methods (i) either require complex
adjustments to the blockchain consensus mechanism, (ii)
cause infeasible overhead (especially Shapley value), or
require a central authority that measures the contribution
against the test set, introducing a single point of failure.

1. often, blockchain is only applied as an additional feature but not
as part of the core infrastructure e.g. to store reputation [36], [37], [38],
[39] or as a way to randomly choose an aggregator out of the client pool
[40], [41].
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While [46] acknowledges multiple factors like data quality
and task satisfaction as affecting rewards, it remains vague
about its contribution measurement methodology. Similarly,
[51], [54], and [48] lack specificity in this regard.

2.4.2 Decentralization of FLF
The trade-off in using blockchain lies between scalability
and decentralization. Although it is theoretically favorable
to decentralize all FL operations - namely Aggregation
(A), Coordination (C), Payment (P), and Storage (S) - on-
chain, doing so may introduce prohibitive computational
and storage costs. This is because all blockchain nodes
must replicate both computation and storage at all times.
Specifically, the need to store and manipulate data-
heavy objects, such as millions of NN parameters, on-
chain restricts the framework to a limited number of
participants. In summary, Table 1 compares decentralized
and incentivized FLF to the approach presented in this
work. Our approach is unique in allowing for NN flexibility
(see Section 2.2) while simultaneously maintaining full
decentralization and scalability.

3 PROBLEM STATEMENT AND REWARD
MECHANISM

3.1 Problem Statement

We assume a federation F of workers W who have a
common interest in advancing their private Neural Net-
works based on (i) additional data from other participants
and (ii) the unlabeled public dataset Xpub through
Federated Distillation (FD). We consider an environment
where all participants of F have equal power. For
example, no central entity such as a central server
should have the power to either censor or manipulate
the reward distribution. Each worker participating in
the training is responsible for submitting predictions
on the public dataset Xpub based on their locally
trained model and label distribution labelCounti of the
predictions. To enable decentralization, a smart contract
atop a blockchain will replace the central server. This
contract will (i) aggregate the workers’ predictions and
(ii) calculate the rewards considering other contributions.
To ensure accountability and to prevent free-riding, each
worker must stake a deposit Di. D =

∑
i∈F Di will

be used to pay τ̄i for each contribution at the end of
the training process. Note that τ̄i ≥ Di if worker i’s
contributions are above average to F and τ̄i ≤ Di

otherwise. Malicious behaviors, such as (i) withholding
after committing and (ii) committing an incorrect label
distribution labelCounti, will result in the slashing of
the deposit and exclusion from F . The worker selection
process is beyond the scope of this work. Reputation
systems [55], [56] or required registrations might be feasible
solutions. Our proposed framework is designed to be
lightweight and blockchain agnostic. By employing 1-bit
compressed logits on a public test set, instead of aggregating
millions of parameters of modern NN (FedAvg), and
incorporating a computationally simple, correlation-based
reward mechanism, our framework uniquely enables (i)
on-chain aggregation and (ii) on-chain reward calculation,

while maintaining compatibility with both ASBS and
GPBS. While theoretically possible, many promising public
blockchain projects are still in their technological infancy,
either lacking smart contract functionality or facing
scalability restrictions. These constraints currently make
deploying our system on public blockchains economically
infeasible, due to high transaction fees and limited
transactions per second, resulting in scalability issues.
Consequently, our framework is specifically designed for
the cross-silo case on permissioned blockchains. We
assume the following properties:

1) Honest Majority Assumption: We assume that the
majority of the nodes in the blockchain network are
honest and follow the protocol. This is critical for
the blockchain’s consensus mechanism to function
correctly.

2) Sybil Attack Resistance: We assume that our
blockchain network is resistant to Sybil attacks,
where an adversary controls multiple nodes. This
is especially important for the GPBS deployment,
where entry to the network is more open.

3) Confidentiality and Integrity: We assume that the
blockchain ensures the confidentiality and integrity
of the data and code.

3.2 Reward Mechanism Motivation
As no entity is in possession of the true labels of Xpub

in the decentralized Federated Learning setting, workers’
evaluations cannot be verified. This might encourage
workers to report random data without actually classifying
Xpub. This can be mitigated by rewarding peer consistency,
e.g. the reward depends on its consistency with the label
given by other workers. However, the best strategy in
such schemes is for all workers to report the same answer
without investing effort in finding the real label. The
solution to these issues is to set up a mechanism, where the
expected profit for each individual worker is maximized,
if they put high effort into solving the task while acting
truthful. In contrast to a server-worker relationship, our
framework assumes multiple stakeholders with common
interest in improving their respective model. The initially
staked deposit D which will be used to pay τ manifests
this mutual interest. Yet, contributions may be of different
quality to the overall federation. Low quality workers may
even have a negative effect on the overall federation even if
their intention is truthful. At the same time, some classes in
Xpub may be less common and therefore are more important
to classify correctly. Hence, a mechanism is required to:

1) incentivize only workers with the best abilities for
the task

2) incentivize these workers to invest their utmost
effort in obtaining the most accurate answer

3) incentivize workers who are able to classify
uncommon samples in Xpub with higher rewards

3.3 Peer Truth Serum for Federated Distillation
The Peer Truth Serum for Crowdsourcing (PTSC) is a
promising Multi-task Peer Prediction mechanism. Through
a scoring rule τ , it rewards workers for surprisingly
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Ref. FL Type NN-flex. A C P S S on BC CM TA Scal.
[45] FedAvg n.s. ✗ ✓ ✗ ✓ ✓ NN-p n.s. ✓ limited
[44] n.s. n.s. ✗ ✓ ✗ ✓ ✓ NN-p, MD Accuracy, data size ✓(SG) limited
[52] FedAvg CS ✗ ✓ ✗ ✗ ✓ NN-p Generic (Shapley values) ✗ limited
[46] n.s. CD ✗ ✓ ✗ ✓ ✓ NN-p n.s. ✗ limited
[41] FedAvg CS ✗ ✓ ✓ ✗ ✓ NN-p ED of model updates ✗ limited

[15], [43] n.s. n.s. ✗ ✓ ✓ ✓ ✓ NN-p, MD Accuracy (generic) ✓(CT) limited
[42] n.s. CD ✗ ✗ ✓ ✗ ✓ NN-p Accuracy (loss) ✓ limited
[36] FedAvg n.s. ✗ ✗ ✓ ✓ ✓ NN-p ED of model updates ✗ limited
[54] n.s. n.s. ✗ ✗ ✗ ✗ ✓ NN-p Accuracy (loss) ✗ limited
[51] n.s. n.s. ✗ ✗ ✗ ✗ ✓ NN-p n.s. ✓ limited
[50] n.s. n.s. ✗ ✗ ✗ ✗ ✓ NN-p,MD Data size, sensing capacity ✓(RL) limited
[49] n.s. n.s. ✗ ✗ ✗ ✓ ✓ NN-p Accuracy ✓ limited
[48] n.s. n.s. ✗ ✗ ✗ ✓ ✓ NN-p n.s. ✗ limited
[47] FedAvg n.s. ✗ ✗ ✓ ✓ ✓ NN-p,MD Accuracy (generic) ✗ limited
[53] FD n.s. ✓ ✓ ✗ ✓ ✓ n.s. Similarities to others ✗ (n.s.)

this work FD CS,(CD) ✓ ✓ ✓ ✓ ✓ logits, MD PTSFD ✓ good

TABLE 1: Summary of decentral and incentivized Federated Learning Frameworks. (Ref. = Reference, NN-flex. = Neural Network
flexibility, A = Aggregation, C = Coordination, P = Payment, S = Storage, S on BC = Storage on Blockchain, CM = Contribution measurement, TA =

Theoretical analysis, Scal. = Scalability, MD = Metadata, n.s. = Not specified, CS = Cross-silo, CD = Cross-device, NN-p = Neural Network parameters (e.g.
gradients, models, model updates), SG = Stackelberg game, CT = Contract theory, ED = Euclidean distance, RL = Reinforcement Learning)

common reports, encouraging honest and high-effort
behavior without the need for ground-truth knowledge
[16]. PTSC merges the reward mechanism of [57] with the
Peer Truth Serum concept [58], [59], ensuring incentive
compatibility across a non-binary solution space suitable for
heterogeneous workers. Introducing the Peer Truth Serum
for Federated Distillation (PTSFD), we adopt the PTSC
framework, as described in Algorithm 1, for the Federated
Distillation setting. In this scenario, a group of workers
perform statistically independent tasks, where a task refers
to classifying a sample j, with j ∈ Xpub. The discrete
density function is represented as:

Algorithm 1: The Peer Truth Serum for
Crowdsourcing [16]

1 Step 1
2 CalculateFrequency(all tasks except worker

i’s report)
3 Let Ri(x) =

num(x)∑
y num(y) be the frequency of

reports (excluding worker i), where num
counts the occurrences of reported values x

4 Step 2 SelectPeerWorker(task j)
5 Select the peer worker p for task j

6 Step 3 RewardForReporting(xw)
7 Worker i is rewarded for reporting xij on task

j with the score:

τ(xij , xpj) = λ · (τ0(xij , xpj)− 1)

where xpj is the report from worker p on task
j, and λ > 0. The function τ0 is given by:

τ0 (xij , xpj) =

{
1

Ri(xij)
if xij = xpj

1 if xij ̸= xpj

Ri(x) : C 7→ [0, 1],
∑
x∈C

Ri(x) = 1 (2)

Here, Ri(x) excludes the contribution from worker i and
denotes the fraction of reported labels, given by:

Ri(x) =
labelCount(x)∑
y∈C labelCount(y)

(3)

Furthermore, PTSFD incorporates an adjustable penalty
term β. This modification acknowledges that the primary
motivation might be the utility of an improved model,
making the payment secondary (as seen in Equation 6).
Consequently, the reward for each sample is:

τij (xij) = λ ·
(

1

npeers

∑
p

τ0 (xij , xpj)− β

)
(4)

Where λ adjusts the payment magnitude and β modulates
the reward-accuracy ratio. The cumulative reward for
worker i is computed over all tasks as:

τ̄i =
∑

j∈Xpub

τij (5)

3.4 Game-theoretic Analysis

The setting can be considered a two-stage game. In stage
1, workers choose the amount of effort e they want to
invest in classifying Xpub. To simplify the analysis, we
assume two levels of effort, high e1 and low e0. Here, e1
represents the best work possible exerted by the worker,
and e0 represents no effort (i.e., no local NN training).
Unlike in FedAvg-based systems, the proposed framework
applies FD, hence it does not require a uniform NN among
the clients but allows for flexible architectures appropriate
for the hardware constraints of the respective workers (see
Section 2.2). In stage 2, workers decide on what to report.
The baseline model assumes each worker solves every task.
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Yet, without loss of generality, workers could be randomly
allocated to solve tasks such that each sample of Xpub is
classified by at least two different workers.

Workers. We assume workers to be individually rational,
aiming to maximize their expected profit Πi = Rewardsi −
Costsi:

maxE (Πi) = Ui(θ
improved
i ) + Ui

(
τ̄i − [ci(ei) + cfixS ]

)
(6)

Ui represents the expected utility function of worker i,
which can vary among workers. The expected rewards
of contributing to the federation F are twofold: (i) the
expected utility of the improved model θimproved

i and (ii)
the utility of the expected monetary reward from S for
contributing to classify Xpub. We assume that the training
process incurs variable costs ci(ei), where ci is an increasing
function of effort ei. Specifically, ci(e1) > ci(e0), where e0
denotes no effort and e1 denotes high effort of worker i.
Effort represents the quality and quantity of private data,
model quality, number of training iterations, etc. A detailed
Pareto-optimal cost analysis [60], [61] under real-world
assumptions will be explored in future work. Additionally,
to offset free-riding of inactive but registered workers of S
who benefit from an improved model Ui(θ

improved
i ) without

contributing, fixed participation costs cfixS are necessary. The
initially staked deposit is used to pay contributing workers.
Thus, cfixS = Dbefore

i − Dafter
i describes the implicit costs

for accessing Y pub
aggr.

Incentive Compatibility. In order to evaluate PTSFD in
game theoretic terms, we analyze each workers expected
profit Πi = Rewardsi − Costsi. We assume Individual
Rationality (IR), e.g. workers try to maximize their expected
profit and do not participate if Π ≤ 0. For the sake
of simplicity, we further assume that the gain in model
improvement Ui(θ

improved
i ) is offset by Ui(c

fix
C ). When a

worker classifies a sample, it obtains an evaluation Y eval
j

which can be different from the reported value Y report
j . In

stage two, workers face three different strategies ∀j ∈ Xpub

[16]:

1) Honest Invest high effort e1 to obtain Y eval
j and

report honestly, s.t. Y report
j = Y eval

j

2) Strategic Invest high effort e1 to obtain Y eval
j but

reports Y report
j ̸= Y eval

j

3) Heuristic Do not invest any effort e0 and randomly
report Y report

j based on the a-priori known
distribution of labels in Xpub

We define the mechanism to be incentive compatible,
if the honest strategy is the dominant strategy for every
worker. We use an equilibrium analysis to determine the
resulting behavior of each worker. In particularly, σ =
(σ1, σ2, . . . , σn) represents a strategy profile of each worker.
This profile is an equilibrium σ̄ if for any worker i ∈ W ,
the workers expected profit is maximized with the honest
strategy profile σ̄. Suppose that worker i believes that the
peer workers are honest and their answer on a given sample
j is positively correlated with the worker i’s answer x, when
obtained with high effort e1. Specifically, worker i believes
that answer x is not less likely for sample j than in the
distribution over all tasks.

Honest Strategy. For every sample j in Xpub, the worker
calculates the probability scores over all possible classes in C
(output of the softmax layer of a NN). Let us further assume
worker i is in possession of a trained model θi, with an
overall accuracy Accuracyθi . We define the relative certainty
Aij of any prediction of client i on an element j of Xpub as
the product of the local classifier accuracy and the sample-
specific maxprobabilityscore.

Aij = Accuracyθi ·MaxProbabilityScoreij (7)

Under the assumption that the local client data Xpriv
i

is representative of the entire data distribution D, this
metric will give a heuristic measure for the data specific
certainty in the model prediction. Based on this metric, each
worker will make the decision whether to report predicted
labels, discarding those for which reward is expected to be
negative. This leads to the expected profit

E(Πij) = Aij · λ
(

1

R(xij)
− β

)
+ (1−Aij) · λ(−β)− ci(ei)

(8)
Assuming individual rationality, E(Πi,j) ≥ 0 in order to
incentive worker i to submit a vote on sample j. Following
8, we can derive minimum prediction quality

Aij ≥ R(xij) ·
(
ci(ei)

λ
+ β

)
(9)

required to incentivize worker i to participate, e.g.
Πi ≥ 0. Notice that the federation can set the overall
quality threshold by adjusting hyperparameter λ and β
appropriately, assuming similar variable costs c(e) on the
workers side.

Heuristic Strategy. The heuristic strategy assumes that
worker i does not exert any effort to obtain Y eval

j = x ∈ C.
The expected reward is based on the probability of matching
a peer’s answer. Given that answer x is independent of the
task, the probability of coincidentally matching a peer is
equivalent to the frequency of answer x ∈ C.

E(Πij) = R(xij)·
(

1

R(xij)
− β

)
+(1−R(xij))·(−β) = 1−β

(10)
It’s important to note that the expected profit for β = 1 is 0,
and it is strictly negative for β > 1. This holds irrespective
of what answer x is, or what the worker knows about the
distribution R(x) across labels in Xpub. Given that the noise
introduced to classify Xpub diminishes the overall model
quality, as per Equation 8, a rational worker is unlikely to
participate if β ≥ 1.

Strategic Strategy. Assuming the honest participation of
other workers, exerting Y eval

j while reporting Y report
j ̸=

Y eval
j consistently results in a negative expected profit for

all j ∈ Xpub.

E(Πij) = λ · (−β)− ci(ei) (11)

This is true provided the self-predicting condition [16] is
met, i.e.,

Aij(x|x)
R(x)

>
Aij(x̄|x)
R(x̄)

,∀x̄ ̸= x (12)

Considering a scenario where workers collude (they report
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x for both Y eval
j = x and Y eval

j = y), R will adjust such that
Rcol(x) = R(x) +R(y).

E(Πij) =


Aij · λ

(
1

Ri(xij)+Ri(yij)
− β

)
+(1− Aij) · λ(−β)− ci(ei) if Y eval

ij = xij

Aij · λ
(

1
Ri(xij)+Ri(yij)

− β
)

+(1− Aij) · λ(−β)− ci(ei) if Y eval
ij = yij

(13)
This change in R entirely offsets the increase in the
probability of a match. Therefore, only an honest strategy
paired with a high-quality model will yield a positive
expected reward for a given worker. This results in an
equilibrium σ̄honest for the PTSFD mechanism, thereby
demonstrating its incentive compatibility.

4 1-BIT COMPRESSED FEDERATED DISTILLATION
FRAMEWORK WITH SMART CONTRACT LOGIC

The protocol consists of the following steps: (i)
Task Specification & Contract Deployment, (ii) Worker
Registration & Deposit, (iii) Local Model Training, (iv)
Hash Commit Submission, (v) Reveal Predictions, (vi)
Aggregation & Reward Distribution, and (vii) Knowledge
Distillation from Xpub.

4.1 Task Specification & Smart Contract Deployment
To form Federation F , participants with similar interests
must agree on the requirements and specifics of an FD task,
specifically:

1) Task description and data distribution (e.g., images
of a certain type).

2) Reference to a public data set Xpub and potential
classes C for the Federated Distillation pipeline. This
will subsequently be utilized by workers to predict
the labels on each sample of the dataset.

3) Reference to the address of S .
4) Deposit amount Di that each worker must stake.
5) PTSFD and reward mechanism details (λ and β

values).

After forming a federation F , either an external third
party or one of the workers from F deploys the governing
smart contract S , stakes the necessary deposit Di, and lists
the addresses of all eligible workers in F , as well as the
aggregation and PTSFD logic of the FD task.

4.2 Worker Registration & Deposit Submission
Based on the task specifications, interested workers register
on the smart contract S using their respective blockchain
address (public key) and submit the required deposit Di.
S verifies if the applying worker belongs to the federation.
Given that |F| >> |W|, PTSFD motivates valuable workers
for F in terms of data and computational capacity to engage
while dissuading low-quality workers, as demonstrated in
Section 4.5. To preclude free-riding, workers in F who
aren’t registered shouldn’t access S . This restriction can
be implemented by deploying S on a suitable blockchain
system or by shuffling Xpub, ensuring only registered clients
can access the correct indices.

4.3 Local Model Training and Prediction

The entire training procedure encompasses two phases:
the local model training phase on local data Xpriv

i , Y priv
i

and the KD phase from Xpub, Y pub
aggr, which occurs as the

protocol’s final step, as detailed in Section 2.2.
Training on Local Data. Each worker either has

a pre-trained model or begins training a NN on their
specific private data until convergence (optionally, until a
predetermined minimum accuracy agreed upon within F
is achieved). Notably, unlike FedAvg, FD doesn’t mandate
a common shared NN architecture across all workers, thus
enabling them to select an optimal architecture tailored to
their computational resources.

Label Prediction. Upon completing the training,
workers compute the soft labels Y pub

i = {fθi+∆θi(x) | x ∈
Xpub} and subsequently quantize these to 1-bit as
Y 1bit
i = Q1bit(Y

pub
i ).

Label Count. The PTSFD mechanism necessitates data
on the label distribution R(x) over Xpub for reward
calculations. Hence, each worker i must compute the label
count labelCounti ∈ N|C| for each label present in Xpub,
to minimize computational overhead on the blockchain (as
described in Algorithm 2). The supplemental validation
function to ensure the accurate computation of labelCounti
depends on the specific blockchain system and is outside
this work’s purview.

Algorithm 2: Local label count for worker i
input : Integer encoded class votes xij , where

i ∈ W ′ ⊆ W
output: labelCounti

1 init labelCounti
2 var labelCounti ∈ N|C| = (0, 0, . . . , 0)

3 foreach j ∈ Xpub do // iterate over data
samples

4 labelCounti(xij) += 1

5 return labelCounti

4.4 Commit and Reveal

Information on the blockchain is transparent to every node.
Even in a private blockchain setup, workers inW could wait
for peers to publish Y 1bit

p and replicate their results without
expending any effort. To prevent this kind of copying and to
ensure that workers apply effort to classify Xpub, a two-step
commit and reveal scheme is employed.

Commit. Prior to publishing the results to S , where all
peer workers could view the submission, a cryptographic
hash hashCommiti = H

(
Y 1bit
i , salti, labelCounti

)
is

computed to obfuscate Y 1bit
i and labelCounti. The property

of pre-image resistance of a cryptographic hash function
(e.g., it should be challenging to find any message m
such that commiti = H (m)) and the property of collision
resistance (e.g., it should be challenging to find two distinct
messages m1 and m2 with H (m1) = H (m2)) ensure that
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Fig. 3: Iterative Process of on-blockchain Federated Distillation.

no worker can either retrieve Y 1bit
i or alter their previously

committed Y 1bit
i . Each worker i transmits hashCommiti to

S upon completing their training. It’s noteworthy that the
commit phase on S concludes once |W ′| ⊆ |W| workers
have registered with S or when the maximum time Tmax

commit

is reached.
Reveal. During the reveal phase on S , each worker

that successfully committed in the commit phase must
disclose Y 1bit

i , labelCounti, and salti within the timeframe
Tmax
reveal via a transaction function call to S . To counteract

withholding attacks, a worker’s deposit Di is forfeited if
worker i fails to reveal within the allotted time Tmax

reveal. The
smart contract then verifies the commitment’s validity to
confirm that H (Yi, labelCounti, salti) == hashCommiti.
Algorithm 3 provides the pseudocode for this scheme in
Solidity on the Ethereum blockchain.

4.5 Aggregation & Reward Distribution
We apply PTSFD to calculate the reward distribution for
each worker. In order to calculate the rewards, S aggregates
labelCounti across all workers i ∈ W ′ first to obtain the
global label count G =

∑
W′ labelCounti ∈ N|C| . G is a

helper variable to calculate Ri:

Ri =
1

m× n
× (G− labelCounti) (14)

The worker is rewarded for its prediction on sample j
with respect to it’s peers regarding Equation 4. The final
rewardScore for worker i is a sum of all individual rewards
over Xpub, given by

Algorithm 3: Commit and Reveal Protocol
Data: 32byte hashCommiti ←

H
(
Y 1bit
i , labelCounti, salti

)
1 , Init
2 var commitments←Mapping(addressi →

byte32) ∀i ∈ W
3 var userIsCommitted←Mapping(addressi

→ bool) ∀i ∈ W
4 Phase I commit(hashCommit)
5 foreach i ∈ W ′ do
6 require(userIsRegistered(msg.sender))

// registered in W
7 require(!userIsCommited(msg.sender))
8 commitments.append(commiti)
9 isCommitted(msg.sender) = True

10 Phase II reveal(Y 1bit
i , salt)

11 foreach i ∈ W ′ do
12 require(userIsCommitted(msg.sender))
13 require(H

(
Y 1bit
i , labelCounti, salti

)
==

commitments(msg.sender))

τ̄i = rewardScore(i)

= λ ·

 1

npeers
j

∑
j

∑
p

τ0(xij , xpj)

∀i ∈ W ′ (15)
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where parameter λ describes a scaling parameter for
the reward and npeers

j describes the number of peer
workers who also submitted a label prediction on j. The
aggregated predictions Y pub

aggr are calculated by majority
vote of Y 1bit

i ∀i ∈ W ′. We merge the reward computation
and aggregation into a single algorithm outlined in
Supplementary Materials B. Note that implementation
details may differ fundamentally depending on the
underlying blockchain architecture.

4.6 Knowledge Distillation on Public Dataset
Finally, workers download the aggregated predictions Y pub

aggr

from the blockchain and perform several epochs of KD
using Xpub and Y pub

aggr to improve their respective models
(θimproved

i → θi + ∆θi). Optionally, the training process
of each client, as shown in Section 2.2.2, can be repeated
until a specific threshold is achieved as specified in the
Smart Contract S . Note that λ should decrease with every
consecutive round, as most evaluated labels will not change.

4.7 Complexity Analysis
Because we are executing this protocol on the blockchain,
it’s essential to understand the computational and storage
costs involved. In this section, we discuss the overheads
related to computation and storage that our proposed
algorithm introduces. While the actual implementation on
a general-purpose blockchain system might differ based on
the underlying virtual machine, our PTSFD implementation,
as illustrated in Supplementary Materials B, provides a
useful reference to estimate the complexity.

4.7.1 Computational Complexity
The algorithm presented in Supplementary Materials B first
calculates the global label distribution and counts class
votes across all workers (lines 7 - 12). This computational
overhead is O(m · n), where m = |Xpub| and n = |W ′|.
Subsequently, we examine each data sample in Xpub,
rewarding or penalizing a worker based on its peers. We
also determine the aggregated class label for each sample
during this algorithm phase (lines 13 - 29). The process of
calculating the reward for each worker based on its peers
results in a computational overhead of O (m ·

∑n
i=1 npeers).

The global label calculation adds a cost of O(m · |C|). In
the baseline scenario, where each worker processes all data
samples from the public dataset and is considered a peer of
all other workers, the overall computational cost is given by
Equation 16.

O(m · (n2 + |C|)) (16)

For more efficient solutions, we distribute public dataset
samples among workers such that each sample is classified
by a maximum of two workers. Implementing PTSFD in
this manner would reduce the overhead as detailed in
Equation 17.

O(m · (2n+ |C|)) (17)

4.7.2 Storage Complexity
Two types of storage costs are associated with the proposed
algorithm: permanent storage and temporary memory
variables. V otes, M , S, Ri, and τ0 need memory storage

during the computation, resulting in O(|C| · (m + 2) +
n) additional memory storage. Whether the reported
frequencies labelCounti or each worker’s final reward share
rewardScore need permanent blockchain storage depends
on the requirements of the specific blockchain system.
Ideally, only globalLabels = Y pub

aggr is stored permanently on
the blockchain. The minimum amount of data required for
each round is represented by Equation 18, where η accounts
for the overhead due to encoding necessities.

bglobalLabels = n× |C| × 1bit + η (18)

4.8 PTSFD in Comparison to Shapley Value
Quantifying individual contributions in FL is essential for
the equitable distribution of rewards and the growth of
FL systems. The Shapley value is a concept in cooperative
game theory that distributes total gains among players by
measuring the marginal contributions each player makes to
different possible coalitions. For a worker i in a setW , with
utility evaluation function V : 2W → R, the Shapley value
ϕi(V ) is given by:

ϕi(V ) =
1

|W|!
∑
Π

[
V
(
SΠ
i ∪ {i}

)
− V

(
SΠ
i

)]
, (19)

where Π is the set of all permutations of W , and SΠ
i ⊂

W is the set of workers preceding i in permutation Π. The
Shapley value adheres to several axioms for fairness:

1) Efficiency: Total utility is fully distributed among
the workers:

∑
i∈W ϕi(V ) = V (W).

2) Symmetry: Workers contributing identically to
every subset receive identical rewards.

3) Null Player: Workers who do not enhance utility for
any coalition yield no reward.

4) Additivity: The Shapley value is linear over the
utility functions of combined games.

Despite these favorable properties, the computation of the
Shapley value scales with O(2n). In FL, V (S) = V (θS),
where θS is the FL model trained on the subset of
datasets {X,Y }S = {Xi, Yi}, i ∈ S from scratch for every
permutation:

V (S) = V (θS) = V (A(θinit, {X,Y }S)) (20)

where A(·) is a learning algorithm and θinit denotes
the initial model. The computational demands involved
in calculating the Shapley Value render it challenging to
efficiently execute even a single step on a general-purpose
blockchain. Recent studies have attempted to approximate
the Shapley value to mitigate this computational overhead
[62], [63], [64].In contrast, PTSFD offers a lightweight
method to elicit truthful contributions implicitly, bypassing
the exhaustive computation of the marginal utilities. PTSFD,
as an alternative, is designed to be compatible with
blockchain technology, enabling scalable and decentralized
FL without excessive computation, while still aspiring to
maintain fairness in incentives.

4.9 Limitations
Despite the benefits of our decentralized FD protocol, our
framework encounters the following limitations.
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Public Dataset. Although FD offers numerous
advantages, such as reduced information exchange
and the flexibility of independent NN architectures, the
FD training process necessitates access to a public dataset
Xpub. This may not be available for certain use cases. While
[65] demonstrated that highly disparate data distributions
might suffice for FD, relying on Aij as a heuristic for the
evaluation certainty of a sample limits the variance of
distributions between Xpub and Xpriv . The scoring method
proposed by [66] appears promising in addressing this.

Public Blockchains. Despite significantly reducing
computational and storage demands, our framework
remains unsuitable for current public blockchain systems
due to (i) the high costs associated with storing Y pub

aggr

and the computational overhead of PTSFD, and (ii) the
transparency of Y pub

aggr to nodes that are not members of
W ∈ F and hence did not make a deposit. Both issues
may be addressed by upcoming advancements in the public
blockchain sector.

Self Predicting Condition. PTSFD is incentive-
compatible and yields an optimal outcome when
workers are honest. However, the mechanism’s incentive
compatibility is contingent upon the satisfaction of
Equation 12. If classes are evenly distributed across Xpub,
the conditions will always be met. Example: Let Pr(x =
a) = 0.8 and Pr(x = b) = 0.2, but R(a) = 0.9 and
R(b) = 0.1. Although the worker’s Y eval

i = a, their
expected reward would be greater if Y report

i = b, as
0.8
0.9 − β < 0.2

0.1 − β.

5 EXPERIMENTS

In this section, we empirically evaluate the PTSFD
framework and analyze the reward distribution under
different levels of effort as well as its robustness in the
event of malicious behavior. We do not consider explicit
variable costs ci(e). Furthermore, we set the reward scaling
parameter λ = 1 for all experiments. We do not account
for lagging workers, so W ′ = W for all experiments.
All experiments are based on multiple rounds of the
proposed protocol. The code for our experiments is made
publicly available.2 Specifically, we experimentally validate
the following properties of PTSFD:

1) Performance: Choosing to participate in the
federation should lead to a significant improvement
in model accuracy for each worker.

2) Fairness: The greater the effort a worker exerts in
terms of training accuracy and amount of training
data, the higher the reward they should receive.

3) Robustness: Malicious workers should receive
substantially less reward, even under high collusion
rates.

5.1 Data Sets and Models

We analyze the decentralized 1-bit compressed FD with
the PTSFD protocol on three different federated image
classification problems, using EMNIST [67] / MNIST [68],
CIFAR-10 [69] / STL-10 [70] and Fashion MNIST [71]

2. https://github.com/Tsinghua-FL-Team/decentralized-FD

datasets on ResNet-18 [72] and LeNet [73] and respectively
as training/distillation data. Our Federation comprises 4,
10 and 25 workers for different experiments. The training
data is distributed among workers according to a Dirichlet
distribution with the Dirichlet parameter α. Figure 4 top
row illustrates the data distribution of 10 labels across 10
different workers for α = 100, α = 1, and α = 0.1. The
different alphas simulate various data distributions such
as iid and non-iid. We first train models locally on Xpriv

and then perform KD using the public dataset Xpub. Even
though in real-world PTSFD applications, workers might
train different model architectures and vary the number of
local training epochs based on their hardware constraints,
we employ a single default NN architecture for simplicity.
We simulate heterogeneity through varying local training
accuracy (early stopping), non-iid data, and different sizes
of Xpub. It’s important to note that the distribution of the
distillation data deviates from the worker’s data, mirroring
realistic FL scenarios (e.g., MNIST contains handwritten
digits, while EMNIST features a different set of handwritten
numbers; similarly, CIFAR-10 includes a distinct set of
images compared to the STL-10 dataset). We use the Adam
optimizer [74] with a fixed learning rate of 0.001 for both
the distillation and training processes. We minimize cross-
entropy loss for local model training on Xpriv, Y priv and
minimize Kullback-Leibler Divergence on Xpub, Y pub

aggr.

5.2 Storage and Communication Cost
Given that storage and computation costs on the blockchain
are critical scalability constraints for decentralized FLFs [1],
we assess our framework’s storage costs in comparison
to FedAvg for specific target accuracies. Table 2 shows
the communication cost (upstream/downstream) as well
as the storage cost required to achieve a specific
accuracy target for ResNet-18 and LeNet on the CIFAR-
10, MNIST, and Fashion-MNIST datasets, respectively. All
experiments were run under different data distributions
by varying the Dirichlet parameter α while simulating
4, 10, and 25 workers respectively. As observed from
the summarized results, our framework achieves accuracy
similar to that of a typical Federated Learning system
using FedAvg as the aggregation mechanism but at a
fraction of the communication and storage costs. For
instance, when training ResNet on CIFAR-10 with α =
100, we can achieve the target accuracy with a minimal
communication cost of 0.84 MB and storage cost of 0.92
MB, compared to the substantial costs incurred by FedAvg
(5.33 GB and 5.37 GB for communication and storage
costs, respectively, an improvement of roughly 5,000x).
The remaining experiments, showcasing model quality
improvement, reward fairness, and simulation of collusion
or heuristic behavior, were conducted using LeNet on
EMNIST/MNIST as training and distillation datasets. We
believe that these experiments sufficiently demonstrate the
desired results and would yield comparable outcomes for
other datasets or models.

5.3 Model Quality Improvement
Figure 4 illustrates the impact of the sizes of the local dataset
|Xpriv| and the public dataset |Xpub| on the accuracy for
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TABLE 2: Communication and storage costs (in MB) for achieving specific accuracy in FL across various datasets,
architectures, and data heterogeneity levels. We use 10’000, 12’800, and 5’000 samples respectively for CIFAR-10, MNIST

and Fashion-MNIST as distillation data. Communication rounds for target accuracy are in parentheses.

Model Train / Distill
Dataset

Target
α Up/Down FedAvg

1-bit
FedDistillAccuracy

ResNet-18 CIFAR-10/Testset/[STL-10] 0.74 [0.68] 100.0 up/down 5332.50 (5) 0.61 (16)
store 5375.16 (5) 0.77 (16)

0.67 1.0 up/down 5332.50 (5) 1.83 (48)
store 5375.16 (5) 2.29 (48)

0.50 0.1 up/down 8532.00 (8) 1.22 (32)
store 8574.66 (8) 1.53 (32)

LeNet Fashion-MNIST/Testset 0.86 100.0 up/down 78.00 (13) 0.19 (14)
store 78.24 (13) 0.22 (14)

0.85 1.0 up/down 78.00 (13) 0.11 (9)
store 78.24 (13) 0.14 (9)

0.77 0.1 up/down 72.00 (12) 0.16 (12)
store 72.24 (12) 0.19 (12)

LeNet MNIST/EMNIST 0.97 100.0 up/down 36.00 (6) 0.23 (6)
store 36.24 (6) 0.24 (6)

0.97 1.0 up/down 36.00 (6) 0.27 (7)
store 36.24 (6) 0.28 (7)

0.94 0.1 up/down 54.00 (9) 0.15 (4)
store 54.24 (9) 0.16 (4)
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Fig. 4: The influence of Xpub and Xpriv on model accuracy with corresponding dirichlet α setting. These experiments
were run using LeNet on MNIST / EMNIST respectively as training / distillation datasets.
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EMNIST/MNIST under both non-iid distributions (α = 0.1
& α = 1.0) and the iid distribution (α = 100) for 10
clients. A marked improvement in model quality is evident
for every worker following their KD execution. While the
size of the local training dataset plays a more substantial
role than the distillation dataset, the significance of the
latter should not be underestimated, particularly in the
context of non-iid distributions which can be attributed to
the inclusion of additional data from the public dataset.

5.4 Fair Effort-Reward Correlation
Figure 5 illustrates the correlation between effort, in terms of
both heterogeneous training efforts (top) and varying data
quantities (bottom), and the subsequent reward distribution.
PTSFD facilitates realistic FL scenarios where workers,
due to hardware constraints, can employ various local
model architectures and train them for different numbers of
epochs. For instance, we emulated heterogeneity by training
10 workers using diverse early stopping criteria, where
higher local training accuracy, indicative of greater effort,
corresponded to better rewards. Concurrently, variations
in private data quantity, while assuming consistent data
quality, also influence contribution quality. Overall, superior
training accuracy and more extensive local dataset result in
greater rewards.

5.5 Robustness of PTSFD
In order to ensure the desired quality of label predictions,
the federation can adjust the parameter λ to scale the
reward based on its underlying collateral (with λ = 1
consistently used in our experiments). Additionally, β can
be set to modify the penalty for incorrect answers, thus
tuning the confidence threshold required for rationally
individual workers (as described in Equation 9) to submit
a prediction. The initially staked deposit acts as a safeguard
against malicious behavior, as such actions can lead to
losses. In our experiment, workers can opt to withhold
their reports if they lack confidence in their predictions.
Figure 6 demonstrates the reward variations with different
penalty factors β across diverse confidence levels. For this
experiment, the local training data was divided based on a
Dirichlet distribution with parameter α = 0.1, mimicking
scenarios where workers might not have access to uniform
data. As a result, certain workers’ local models could be
ill-equipped to predict classes previously unavailable to
them. These workers will only submit their predictions if
their confidence in the most probable label surpasses a
certain benchmark. Our findings indicate that, by adjusting
β, PTSFD can effectively deter subpar contributions from
contaminating the federated training process.

5.6 Robustness in Case of Malicious Behavior
Building on the game-theoretic analysis detailed in
Section 3.4, we experimentally confirm our theoretical
claims in a real FL setting. We have demonstrated that
both heuristic behaviors (like bypassing local training to
randomly report labels on a public dataset) and strategic
tactics like collusion yield an expected reward of 1 − β.
Figure 7 (top) depicts the reward differences between
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Fig. 5: Effect of local training accuracy & local data size on
reward using LeNet on EMNIST.
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Fig. 6: Effect of confidence based predictions on reward
with different β (penalty) using LeNet on MNIST.

colluding and honest workers. Colluding predictions are
structured as:

Y report
i =

{
0 if Y eval

i ∈ {0, 1, 2, 3, 4}
9 if Y eval

i ∈ {5, 6, 7, 8, 9}

Conversely, Figure 7 (bottom) contrasts the rewards of
heuristic workers, who predict randomly on the public
dataset, with those of diligent participants. Overall, the
data indicate that genuine engagement results in the
most significant rewards, even amidst prevalent malicious
actions. In-depth cost considerations are reserved for future
studies.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3336980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



WITT ET AL. - REWARD-BASED 1-BIT COMPRESSED FD ON BLOCKCHAIN 14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00K

100.00K

200.00K

300.00K

= 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-100.00K

0.00K

100.00K

200.00K

= 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-200.00K

-100.00K

0.00K

100.00K

= 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00K

100.00K

200.00K

300.00K

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.00K

100.00K

200.00K

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-100.00K

0.00K

100.00K

Ratio of Compromised Workers

Av
er

ag
e 

Re
wa

rd

Average Reward - Honest Average Reward - Heuristic Average Reward - Collusion

Fig. 7: Average reward with varying ratio of colluding and heuristic workers under different penalty β. Federated
Learning setting with 10 workers running LeNet on EMNIST digits for 10 epochs. For all experiments, 40000 data points

from the MNIST data set were used as public dataset Xpub.

6 CONCLUSION

In this work, we introduced a novel decentralized
and reward-based 1-bit compressed Federated Distillation
scheme on the blockchain, incorporating the Peer Truth
Serum [16] specifically for Federated Distillation. The 1-
bit compression ensures explicit comparability between
contributions, a critical feature for automatically computing
rewards on a smart contract atop a general-purpose
blockchain system, where each worker is regarded
as an equitable member of the federation. We have
demonstrated that, in terms of storage on the blockchain and
communication overhead, our framework is significantly
more efficient than Federated Averaging. Additionally,
the system not only offers flexibility in neural network
architecture but also allows adaptation to various thresholds
of contribution quality by adjusting the penalty term β.
Furthermore, both theoretical insights and experimental
evidence suggest our proposed mechanism is resilient to
random reporting and collusion. We are confident that our
findings will further the scalability of Federated Learning
tasks in fully decentralized environments, where all entities
have an equal interest in enhancing their models.

REFERENCES

[1] L. Witt, M. Heyer, K. Toyoda, W. Samek, and D. Li, “Decentral
and incentivized federated learning frameworks: A systematic
literature review,” IEEE Internet of Things Journal, vol. 10, no. 4,
pp. 3642–3663, 2023.

[2] H. Brendan McMahan, E. Moore, D. Ramage, S. Hampson,
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