
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXXXX XXXX 1

Identifying the Key Attributes in an Unlabeled
Event Log for Automated Process Discovery

Kentaroh Toyoda, Member, IEEE , Rachel Gan Kai Ying, Allan NengSheng Zhang, and Tan Puay Siew

✦

Abstract—Process mining discovers and analyzes a process model
from historical event logs. The prior art methods use the key attributes
of case-id, activity, and timestamp hidden in an event log as clues
to discover a process model. However, a user needs to specify them
manually, and this can be an exhaustive task. In this paper, we propose
a two-stage key attribute identification method to avoid such a manual
investigation, and thus this is a step toward fully automated process
discovery. One of the challenging tasks is how to avoid exhaustive
computation due to combinatorial explosion. For this, we narrow down
candidates for each key attribute by using supervised machine learning
in the first stage and identify the best combination of the key attributes by
discovering process models and evaluating them in the second stage.
Our computational complexity can be reduced from O(N3) to O(k3)

where N and k are the numbers of columns and candidates we keep
in the first stage, respectively, and usually k is much smaller than N .
We evaluated our method with 14 open datasets and showed that our
method could identify the key attributes even with k = 2 for about 20
seconds for many datasets.

Index Terms—Process mining, key attribute identification, automated
process discovery

1 INTRODUCTION

Process mining enables us to discover and analyze a busi-
ness process model from historical event logs [1]. In par-
ticular, process discovery, as its name suggests, is the step
to discover a business process model by finding a pattern
of sequential processes in an event log. Once a process
model is obtained, we can use it for further analysis such as
conformance check (i.e., identifying whether a newly given
event log follows the discovered process model) and bottle-
neck analysis (i.e., identifying which parts of processes are
bottlenecks and can be improved). They have been proven
to be successful in many industries, including supply chain
(e.g., [2]) and manufacturing (e.g., [3], [4], [5]).

Process discovery algorithms, often called miners, have
been well-studied in the last two decades (e.g., [6], [7], [8],

Kentaroh Toyoda is with the Institute of High Performance Computing
(IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionop-
olis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore. E-mail:
kentaroh.toyoda@ieee.org
Rachel Gan Kai Ying is with Nanyang Technological University (NTU),
Republic of Singapore.
Allan NengSheng Zhang, and Tan Puay Siew are with Singapore Institute
of Manufacturing Technology (SIMTech), Agency for Science, Technology
and Research (A*STAR), 5 CleanTech Loop #01-01, CleanTech Two Block B,
Singapore 636732, Republic of Singapore.
The research was conducted when K. Toyoda and Gan K. Y. R. were in
SIMTech.

[9], [10], [11]). The basic idea of process discovery is to find
the frequent patterns of ordered and parallel execution of
processes. Most of the existing algorithms discover a process
model using three attributes in an event log, namely (i)
case-id, (ii) timestamp, and (iii) activity (hereafter, the key
attributes). Processes with the same case-id are a series
of correlated processes. A timestamp is used in process
discovery to know the order of processes in the same case-
id, and activity is the name of a process. Fig. 1 shows
an example of an event log in a hamburger shop and its
discovered process model.1 In this example, the ID can be
seen as the case-id as the processes in the same case-id seem
to be correlated. Also, the activity and datetime columns are
used as the activity and timestamp, respectively.

Most of the existing process discovery algorithms require
users to specify the key attributes in an event log. However,
such a manual approach is not desirable when an event log
contains dozens of or even hundreds of columns. Further-
more, as process mining may not necessarily be executed by
practitioners, an automated process discovery where a user
does not have to specify the key attributes in an event log
would be appreciated in many situations.

In this line of work, Abbad Andaloussi et al. proposed
a method to identify a case-id column in an event log [12].
Their idea is to test every column in the event log as the case-
id attribute and evaluate a process model discovered by
such an assumption. However, this method only identifies
the case-id attribute. Second, its computation is exhaustive
as it repeatedly discovers and evaluates process models
for every case-id candidate. If we were to identify case-id,
timestamp, and activity attributes with their method, the
computation cost would be O(N3) where N is the number
of columns of a given event log.

This paper considers the scenario where raw data are
given in a table format and the columns of case-ids, activ-
ity, and timestamp are hidden in the table. The objective
is to identify these attributes efficiently. More specifically,
let L be a table-formated raw log data with Nrows rows
and Nattr attributes, i.e., A = {a1, a2, · · · , aNattr} where
Nattr ≥ 3. Furthermore, L consists of raw event values
E = {e1, e2, · · · , eNrows} where ei = {vi1, vi2, · · · , viNattr

}.
The objective is to identify (i) case-id, (ii) activity, and (iii)
timestamp attributes in A by analyzing E. In this setting,

1. We modified the example event log in https://pm4py.fit.
fraunhofer.de/getting-started-page

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3330175

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

kentaroh.toyoda@ieee.org
https://pm4py.fit.fraunhofer.de/getting-started-page
https://pm4py.fit.fraunhofer.de/getting-started-page

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXXXX XXXX 2

ID Activity Datetime . . .
1337 Take Order 01/04/2020 1:37PM . . .
1337 Note Address 01/04/2020 1:39PM . . .
1337 Note Payment Method 01/04/2020 1:40PM . . .
1337 Grab Soda 01/04/2020 1:42PM . . .
1337 Prepare Burger 01/04/2020 1:41PM . . .
1337 Wrap Order 01/04/2020 1:53PM . . .
1337 Deliver Order 01/04/2020 1:55PM . . .
1338 Take Order 01/04/2020 1:42PM . . .
.

→

Fig. 1: Left: An example of event logs; Right: Process model discovered from the table.

we propose a two-stage key attribute identification method
for automated process discovery. To avoid exhaustive com-
putation due to combinatorial explosion, we first narrow
down candidates for each key attribute by using supervised
machine learning. If we could identify a single candidate
for each key attribute, then we output them as the key at-
tributes. Otherwise, we identify the best combination of the
candidates by discovering and evaluating a process model
for every combination. We define five scoring functions
for this evaluation. Our computational complexity can be
reduced from O(N3) to O(k3) where k is the number of
candidates we keep in the first stage, where usually k is
much smaller than N . We thoroughly evaluated our method
with 14 open datasets, clarified which parameters affect
accuracy and computation, and showed that our method
could feasibly identify the key attributes even with k = 2
within a reasonable time (about 20 seconds).

The contributions of our research are as follows:

1) To the best of our knowledge, we are the first to
identify all the key attributes in an event log.

2) We propose a two-stage method to avoid the com-
binatorial explosion to reduce our computational
complexity from O(N3) to O(k3) where k ≪ N .

The remainder of this paper is organized as follows.
Section 2 summarizes the prior art and the motivation of our
work. Section 3 describes the proposed method. Section 4
shows the results of the performance evaluation. Section 5
discusses possible future work. Section 6 concludes the
paper.

2 RELATED WORK

2.1 Process Discovery
The mainstream research is the design of process discovery
algorithms or miners. Process discovery is a method to
extract the ordered sequences of processes from an event
log. As it is infeasible to cover all the process discovery al-
gorithms due to space limitations, we introduce some well-
studied ones here. According to a recent survey paper [13],
Cook and Wolf proposed the first process discovery algo-
rithm based on a finite-state machine (FSM) in 1995 [6]. van
der Aalst proposed to apply Petri-nets to process mining,
which is often called Alpha miner, in 2002 [7]. Weijters and
van der Aalst extended Alpha miner and proposed a new al-
gorithm called heuristics miner (HM) to handle noisy event
logs by taking into account the frequency of dependent ac-
tivities [8]. It also handles possible short loops that cannot be
dealt with in Alpha miner. HM is often chosen as it has been
proven to be successful in real-event logs (e.g., [14]). Hence,
it is often used as a base miner as in [10]. vanden Broucke

and De Weerdt solved several issues in HM and proposed
an extended algorithm called Fodina [10]. Leemans et al.
proposed a series of inductive miners (IMs) [9], [15], [16]. IM
discovers a set of block-structured process models to ensure
that the discovered models are sound and fit the observed
behaviour [9]. Leemans et al. extended the original IM to
filter out infrequent behavior quickly [15]. They further
extended IM to make it scalable by discovering a directly-
follows graph (DFG) from an event log once and applying
a divide-and-conquer strategy [16]. Augusto et al. proposed
a split miner (SM) [17]. SM discovers a process model by
filtering a DFG induced by an event log and identifying the
combinations of split gateways that capture the concurrency,
conflict, and causal relations between neighbors in the DFG.

2.2 Pre-processing Raw Data

The above process discovery methods can be applied to
event logs with explicit case-ids, timestamps, and activi-
ties. However, raw data, which are often extracted from
systems such as customer relationship management (CRM)
and enterprise resource planning (ERP), are not yet ready
for event logs. Diba et al. argue that we typically need to
follow three steps to generate event logs from raw data,
which are (i) event extraction, (ii) event correlation, and (iii)
event abstraction [18].

The event extraction is a process to retrieve raw event
logs from databases. The event correlation is a step to
correlate events by cases in the extracted logs. There could
be cases where we need to correlate events (i) when raw
data is missing case-ids, which correlate the series of events
in a log, and (ii) when case-ids are hidden in raw data and
unknown. The event correlation techniques have been well
studied to solve the former issue. An efficient approach
is key, as there could be many possible combinations for
correlating events in such unlabelled raw data. For instance,
Ferreira and Gillblad proposed a Markov-chain-based ap-
proach to infer a process model leveraging the activity
transition patterns [19]. Motahari-Nezhad et al. proposed
efficient algorithms and heuristics to discover correlated
events that could interest users [20]. Bayomie et al. proposed
a series of case-id inference algorithms with a complete
process model (e.g., [21][22]). Their approaches find the
best event correlation via optimization. Specifically, they try
to minimize the misalignment between a generated event
log and an input process model and the activity execution
time variance across cases using a simulated annealing
algorithm. Helal and Awad proposed an online approach
to handle streaming raw data [23]. Reguieg et al. proposed
a parallelized algorithm with MapReduce to scale the event
correlation process [24].

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3330175

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXXXX XXXX 3

For the cases when case-ids are hidden in raw data and
unknown, few approaches have been investigated. Abbad
Andaloussi et al. proposed an unsupervised case-id iden-
tification method [12]. It identifies a case-id column in a
given event log when it is not specified. Its idea is to find an
attribute that seems most likely to be the case-id by applying
a process discovery algorithm to every case-id candidate
column and measuring its likeliness based on performance
metrics such as recall and simplicity. Its rationality comes
from the fact that a process model discovered with the
correct case-id should give us better performance than that
discovered with a wrong case-id column. Bala et al. pro-
posed a method to identify the case-id and activity columns
in a raw event table [25]. They leveraged the fact that
we should see some repetitiveness of case-ids and activ-
ity columns. However, repetitiveness alone detects case-ids
falsely. Hence, they considered the pairs of events with high
individual repetitiveness but a low pairwise repetitiveness
to reduce such a false detection.

2.3 Motivation of Our Work
Most of the existing process discovery algorithms require
users to specify the key attributes in an event log, which
would be problematic in some situations. First, it is tedious
to manually look for these attributes as an event log is ex-
pected to contain tens of attributes. Furthermore, as process
mining would be conducted not only by practitioners but
also by laypeople, an automated approach is preferable,
where a user does not have to specify attributes to be
used as the key attributes. Our goal is fully automated
process mining, where no human intervention is required
to discover a meaningful process flow from an event log.

Abbad Andaloussi et al.’s work [12] would be the closest
to our goal. However, there are challenges to truly au-
tomated process mining. First, it only identifies a case-id
attribute, not a timestamp or activity. Second, its computa-
tion is exhaustive as it repeats process discovery to every
case-id candidate. If we are to identify case-id, timestamp,
and activity attributes at once, the second challenge would
be a big issue. Hence, our work aims to identify all the
key attributes in an event log without incurring exhaustive
computation.

3 PROPOSED METHOD

We propose a two-stage key attribute identification method.
As an event log may have many attributes, we first narrow
down candidates by analyzing the characteristics of values
in each key attribute. If we could identify a single candidate
for each key attribute, we output them as the key attributes.
Otherwise, we identify the best candidate by evaluating ev-
ery combination of key attribute candidates using a process
discovery algorithm. We choose the candidate tuple with
the highest score as the key attributes.

Fig. 2 illustrates our method. Our assumption on the
input event log is that it surely contains the key attributes,
but they are not explicitly given.

3.1 Narrow down candidates
We first narrow down the candidates of the key attributes
against a given unlabeled event log. Figure 3 shows the
overview of the procedures of this step.

3.1.1 Feature extraction
We leverage the fact that there are noticeable characteristics
in each key attribute. For instance, for case-ids, the same
case-ids should appear multiple times in an attribute, other-
wise, we cannot extract a process model with a single pro-
cess. Similarly, for timestamps, we can expect many digits
and symbols such as ‘-’ and ‘:’ in the values. To capture such
characteristics, we extract the nine features listed in TABLE 1
from each column.2 We call the first top seven features in the
list local features and the last two global features. The local
features are to extract characteristic features from each at-
tribute value. For instance, for timestamps, we would expect
more digits and symbols such as ‘-’ and ‘:’ than alphabets in
the values. In contrast, the global features are to extract the
frequency of the same values in a column. For instance, we
expect the same values to appear multiple times for a case-
id column. As each local feature is a vector calculated from
a value in an attribute, we calculate their mean values as the
final local features. For instance, if the local features of an
attribute contain three values, {Case-01, Case-02, Case-03},
as each value involves three small letters, i.e. ‘a’, ‘s’, and ‘e’,
out of six characters, fs.letters = (3/6 + 3/6 + 3/6)/3 = 0.5.

In contrast, global features are features extracted from
values in an attribute. For instance, if values in an attribute
are {1, 2, 3, 1, 2}, three unique values, namely 1, 2, and 3,
appear twice, twice, and once, fr.unique = 3/5 = 0.6 and
fm.unique = (2 + 2 + 1)/3 = 1.67, respectively.

3.1.2 Classification
We then leverage supervised machine learning with the
above features to narrow down the candidates for the key
attributes. We chose supervised machine learning because
many labeled event logs are available online.3 We build
three binary classifiers that output an attribute’s probabil-
ities of case-id, timestamp, and activity. For an unlabeled
event log, we calculate the above features of each column
and input them to trained classifiers to obtain the proba-
bilities of whether an attribute belongs to case-id, times-
tamp, or activity. We choose the column(s) with the Ntop
highest probability as candidates for each key attribute. The
larger Ntop is, the more candidates we would obtain. For
instance, when Ntop = 3, we will at least have 33 = 27
candidates. Hence, the possible Ntop would be one or two.
We will evaluate the relationships between Ntop, accuracy,
and computation time in Section 4. If Ntop = 1 and we have
only one single column for each key attribute, we output
them as the key attributes and do not proceed to the next
stage. Otherwise, i.e., when more than one column has the
highest probability, we need to identify the best one through
the second stage, which we will explain in the next section.

3.2 Discover and evaluate process models
When having more than one candidate, we discover and
evaluate a process model for each and determine the best
one based on a performance metric. For an event log labeled
by each candidate, we divide it into two parts by a case-id
column (candidate) and evaluate the goodness of the chosen

2. Note that we only use the first Nrows, say 1,000, rows for feature
extraction to reduce computation time.

3. E.g., http://www.processmining.org/event-data.html

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3330175

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.processmining.org/event-data.html

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXXXX XXXX 4

3. Discover and evaluate process models
A process model is discovered and evaluated for every
candidate. The candidate with the highest score will be
chosen as the correct key columns.

case_id cand timestamp
cand

activity cand

1 0 1 4

2 0 1 5

3 0 2 4

4 0 2 5

...

1. Input an unlabeled event log
A given event log may not have explicit column
names.

2. Narrow down candidates
Heuristics and machine learning will narrow down the
candidates of case_ids, timestamps, and activities.

c t a process model score

1 0 1 4 0.85

2 0 1 5 0.96

3 0 2 4 0.67

4 0 2 5 0.74

...

0 1 ... N

E_1 2022-08-01 13:09:40 ... John

E_1 2022-08-01 13:30:23 ... -

E_1 2022-08-01 15:03:12 ... Alice

E_2 2022-08-02 09:01:29 ... John

...

Fig. 2: Overview of our method.

TABLE 1: Extracted features.

FEATURE DEFINITION

fs.letters Ratio of small letters
fl.letters Ratio of large letters
fdigits Ratio of digits
fspaces Ratio of spaces (including tabs)
fsymbols Ratio of symbols
fchars Number of characters
fwords Number of words in a value

fr.unique Ratio of unique values
fm.unique Mean of number of each unique value

Classifier
(case-id)

Classifier
(timestamp)

Classifier
(activity)

0 1 ... N

E_1 2022-08-01 13:09:40 ... John

E_1 2022-08-01 13:30:23 ... -

E_1 2022-08-01 15:03:12 ... Alice

E_2 2022-08-02 09:01:29 ... John

...

Feature 0 1 ... N

fs.letters 0 0 ... 0.81

fl.letters 0.33 0 ... 0.11

...

fr.unique 0.31 0.19 ... 0.32

fm.unique 4.2 1.1 ... 3.4

Probability 0 1 ... N

Case-id 0.96 0 ... 0.32

Timestamp 0 0.99 ... 0

Activity 0.21 0 ... 0.34

1. Feature extraction 2. Classification

Fig. 3: Overview of our first stage.

attributes with 2-fold cross-validation (CV). Specifically, we
first use the first part for process model discovery and the
second part for evaluation, and then swap the parts and
do the same evaluation again. For instance, when a case-id
candidate consists of {1, 2, · · · , 9, 10}, we first discover the
process model with the event log that contains {1, 2, · · · , 5}
and evaluate it with the event log containing {6, 7, · · · , 10}.
We then swap and evaluate the training and evaluation
event logs and calculate the average of these two scores as
the final score.

We can use any process discovery algorithms for this
(e.g., [8], [9], [15]) and performance metrics (e.g., fitness,
precision, generalization, simplicity, and their combina-
tions [26], [12]). Fitness indicates how much of the observed
behavior in an event log fits (or explains) the discovered
process model. Precision, in contrast, quantifies how fewer
unnecessary possible paths are generated by the discovered
model. Generalization is to quantify how the discovered
model has the flexibility to an unseen event log. Last but
not least, structure or simplicity quantifies how fewer nodes
are used in the discovered model.

In some cases, a process discovery algorithm takes a
long time to discover and evaluate a process model or even
fails to do so. This would not happen in the case where
the combination of the key attributes is correct but would
happen when it cannot find similarities among cases due
to the wrong choice of the combination. To further save
computation time, we introduce two thresholds, thdis and
theval, to simply stop discovering or evaluating a process
model and return 0 as a score after thdis or theval has passed
for process discovery or evaluation. These parameters have
to be tuned based on the computer’s specifications.

4 PERFORMANCE EVALUATION

We conducted a performance evaluation to clarify the va-
lidity of our method. We evaluated accuracy and compu-
tation time against the recent business process intelligence
challenge (BPIC) datasets listed in TABLE 2. We used the
BPIC datasets that explicitly contain the key attributes
(i.e., “case:concept:name” for case-id, “time:timestamp” for
timestamp, and “concept:name” for activity).45 Accuracy
was measured for each key attribute and defined as the
number of correctly identified cases divided by the number
of trials. Computation time was measured by the stages.
As the first stage includes supervised machine learning, we
executed a hold-out validation where one dataset is kept
for testing while the others are used for training. We eval-
uated the accuracy and computation time of each dataset
10 times each. Our method is miner-agnostic, meaning any
mining algorithm can be used, and thus we referred to
Augusto et al.’s seminal benchmark paper [11] to choose
the miners for evaluation. According to [11], although there
is no dominant miner, inductive miner (IM) is found to be
one of the most accurate miner. In contrast, heuristics miner
(HM) is not the best or the latest algorithm, but we would
like to see how the difference in miners affects the final
result of our method. Hence, we tested the two process
discovery algorithms, IM [9] and HM [8], in the second

4. BPIC 2014 and 2016 datasets do not contain these attributes, and
we thus did not use them.

5. Although we used the explicitly labeled key attributes as unique
correct tuples for the performance evaluation purpose, other tuples
could benefit users. From this point of view, our first step may not
be sufficient for the evaluation purpose where there is an assumption
that only a single correct set of tuples exists. However, in reality, there
could be more than one set of key attributes on the table that could be
used as an activity, a case-id, or a timestamp [20], and we are technically
not able to identify one tuple.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3330175

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXXXX XXXX 5

TABLE 2: Datsets used
in our evaluation.

DATASET #COLUMNS

BPIC2011 128
BPIC2012 7
BPIC2013 incident management 12
BPIC2013 problem management (closed) 12
BPIC2013 problem management (open) 11
BPIC2015 1 29
BPIC2015 2 28
BPIC2015 3 29
BPIC2015 4 29
BPIC2015 5 29
BPIC2017 19
BPIC2018 75
BPIC2019 21
BPIC2020 22

TABLE 3: Parameters of the process discovery
algorithms.

MINER PARAMETER VALUE

IM Noise threshold 0.2

HM Dependency threshold 0.5
HM AND measure threshold 0.65
HM Minimum number of occurrences of activity 1
HM Minimum DFG occurrences 1
HM DFG pre-cleaning noise threshold 0.05
HM Loop length two threshold 2

TABLE 4: Breakdown comparison of
computation time.

k MINER
Computation time [s]

STAGE 1 STAGE 2

1 HM 0.58 5.65
1 IM 0.58 17.15
2 HM 0.60 17.01
2 IM 0.60 43.68

stage, and their parameters are listed in TABLE 3, which
are all default parameter settings defined by their libraries.
We implemented and evaluated our method using Python
and its process mining library, PM4Py [27].6 We extracted
the first Nrows = 1, 000 rows for the evaluation for each
dataset. We also set thdis = 5 seconds and theval = 60
seconds. The reason behind the choice of Nrows is that we
wanted to streamline the condition of the evaluation and
to make sure the computation finishes in a reasonable time.
Likewise, thdis and theval were heuristically chosen so that
we did not miss the correct combination of key attributes.

Let us first discuss how miners used in the second stage
affect the accuracy and computation time. Fig. 4 and TA-
BLE 4 show the accuracy and computation time to compare
miners. As can be seen from Fig. 4, we do not have a miner
that dominates the other. When we average the three types
of accuracy, IM is slightly better than HM; however, it is not
significant. However, when we compare computation time
by the miners, as in TABLE 4, the difference is significant.
HM is 2-3 times faster than IM regardless of k. As can
be seen from the table, the computationally dominant part
resides in the second stage to discover a process model and
evaluate it. We are interested in how the metric used in the
evaluation part of the second stage affects the computation
time and accuracy. Fig. 5 shows the computation time by the
metrics. Buijs et al.’s weighted average of the four individual
metrics [26], which we call Buijs2014, is the most time-
consuming because it computes all four metrics. Among the
four fundamental metrics, we found that precision is the
most time-consuming metric. When we look at the accuracy
results in Fig. 6, we cannot see a significant difference
in terms of accuracy, but generalization achieves the best
accuracy among the five metrics. From these results, we can
say that generalization is the most balanced metric in the
second stage. We then discuss how to choose k. Technically,
the first stage should leave the correct key attributes. We
evaluated a metric of coverage, whether the first step can
successfully retain the correct key attributes. We measured
the coverage metric by counting the cases where the correct
key attributes were kept in the first step and dividing it by
the total cases for k = 1 and 2. We evaluated it against all the
datasets and averaged the results. Fig. 8 shows the results of
coverage versus k. We can see from this figure that the larger
k the more correct key attributes we can retain. However, we
filtered out the correct key attributes, in particular, case IDs
and activities, even with k = 4.

6. Our source code including dataset preparation, evaluation,
and result summarization is available at https://github.com/
kentaroh-toyoda/research-process-mining.

The larger k, the more coverage we can achieve; how-
ever, from TABLE 4, the larger k the more computation time.
This is because we need to evaluate more combinations of
candidates for a large k. Hence, we want to set k as small as
possible. Luckily, we do not see much improvement when
we increase k from 1 to 2 as can be seen from Fig. 7.

Note that even if we set k = 1, meaning that when we try
to leave only the single best candidate for each key attribute
in the first stage, the second stage still does a job as can
be seen from TABLE 4. This means that we faced situations
where there were multiple best candidates in the first stage.

Let us discuss the relationships between accuracy and
the number of attributes in a dataset. Fig. 9 shows the
averaged accuracy versus the number of attributes in the
datasets. There is a negative correlation between accuracy
and the number of attributes. We can explain this with a
random guess where one randomly guesses which column
should be used as case-id, activity, and timestamp. If we
have 20 attributes, the accuracy of random guess would
be roughly 0.05(= 1/20) for each attribute. However, this
decreases to 0.01 when a dataset contains 100 attributes.

5 OPEN PROBLEMS

As the evaluation above shows, our method needs more
polishment in terms of accuracy and computation time, in
particular, when a given dataset is large. How well we can
narrow down candidates in the first stage would be key to
improving accuracy and reducing computation time at the
same time. Our current approach is to judge the possibility
of each key attribute against each table column. However,
one possible solution is to take into account information
captured from multiple columns or even from a whole table.
Although their work’s objective is not exactly the same as
ours, Zhang et al. proposed to consider the relationships
between adjacent columns to identify each table column’s
type [28]. Another promising direction would be to incor-
porate a context-aware approach (e.g., [29], [30], [31]). If we
could capture the context of the event log, then we would
be able to find more suitable key attribute candidates.

Regarding the computation time, one of the possible
approaches is partially evaluating models with sampled
event logs instead of using the whole one in the second
stage. We will need to make sure how many samples are
enough to assess the models. Another possibility to reduce
computation time would be to polish our implementation.
For instance, making use of a graphics processing unit
(GPU) would help speed up the computation [32].

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3330175

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://github.com/kentaroh-toyoda/research-process-mining
https://github.com/kentaroh-toyoda/research-process-mining

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXXXX XXXX 6

case-id timestamp activity
Attribute

0.0

0.2

0.4

0.6
Ac

cu
ra

cy

Miner
heuristics_miner
inductive_miner

Fig. 4: Accuracy versus miners.

simplicity fitness generalization precision Buijs2014
Metric

0

10

20

30

40

50

Co
m

pu
ta

tio
n

tim
e

[s
]

k
1
2

Fig. 5: Computation time versus metrics.

simplicity fitness generalization precision Buijs2014
Metric

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

k
1
2

Fig. 6: Accuracy versus metrics.

case-id timestamp activity
Attribute

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

k
1
2

Fig. 7: Accuracy versus attributes.

1 2 3 4
k

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

Attribute
case-id
timestamp
activity

Fig. 8: Coverage versus k.

25 50 75 100 125
Number of Attributes

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Fig. 9: Accuracy versus the number of
attributes in datasets.

6 CONCLUSIONS

We have proposed a two-stage key attribute identification
method for automated process discovery. If we were to eval-
uate all possible key attributes, their combinations would
be too huge to try. To avoid such exhaustive computation,
we first narrow down candidates by analyzing the charac-
teristics of values in each column. If we could identify a
single candidate for each key attribute, we output them as
the key attributes. Otherwise, we identify the best candidate
by evaluating every combination of key attribute candidates
using a process discovery algorithm in the second stage.
We chose the candidate tuple with the highest probabilities
as the key attributes. We evaluated our method with 14
open datasets and showed that our method could feasibly
identify key attributes for the datasets with fewer columns
within a reasonable time.

To the best of our knowledge, this paper is the first to
identify the key attributes in an event log. Hence, we believe
that the proposed method still has room for improvement.
We have discussed the open problems and suggested sev-
eral possible research directions toward fully reliable auto-
mated process discovery.

ACKNOWLEDGMENT

This work was supported by the A*STAR “Cyber-Physical
Production System (CPPS) - Towards Contextual and Intel-
ligent Response Research Program” project with Grant No.
A19C1a0018 and by the “Distributed Smart Value Chain”
project with Grant No. M23L4a0001.

REFERENCES

[1] W. Van Der Aalst, “Process mining,” Communications of the ACM,
vol. 55, no. 8, pp. 76–83, Aug. 2012.

[2] Jokonowo, Claes, Sarno, and others, “Process mining in supply
chains: a systematic literature review,” International journal of high
risk behaviors & addiction, 2018.

[3] E. R. Mahendrawathi, N. Arsad, H. M. Astuti, R. P. Kusumawar-
dani, and R. A. Utami, “Analysis of production planning in a
global manufacturing company with process mining,” Journal of
Enterprise Information Management, vol. 31, no. 2, pp. 317–337, Mar.
2018.

[4] E. Ruschel, E. A. P. Santos, and E. d. F. R. Loures, “Establishment of
maintenance inspection intervals: an application of process mining
techniques in manufacturing,” Journal of intelligent manufacturing,
vol. 31, no. 1, pp. 53–72, Jan. 2020.

[5] R. Lorenz, J. Senoner, W. Sihn, and T. Netland, “Using process
mining to improve productivity in make-to-stock manufacturing,”
International Journal of Production Research, vol. 59, no. 16, pp. 4869–
4880, 2021.

[6] J. E. Cook and A. L. Wolf, “Automating Process Discovery through
Event-Data Analysis,” in Proc. of IEEE International Conference on
Software Engineering, Apr. 1995, pp. 73–73.

[7] W. M. P. van der Aalst, “Making Work Flow: On the Application of
Petri Nets to Business Process Management,” in Proc. of Application
and Theory of Petri Nets 2002. Springer Berlin Heidelberg, 2002,
pp. 1–22.

[8] Weijters, Der Aalst, and others, “Process mining with the heuris-
tics miner algorithm,” Eindhoven, Tech. Rep, 2006.

[9] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Dis-
covering Block-Structured Process Models from Event Logs - A
Constructive Approach,” in Proc. of Application and Theory of Petri
Nets and Concurrency. Springer Berlin Heidelberg, 2013, pp. 311–
329.

[10] S. K. L. M. vanden Broucke and J. De Weerdt, “Fodina: A robust
and flexible heuristic process discovery technique,” Decision sup-
port systems, vol. 100, pp. 109–118, Aug. 2017.

[11] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and
A. Polyvyanyy, “Split miner: automated discovery of accurate and
simple business process models from event logs,” Knowledge and
information systems, vol. 59, no. 2, pp. 251–284, May 2019.

[12] A. Abbad Andaloussi, A. Burattin, and B. Weber, “Toward an
Automated Labeling of Event Log Attributes,” in Proc. of Enter-
prise, Business-Process and Information Systems Modeling. Springer
International Publishing, 2018, pp. 82–96.

[13] C. d. S. Garcia, A. Meincheim, E. R. Faria Junior, M. R. Dallagassa,

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3330175

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXXXX XXXX 7

D. M. V. Sato, D. R. Carvalho, E. A. P. Santos, and E. E. Scalabrin,
“Process mining techniques and applications – A systematic map-
ping study,” Expert systems with applications, vol. 133, pp. 260–295,
Nov. 2019.

[14] J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens, “A
multi-dimensional quality assessment of state-of-the-art process
discovery algorithms using real-life event logs,” Information sys-
tems, vol. 37, no. 7, pp. 654–676, Nov. 2012.

[15] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discover-
ing Block-Structured Process Models from Event Logs Containing
Infrequent Behaviour,” in Proc. of Business Process Management
Workshops. Springer International Publishing, 2014, pp. 66–78.

[16] S. J. J. Leemans, D. Fahland, and W. M. P. Van Der Aalst, “Scal-
able process discovery with guarantees,” Lecture Notes in Business
Information Processing, vol. 214, pp. 85–101, 2015.

[17] A. Augusto, M. Dumas, M. La Rosa, S. J. J. Leemans, and S. K.
L. M. vanden Broucke, “Optimization framework for DFG-based
automated process discovery approaches,” Software and Systems
Modeling, pp. 1–26, 2021.

[18] K. Diba, K. Batoulis, M. Weidlich, and M. Weske, “Extraction,
correlation, and abstraction of event data for process mining,”
Wiley interdisciplinary reviews. Data mining and knowledge discovery,
vol. 10, no. 3, p. e1346, 2020.

[19] D. R. Ferreira and D. Gillblad, “Discovering process models from
unlabelled event logs,” in Proc. of Business Process Management.
Springer Berlin Heidelberg, 2009, pp. 143–158.

[20] H. R. Motahari-Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah,
“Event correlation for process discovery from web service interac-
tion logs,” The VLDB journal, vol. 20, no. 3, pp. 417–444, Jun. 2011.

[21] D. Bayomie, C. Di Ciccio, M. La Rosa, and J. Mendling, “A proba-
bilistic approach to Event-Case correlation for process mining,” in
Proc. of Conceptual Modeling. Springer International Publishing,
2019, pp. 136–152.

[22] D. Bayomie, K. Revoredo, C. Di Ciccio, and J. Mendling, “Im-
proving accuracy and explainability in Event-Case correlation via
rule mining,” in Proc. of International Conference on Process Mining
(ICPM). IEEE, Oct. 2022, pp. 24–31.

[23] I. M. A. Helal and A. Awad, “Online correlation for unlabeled pro-
cess events: A flexible CEP-based approach,” Information systems,
vol. 108, p. 102031, Sep. 2022.

[24] H. Reguieg, B. Benatallah, H. R. M. Nezhad, and F. Toumani,
“Event correlation analytics: Scaling process mining using
Mapreduce-Aware event correlation discovery techniques,” IEEE
Transactions on Services Computing, vol. 8, no. 6, pp. 847–860, Nov.
2015.

[25] S. Bala, J. Mendling, M. Schimak, and P. Queteschiner, “Case and
activity identification for mining process models from middle-
ware,” in Proc. of The Practice of Enterprise Modeling. Springer
International Publishing, 2018, pp. 86–102.

[26] J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der
Aalst, “Quality Dimensions in Process Discovery: The Importance
of Fitness, Precision, Generalization and Simplicity,” International
Journal of Cooperative Information Systems, vol. 23, no. 01, p. 1440001,
Mar. 2014.

[27] A. Berti, S. J. van Zelst, and W. van der Aalst, “Process mining
for python (PM4Py): bridging the gap between process-and data
science,” arXiv preprint arXiv:1905.06169, 2019.

[28] D. Zhang, Y. Suhara, J. Li, M. Hulsebos, Ç. Demiralp, and W.-C.
Tan, “Sato: Contextual semantic type detection in tables,” Proc. of
VLDB Endowment, vol. 13, no. 12, p. 1835–1848, 2020. [Online].
Available: https://doi.org/10.14778/3407790.3407793

[29] Z. Mounira and B. Mahmoud, “Context-aware process mining
framework for Business Process flexibility,” in Proc. of International
Conference on Information Integration and Web-based Applications &
Services (iiWAS). ACM, 2010, pp. 421–426.

[30] R. Song, J. Vanthienen, W. Cui, Y. Wang, and L. Huang, “Towards a
comprehensive understanding of the context concepts in context-
aware business processes,” in Proc. of International Conference on
Subject-Oriented Business Process Management, 2019, pp. 1–10.

[31] J. vom Brocke, M.-S. Baier, T. Schmiedel, K. Stelzl, M. Röglinger,
and C. Wehking, “Context-Aware Business Process Management,”
Business & Information Systems Engineering, pp. 1–18, 2021.

[32] A. Berti, M. P. Nghia, and W. M. P. van der Aalst, “PM4Py-GPU: A
High-Performance General-Purpose Library for Process Mining,”
in Proc. of Research Challenges in Information Science. Springer
International Publishing, 2022, pp. 727–734.

Kentaroh Toyoda was born in Tokyo, Japan, in
1988. He received B.E., M.E., and Ph.D. (Engi-
neering) degrees from the Department of Infor-
mation and Computer Science, Keio University,
Japan, in 2011, 2013, and 2016, respectively.
He was a scientist at the Singapore Institute of
Manufacturing Technology (SIMTech), A*STAR,
from Apr. 2019 to Oct. 2022 and is currently a se-
nior scientist at the Institute of High Performance
Computing (IHPC), A*STAR, Singapore. His re-
search interests include blockchain, security and

privacy, data analysis, and mechanism design.

Gan Kai Ying Rachel received a B.E. (Engi-
neering) in Information Systems Technology and
Design from the Singapore University of Tech-
nology and Design, Singapore in 2019. She was
a research engineer at the Singapore Institute of
Manufacturing Technology (SIMTech), A*STAR,
from 2020 to 2022. She is pursuing her master’s
degree in AI at Nanyang Technological Univer-
sity (NTU), Singapore. Her research interests in-
clude data analytics, machine learning, and their
applications.

Allan NengSheng Zhang is a Senior Pricipal
Scientist with SIMTech, A*STAR, Singapore. He
has more than 25 years of experience in the de-
velopment of operations technologies (OT) us-
ing AI such as knowledge-based systems and
enterprise information systems development. He
is presently an Adjunct Associate Professor
with the School of School of Mechanical and
Aerospace Engineering, at Nanyang Technolog-
ical University. His research interests include
knowledge management, data mining, machine

learning, artificial intelligence, computer security, software engineer-
ing, software development methodology and standards, and enterprise
information systems. He and his group are currently working toward
research in cyber-physical system modeling, manufacturing system
analyses including data mining, supply chain information management,
supply chain risk and resilience management using a complex systems
approach, multi-objective vehicle routing problems, and urban last-mile
logistics.

Tan Puay Siew received a Ph.D. degree in com-
puter science from the School of Computer Engi-
neering, Nanyang Technological University, Sin-
gapore. She is presently an Adjunct Associate
Professor with the School of Computer Science
and Engineering, at Nanyang Technological Uni-
versity. In her full-time job at A*STAR, she leads
the Digital Manufacturing Division of SIMTech
and ARTC. Her research interests are in the
cross-field disciplines of Computer Science and
Operations Research for virtual enterprise col-

laboration, in particular, Distributed Smart Value Chains in the era of
Industry 5.0.

APPENDIX

TABLE 5 shows each attribute’s accuracy by the datasets for
comparison. NA in the miner denotes the cases where we
could identify the key attributes in the first stage.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3330175

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.14778/3407790.3407793

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XXXXXX XXXX 8

TABLE 5: Accuracy by datasets, miners, and k. The best accuracy is highlighted in bold.

DATASET MINER k ACCURACY

CASE-ID ACTIVITY TIMESTAMP

BPIC2011 NA 1 0.00 0.29 1.00

HM 1 0.00 0.00 1.00
2 0.00 0.00 0.50

IM 1 0.00 0.00 1.00
2 0.00 0.00 0.45

BPIC2012 NA 1 0.70 0.90 1.00
HM 2 0.48 1.00 1.00
IM 2 0.80 1.00 0.71

BPIC2013 incident management NA 1 1.00 0.50 1.00

HM 2 0.52 0.78 0.90
IM 2 0.76 0.83 0.90

BPIC2013 problem management (closed) NA 1 0.50 0.80 1.00

HM 2 0.98 0.82 1.00
IM 2 0.76 0.89 1.00

BPIC2013 problem management (open) NA 1 1.00 0.90 1.00

HM 2 0.88 0.90 1.00
IM 2 0.82 0.95 1.00

BPIC2015 1 NA 1 1.00 0.00 0.00

HM 1 1.00 0.48 0.00
2 0.96 0.58 0.00

IM 1 1.00 0.50 0.00
2 1.00 0.50 0.00

BPIC2015 2 NA 1 0.67 0.00 1.00

HM 1 0.86 0.43 0.86
2 0.69 0.35 0.83

IM 1 0.86 0.43 0.86
2 0.54 0.30 0.48

BPIC2015 3 NA 1 1.00 0.00 1.00

HM 1 1.00 0.28 1.00
2 0.56 0.08 0.52

IM 1 1.00 0.25 1.00
2 0.55 0.07 0.47

BPIC2015 4 NA 1 1.00 0.00 0.00

HM 1 1.00 0.43 0.00
2 0.72 0.45 0.22

IM 1 1.00 0.44 0.00
2 0.88 0.40 0.15

BPIC2015 5 HM 1 0.90 0.46 0.15
2 0.48 0.41 0.00

IM 1 0.90 0.66 0.18
2 0.55 0.40 0.00

BPIC2017 NA 1 0.40 0.00 1.00
HM 2 0.34 0.11 1.00
IM 2 0.78 0.02 1.00

BPIC2018 NA 1 0.00 0.00 1.00

HM 1 0.00 0.00 1.00
2 0.01 0.00 0.73

IM 1 0.00 0.00 1.00
2 0.01 0.01 0.69

BPIC2019 NA 1 0.25 0.62 1.00

HM 1 0.00 0.00 1.00
2 0.57 0.14 1.00

IM 1 0.00 0.10 1.00
2 0.69 0.18 1.00

BPIC2020 NA 1 0.00 0.33 1.00

HM 1 0.00 0.25 1.00
2 0.00 0.24 0.85

IM 1 0.00 0.25 1.00
2 0.00 0.32 0.85

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3330175

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Related Work
	Process Discovery
	Pre-processing Raw Data
	Motivation of Our Work

	Proposed Method
	Narrow down candidates
	Feature extraction
	Classification

	Discover and evaluate process models

	Performance Evaluation
	Open Problems
	Conclusions
	References
	Biographies
	Kentaroh Toyoda
	Gan Kai Ying Rachel
	Allan NengSheng Zhang
	Tan Puay Siew

	Appendix

