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Abstract—In this paper, we propose a novel predictive process monitoring approach, named JARVIS, that is designed to achieve a
balance between accuracy and explainability in the task of next-activity prediction. To this aim, JARVIS represents different process
executions (traces) as patches of an image and uses this patch-based representation within a multi-view learning scheme combined
with Vision Transformers (ViTs). Using multi-view learning we guarantee good accuracy by leveraging the variety of information
recorded in event logs as different patches of an image. The use of ViTs enables the integration of explainable elements directly into
the framework of a predictive process model trained to forecast the next trace activity from the completed events in a running trace by
utilizing self-attention modules that give paired attention values between two picture patches. Attention modules disclose explainable
information concerning views of the business process and events of the trace that influenced the prediction. In addition, we explore the
effect of ViT adversarial training to mitigate overfitting and improve the accuracy and robustness of predictive process monitoring.
Experiments with various benchmark event logs prove the accuracy of JARVIS compared to several current state-of-the-art methods
and draw insights from explanations recovered through the attention modules.

Index Terms—Predictive process monitoring, Deep learning, Multi-view learning, Adversarial training, Vision transformers, Attention,
XAI, Computer vision

✦

1 INTRODUCTION

P REDICTIVE Process Monitoring (PPM) techniques allow
the extraction of smart knowledge from historical, raw

event data of business processes, in order to enable the
prediction of future states (e.g., next-activity, completion
time, outcome) of a process execution given its running trace
and raw event data of historical traces as inputs.

Over the past five years, the predominance of deep learn-
ing in predictive modeling has been increasingly assessed
in PPM systems. Several deep neural networks, e.g., LSTMs
[1], [2], [3], CNNs [4], [5], GANs [6] and Autoencoders [7],
have recently contributed to gaining accuracy into PPM
systems thanks to their capability to learn accurate deep
neural models that can enable proactive and corrective
actions to improve process performance and mitigate risks.
However, deep neural networks generally learn opaque
models implicitly represented in form of a huge number
of numerical weights that are difficult to explain due to
the complexity of the network structure. The opacity of
deep neural models is acceptable as long as accuracy was
the dominant criterion for assessing the quality of PPM
systems. Despite the priority of PPM systems today is still
to provide accurate predictions of future states of running
traces, easier-to-explain predictive models are becoming
increasingly desirable in PPM applications.

The explainability of predictive models refers partially
to how easily humans may comprehend their underly-
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ing assumptions and reasoning. Explanations may disclose
measurable factors on which trace characteristics influence
the prediction of a future state of a running trace and to what
extent. Explaining the effect of certain trace characteristics
on trace predictions can contribute to translating predictions
into some domain knowledge and allow PPM systems to
better benefit from the trust of process stakeholders. Recent
studies [8], [9], [10] have investigated the use of existing
XAI (eXplainable AI) methods to explain opaque PPM mod-
els. However, model explainability in the context of deep
learning-based PPM systems is yet underexplored.

To bridge the gap between accuracy and explainability in
PPM models, in this paper, we propose a novel method for
predicting the next-activity of a running trace. The proposed
method, called JARVIS (Joining Adversarial tRaining with
VISion transformers in next-activity prediction), combines
adversarial training with Vision Trasformers (ViT) [11] to
achieve a valid balance between the accuracy and the ex-
plainability of the model. Explainability is achieved thanks
to the adoption of a ViT, i.e., a deep neural architecture
composed of multiple self-attention layers that implement
an attention mechanism to differentiate the significance of
each part of the input sequence of data, thus providing
a form of explanation of the model behavior in terms of
most informative inputs. Accuracy improvement is faced
via adversarial training [12] which incorporates perturbed
(i.e., adversarial) inputs into the training process, in order to
mitigate overfitting and improve generalization [13]. More-
over, boosted by our recent results [3], we also adopt multi-
view learning [14], which consists in learning with multiple
sources (views) of event information (e.g., activity, resource,
timestamp, cost) to improve the generalization performance.
Specifically, in JARVIS events are seen as multiple views of
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the same running trace, and this enables handling multiple
characteristics of a trace.

Another key feature of JARVIS is a novel representation
of running traces as images. Specifically, each view of a trace
is encoded as a separate image patch (i.e., a square-shaped
region within an image) that encodes the sequence of em-
bedded events in the view. The embedding representation of
events in each view is derived by accounting for neighbour
information of each event in the running trace (i.e., view
information of events that precede the considered event in
the running trace). Notably, this image representation differs
from the ones adopted in [4], [5] which lose information
about the order of trace events due to an aggregation step.
In addition, the novel representation proposed in JARVIS
allows the embedding of raw event data belonging to any
view. It also differs from the imagery representation
introduced in [15] that represents full traces populated with
partially labeled events and is used to predict the comple-
tion time of a target event within a full trace by accounting
for attributes of all events in the trace and completion
times of events preceding the target one. Conversely, the
imagery representation adopted in JARVIS is used to predict
the next-activity of the running trace without having any
information on the next event.

In short, the contributions of this paper are as follows.

• The formulation of a novel multi-view learning ap-
proach that performs an image-like engineering step
to represent running traces as image patches and
trains a ViT model for next-activity prediction, in
order to learn relationships between multiple input
views and provide explainability in form of attention
of the model on significant inputs.

• The use of attention maps of ViT models as a form of
explanation to disclose the effect that specific views
and intra-view events (i.e., characteristics of trace
events in a specific view) may have on the PPM
model’s reasoning.

• The exploration of adversarial training as a learn-
ing strategy to mitigate overfitting and improve ViT
model generalization.

• The presentation of the results of an in-depth evalua-
tion examining the ability of our approach to achieve
accuracy comparable to competitive deep learning-
based approaches drawn from the recent literature
on PPM systems, as well as the accuracy of the
proposed learning components.

The paper is organized as follows. Section 2 overviews
recent advances of PPM literature in the next-activity pre-
diction of business processes and XAI. Preliminary concepts
are reported in Section 3, while the proposed JARVIS ap-
proach is described in Section 4. The experimental setup
is illustrated in Section 5. The results of the evaluation of
the proposed approach are discussed in Sections 6 and 7,
regarding accuracy and explainability, respectively. Finally,
Section 8 recalls the purpose of our research, draws conclu-
sions, and illustrates possible future developments.

2 RELATED WORK

The JARVIS approach proposed in this paper is a deep
learning-based method that resorts to a trace engineering

step to represent running traces as image patches and neural
attention mechanisms for yielding next-activity predictions
of running traces equipped with explainability. Therefore,
the literature overview is organized on two fronts: on
one side, we focus on recent PPM studies on next-activity
prediction using deep learning (Section 2.1) and on the
other side we overview preliminary attempts to use XAI
techniques in the realm of PPM (Section 2.2). A summary of
the characteristics of the main related methods discussed in
the following SubSections is reported in Table 1.

2.1 Next-activity prediction

Several recent PPM studies have investigated the perfor-
mance of various deep neural network architectures (e.g.,
LSTMs, RNNs, CNNS) for predicting the next-activity of
a running trace. These studies commonly adopt an en-
coding step that is the responsible for mapping complex,
categorical, event data information into a numerical feature
space, in order to feed the deep neural network. These
studies mainly adopt data engineering methods like One-
Hot-Encoding (OHE) (e.g., [1]) or embeddings (e.g., [2], [16])
to map running traces into real-valued vectors. Notably the
use of the embedding representation of a categorical input
allows us to avoid a sparse representation of categorical
input data that is one of the limits of the OHE represen-
tation. [24] compares several embedding mechanisms, i.e.,
Act2Vec, Trace2Vec, Log2Vec, and Model2Vec, which per-
form data engineering at the level of activities, traces, logs,
and models. [25] uses Word2Vec to learn a context-aware
real-valued representation of categorical input (e.g., activi-
ties, resources), which can be easily fine-tuned to the new
events recorded in a streaming scenario. [26] evaluates the
performance of several graph embeddings. [1] augments the
OHE of activities with several numerical features extracted
from the timestamp information such as the time of day, the
time since the previous event, the time since the beginning
of the trace, while [2] uses embedding networks and hand-
crafted features. Image-like data engineering methods have
been introduced by [4], [20]. In particular, [20] proposes an
approach to transform prefix traces into grey-scale images
by mapping the activity and timestamp information of each
prefix trace into two grey-scale pixel columns. [4] describes
an imagery encoding approach that first extracts a numeric
feature vector representation of prefix traces by aggregating
activity, resource and timestamp information. Then it trans-
forms the feature vector representation of a prefix trace into
a color-scale image by mapping every numeric feature into
a RGB pixel. Notably, [4] uses a color imagery encoding of
running traces as in our work. However, it looses informa-
tion about the order of trace events due to the aggregation
step. In addition, it is defined to encode activity, resource
and timestamp information. Differently JARVIS keeps the
information on the temporal order of events and it is defined
to encode event information from any view. A recent survey
of the main progress in trace encoding techniques has been
described in [27].

Focusing the attention on the deep neural model, as
most of PPM studies consider prefix traces represented as
sequences, they adopt sequence-based deep neural network
architectures such as LSTMs or RNNs. In particular, [1]
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Table 1: A summary of characteristics of related methods

Reference Views ML/DL XAI Task

[1] Activity, Time LSTM - Next-activity, Next timestamp, Completion time,
Activity suffix

[16] Activity, Resource LSTM - Next-activity

[2] Activity, Resource, Timestamp LSTM - Next-activity, Next timestamp, Next role,
Completion time, Activity suffix

[3] All LSTM - Next-activity
[17], [18], [19] All Decision Tree, Naive Bayes, DNN - Deviant traces

[20] Activity, Timestamp CNN - Next-activity
[4] Activity, Resource, Timestamp CNN - Next-activity
[8] Activity, Resource, Role LSTM SHAP Completion time, Activity occurrence, User satisfaction
[10] Activity, Resource, Role CatBoost, LSTM SHAP Completion time, Activity occurrence, User satisfaction
[21] Activity, Resource, Timestamp ANFIS Neuro-fuzzy rules Trace ouctcome
[22] Activity Gated Graph Neural Network Graphs Trace ouctcome
[23] Activity Transformer Attention maps Next-activity
[9] Activity, Resource, Timestamp Attention+LSTM Attention maps Next-activity

describes an LSTM-based PPM method to predict both the
next-activity and the completion time of a prefix trace.
It uses OHE of activity and timestamp information. [16]
illustrates a LSTM-based PPM method that accounts for
embeddings of both activities and resources, but neglects
timestamps. Also [2] describes a PPM method that trains
an LSTM architecture to predict sequences of next events,
their timestamps and their associated resource pool. This
method accounts for activity and resource by resorting to
a pre-trained embedding representation of the categorical
information. [3] proposes a multi-input LSTM architecture
that is able to process all possible views present in an event
log. This flexible multi-view method has the advantage of
capturing the possible information among the views and
increase the predictive model’s accuracy performance. The
embeddings of the categorical information are computed
within the multi-input network. Multi-view learning meth-
ods are also developed also for deviant trace detection.
[17], [18], [19] describe multi-view ensemble-based methods
that combine different single-view classifiers to disentangle
deviant process instances form normal ones. Specifically,
[17] describes the use of decision trees and association rule
classifiers as single-view classifiers of the ensemble. [18]
explores the combination of single-view Bayesian classifiers,
while [19] combines single-view deep neural models.

In spite of the proliferation of LSTM methods for PPM,
a few recent studies have started the investigation of com-
puter vision-based approaches in PPM. For example, [20]
describes a CNN architecture to predict the next activity of
a grey-scale image of a prefix trace, while [4] describes a
CNN with Inception to predict the next activity of a RGB
image of a prefix trace. Both approaches handle information
of apriori defined views under a feature extraction step.

Despite the methods described above achieve good
accuracy performance in various problems, they are not
equipped with explainability techniques.

2.2 Explainability in PPM
A few recent studies have started the investigation of ex-
plainability in deep learning-based PPM models. However,
most of the existing work on explainable PPM approaches
use post-hoc methods to explain model predictions. For ex-
ample, [8] describes a PPM framework that uses “post-hoc”
explanations generated by the SHAP technique applied to
trained black-box LSTM models. Also [10] reports on the

use of post-hoc, SHAP explanations for both the LSTM and
the CatBoost method. [28] compares and evaluates expla-
nations of process predictions yielded by different post-hoc
frameworks (e.g., LIME and SHAP). [29] leverages post-hoc
explainers to understand why a PPM model provides wrong
predictions, eventually improving its accuracy.

The above post-hoc explainers are model-agnostic, i.e.,
they can be used independently of the model and they do
not have any effect on the model training. On the other
hand, a few recent PPM approaches have started focusing
on intrinsic explainable deep neural models that directly
produce interpretable models. One of the few works in
this direction is [21] that presents a fully interpretable PPM
model for outcome prediction based on a set of fuzzy
rules acquired from event data by training a neuro-fuzzy
network. [22] uses gated graph neural networks to visualize
how much the different activities included in a process
impact the PPM model predictions. [23] incorporates ex-
plainability into the structure of a PPM model by replacing
the cells with self-attention mechanisms in recurrent neural
networks. Similarly [9] develops attention-based models
to incorporate explainability directly into the PPM model.
Notably, both [23] and [9] use the attention mechanism as
in our work. Our approach differs from [23] and [9] since it
is able to handle event information of any view without
forcing any apriori-defined views at the input level. In
addition, JARVIS uses a ViT architecture that incorporates
self-attention modules to detect inter-view relationships,
in addition to intra-view event information. We use the
intrinsic attention on inter-view and intra-view information
to obtain both local and global explanations of predictions.

3 PRELIMINARY CONCEPTS

Given a business process, a trace describes the life cycle
of a process execution in terms of a sequence of events.
According to this definition of a trace, an event refers to a
complex entity composed of two mandatory characteristics,
i.e., the activity and the timestamp (indicating the date and
time of the activity occurrence), as well as several optional
characteristics, such as the resource triggering the activity or
the cost of completing the activity. Based on this definition,
an event can be characterized by different views, being a
view the description of the event along a specific character-
istic. Hence, every event has two mandatory views that are
associated with the activity and the timestamp, as well as m
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additional views associated with optional characteristics of
events. Let A be the set of all activity names, S be the set of
all trace identifiers, and T be the set of all timestamps and
Vj with 1 ≤ j ≤ m be the set of all names in the j-th view.
Definition 1 (Event). Given the event universe E = S ×

A × T × V1 × . . . × Vm, an event e ∈ E is a tuple
e = (σ, a, t, v1, . . . , vm) that represents the occurrence of
activity a in trace σ at timestamp t with characteristics
v1, v2, . . . , vm.

Let us introduce the functions: πS : E 7→ S such that
πS(e) = σ, πA : E 7→ A such that πA(e) = a, πT : E 7→ T
such that πT (e) = t and πVj : E 7→ Vj such that πVj (e) = vj
and j = 1, . . . ,m.
Definition 2 (Trace). Let E∗ denote the set of all pos-

sible sequences on E . A trace σ is a sequence σ =
⟨e1, e2 . . . , en⟩ ∈ E∗ so that: (1) ∀i = 1, . . . , n, ∃ei ∈ E
such that σ(i) = ei and πS(ei) = σ, and (2) ∀i =
1, . . . , n− 1, πT (ei) ≤ πT (ei+1).

Definition 3 (Event log). Let B(E∗) denote the set of all
multisets over E . An event log L ⊆ B(E∗) is a multiset
of traces.

Definition 4 (Prefix trace). A prefix trace σk = ⟨e1, e2, . . . , ek⟩
is the sub-sequence of a trace σ starting from the begin-
ning of the trace σ with 1 ≤ k = |σk| < |σ|.

A trace is a complete (i.e., started and ended) process in-
stance, while a prefix trace is a process instance in execution
(also called running trace). The activity πA(ek+1) = ak+1

corresponds to the next-activity of σk, i.e., next(σk) =
πA(ek+1) with ek+1 = σ(k + 1).
Definition 5 (Multiset of labeled prefix traces). Let L ⊆

B(E∗) be an event log, P ⊆ B(E∗ ×A) is the multiset of
all prefix traces extracted from traces recorded in L. Each
prefix trace is labeled with the next-activity associated to
each prefix sequence in the corresponding trace so that
P = [σk, πA(ek+1)|σ ∈ L ∧ 1 ≤ k < |σ|].

Definition 6 (Single-view representation of a labeled prefix
trace multiset). Let V be a view (either mandatory, i.e.,
V = A or V = T , or optional, i.e. V = Vj with j =
1, . . . ,m), Π: E∗ 7→ V∗ be a function such that Π(σk) =
Π(⟨e1, e2, . . . , ek⟩) = ⟨πV(e1), πV(e2) . . . , πV(ek)⟩. PV
denotes the multiset of the labeled prefix traces of P
as they are represented in the view V , that is, PV =
{ΠV(σ

k), ak+1|(σk, π(ek+1))) ∈ P}.

The next-activity prediction is a PPM task often addressed
as a multi-class classification problem by resorting to ma-
chine learning techniques. Let F : E∗ × Rµ 7→ A be a next-
activity prediction model with µ real-valued parameters.
Definition 7 (Next-activity prediction hypothesis function).

A next-activity hypothesis HF,Θ of the model F is a
function: HF,Θ : E∗ 7→ A with Θ ∈ ℜµ such that
HF,Θ(x) ≈ F (x,Θ).

Definition 8 (Next-activity prediction). Let us consider
HF,Θ : A∗ 7→ A, and σk a prefix trace. HF,Θ(σ

k) predicts
the expected next-activity of σk.

The hypothesis HF,Θ can be learned from a labeled
prefix trace multiset P by an algorithm that estimates Θ

Figure 1: JARVIS pipeline

minimizing a cost function CHF,Θ
: E∗ × A 7→ R, where

CHF,Θ
(σk, ak+1) measures the penalty of an incorrect pre-

diction done through HF,Θ(σ
k) for the next-activity ak+1.

HF,Θ depends on the model type. In this study, we represent
the labeled multiset as a collection of color image patches
that are given as input to a ViT architecture [11].

4 PROPOSED APPROACH

In this section we introduce JARVIS, a novel PPM approach
for next-activity prediction that combines multi-view learn-
ing and adversarial training with Vision Trasformers (ViT) to
achieve a valid balance between accuracy and explainability.
The proposed approach is schematized in Figure 1. Initially,
the labeled prefix trace multiset P is extracted from the
event log L and transformed into a set I of multi-patch
color images. Then, I is fed into a ViT architecture that is
trained with adversarial training to estimate parameters of
a next-activity prediction hypothesis function HF,Θ.

In the following, we detail the main phases of the pro-
posed approach, namely the multi-patch image encoding
(Section 4.1), the ViT adversarial training (Section 4.2), and
the extraction of the attention maps (Section 4.3).

4.1 Multi-patch image encoding
This phase takes the event log L as input and creates the
multiset of multi-patch color images I as output. This phase
is composed of four steps: 1) Discretizing numerical view
information. 2) Generating labeled prefix traces. 3) Training
an embedding for prefix traces represented in each view.
4) Transforming embeddings of prefix traces represented in
each view into multi-patch color images according to the
embeddings trained on the multiple views.

According to the multi-view formulation introduced in
Section 3, every event recorded in L is a complex entity
whose representation takes into account two mandatory
characteristics (activity A and timestamp T ) and m op-
tional characteristics (V1,V2, . . . ,Vm), respectively. Manda-
tory and optional views may describe both categorical
characteristics (e.g., activity or resource names) and nu-
merical characteristics (e.g., timestamp or cost values). In
particular, the timestamp information associated with an
event is transformed in the time in seconds passed from
the beginning of the trace. In this study, every numerical
characteristic is converted into a categorical, format by re-
sorting to the equal-frequency discretization algorithm. This
algorithm divides all the values of a numeric characteristic
recorded in the training set of the event log into bins that
cover the same number of observations. The number of
discretization bins of a numeric characteristic is set equal
to the average number of distinct categories in the original
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Figure 2: A prefix trace recorded in the event log BPI12WC.
It is represented in two categorical views (“activity” and
“resource”) and two numerical views (“timestamp” and
“amount”). Numerical data are transformed into categorical
data using the equal-frequency discretization algorithm.

categorical views of the event log. After this step, the event
log L contains all multi-view information in the categorical
format. We denote V the final set of m + 2 categorical
views that characterize events recorded in the pre-processed
event log L. For example, Figure 2 shows a sample prefix
trace recorded in the event log BPI12WC considered in the
experimental study. Event characteristics enclosed in the
numeric views “timestamp” and “amount” are transformed
into the categorical format through the discretization step.
In this way, we obtain a multi-view representation of the
prefix trace with all characteristics in the categorical format.

Subsequently, the multiset P is created by extracting
traces from L and labeling them with the next activity. Since
different prefix traces may have different lengths, we use
the padding technique in combination with the window-
ing mechanism to standardize different prefix lengths and
populate P with fixed-sized prefix traces. Let AV Gσ be the
average length of all the traces in L, the padding is used
with a window length equal to AV Gσ , as in [3]. Prefix traces
with length less than AV Gσ are standardized by adding
dummy events. Prefix traces with length greater than AV Gσ

are standardized by retaining only the most recent AV Gσ

events. After this step, P comprises labeled prefix traces
having fixed size equal to AV Gσ .

The Continuous-Bag-of-Words (CBOW) architecture of
the Word2Vec scheme [30] is then used to transform the cat-
egorical representation of a prefix trace into a bidimensional,
numeric embedding representation. The CBOW architecture
leverages a feed-forward neural network to predict a tar-
get category from the neighbored context. For each view
V ∈ V, a CBOW neural network, denoted by CBOWV
is trained in order to convert each single-view sequence
ΠV(σ

k) ∈ PV into an AV Gσ-sized numerical vector. Specif-
ically, ΠV(σ

k) is converted into a bidimensional, numeric
embedding PV ∈ RAVGσ×AVGσ with size AV Gσ ×AV Gσ .
For example, Figure 3 shows how the sequence of activities
of the sample prefix trace reported in Figure 2 is converted
into a 7 × 7 bidimensional, numeric embedding through
Word2Vec. Notice that AV Gσ = 7 in BPI12WC.

Finally, for each labeled prefix trace (σk, ak+1) ∈ P ,
the list of its multi-view, bidimensional, numeric

Figure 3: Word2Vec embedding of the sequence of activities
enclosed in the sample prefix trace shown in Figure 2

Figure 4: Conversion of the Word2Vec embedding represen-
tation shown in Figure 3 into an imagery color patch

embeddings PA,PT , . . . ,PV1 , . . . ,PVm , generated for
ΠA(σ

k),ΠT (σ
k),ΠV1(σ

k), . . . ,ΠVm(σk), respectively,
are converted into the imagery color patches
Prgb

A ,Prgb
T , . . . ,Prgb

V1
, . . . ,Prgb

Vm
by mapping numeric

values of bidimensional embeddings into RGB
pixels. In particular, every imagery color patch
Prgb ∈ RAVGσ×AVGσ×3 records the embedding of a
prefix trace with respect to a view into a numerical tensor
with size AV Gσ × AV Gσ × 3. Let P be a bidimensional,
numeric embedding, each numeric value of v ∈ P is
converted into a RGB pixel vrgb ∈ Prgb by resorting to
the RGB-like encoding function adopted in [4]. First, v is
scaled in the range [0, 224 − 1]. Then the scaled value is
considered as the value of a single 24-bit pixel vrgb with the
first eighth bits mapped into the band R, the intermediate
eighth bits mapped into the band G and the last eighth bits
mapped into the band B. For example, Figure 4 shows how
the Word2Vec embedding of the sequence activities of the
prefix trace shown in Figure 3 is converted into an imagery
color patch associated with the view “activity”.

The m + 2 color patches of a prefix trace are dis-
tributed into a patch grid with size ⌈

√
m+ 2⌉ × ⌈

√
m+ 2⌉

from left to right, and from top to bottom. Notice that
every cell of the patch grid records a patch with size
AV Gσ × AV Gσ × 3. In this way, we are able to produce
the color image a prefix trace, that is a tensor with size
(⌈
√
m+ 2⌉·AV Gσ)×(⌈

√
m+ 2⌉·AV Gσ)×3. For example,

Figure 5 shows how the four patches, produced for the
views “activity”,“resource”, “timestamp” and “amount” of
the prefix trace reported in Figure 2, are distributed into a
patch grid with size 2 × 2 forming the final color image of
the sample prefix trace. This image has size 14× 14× 3 and
contains 4 color patches with sizes 7× 7× 3 associated with
the four views.
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Figure 5: Multi-patch color image with size 14×14×3. This
image is obtained by distributing the four image patches of
size 7× 7× 3, produced for the views “activity”,“resource”,
“timestamp” and “amount” of the prefix trace shown in
Figure 2, into a 2× 2 patch grid.

The generated multi-patch images are labeled as the
corresponding prefix traces and added to the labeled image
multiset I .

4.2 ViT architecture
A ViT (Visual Transformer) architecture (fig. 6) is adopted
to learn a next-activity prediction hypothesis function HF,Θ

from I by accounting for intra-patch information and han-
dling inter-patch relationships. We adopt the standard ViT
architecture [11] that represents the de-facto standard for
computer vision applications and was developed as an
extension of the original Transformer architecture originally
designed for natural language processing tasks [31]. As
the Transformer takes one-dimensional sequences of word
embeddings as input, the following four steps are per-
formed to transform the patches into a suitable input for
the Transformer:

1) Every multi-patch image I ∈ I is reshaped into
the sequence of its m + 2 flattened 2-dimensional
patches ϕ(Prgb

A ), ϕ(Prgb
T ), ϕ(Prgb

V1
), . . . , ϕ(Prgb

Vm
)

using the the flattening operator
ϕ : RAVGσ×AVGσ×3 7→ RAVG2

σ·3.
2) Every flattened patch sequence is mapped to a

constant latent vector size D using a trainable linear
projection E ∈ R(AVG2

σ·3)×D. In this way a sequence
of embedded patches, called patch embeddings, is
generated.

3) A learnable class embedding, denoted as class, is
anteposed to the patch embeddings. The value of
class represents the classification output y.

4) Patch embeddings are augmented with one-
dimensional positional embeddings Epos ∈
R(m+3)×D. The positional embeddings enable injec-
tion of positional information into the input.

The output of the transformation steps described above
is the sequence of embedding vectors defined as follows:

z0 = [class;ϕ(Prgb
A )E;ϕ(Prgb

T )E;ϕ(Prgb
V1

)E; . . . ;

ϕ(Prgb
Vm

)E; ] +Epos. (1)

z0 feeds the Transformer encoder defined in [31]. This
consists of a stack of L identical blocks alternating multi-
headed self-attention and MLP blocks, in order to compute:

z′i = msa(LN(zi−1)) + zi−1, (2)
zi = mlp(LN(z′i)) + z′i. (3)

Figure 6: ViT architecture

with i = 1, . . . , L−1, msa(•) the multi-headed self-attention
block, mlp(•) the MLP block, LN(•) the Layernorm that
is applied before every block. Finally, the value class of
the L-th block of the encoder output feeds into a MLP
classification head with one hidden layer and GELU non-
linearity.

The parameters of the ViT architecture are estimated
through the adversarial training strategy. Adversarial train-
ing is a well known learning strategy in which the training
set is augmented with adversarial samples generated from
the training set by perturbing some samples. Adversarial
training is also used to mitigate overfitting by achieving
high robustness [32]. In fact, generating adversarial samples
by slightly perturbing training samples may improve the
generalization of deep neural models.

In this study, we use the popular state-of-the-art Fast
Gradient Sign Method (FGSM) [33] to generate adversarial
images. It is a white-box gradient-based algorithm that finds
the loss to apply to an input image, in order to make
decisions of a pre-trained neural model less overfitted on a
specific class. The pre-trained model is the ViT architecture
described above with parameters initially estimated on the
original labeled images of I .

The FGSM algorithm is based on the gradient formula:

g(I) = ∇IJ(θ, I, y), (4)

where ∇I denotes the gradient computed with respect to the
imagery sample x, and J(θ, I, y) denotes the loss function
of the ViT neural model initially trained on the original
training set I . In theory, FGSM determines the minimum
perturbation ϵ to add to a training image I to create an ad-
versarial sample that maximizes the loss function. Accord-
ing to this theory, given an input perturbation value ϵ, for
each labeled image (I, y) ∈ I , a new image (Iadv, y) ∈ Iadv
can be generated such that:

Iadv = I+ ϵ · sign(g(I)). (5)

As Iadv is generated, parameters of the ViT architec-
ture are finally estimated from the adversarially-augmented
training set I ∪ Iadv .
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Figure 7: Map of attention produced in the RGB space (left
side) for the prediction of the next-activity of the imagery
representation shown in Figure 5 of the sample prefix trace
reported in Figure 2. Transformation of the map of attention
from the RGB space to the LAB space (central side). Lumi-
nosity (L) channel of the map of attention produced in the
LAB space (right side).

4.3 Extracting maps of attention

Once the ViT parameters have been estimated, the ViT
model is used to decide on the next-activity of any prefix
trace. As described in [11], the Attention Rollout method
[34] is used to extract the map of attention of the deci-
sion of the ViT model on a single sample. The Rollout
method computes the map of attention by averaging the
attention weights of the ViT model across all heads and then
recursively multiplying the weight matrices of all layers.
This accounts for the mixing of attention across patches
through all layers. Then, we derive a quantitative indicator
of the importance of events within patches by exploiting
the lightness information of attention maps. The lighter
the pixel in the attention map, the higher the effect of the
pixel information enclosed in the image of the prefix trace
on the ViT decision. Indeed, the generated attention maps
are represented in the RGB color space, which operates on
three channels (red, green, and blue) and does not provide
information about lightness. Hence we transform the RGB
representation of attention maps into the LAB color space,
which operates on three different channels: the color light-
ness (L), the color ranges from green to red (A), and the
color ranges from blue to yellow (B).

The transformation from the RGB space to the LAB space
is performed as follows [35]:

L = 0.2126 ·R+ 0.7152 ·G+ 0.0722 ·B,

A = 1.4749(0.2213 ·R− 0.3390 ·G+ 0.1177 ·B) + 128,

B = 0.6245(0.1949 ·R+ 0.6057 ·G− 0.8006 ·B) + 128.

(6)

As an example, Figure 7 shows the map of attention of
the next-activity decision produced by the ViT model for the
imagery representation shown in Figure 5 for the prefix trace
reported in Figure 2. The ViT model was learned through
adversarial training from the training set of BPI12WC in the
experimental study. The map of attention shown in Figure
7 (left side) is extracted in the RGB space with the roll-out
method. Figure 7 (central side) shows the transformation of
the map of attention from the RGB space to the LAB space
completed according to Eq. 6. Finally, Figure 7 (right side)
shows the luminosity values of the map of attention that
indicate the influence of the patches on the prediction.

Table 2: Event log description: number of traces (♯Trace),
number of events (♯Event), and set of views (View). For
categorical views, the number of distinct categories in the
view is reported in brackets.

Event log ♯Trace ♯Event View

BPI12W 9658 170107 activity (19), timestamp,
resource (60), loan amount

BPI12WC 9658 72413 activity (6), timestamp,
resource (60), loan amount

BPI12C 13087 164506 activity (23), timestamp,
resource (69), loan amount

BPI13I 7554 65533

activity (13), timestamp,
resource (1440), impact (4),

org group (649),org role (24),
org country (23), org involved (25),
product (704), resource country (32)

BPI13P 2306 9011

activity (7), timestamp,
resource (643),impact (4),

org group (15), org role (29),
org country (18), product (380),

resource country (21)

Receipt 1434 8577

activity (27), timestamp,
resource (48),channel (5),
department (3), group (8),

org group (10), responsible (39)

BPI17O 42995 193849

activity (8), timestamp,
resource (144),monthly cost,

first withdrawal amount,
credit score, offered amount,
number of terms, action (2)

BPI20R 6886 36796
activity (19), timestamp,

resource (2), org (36),
project (79), task (597), role (8)

5 EXPERIMENTAL SET-UP

In this section, we describe the event logs used for evaluat-
ing the accuracy and explainability of JARVIS, the experi-
mental set-up and the implementation details.

5.1 Event logs
We processed eighth real-life event logs available on the
4TU Centre for Research.1 BPI12W, BPI12WC and BPI12C
were provided for the BPI Challenge 2012 [36]. These logs
contain events collected monitoring the loan application
process of a Dutch financial institute. They record: activities
that track the state of the application (A), activities that
track the state of work items associated with the appli-
cation (W), and activities that track the state of the offer
(O). Sub-processes A and O contain only the complete life
cycle transition, while sub-process W includes scheduled
started and completed life cycle transitions. In particular,
BPI2012C contains all the traces, but retains the completed
events of such traces, BPI2012W contains traces of sub-
process W, and BPI2012WC contains traces of sub-process
W, but retains the completed events of such traces. BPI13I
and BPI2013P [37] contain events collected from the closed
problem management system and the incident management
system, respectively, of Volvo IT in Belgium. Receipt [38]
was collected in the CoSeLoG project. It records events
produced in an anonymous municipality in the Netherlands
during the receiving phase of the building permit appli-
cation process. BPI17O [39] contains events regarding all

1. https://data.4tu.nl/portal
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offers made for an accepted application through an online
system of a Dutch financial institute in 2016 and their
subsequent events until February 1st 2017, 15:11. BPI20R
[40] contains events pertaining requests for Payment, which
are not travel-related. In 2017, events were collected for two
departments, in 2018 events were collected for the entire
university. A summary of the characteristics of these event
logs is reported in Table 2.

5.2 Experimental set-up
The experimental setting described in [1] was adopted in
this study. A temporal split was performed to divide each
event log into train and test traces. To this aim, the traces
of an event log were sorted by the starting timestamp. The
first 67% were selected for training the predictive model,
while the remaining 33% were considered to evaluate the
performance of the learned model on the unseen traces.

5.3 Implementation details
JARVIS was implemented in Python 3.9.12 – 64 bit ver-
sion – using Keras 2.8.0 library that is a high-level neural
network API using TensorFlow 2.8.1 as the back-end.2 The
ViT architecture was trained with mini-batches using back-
propagation. The tree-structured Parzen estimator [41] was
used to perform the automatic hyper-parameter optimiza-
tion of the ViT architecture. This allowed us to automate the
decisions related to the parameters of the implementation of
the ViT based on the characteristics of the training data. The
optimization phase was performed by exploring both the
number of layers L and the number of Heads H in {2, 3, 4},
latent vector size D in [25,28], MLP size in [24,26], batch size
in [26,28], and learning rate in [10−3,10−2]. It was conducted
by using the 20% of the training set, selected with stratified
sampling, as a validation set, according to the Pareto Prin-
ciple. The hyper-parameter configuration, which minimized
the loss on the validation set in the range of possible values
explored in the defined search space, was automatically
selected for each event log. The gradient-based optimization
was performed using the Adam update rule to optimize
the categorical cross-entropy loss function. The maximum
number of epochs was set equal to 200 and an early stopping
approach was used to avoid overfitting (as in [3]). The
training phase stopped when there was no improvement
of the loss on the validation set for 10 consecutive epochs.
For the early stopping, we used the same validation set
considered in the hyper-parameter optimization phase.

The adversarial image generation was performed using
the algorithm FGSM (as implemented in the Adversarial
Robustness Toolbox 1.12.1 library3) with the perturbation
value ϵ set equal to 0.001 by default. FGSM is one of the
most popular adversarial sample generators that is prone to
catastrophic overfitting [32]. In this study, we adopted the
default set-up ϵ = 0.001. This decision was based on the
study of [12] that suggests setting perturbation ϵ as a small
value in the range between 0 and 0.1, to scale the noise
and ensure that perturbations are small enough to remain
undetected to the human eye, but large enough to help in
generalizing the neural model.

2. https://github.com/vinspdb/JARVIS
3. https://adversarial-robustness-toolbox.readthedocs.io/

6 ACCURACY PERFORMANCE ANALYSIS

In this section we show the results of an analysis aimed at
evaluating the accuracy of JARVIS, to answer the following
research questions:

Q1 How does the multi-view, ViT-based learning
schema compare to state-of-the-art PPM methods?

Q2 Is the adversarial training strategy able to achieve
higher accuracy than non-adversarially trained ViT
counterpart on unseen traces?

Q3 Is the adversarial training strategy robust to the
selection of the algorithm for the generation of ad-
versarial samples?

Q4 How does the accuracy of the ViT model change
by modifying the order according to multiple views
assigned to image patch positions?

To answer Q1 we performed a comparative study involv-
ing several deep learning methods based on LSTM, CNN
and Transformer architectures, which were selected from the
recent PPM literature (i.e., [3], [4], [9], [20], [23]). These meth-
ods were run with the information enclosed in all views
recorded in the study event logs for a safe comparison. This
analysis allows us to explore how the proposed imagery
representation and the use of a ViT model can actually aid
in gaining accuracy in next-activity prediction problems.
The results of this analysis are illustrated in Section 6.1.
To answer Q2 we performed an ablation study comparing
the accuracy performance of JARVIS to that of its baseline
obtained by keeping away the generation of adversarial
images and completing the training of the ViT model with
images of prefix traces actually observed in the training
set only. This analysis explores how adversarial training
can actually contribute to gaining accuracy in JARVIS. The
results of this analysis are illustrated in Section 6.2. To
answer Q3 we performed a sensitivity study exploring the
performance of JARVIS achieved by using different, state-
of-the-art algorithms (i.e., FGSM, PGD and DeepFool) to
generate adversarial samples. This analysis aims to explore
the validity of our decision to use FGSM as default ad-
versarial sample generation algorithm. The results of this
analysis are illustrated in Section 6.3. To answer Q4 we
performed an experiment randomly shuffling the positions
of views in the event logs to explore how the performance
of JARVIS is robust to the view order. The results of this
analysis are illustrated in Section 6.4.

For each event log, we learned the next-activity predic-
tive hypothesis functions of the compared methods on the
training set and evaluated their ability to predict the next ac-
tivity on the running traces of the testing set. We analyze the
macro FScore and the macro GMean performances achieved.
Both the macro FScore and the macro GMean are well-
known multi-class classification metrics commonly used in
imbalanced domains. They measure the average FScore and
GMean per activity type i giving equal weights to each
activity type. In this way, we avoid that our evaluation
offsets the possible impact of imbalanced data learning.
The FScore of activity i measures the harmonic mean of
precision and recall of i, i.e., FScorei = 2precisioni×recalli

precisioni+recalli

so that FScore = 1
k

k∑
i=1

2
precisioni × recalli
precisioni + recalli

. The GMean
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of activity i measures the geometric mean of specificity and
recall of i by equally considering the errors on opposite
classes, i.e., GMeani =

√
specificityi × recalli so that

GMean = 1
k

k∑
i=1

√
specificityi × recalli. The higher the

macro FScore and the macro GMean, the better the accuracy
performance of the method.

6.1 Related method analysis
We compared the performance of JARVIS to that of the
methods described in [3], [4], [9], [20] and [23]. [3] learns
a LSTM model from a sequence representation of prefix
traces. [4] learns a CNN with Inception from RGB images of
prefix traces. [9] learns a LSTM model with Attention from a
sequence representation of prefix traces. [20] learns a CNN
model from gray-scale images of prefix traces. [23] learns a
Transformer model from a sequence representation of prefix
traces. All related methods, except for [3], were originally
experimented by their authors accounting for specific views
of traces. Specifically, [4] and [9] were experimented with
activity, resource, and timestamp information, [20] was ex-
perimented with activity and timestamp information, and
[23] was experimented with activity information. To provide
a fair comparison, we ran these related methods by account-
ing for all views recorded in the considered event logs. In
fact, as the authors of the considered related methods made
the code available, we were able to run all the compared al-
gorithms in the same experimental setting, thus performing
a safe comparison. Parameters of the related methods were
set according to the best parameter set-up determined in
the code provided by the authors and described in the code
repositories. Notice that this comparative study was per-
formed by selecting [3] from the group of related methods
(i.e., [1], [2], [3], and [16]) reported in Table 1, which train
a LSTM model for next-activity prediction from sequence
data. In fact, [3] generalizes [1], [2], [16] as it was originally
formulated to account for all views recorded in an event log.

Table 3 collects the macro FScore and the macro GMean
of both the considered related methods and JARVIS. These
results deserve several considerations. Notably, JARVIS
achieves the highest FScore and GMean in five out of eight
event logs, being the runner-up method in one out of eight
event logs. In addition, JARVIS always outperforms the two
related methods using an imagery encoding strategy [4],
[20] except for BPI12W. Specifically, it always outperforms
the related method using a Transformer [23]. It commonly
outperforms the related method using the attention modules
[9] except for the macro FScore in BPI12W, and both macro
FScore and macro GMean in BPI13I. These conclusions are
also drawn from the critical difference diagram reported in
Figure 8 for the macro FScore performance of the compared
methods. This diagram was obtained after rejecting the null
hypothesis with p-value ≤ 0.05 in the Friedman’s test and
adopting the post-hoc Nemenyi test for pairwise method
comparisons. Despite there is no statistical difference be-
tween JARVIS, [3], [4], [9] and [23], JARVIS is the top-
ranked in the difference diagram with [3] as runner-up. This
result assesses the effectiveness of our idea of using a ViT
model, trained from a multi-view imagery representation of
prefix traces, in PPM problems of next-activity prediction.

Figure 8: Comparison of FScore of JARVIS and the state-
of-the-art methods defined in [3], [4], [9], [20] and [23]
with the Nemenyi test. Groups of approaches that are not
significantly different (at p ≤ 0.05) are connected.

6.2 Adversarial training strategy analysis
To evaluate the effect of adversarial training we compare
the performance of JARVIS to that of its non-adversarial
counterpart JARVIS⊖ADV. JARVIS⊖ADV keeps away the ad-
versarial training strategy and returns the ViT model whose
parameters were estimated on the original training set.

Table 4 collects the macro FScore and macro GMean of
both JARVIS and JARVIS⊖ADV. These results show that the
use of the adversarial training strategy allows us to higher
values of either macro FScore or macro GMean in the event
logs of this study with the exception of BPIC12C. This is the
only event log, where JARVIS⊖ADV achieves higher values
of both macro FScore and macro GMean than JARVIS.

To examine in depth the effect of the adversarial training
strategy on single classes we explore the FScore computed
per activity. As an example, Table 5 collects the FScore
computed per activity for JARVIS and JARVIS⊖ADV in both
BPI13P and BPI20R. These two event logs correspond to
two scenarios with a small number of distinct activities
(7 activities in BPI13P) and a high number of distinct
activities (19 activities in BPI20R), respectively. Both event
logs include several imbalanced activities (e.g., a1 and a3 in
BPI13P, as well as a6, a11 and a13 in BPI20R). The use of
the adversarial training strategy increases accuracy on the
majority activities for BPI20R (e.g., a2, a8), as well as in
minority activities (e.g., a1, a3) for BPI13P). So, despite the
use of the adversarial training strategy does not provide a
systematic solution to the imbalanced phenomenon, it may
generally help in mitigating overfitting on majority activities
and gaining accuracy on some minority activities.

6.3 Adversarial sample generation algorithm analysis
We analyze the performance of three white-box adversarial
sample generation algorithms, that is, FGSM [33], PGD
[42] and DeepFool [43]. FGSM is used in the rest of this
experimental study. PGD performs an iterative version of
FGSM. DeepFool performs an iterative procedure to find
the minimum adversarial perturbations on both an affine
binary classifier and a general binary differentiable classifier.
It integrates the one-versus-all strategy to be applied to
multi-class problems. Both PGD and DeepFool commonly
spend more training time than FGSM since they perform
multiple trials to generate perturbations. These methods are
considered to be among the state-of-the art methods for
adversarial training in the image domains [12].

Table 6 shows the macro FScore and the macro GMean
achieved by JARVIS by varying the adversarial sample
generation algorithm among FGSM (baseline), PGD and
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Table 3: Comparison between JARVIS and related methods defined in [3], [4], [9], [20] and [23] : macro FScore and macro
GMean. The best results are in bold, while the runner-up results are underlined.

Eventlog FScore GMean

JARVIS [3] [4] [9] [20] [23] JARVIS [3] [4] [9] [20] [23]

BPI12W 0.667 0.737 0.692 0.673 0.673 0.661 0.820 0.847 0.828 0.792 0.819 0.825

BPI12WC 0.705 0.685 0.661 0.675 0.645 0.668 0.812 0.798 0.778 0.792 0.780 0.787

BPI12C 0.644 0.654 0.642 0.638 0.643 0.624 0.786 0.792 0.782 0.785 0.781 0.781

BPI13P 0.414 0.320 0.336 0.408 0.228 0.405 0.595 0.533 0.546 0.594 0.472 0.593

BPI13I 0.387 0.405 0.295 0.407 0.363 0.380 0.615 0.626 0.534 0.626 0.594 0.603

Receipt 0.525 0.455 0.409 0.471 0.302 0.383 0.733 0.676 0.646 0.702 0.563 0.620

BPI17O 0.720 0.714 0.705 0.691 0.718 0.712 0.846 0.833 0.830 0.815 0.835 0.831

BPI20R 0.491 0.450 0.483 0.455 0.432 0.481 0.699 0.660 0.691 0.664 0.643 0.683

Table 4: JARVIS vs JARVIS⊖ADV: macro FScore and macro
GMean. The best results are in bold.

Eventlog FScore GMean

JARVIS JARVIS⊖ADV JARVIS JARVIS⊖ADV

BPI12W 0.667 0.628 0.820 0.799

BPI12WC 0.705 0.689 0.812 0.816

BPI12C 0.644 0.656 0.786 0.793

BPI13P 0.414 0.405 0.595 0.592

BPI13I 0.387 0.344 0.615 0.572

Receipt 0.525 0.490 0.733 0.712

BPI17O 0.720 0.716 0.846 0.849

BPI20R 0.491 0.482 0.699 0.688

Table 5: FScore per activity of JARVIS and JARVIS⊖ADV in
BPI13P and BPI20R. The best results are in bold.

Event log Activity JARVIS JARVIS⊖ADV Support%

a1 0.337 0.315 10.80%
a2 0.665 0.705 29.80%
a3 0.234 0.120 9.34%
a4 0.456 0.486 27.64%

BPI13P

a5 0.375 0.402 22.42%

a1 0.998 0.998 20.64%
a2 0.957 0.851 21.20%
a3 0.077 0.007 7.68%
a4 0.000 0.000 0.00%
a5 0.000 0.000 0.13%
a6 0.000 0,000 0.01%
a7 0.966 1.000 0.13%
a8 0.827 0.795 20.51%
a9 0.000 0.000 0.01%
a10 0.603 0.641 3.02%
a11 0.000 0.000 0.13%
a12 0.975 0.975 3.39%
a13 0.000 0.000 0.39%
a14 0.961 0.961 2.13%

BPI20R

a15 0.998 0.998 20.63%

DeepFool. Results show that FGSM outperforms PGD and
DeepFool in five out of eights event logs. DeepFool com-
monly outperforms FGSM and PGD in the remaining three
event logs (i.e., BPI12C, BPI13P and BPI20R). The only
exception is observed with the macro GMean of BPI13P
that achieves the highest value with PGD. Let us focus
the attention on the performance of DeepFool and FGSM
in BPI12C, BPI13P and BPI20R. JARVIS with DeepFool

Table 6: Adversarial sample generation: macro FScore and
macro GMean of JARVIS by using FGSM (baseline), PGD
and DeepFool

Eventlog FScore GMean

FGSM PGD DeepFool FGSM PGD DeepFool

BPI12W 0.667 0.608 0.562 0.820 0.793 0.771

BPI12WC 0.705 0.692 0.700 0.812 0.807 0.809

BPI12C 0.644 0.647 0.657 0.786 0.784 0.791

BPI13P 0.414 0.417 0.422 0.595 0.600 0.599

BPI13I 0.387 0.342 0.328 0.615 0.576 0.568

Receipt 0.525 0.498 0.477 0.733 0.720 0.677

BPI17O 0.720 0.712 0.711 0.846 0.840 0.837

BPI20R 0.491 0.498 0.525 0.699 0.695 0.718

Figure 9: Macro FScore measured in BPI13P and BPI20R
by varying the ϵ among 0.01, 0.001 (default), 0.0001 and
0.00001 with FGSM, PGD and DeepFool

achieves higher macro FScore than [3] in BPI12C, while
JARVIS with FGSM achieves lower macro FScore than [3]
in the same log (see results in Table 3). On the other
hand, JARVIS with FGSM already outperforms all related
methods reported in Table 3 in both BPI13P and BPI20R.
So, FGSM can be considered a good choice to allow JARVIS
to achieve higher accuracy than related methods.

Both FGSM, PGD and DeepFool take ϵ as input pa-
rameter. Figure 9 reports the macro FScore of JARVIS run
with FGSM, PGD and DeepFool by varying ϵ among 0.01,
0.001 (default), 0.0001 and 0.00001 in both BPI13P and
BPI20R. In both experiments, differences in macro FScore
are negligible.

6.4 Image patch position analysis

We explore the effect of the single-view image patch po-
sitions within the adopted imagery encoding schema. We
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Table 7: Image patch position analysis: macro FScore and
macro GMean of JARVIS measured in BPI13P and BPI20R
by processing views in the default order they appear in
the event log (Original). Average and Standard deviation
of the macro FScore and the macro GMean of JARVIS by
processing views after performing the random shuffle of
views. The shuffle operation is repeated on five trials.

Eventlog Fscore GMean
Original Shuffle (Avg±Dev) Original Shuffle (Avg±Dev)

BPI13P 0.415 0.413±0.018 0.595 0.600±0.010

BPI20R 0.491 0.491±0.008 0.699 0.695±0.003

recall that, in this study, event log views are processed in the
same order they are recorded in the event log, while the sin-
gle view-based patches of each prefix trace are distributed in
the prefix trace imagery grid from left to right, and from top
to bottom. In this section, we evaluate the possible effect
of the image patch positions on the accuracy of the ViT
model trained by JARVIS. Let O be the ViT model that was
trained by processing event log views in the order they were
recorded in the event log. We trained five ViT models after
randomly shuffling the views’ positions in the event logs
and, consequently, the positions of the view-based image
patches in the imagery encoding of the prefix traces.

Table 7 shows the average and standard deviation of the
macro FScore and the macro GMean of JARVIS, in both
BPI13P and BPI20R, measured on the five trials of the
view shuffle operation, as well as the macro FScore and the
macro GMean achieved processing the views in the original
order. The differences in the performances of the trained
ViT models are negligible. This shows that the accuracy
of the proposed approach is robust to the view order and
the adopted ViT model can be trained by taking advantage
of the intra-view information and inter-view relationships
independently of the view positions in image patches.

7 EXPLANATION ANALYSIS

This analysis aimed to explore how intrinsic explanations
enclosed in the attention maps generated through the ViT
model may provide useful insights to explain model deci-
sions. We intend to answer the following research questions:

Q1 What is the effect of information enclosed in different
view-based image patches on decisions?

Q2 What is the effect of events within each view-based
image patch on decisions?

For this purpose, in the following of this study, we
explore several average measurements of the lightness in-
formation enclosed in the maps of attention, which were
extracted for the training prefix traces of the event logs
considered in this study. In particular, let I be the multi-
patch imagery representation of a prefix trace. Let L be the
lightness channel of the map of the attention of the ViT
model on I. For each view, we can compute the local patch
lightness of the considered view-based patch in L as the
average of the lightness measured on all pixels of L falling in
the patch under study. This local measurement of the patch
lightness quantifies the local importance of the information
enclosed in the considered view-based image patch on the

Figure 10: Maps of attention of two prefix traces of
BPI13P, which are correctly labeled with “a2” (“Accepted-
In Progress”) and “a4” (“Completed-Closed”), respectively.
The maps are shown in the luminosity channel of the LAB
space. The numbers identify the names of the views in
the event log: 1-“activity”, 2-“resource”, 3-“timestamp”, 4-
“impact”, 5-“org country”, 6-“org group, 7-“org role”, 8-
“product”, 9-“resource country”.

sample decision. The analysis of local patch lightness allows
us to answer Q1. The highest the value of the local patch
lightness, the highest the effect of the corresponding view
on the sample decision. On the other hand, for each event
positioned in a prefix trace (e.g., first event, second event),
and for each view, we compute the local intra-patch event
lightness as the average of the lightness associated with
the pixels encoding the event in the view-based patch. The
analysis of local intra-patch event lightness allows us to
answer Q2. The highest the lightness of the local intra-
patch event lightness, the highest the effect of the view
information of the selected event on the sample decision.

We start analyzing explanations of local decisions con-
cerning the next activity predicted for specific prefix traces.
For example, Figure 10 shows the lightness channel of
the attention maps extracted from the ViT model trained
by JARVIS on two prefix traces of BPI13P. These prefix
traces were correctly labeled with the next-activity “a2”
(“Accepted-In Progress”) and “a4” (“Completed-Closed”),
respectively. Table 8 reports the local patch lightness mea-
sured for each view in the maps of attention shown in
Figure 10. These results show that the patch associated
with “activity” conveys the most relevant information for
recognizing both “Accepted-In Progress” and “Completed-
Closed” as the next-activities of the two sample prefix traces.
However, “impact” and “org group” are the second and
third most important views for the decision on the next-
activity “Accepted-In Progress”, while “org group” and
“product” are the second and third most important views
for the decision on the next-activity “Completed-Closed”.
Notably, “product”, which is one of the top-three ranked
views for the decision on the next activity “Completed-
Closed”, is the less important view for the decision on the
next activity “Accepted-In Progress”. This analysis shows
that different views may convey the most important infor-
mation for different decisions.

We go deeper in the explanation of the decision
“Completed-Closed”. Figure 11 shows the sequences of
activities, org groups, and products recorded in the sam-
ple prefix trace with next-activity “Completed-Closed”. We
selected these views as they are the top-three views for
recognizing the next activity “Completed-Closed” in the
sample prefix trace according to the analysis of the local
patch analysis reported in Table 8. For each selected view,
each event of the prefix trace is annotated with the local
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Table 8: Patch lightness measured for each view of BPI13P
in the two maps of attention shown in Figure 10

View Left map (“a2”) Right map (“a4”)

activity 91.56 120.00
resource 10.50 11.88

timestamp 15.81 19.43
impact 69.56 45.00

org country 12.19 39.81
org group 23.06 100.25
org role 20.94 36.31
product 5.94 95.81

resource country 13.88 28.38

Figure 11: Intra-patch event lightness of each event of the
sample prefix trace with the next-activity “a4” (“Completed-
Closed”). The intra-patch event lightness is computed for
the three-top patches in the map of attention shown in
the right side of Figure 10 (“activity”, “org group” and
“product”) selected according to the patch lightness.

Figure 12: Heatmap of the global patch lightness computed
for all event log views (axis X) in all event logs (axis Y). “×”
denotes that the view reported on the axis X is missing in
the event log reported on the axis Y.

intra-patch event lightness computed for the event within
the patch of the attention map of the prefix trace, which is
associated with the view. This plot explains that the activity
“Accepted Wait” recorded in the third event of the prefix
trace, the org group “Org line C” recorded in the second
event of the prefix trace and the product “Prod84” recorded
in the third and fourth positions of the prefix trace have
the highest effect on the decision of predicting “Completed-
Closed”’ as next-activity of this sample prefix trace.

We continue analyzing the global effect of different

Figure 13: Heatmap of the global patch lightness computed
activity by activity (axis Y) for all the views in the event log
BPI13P. For each (next) activity category, the support of the
category is reported in the brackets.

views by accounting for the patch lightness computed for
each view and averaged on all the prefix traces of the train-
ing set. Figure 12 shows the heatmap of the average patch
lightness computed on the training set in the event logs of
this study. This map shows which views have the higher
global effect on the ViT decisions. As expected, the activity
information is globally the most important information for
the ViT decisions in all the event logs. However, this expla-
nation information shows that the “product” information
is globally in the top-three ranked views in BPI13P, while
“number of terms” and “action” information are globally
in the top-three ranked views in BPI17O. These results
support the decision of designing a multi-view approach not
necessarily based on the standard views (activity, timestamp
and resource). In fact, this analysis shows that changing
the process changes the type of information most useful
for predicting the next activity of every running trace of
the study process. So, designing multi-view methods, which
are able to incorporate any view, can actually contribute to
gaining accuracy in next-activity prediction models.

In addition, to examine in depth the global effect of
different views on different categories of next activities, we
analyze the patch lightness, computed for each view, and
averaged on each collection of training prefixes labeled with
a category of next activity. Figure 13 shows the average
of the patch lightness computed on every next activity
category appearing in the training set of the event log
BPIC13P. These results show that the effect of specific views
on the ViT decisions may change depending on the next
activity category. In particular, “activity” conveys the most
relevant information for all activities. Instead “resource”,
that is the second most important view for the next-activity
“a1” (“Accepted-Assigned”), “a2” (“Accepted-In Progress”),
“a4” (“Completed-Closed”) and “a5” (“Queued-Awaiting
Assignment”), is the fifth most important view for the
next activity “a3” (“Accepted-Wait”). On the other hand,
“product” and “org country” are the second and third
most important views for the next activity “a3” (“Accepted-
Wait”). “timestamp” is never in the top-three ranked views
for any next activity. This analysis shows that views may
contribute differently to decisions about different types of
activities within the same event log. The views that most
contribute to recognizing a specific activity may change with
respect to the activity to be recognized. Hence, this analysis
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Figure 14: Heatmap of the global intra-patch event lightness
computed for each event position (axis Y) in the prefix traces
the event log BPI13P for each event log view (axis X)

supports the effectiveness of the decision to train the next-
activity predictive model accounting for all views available
in the event log. In fact, information enclosed in different
views may contribute to gaining accuracy in recognizing
different categories of activities within the same problem.

Finally, to explore the global effect of the intra-view,
event information on ViT decisions, we analyze the av-
erage, intra-patch event lightness computed on the pixels
of each studied patch, which encode the events occupying
the position under study in a prefix trace. Figure 14 shows
the average measurement of the intra-patch event lightness
computed for each of the most recent four events recorded
in the prefix traces of the training set of BPI13P. These
results show that the most recent events recorded in a prefix
conceive the most important information for the decisions.
This conclusion can be drawn independently of both the
category of the next activity and the view of the information
considered in the event.

8 CONCLUSION

This paper illustrates a novel, multi-view, PPM method for
next-activity prediction. We resort to an imagery represen-
tation that encodes multi-view information of a prefix trace
as multiple color patches of an image. We take advantage
of the self-attention modules of a ViT architecture to assign
pairwise attention values to pairs of image patches being
able to account for multi-view relationships. In addition,
self-attention modules allow us to incorporate explainability
directly into the structure of a PPM model by disclosing
explainable information concerning specific views of the
event log and events of the prefix trace that more influenced
decisions. The experiments performed on several event logs
show the accuracy of the proposed approach and explore the
explanations produced through the attention mechanism.
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