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An In-Depth Examination of Artificial
Intelligence-Enhanced Cybersecurity in Robotics,
Autonomous Systems, and Critical Infrastructures

Fendy Santoso, Senior Member, IEEE and Anthony Finn

Abstract—Recent developments in cutting-edge robotics have
been constantly faced with increased cyber-threats, not only in
terms of the quantity or the frequency of attacks, but also when
it comes to the quality and the severity of the intrusions. This
paper provides a systematic overview and critical assessment of
state-of-the-art scientific developments in the security aspects of
robotics, autonomous systems, and critical infrastructures. Our
review highlights open research questions addressing significant
research gaps and/or new conceptual frameworks, considering
recent advancements in artificial intelligence (AI) and machine
learning. Thus the contributions of this paper can be summarised
as follows. We first compare and contrast the benefits of multiple
cutting-edge AI-based learning algorithms (e.g., fuzzy logic and
neural networks) relative to traditional model-based systems
(e.g. distributed control and filtering). Subsequently, we point
out some specific benefits of AI algorithms to quickly learn and
adapt the dynamics of non-linear systems in the absence of
complex mathematical models. We also present some potential
future research directions (open challenges) in the field.
Lastly, this review also delivers an open message to encourage
collaborations among experts from multiple disciplines. The
implementation of multiple AI algorithms to tackle current
security issues in robotics will transform and create novel,
hybrid knowledge for intelligent cybersecurity at the application
level.

Index Terms—Cybersecurity, Artificial Intelligence, Machine
Learning, robotics, autonomous systems, and critical infrastruc-
tures.

I. INTRODUCTION

Robotics and autonomous systems are complex networked
system, comprising of computers, software or algo-

rithms, and physical entities (e.g. sensors and actuators),
connected in feedback mechanisms to achieve its intelligent
purpose. There are myriad examples of modern robots and
autonomous systems in society, starting from autonomous
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vehicles [1, 2], automatic process control [3], as well as
industrial and flight control systems [4]. Thus, it is apparent
that the intellectual challenge of research in this area is
highly multidisciplinary as it covers a spectrum of scientific
disciplines.

Fig. 1. Scopus data, depicting current trend of particular research themes,
namely, (a) cybersecurity, (b) Electronic Warfare, (c) Robotics (d) Cyber-
Physical System from 2001-2023. While the vertical axis depicts the number
of publications in a particular year, the horizontal axis points out the historical
time-line of our interest.

According to the data obtained from the SCOPUS publica-
tion database (see Fig. 1), the annual rate of publicly available,
peer-reviewed archival manuscripts in the area of cybersecurity
has increased exponentially from around 140 papers in 2001 to
more than 24,000 papers in 2021. By comparison, the publicly
available publication rate for the field of electronic warfare has

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3331083

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



2

increased from about 250 papers in 2001 to more than 1800
papers in 2021. Similarly, the number of papers in robotics
has skyrocketed over the same period. To some extent, this
growth has likely been driven by the advent of the newly
established research field of cyber-pyhsical systems, which has
rapidly increased to more than 15,000 publications in 2019
from almost nothing in 2001. In fact, publications in this area
have increased substantially from 16,000 papers in 2019 to
about 23,000 manuscripts in 2021.

From Fig. 1, one can also easily conclude that, in terms of
relative popularity, research in the area of cyber-physical sys-
tems (including security aspects in robotics and autonomous
systems) still has room to expand. This is indicated by a
steadying annual publication rate in recent years, despite
the inter-disciplinary nature and large coverage of this field
of study. The SCOPUS statistical data also suggest that
researchers still heavily focus on the general performance and
innovations of robots rather than investigating the potential
cyber-threats at the application levels.

Intertwined with its functionality and performance, another
important aspect worth considering when designing an au-
tonomous system is security and privacy as cybersecurity has
become everyone’s business. For instance, a robotic cyberat-
tack has posed a very serious threat to society. The scope of
the attacks are varied and typically range from computational
resources [5], communication links [6], operating systems [7]
as well as software libraries, sensor data, and information
fusion [8].

While having similar objectives (i.e. to target the vulnerabil-
ity of sensors and communication links), cyberattack slightly
differs from electronic warfare, which mainly relies on the
use of electromagnetic spectrum to attack, assault, or impede
the enemy (i.e. spoofing [9], jamming [10], and blinding [11]).
While the latter generally manipulates signals through sensory
inputs (a GPS or radar as in [9]), cyberattacks focus on
falsifying sensory data.

A cyberattack may therefore exploit vulnerabilities of a
robot’s operating systems (O/S), such as Windows and Ubuntu
(Linux), or its middleware, such as ROS (Robot Operating
System), which can be thought of as a set of software libraries
that bridge the robot’s O/S and its applications or database;
both of which are very susceptible to any intrusions [12].

The prediction that the speed of computers doubles every
two years (Moore’s law) has paved the way for the de-
velopment of new theories and applications in AI. In fact,
current advancements in AI have radically changed many
aspects of robotics and automation. For instance, in the area of
robotic control, AI has led to the birth of numerous intelligent
guidance and control methods. Many model-free, intelligent
guidance and control approaches have been introduced, such
as fuzzy systems [13], missile guidance based on robust pre-
dictive control using neural-network optimization [14], hybrid
neuro-fuzzy control systems [15], and genetic algorithms [16]
to name a few. When it comes to computer vision and other
sensory systems, AI and machine learning algorithms have
been also implemented to perform accurate tracking [17], bio-
inspired computing of vision [18] and pattern recognition [19].

In the area of cybersecurity, likewise, many researchers

have leveraged the benefits of AI to predict certain anomalies.
For instance, [20] and [21] employed fuzzy systems for an
embedded network of security cyber sensors, [22] discussed
the application of neural networks in cybersecurity, and [23]
used genetic algorithms to improve network security.

With all these cutting-edge developments, the key research
questions are:

1) To what extent have AI revolutionized the field of
cyber-physical systems, connecting dots between robotic
cyberattacks and machine learning?

2) How much impact has AI had in the field of cybersecu-
rity in robotics and autonomous systems?

3) What are potential research avenues for both theoretical
and practical aspects of robotics cybersecurity?

Answering the above research challenges, our review paper
aims to complement the existing review papers, whose focus
are different, namely, [24] investigating the general security
issues at the various layers of communication; [25] and [26],
focusing on the interconnection of robotics and the Internet-of-
Things Systems as well as [27] discussing secure estimation
and control for autonomous power systems.

Hence, the main unique contributions of our paper are to
provide an overview of the state-of-the-art cybersecurity sys-
tems, connecting dots between robotics, autonomous systems,
critical infrastructures, and cutting-edge machine learning al-
gorithms as follows:

1) We first discuss the motivations behind this research
theme and the importance of cybersecurity in various
areas of robotics and automation while highlighting the
pros and cons of the existing algorithms.

2) We highlight some potential security issues, associated
with the most widely implemented middleware soft-
ware in robotics, namely, the Robot Operating Systems
(ROS).

3) We discuss the pros and cons of several cutting-edge
algorithms, widely implemented in such systems, es-
pecially when it comes to the roles of multiple AI
algorithms, i.e. type-1 and type-2 fuzzy systems, neu-
ral networks, genetic algorithms, as well as machine
learning (deep learning) algorithms and some hybrid
approaches that turn out to be quite effective. This
also includes some potential limitations of the existing
techniques and how to improve the performance of the
system.

4) Finally, we speculate about some potential future direc-
tions in this area.

The paper is structured as follows. Section II describes the
general problem statement of cybersecurity in autonomous
systems. Section III presents an overview of the most widely
implemented middleware in robotics, namely, the Robot Op-
erating System (ROS). This section highlights the pros and
cons of ROS a middleware platform widely used in robotics.
Meanwhile, Section IV discusses cybersecurity at the applica-
tion layer, leveraging the benefits of several cutting-edge AI
and machine learning algorithms, eliminating the requirements
to dig deeper into the middleware of the source code to
detect faults. Those algorithms serve as powerful tools to solve
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the our problem statement presented in Section II. Moreover,
Section V discusses some potential research challenges while
summarising the benefits of some cutting-edge AI algorithms.
Section VI concludes this paper and speculates some potential
future research directions for the field.

II. MATHEMATICAL PROBLEM FORMULATION

To formulate the problem, as a working example, we employ
a typical feedback control system widely implemented in
cyber-physical systems.

It is understood that security can be compromised at mul-
tiple different levels within the UAV, e.g. at the system, sub-
system, component, or sub-component levels. For instance,
when it comes to a sensory system such as a LIDAR (Light
Detection and Ranging) or a camera, this may be attacked
at the signal processing (distance measurement) level or the
sensor fusion (application) level.

Given the nonlinear dynamics of autonomous systems with
feedback control for N sub-systems, the (i,j)-th components
can be represented using the following non-linear state space
equation:
ẋi,j(t) = fi,j(xi,j(t)) + gi(xi,j(t))ui(t)

+δi,j( ¯y(t)) + di,j(t), ∀t ≥ 0,

yi(t) = xi,j(t) + δo(t), i = 1, 2, ...N, j = 1, 2, ...,M − 1

(1)

where xi,j ∈ Rj is the state vector of the system, whose
values are bounded within its maximum and minimum range,
xi,j ≤ xi,j ≤ xi,j . xi,j may be corrupted by δi,j , a vector
of malicious attacks on a particular system state, where
(ui, yi) ∈ R denote the control inputs and system outputs,
bounded such that ui(t) ≤ ui(t) ≤ ui(t) and y(t) ≤ y(t) ≤
y(t) that denotes the vector of system output, and which may
be corrupted by δo(t), a vector of malicious attack attempting
to spoof the output of the system. Meanwhile fi,j(.) and gi,j(.)
indicate the unknown smooth functions describing the non-
linear dynamics of the systems while di,j presents the external
disturbance on the system states.

The following performance index J in (2) will have feasible
and finite solutions, making it possible to estimate the system
state ∀t ≥ 0 to verify the truthfulness of the states, i.e.

arg min J = arg min ||y(.)− ŷ(.)||2,∀t ≥ 0, (2)

where y(.) denotes the actual output of the system, ŷ(.) is the
predicted output of the system, and ||.||2 is the Euclidean norm.
Equation (2) clearly indicates that for the case of legitimate
users, given a stable state estimator, the predicted values will
converge to zero, such that the tracking error is e = ||y(.) −
ŷ(.)||2 → 0. On the other hand, if the real state values are
compromised, the condition in (2) may not be satisfied (e.g.
due to malicious data injections), and accordingly the tracking
error shall not converge.

III. OVERVIEW OF ROBOT OPERATING SYSTEMS: ROS,
SROS, ROS2.0, AND ROS-M ARCHITECTURE

In this section, we discuss the cyber vulnerability of ROS, a
widely implemented middleware containing a communications

platform and repository of libraries that form a bridge between
a robot’s operating system (O/S) and its applications. It is
important since the operating system plays an essential role
(the core of any software) in managing all of the computa-
tional processes, memory, data transfer, communications, and
networking. Without a powerful O/S, a computer is essentially
useless.

Fig. 2. Relying on ROS platform, various unmanned vehicle platforms are
vulnerable to cyber-threats, starting from (a) Top Left: an unmanned helicopter
[28], (b) Top middle: a hexacopter rotorcraft [29], (c) Top right: the P15035
flying wing aircraft due to Monash Aerobotics Research Group [30], (d)
Bottom left: an underwater vehicle [31], (e) Bottom Middle: the AR.Drone
quadcopter rotorcraft [32], and (f) Bottom Right: the Pioneer 3-AT ground
robot [33].

Originally designed by Willow Garage in 2007 for use with
the PR2 robot [34], a single humanoid robot for research
applications in academia, ROS provides an open, modular
and flexible architecture for autonomous systems. Due to the
many advantages of ROS, the system has gained popularity.
As a result, its adoption has gone well beyond the academic
research community and it has been used in a variety of areas,
e.g. agriculture [35] and home robots [36]. NASA is even
expected to employ ROS on the Robonaut 2, a dexterous
humanoid robot to be deployed on the International Space
Station [37].

As a result of this extended application set, a number of
security challenges have arisen for ROS. For instance, [34]:

1) Although it is possible to control a networked multi-
robot system (swarm), there is no standard approach in
ROS to deal with this.

2) The importance of real-time communication and control
was not originally emphasized.

3) The adaptability for non-ideal networks, such as when
connectivity suffers from poor quality WiFi and causes
information loss or communications delay.

4) There are security issues in the basic code of ROS 1.0.
The latter is the most important as it exposes cyber-

vulnerability issues, such as:
1) Unencrypted network traffic - An attacker can view

legitimate users’ network traffic and record their ac-
tivities while gathering some confidential information,
i.e. perform ’man-in-the-middle’ attacks or false data
injection. It is also possible for an attacker to use
the platform to hijack a third-party communications
network.
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2) Anonymous graph-type structure - The anonymity of
the ROS publish-subscribe schema makes it easier for
an attacker to spoof target systems and applications.

3) Limited integrity checking - Each node within the
ROS graph has limited integrity checking. Consequently,
there is no means by which to detect activities from
a potentially malicious user, paving the way for an
attacker to reverse engineer the system without the host’s
knowledge.

4) Open topics - ROS topics are open for subscriptions
to any nodes and each node can act as a publisher
or subscriber. This makes the system vulnerable to
packet sniffers and man-in-the-middle attacks and puts
the integrity of the robot’s data (which may be on a
network) at risk.

The concept of information sharing between various ROS
1.0 client libraries, implemented via XML-RPC suffers from
security issues, mainly due to limited integrity checks and the
openness of all topics for a subscription.

To highlight the openness and the anonymous nature of
ROS, we will discuss the step-by-step process to establish a
data connection in ROS. First, we define the role of the ROS
Master, which keeps track of the information (note: (which
has a known IP address coded into the system). Second, the
publishers inform the master that they are publishing certain
topics (e.g. \cmd vel) on a certain local host. Next, the
subscriber tells the master that they want to subscribe to
\cmd vel, and since the master has been directly informed
by the publisher, they can directly pass the information to the
subscriber (say, ‘I know someones are publishing this topic,
and they are located at the local host: 1234’. Having received
that information, the subscriber can now establish a peer-to-
peer connection to the publisher, and lastly, the publisher sends
the data to the subscriber as the connection is established.

As such, these vulnerabilities could lead to serious cyber-
threats for any applications in commercial, medical, industrial,
and military robots. For instance, data from an arbitrary open
topic can be falsified through the injection of malicious data.
Sensitive information from any nodes (since all topics are open
for subscriptions) can be hacked or reverse engineered without
the knowledge of the host (unauthorized access to data).

In addition, nodes can be bombarded by some deceptive
messages through the Denial-of-Service (DoS) attacks - a huge
amount of data could create significant processing delays,
resulting in the inability to process them in real-time. Lastly,
ROS systems can be a target for a packet sniffer and man-
in-the-middle attacks since there is no way to verify the
authenticity of the payload information in transit among nodes
[12].

Meanwhile, Within the context of unmanned vehicles, cyber
threats can be categorized into several aspects [38], that is,
in regards to the availability, confidentiality, and the integrity
of the (1) Mission Execution, (2) Communication, (3) Data
storage, and (4) the intellectual property of the advanced
algorithms. A more detailed explanation can be found in Table
I.

In an attempt to raise some awareness on the practicability
of cyberattacks on ROS 1.0, the authors in [39] conducted

rigorous penetration testing. They focused on ROS XML-RPC
API as their main attack point while introducing two attack
tools, namely, Roschaos and ROSPentTo. Their research
clearly demonstrates that it is not difficult to perform cyber-
attacks under various modes in ROS, such as to perform (1)
false data injection, (2) man-in-the-middle attack, (3) service
isolation, (4) malicious parameter update attack. The authors
highlight the necessity to have a message definition before
injecting false data.

Despite some flaws in the ROS 1.0 API, nonetheless, there
are some methods to counter those attacks, such as using
roswtf command to diagnose potential cyber issues as the
system will perform a ROS graph analysis to detect the
patterns of potential cyberattacks. For instance, it gives a
warning if a listener is isolated from its publisher and if one
adds a fake publisher, hides it from the ROS master, the system
will also produce a warning. Also, several approaches to
enhance security have been introduced, such as using ‘Secure
ROS’ (SROS) and ROS 2.0, which are not susceptible to those
malicious attacks.

SROS has been developed to address the shortcomings of
the conventional ROS in many ways, by equipping the system
with:

1) Transport encryption, that is, to verify the integrity of
the nodes, traffics, and the private connection.

2) Access control, which can be done by limiting the scope
of the node’s scope within the ROS graph.

3) Process profile, meaning to limit the scope of access
within the host machine.

For instance, the improvements in SROS [40], [41] comes
in the form of native Transport Layer Security (TLS) support
for all socket-level communication, (2) The introduction of the
X.509 Public Key Infrastructure (PKI) certificates, promoting
thrust, integrity, authenticity as well as (3) The integrity
certificate customization (transport encryption), (4) Auditable
ROS graph access control, and (5) hardening the process of
nodes.

Another version of ROS is ROS 2.0, equipped with the
security feature of SROS. The system employs the Object
Management Group (OMG) consortium Data Distribution Ser-
vice (DDS) Standard, which can be regarded as an open mid-
dleware standard for real-time distributed high-performance
communication employing the same publish-subscribe struc-
ture in ROS 1.0. Communication through User Datagram
Protocol (UDP) is provided by means of eProsima’s Fast Real-
Time Publish-Subscribe (RTPS) protocol.

There is also a military version of ROS (defence-centric
ROS) developed by TARDEC in 2015, known as ROS-M,
intended for open, modular, robotic architectures with military
unique components library [42]. The evolving ROS landscape,
such as data encryption at the node level as well as the scope
and access of each node play an important role in the future
development of ROS.

In line with the vulnerability of ROS, we will discuss
some examples of cyberattacks in autonomous systems and
their potential countermeasures (see Table I), indicating the
practical considerations of cybersecurity.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3331083

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



5

TABLE I
LIST OF POTENTIAL CYBER-THREATS IN AUTONOMOUS SYSTEM.

No Possible Threats Potential Mitigation
1. GPS/GNSS spoofing (jamming) attacks [43], [44] -

availability issue
Operator behavior pattern using the Hidden Markov model [43], Employing a motion
estimator [45], digital map matching and position reset [46], use of compatible receiver,
employing environment sensor e.g INS [45].

2. Malicious software (Malware) [47] - integrity Up-to-date operating systems and anti virus, disconnect drone from the internet (offline)
[38].

3. Jamming of the wireless communication frequency
[48] -availability

Robustness towards short-term communication loss, using the codes known to both trans-
mitter and receiver, the system transmits radio signal by changing the carrier frequency,
employing a large spectral band (i.e., frequency-hopping spread spectrum (FHSS) [49]).

4. Command and control data to be captured by an
unauthorized personnel [44] (e.g. Iran-US Lockheed
Martin RQ-170 Sentinel incident [50])- confidential-
ity

Software encryption and certified hardware encryption system [50], [51].

5. Communication integrity [52] (e.g. overtake control
(up-link) and send falsified data (fake position and
payload data in the down-link channel)

Employ variable length signature and data [53], avoid unknown external communication
[38].

6. Confidentiality of data storage Employs user’s account to separate access to multiple users, strong password, Role-based
access control (RBAC) [54].

7. Integrity of data storage Using user account privileges, binary data, encryption, signature.
8. Confidentiality of the intellect property (IP) [55],

[50] e.g. reverse engineering [56]
Hiding sensitive parts of the code (obfuscation) and steganography (the practice of conceal-
ing information within non-secret data) [57], file encryption [58], removing some key parts
of the code from the main program and secure them with high level of protection.

IV. AI, MACHINE LEARNING, AND DISTRIBUTED
SYSTEMS IN CYBER-PHYSICAL SYSTEMS

Considering numerous potential cyber-threats, some fun-
damental research questions include how to determine that
the system has been compromised, that is, to recognize that
something has gone wrong before one can leave the robot in a
safe state and restore its functionality. This includes the failure
of sub-components and functionality systems, namely, sensors,
guidance, and control systems as well as communication links,
to name a few.

A. Artificial Intelligence and Machine Learning

Artificial Intelligence, often abbreviated as AI, refers to the
replication of human intelligence in machines or computer
systems, enabling them to perform critical tasks that typically
require human intelligence, namely, learning, problem-solving,
reasoning, and self-correction [59].

AI encompasses a wide range of techniques and technolo-
gies, including machine learning, natural language processing,
computer vision, and robotics, among others, to create intelli-
gent systems that can perform tasks autonomously and adapt
to new situations.

The systems encompass a wide range of technologies and
techniques that enable machines to process information, learn
from experience, adapt to new data, and make decisions
based on that knowledge. AI systems aim to replicate and,
in some cases, exceed human cognitive functions, such as
reasoning, problem-solving, perception, and natural language
understanding.

Thus, some key components of AI include machine learn-
ing, natural language processing, intelligent control, computer
vision, robotics, data mining, and speech recognition.

Machine learning can be regarded as a subset of AI,
which includes the development of algorithms and statistical
models, allowing the systems to improve their performance
on a specific task over time based on the given data. This
way, machines (computers) can learn patterns from data,

identify trends, and make predictions or decisions without
being explicitly programmed [60].

B. Potential Cyberthreats

To begin with, we highlight numerous cases in real-life
scenarios, as extracted from [61], denoting the importance of
security and privacy in robotics as summarised in Table II.

Thus, there are several fundamental steps approach to pro-
tecting the system from cyberattacks:

1) Detection of attack, intended to decide whether or not
the system has been compromised and to determine
the nature and target of the attack. For instance, the
authors in [9] introduced a certain wireless intrusion
detection framework to prevent malicious attacks to
access networks of communications in networked multi-
robot systems.

2) Assessment of attack, aimed to determine the impacts
of attacks on-board the systems. For example, the au-
thors in [72] developed a risk assessment framework for
a wireless sensor network in a sensor cloud that utilizes
attack graphs.

3) Mission impact assessment, which is meant to assess
the operational capability of the system as demonstrated
in [73], where the authors developed a cyber mission
impact modeling tool.

4) Report and repair are the final steps to characterize the
nature, extent, and seriousness of the attacks to users.

In what follows, we will discuss some traditional intrusion
detection systems (analytical models), widely used for obser-
vation or fault detection at the application levels [74]:

1) Distributed filtering, such as Kalman [75] and particle
filters [9], [76], have been widely implemented to predict
the presence of potential intruders in any system. For
instance, To verify the reported position from GPS, the
authors in [76] developed a new framework of wireless
intrusion detection for robotic and vehicular networks by
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TABLE II
RELEVANCY OF SECURITY AND PRIVACY IN THE FIELD OF ROBOTICS [61].

No Areas Examples
1 Military robots UAV systems (e.g. for combat and surveillance) desperately require cyber protection, meaning all communications should be

encrypted. However, there was a large portion of military UAVs in 2012 in the US, which had not employed a fully encrypted
communication [62].

2 Space vehicles spacecraft systems must be protected from any potential cyberattack to avoid any non-authorized parties gaining control or
sabotaging the entity inside the international space station [62].

3 Telehealth and
remote surgery
robots

For the sake of the safety and security of the patient, a remotely operated surgery robot (e.g. DaVinci by Intuitive Surgical
Incorporated of Sunnyvale, CA [63]) during an operation must be freed from any unauthorized entity aiming to take over the
system, threatening the life of the patient. However, it should be noted that the Interoperability Telesurgery Protocol (ITP)
[64], which was originally introduced to secure the interoperability among robotic telesurgery systems, has not used any form
of encryption or authentication. This makes the system prone to the man in the middle attack [65].

4 Household robots Home assisted robots (e.g. Care-O-Bot [66], [67]), equipped with microphones and cameras may collect huge private and
confidential data at home, which must be protected. Malicious users may want to take control of the robot and steal a stream
of private images and other confidential data.

5 Disaster robots The role of disaster robots specifically designed to assist with nuclear reactor [68], [69] (e.g. to disconnect nuclear power plant
and radioactive materials) is very critical. Hence, it should be protected from any unauthorized malicious intrusion.

6 Research and ed-
ucational robots

Many research and educational robots are also vulnerable to cyberattack [70], [12]. For instance, the system may be vulnerable
to false data injection to prove a certain behavior to endanger people nearby, e.g. to command the robot to run at full speed
despite the presence of humans nearby.

7 Humanoid robots
(i.e. KAIST Hu-
manoid Robot -
3: HUBO [71])

Humanoid robots (e.g. Sophia (https://www.hansonrobotics.com/sophia/) or Josie Pepper (https://www.munich-airport.com/hi-
i-m-josie-pepper-3613413) are often required to interact with or entertain general people in public space, such as in the airport
to answer passengers’ questions. For instance, Munich airport is the first German airport to employ an AI-based humanoid
robot, called Josie Pepper (see: https://www.munich-airport.com/). With this role in mind, cyber protection is essential to avoid
malicious users who tried to control the robot to make erratic behaviors that could endanger general people.

means of a particle filtering technique using Received
Signal Strength (RSSI) measurements as a metric of de-
tection. The system has two inputs, namely, the reporting
position from the GPS and the RSSI measurements used
to validate the truthfulness of the reported position. Their
research confirms the benefits of distributed particle
filtering techniques as the system can verify the reported
position within a reasonable amount of time as indicated
by FP or TN as a metric of detections.

2) Distributed control has been widely implemented in
autonomous systems [74]. There are several applications
of distributed control implemented in autonomous sys-
tems, namely, (1) distributed control of manipulators, (2)
distributed model predictive control, and (3) distributed
control of microgrids. Interested readers are suggested
to refer to [74] to gain more insight into detailed
applications.

3) Hybrid systems (e.g. distributed control and filtering)
[74]. Given the extensive nature of autonomous systems,
hybrid distributed control and filtering with a security
perspective still leave rooms to improve. The role of
information filtering is undoubtedly important to en-
hance security and privacy. Some common performance
indices include security, stability, and resilience. It is
therefore important to get the simultaneous benefits
from both state estimations and robust control systems
[74]. For instance, in order to regulate active power
supply from distributed generators, the authors in [77]
introduced a cooperative resilient control supported by
a state observation network to monitor the behaviors of
distributed generators while isolating the misbehaving
nodes. The efficacy of the proposed system is high-
lighted by means of numerical simulations using the
IEEE standard 34-bus test feeder model.

Considering the suitability of the algorithm, it is very useful
to consider several criteria such as scalability, robustness

to multiple different sensors, functionality, and the types of
parameters as well as the configurations for users, who may
not be an expert in that algorithms. For instance, in ROS
one possible method to detect any potential intrusions is
by investigating networks data analysis (NTA) to investigate
communications flows among nodes e.g. bytes transmitted/
packets, communication latency, the duration, and the volume
of data. The NTA can be used to differentiate between normal
and abnormal operating conditions in a wide range of contexts.

While demonstrating some potential benefits, the quality and
the robustness of model-based (traditional) intrusion detection
methods are pretty much determined by the accuracy of the
assumed mathematical model of the systems and sensors
(see equations (1). In many cases, those models are not
fully available, corrupted, or entirely unavailable due to the
complexity of the systems. In fact, in reality, there is no perfect
mathematical model, and every model contains a certain
degree of uncertainties, even for the simplest ones. Also, some
estimation algorithms (e.g. Kalman filters) are inherently linear
and work best under assumed Gaussian noise only, which are
far from the harsh conditions in real life.

Artificial Intelligence, on the other hand, provides unique
and more robust solutions compared to traditional model-
based systems. The systems have been widely implemented
to prevent cyberattacks especially in the context of robotics
or unmanned vehicles. There are three most-well known
artificial intelligence algorithms to address current research
issues in cyber-physical systems with their unique capabilities,
namely, knowledge-base (fuzzy systems), self-learning (neural
networks), and optimization (genetic algorithms).

For instance, While fuzzy systems (type-1 and type-2) are
good at representing human knowledge in the form of its
‘If-Then’ fuzzy rules, neural networks are well-known for
their learning ability (e.g. deep and reinforcement learning,
as well as supervised and unsupervised learning). Meanwhile,
a genetic algorithm is known for its ability to heuristically
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optimize the performance of complex systems, even for non-
differentiable systems. Meanwhile, a type-2 Fuzzy system is
known for its ability to deal with the footprint-of-uncertainties
(FoUs) [78, 79], making a robust system.

For example, the authors in [80] addressed the problem of
intermittent denial-of-service (DoS) attacks by introducing a
switching-based adaptive fuzzy state estimator. The authors
employed convex design conditions to derive the parameters
of the system, which guarantee the stability of all closed-
loop control signals. In detail, the authors address two major
research questions, namely, (1) state estimations in the face
of DoS attacks that cause the unavailability of the system
states, and (2) how to perform a Lyapunov analysis on active
and sleeping intervals of the DoS attack. They introduced a
switching-type adaptive state estimator to address the above
research questions.

Conceptually, there are at least three types of intrusion
detection algorithms, namely,

1) Anomaly-based detection systems, which work based
on the modeling of the statistical behavior of the net-
works. The system updates its knowledge to adapt to
the behavior of the system. Due to the availability of
the statistical model of the system, this approach is
suitable to detect unknown (new) attacks. To illustrate,
the authors in [81] introduced an improved intrusion
detection system based on hybrid feature selection and
a two-level classifier. In order to reduce the feature size
of the training data set, (e.g. the NSL-KDD [82] and
UNSW-NB15 [83]), the hybrid feature selection em-
ploys three methods, namely, particle swarm optimiza-
tion, ant colony, and genetic algorithm). The algorithm
demonstrates reasonably good performance i.e. 85.8 %
accuracy, 86.8 % sensitivity, and 88 % detection rate for
the NSL-KDD dataset.

2) Signature-based detection systems, which can be re-
garded as the process of building up a database of a
unique signature identifier so that it can be correctly
identified. Although this technique works reasonably
well for recurrent attacks and can achieve better ac-
curacy compared to anomaly-based detection systems,
it will not be useful to detect new attacks since their
signatures have not yet been identified. For example,
[84] introduced a parallel processing technique for a
small database with the most frequent signature and
updating agent. To assist with a simultaneous search of
both small databases, containing fewer signatures, and
the complimentary database, whose size is larger since
it stores old signatures, which are infrequently used;
the authors introduced a multi-reading technique. The
limitation of this technique is due to the manual update
process of the signatures, that is, the administrator has
to judge whether or not a signature is harmful before
adding it to the database. Also, while the technique
is not available in all hosts, it may be suffering from
compatibility issues since not every type of IDS can
support it.

3) Specification-based detection, which combines the
benefits of both signature-based and anomaly-based de-

tection by manually specifying certain behavioral speci-
fications used as a basis of attack. For instance, Hwang
in [85] introduced a hybrid intrusion detection system
leveraging the benefits of the low false-positive rate of
the signature-based intrusion detection system (IDS) and
the ability of the anomaly-based detection system to
prevent new (unknown) attacks. By means of anoma-
lous traffic episodes from the internet connections, the
authors introduced a system that can detect anomalies
outside the capabilities of the signature-based SNORT
system as in [86], [87]. The efficacy of the proposed ID
system was investigated using real-time internet trace
data supported with 10 days of MIT/Lincoln Laboratory
(MIT/LL) attack data set. The system demonstrated a 60
% detection rate compared to 30 % and 22 % for SNORT
and Bro system [88], respectively; supported with a
reasonably low false positive alarm of 3 %. In fact, the
signatures generated by the system have enhanced the
performance of the SNORT by 33 %. Their research
demonstrates the effectiveness and the validity of the
hybrid system supported by data mining and signature
generation over the internet connection episodes.

Addressing the demands of achieving a robust and resilient
control, Linda et al. introduced a new robust security system
using Type-2 fuzzy systems due to the ability of the system
to accommodate the footprint-of-Uncertainties (FoUs). The
learning algorithm is due to rule extraction via the online
nearest neighbor clustering technique. The system provides
the basis for anomaly basis intrusion detection systems while
it is also capable of complying with constrained computational
requirements for low-cost embedded networks. In an attempt
to emulate a cyberattack environment, the authors employed
Nmap (a network scanning tool to identify host, scan ports,
operating systems, and to decide applications, listening to one
open port) and Nessus (a network scanning tool with auditing
capabilities e.g. vulnerability and profiling information) soft-
ware. Their research indicates that the system achieves 98.84
% of classification rate with 0.0 % of a false-negative and 1.31
% of false-positive rates.

Distinguishing an overlapping between the threat and the
legitimate data, the authors in [89] introduced a wavelet-based
multiscale Hebbian learning approach in neural networks. This
way, the weights, and bias are updated with respect to the
multiscale approach. The authors employed UNSW-NB15 for
their experimental dataset and compared the efficacy of their
technique with respect to the traditional gradient descent-
based learning technique. Their research indicates that while
detection accuracy of single scale Hebbian-based-NN and
gradient descent-based NN is of comparable magnitude, the
proposed system is capable of distinguishing the non-linear
and overlapped feature space of cyber-world data. Overall,
the system demonstrated improved performance with a true
negative of 95 % and a true positive rate of 73 %. A
relatively low true positive rate results in improved precision
and accuracy. Their proposed approach is also effective to
reduce false positive and negative rates at the same time.

To reconstruct and compensate cyberattacks in the forward
link of a nonlinear system, the authors in [90] introduced
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a new hybrid of intelligent control technique by means of
neural networks and a classical control system using a variable
structure (VS) control technique. While the purpose of the
employing non-linear VS control technique was to guaran-
tee both the stability and the robustness of the closed-loop
system, the online neural networks trained using Lyapunov-
based adaptation law were to achieve an intelligent estimator
to estimate the network attack pattern. It is evident that the
proposed method was robust not only against cyberattacks but
also with respect to external disturbances affecting the system.

Overcoming false data injection attacks in industrial control
systems, the authors in [91] introduced an artificial neural
network-based identifier. The data was split into 65 % for
training, 15 % for validation, and 20 % for testing. While
the training was performed in a supervised manner using a
non-linear regression technique to abstract information and
to detect any potential attacks, the testing phase is meant to
highlight the performance of the system. On-line data streams
were directly obtained from the plant, which was first used
to train the neural networks for attack identifications while
different types of attacks were injected into the system to study
the performance of the system. Their research demonstrates
promising detection accuracy of the proposed security system.

Prioritizing alerts, Newcomb in [92] presented a new cy-
bersecurity approach, namely, the FLUF (Fuzzy Logic Utility
Framework) technique to support computer networks in mak-
ing a defense decision. Taking into account risk management
techniques from both offensive and defensive perspectives
while accommodating human expertise, the author developed
a fuzzy rule-based to assist cyber defenders with informed
decision support to improve their efficiency while increasing
mission assurance by first focusing on the most severe alert of
cyber intrusion detection. Current FLUF implemented compo-
nents from CARVER (Critically, Accessibility, Recuperability,
Vulnerability, Effect, and Recognizability) as well as the Risk
Management Framework (RMF) to rate the feasibility of an
eligible target.

Concerning security in modern vehicles, especially in the
area of in-vehicle networks, the authors in [93] introduced
a new intrusion detection algorithm using fuzzy systems to
detect several different types of attacks (i.e. denial of service
attack, fuzzy attack by injecting messages of totally random
CAN ID and DATA every 0.5 milliseconds, and false data
injection to the gear and the rpm) to the Controller Area
Network (CAN) protocol (a subset of ISO/OSI stack in levels
1 and 2). The fuzzy logic algorithm was employed to differ-
entiate between the legitimate CAN packets and the malicious
‘injected’ ones. To highlight the efficacy of the proposed
system, the authors employed real-world data embedded in
the CAN packets. Their research indicates that the proposed
method can achieve a precision from 0.85 to 1.

Motivated by the need to improve resiliency and state-
awareness, the authors in [94] developed a new control system,
namely, a ‘fuzzy-neural data fusion engine’ (FN-DFE). The
proposed control system consists of three layers, that is, (1)
threshold-based alarms, (2) behavior detector using a self-
organizing fuzzy system, (3) modeling and prediction based on
an artificial neural network. The enhanced state awareness of

the system can be achieved by fusing input data from multiple
sources to achieve robust anomaly indicators, in addition to
the signal prediction performed by neural networks. Their
experimental outcomes indicate that the proposed FNDFE
technique demonstrates its ability to timely monitor the perfor-
mance of the plant, in addition to its capability of performing
accurate anomaly detection. The system can identify intrusive
behaviors much earlier than the traditional threshold-based
alarm systems.

Addressing research questions in denial of service (DoS)
attacks, the authors in [95] employed dual deep learning
neural network architecture based on convolution layers. Their
research novelty comes in the form of the reinforcement of
the input vector with its cluster evaluation. Their research also
indicates a significant increase in the processing speed, making
it possible to detect attacks in busy corporate networks. For
instance, the processing speed of 32,768 windows relating to
523 s of traffic can be performed within 1.8s to 2s. When
it comes to the accuracy of the abnormal packet detection,
the system can achieve a reasonably high figure of 87 %.
Overall, their research demonstrates the possibility to achieve
an intelligent network firewall to achieve information security
of the enterprise.

Considering the importance of a secure healthcare indus-
try, Li et al. in [96], introduced a new security system,
namely, ‘Medical Fuzzy Alarm Filter’ (MFAF). The proposed
cybersecurity system leverages the benefits of knowledge-
based fuzzy inference systems to handle the vagueness and
imprecision in the data. The algorithm contains two major
phases for generating fuzzy rules from numerical data, that
is, to transform a pattern space into fuzzy subspaces, and
secondly to determine fuzzy ‘if-then’ rule for each fuzzy
subspace. The authors conducted two major experiments to
investigate the efficacy of the system, by means of simulations
and real network environments. Their experimental results
suggest the practicality of the proposed algorithm to work
in real medical environments. Also, the system can achieve
better accuracy compared to traditional supervised learning
algorithms.

In response to the monumental growth of internet appli-
cations, the authors in [97] introduced an anomaly detection
model based on multiple deep neural network structures, such
as convolution neural networks, autoencoders, and recurrent
neural networks. To gauge the performance of the proposed al-
gorithm, the authors employed multiple conventional machine
learning algorithms (e.g. an extreme learning technique, the
nearest neighbor method, a decision-tree approach, a random-
forest procedure and, a support vector machine concept as
well as a naive-bays technique and a quadratic discriminant
analysis). To highlight the benefits of the system, the authors
employed a confusion matrix, presenting the performance
of the system in terms of true positive, false positive, true
negative, and false negative. Their research highlights promis-
ing results for the real-time applications of deep learning in
anomaly detection systems (i.e., 85 % and 89 % for both
deep convolutional neural networks (DCNN), a special class of
neural networks to handle high dimensional data supported by
some spatial semantics, and long short term memory (LSTM)
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models, which can be regarded as a special recurrent neural
network (RNN) architecture).

Focusing on vulnerability management, the authors in [98]
developed an optimization framework based on genetic al-
gorithms to manage the security by means of the Open
Source Testing Methodology Manual (OSSTMM). The genetic
algorithm is meant to optimize a certain cost function, ac-
commodating the security level and some specifications from
the clients (e.g. maximum deployment costs). The authors
employed two OSSTMM indices, namely ‘the Actual Secu-
rity’ and the True Protection’ to validate the benefits of the
proposed approach. The algorithm was also validated based
on a real security evaluator scenario. The effectiveness of the
proposed system as an offline regulator in a decision sup-
port system was demonstrated through numerical simulation
results.

Considering the benefits of state estimators, Zhang et al.
in [99] implemented a Takagi-Sugeno fuzzy model to predict
the behavior of a non-linear security system consisting of
a set of wireless sensors supported by a communication
channel. The authors studied the effects of multiple phenom-
ena in autonomous system such as sensor saturations, signal
quantization, packet dropouts, and medium access constraints.
They developed a certain framework to achieve an asymptotic
stability convergence of the filtering error in the sense of mean
square, in addition to the prescribed H∞ performance level.
This way, the gain of the filter was computed by solving a
convex optimization problem. A case study on the network
truck-trailer system was implemented to highlight the efficacy
of the estimator design.

Aiming for safeguarding the trusted operation of robotic
vehicles while addressing the shortcomings of Robot Oper-
ating System (ROS), Santoso and Finn in [100] developed
a new cybersecurity system based on the concept of deep
learning convolutional neural network. ROS is a well-known
middleware platform widely used in both civilian and military
robots. The authors conducted real-time cyberattack experi-
ment to study the operation of the GVR-BOT ground vehicle,
a replicate of the US Army ground robot, under man-in-
the-middle cyberattacks and to exploit the vulnerability of
the Robot Operating System (ROS) employed in its onboard
computer. The normalised time-series data was converted
into RGB or grayscale images to train the CNN system to
learn the patterns of the robot under both the legitimate
and malicious operations. The authors conducted statistical
analysis to highlight the efficacy of the proposed system. It
turns out that the system is quite effective since it can achieve
a reasonably high accuracy ≥ 99% and substantially small
false positive rates ≤ 2 supported with minimum detection
times. The authors also compare the benefits of the algorithm
with similar techniques.

Jahromi et al. in [101] introduced a new framework to
address security issues in IoT-enabled cyber-physical systems.
The authors developed a two-level attack detection mechanism
suitable for imbalanced data in industrial control systems.
While the first stage includes a decision tree supported by
a deep representation learning model to deal with attack-
imbalanced environments in industrial control systems, the

second stage consists of an ensemble neural network to facil-
itate attack attribution. To study the efficacy of the proposed
system, the authors employed a real-world dataset from a gas
pipeline and water treatment system. Despite the complexity
of the proposed model, the complexity of the training and
testing phases are similar to other deep neural network systems
in the literature. Their research indicates the superiority of
their model against the proposed counterpart as it demonstrates
better recall and f-measure than earlier work.

In what follows, we briefly summarize some applications
of AI and machine learning algorithms, in addition to their
potential benefits (see Table III).

V. DISCUSSION AND POTENTIAL RESEARCH AVENUES

This section will discuss some potential research challenges
in the development of AI and machine learning algorithms for
robotics and autonomous system.

A. Security and Protection in Data and Communication Net-
works

While in the past researchers merely focused on the ca-
pability and the functionality of robots, currently privacy
and security are also important considerations. For instance,
the initial development of ROS 1.0 has not seriously taken
privacy and security issues into account i.e. ROS network
traffic remains unencrypted with limited integrity check on
the received packet other than some basic messages and API
call identity.

Addressing security and privacy, it is highly important to en-
code the message during the transmission and communication
process in a way that the information is only available to the
authorized parties. This leads to the first research challenge,
namely, the development of efficient and robust encryption
algorithms to avoid any intrusions at various layers (e.g.
brute force attacks). Some current state-of-the-art develop-
ments of cutting-edge encryption keys include symmetric-key
algorithms [106], public key cryptography [107], and distance-
based encryption [108], to name a few. In this avenue, the
research challenge is to ensure the integrity, confidentiality,
and availability of data, while harnessing the power of AI to
proactively detect, respond to, and adapt to emerging threats
in real-time.

B. AI-enhanced Bio-Inspired Fault Detection System

While traditional cybersecurity measures often rely on pre-
defined rules and signatures, which are inadequate in ad-
dressing the rapidly evolving threat landscape, currently, there
is a demand for a bio-inspired fault detection system that
draws inspiration from biological systems to effectively and
autonomously detect, respond to, and mitigate cyber threats
and vulnerabilities.

Under this research theme, we address a fundamental re-
search question on how to effectively design and implement a
bio-inspired fault detection systems in the realm of cyberse-
curity for robotics and autonomous systems to enhance their
security, resilience, and adaptability in the face of evolving
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TABLE III
SUMMARY OF AI AND MACHINE LEARNING FRAMEWORKS FOR NETWORK TRAFFIC ANALYSIS IN CYBER-PHYSICAL SYSTEMS

No Algorithms Purposes Benefits
1. Fuzzy Logic (fuzzy-NN) Algorithms [93] To detect four different types of attacks

targeting the controller area network (CAN)
protocol

High accuracy (0.85-1).

2. Fuzzy-Neural Data Fusion Engine (FN-
DEFE) [94]

To develop a robust state monitoring to
identify system behaviors in the face of
faulty. The system consists of three lay-
ers, namely, (1) traditional threshold-based
alarm, (2) fuzzy logic-based anonymous de-
tection, (3) ANN-based for modeling and
prediction

Timely plant monitoring and anomaly detec-
tion capabilities. Earlier detection of intru-
sive behaviors than conventional threshold-
based alarm systems.

3. Dual deep learning NN with clustering tech-
nique [95]

To detect DoS attacks Reasonably high accuracy of 87 %, suitabil-
ity for real-time operation.

4. Knowledge-based fuzzy if-then rules [96] To introduce a medical fuzzy alarm filter
(MFA filter) for healthcare environments
which can handle the vagueness and impre-
cision

Better accuracy compared to traditional su-
pervised algorithms, practical (real-time)
benefits.

5. Convolution neural networks (CNN), au-
toencoder and recurrent neural networks
[97]

To investigate the suitability of deep learn-
ing for anomaly-based intrusion detection
systems

Both NN models demonstrated exceptional
performance with 85 % and 89 % accuracy
on test data-set demonstrating the viability
of the system for cybersecurity applications.

6. Adaptive Neuro-Fuzzy Inference System
(ANFIS) with a series of pages route analy-
sis, network analysis, feature selection, and
attack classification phases [102]

To allow the desired access to the system
by investigating network traffic and the pre-
vious record

Improve accuracy for classification of dif-
ferent types of attacks. Reliable systems.

7. Genetic algorithm to extract principal com-
ponent analysis [103]

To enhance the security of the network High detection rates while speeding up the
processing.

8. Genetic algorithm and the Open Source
Security Testing Methodology (OSSTMM)
[98]

To introduce an optimization framework for
controlling a CPS system at the security
level.

The system is suitable for the management
of vulnerability.

9. TS Fuzzy-Model-Based-Filtering Technique
[99]

To model a class of non-linear CPS systems.
The physical plan is measured by wire-
less sensor networks, communicating with
a remote estimator via a communication
channel.

The accuracy and robustness in the face of
non-linearity.

10. Naive Bayes, k-nearest neighbor, decision
tree, and support vector machine [104]

To investigate a multivariate analysis of data
of video calls

An accuracy of 81 % for bandwidth predic-
tion and 60 % for destination prediction.

11. FLUF (Fuzzy Logic Utility Framework)
[92]

To prioritize intrusion detection alert based
on fuzzy systems

Improved efficiency and increased mission
accuracy by prioritizing the urgency of the
alert.

12. A Hybrid of a traditional (variable structure)
control method and an intelligent control ap-
proach (neural network) for reconstruction
and compensation of cyberattacks [90]

To guarantee the stability of the closed-loop
control system when attacks happen

Robustness against cyberattacks and distur-
bances.

13. Artificial Neural Networks [91] To identify potential false data injection
attacks (FDIA)

Promising detection accuracy based on the
experimental data.

14. Wavelet-based multi-scale Hebbian neural
network [89]

To differentiate overlapping classification
boundaries between the threat and legiti-
mate data over feature space

Based on the UNSW-NB15 dataset, the sys-
tem shows promising results for the gradient
descent-based learning technique.

15. Type-2 Fuzzy system [20] To leverage the advantage of Type-2 fuzzy
in accommodating the Footprint of Uncer-
tainties (FoU), that is, to develop a robust
anomaly detection of CPS system.

a robust and accurate system (i.e., the typ-
ical performance of 98.84 % correct clas-
sification rate with 0 % false negative, and
1.31 % false-positive rates.

16. Convolutional Neural Networks supported
by a voting filter [105] and [100]

to develop a robust data-driven cyber intru-
sion detection systems to accommodate the
shortcomings of ROS

A robust and accurate system with reason-
ably high accuracy, substantially small false
positive rates and rapid detection time.

17. Two-level attack detection mechanism for
imbalanced data in industrial control sys-
tems, namely, a decision tree supported by
a deep representation learning model, the
second stage consists of an ensemble neural
network to facilitate attack attribution

to address security issues in IoT-enabled
cyber-physical systems

A robust system with better recall and f-
measure compared to the previous work.
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threats? It includes recognizing any potential attacks (intru-
sion) before isolating the system and leaving the robot in a
safe state by maintaining its functionality in the face of failure.

Under the umbrella of AI, there are multiple fault detection
algorithms with their unique capabilities. In this review, we
narrow them down into three major techniques based on their
popularity and capability, namely, neural networks with their
ability to learn, fuzzy systems with their unique capability
to represent the vagueness in real-life in terms of fuzzy
knowledge and the footprint of uncertainties (FoUs), and
genetic algorithms with their optimization feature There are
also multiple hybrid combinations among those three intelli-
gent algorithms, such as neuro-fuzzy systems, combining the
benefits of learning and knowledge-based systems, GE-fuzzy
systems, taking the advantage of optimization and knowledge-
based techniques.

1) Fuzzy Systems: Imitating the way human reasons, fuzzy
systems due to Zadeh [79] is an approximate reasoning, deriv-
ing the conclusion based on a set of expert users manifested
in the set of fuzzy linguistic ‘If-Then’ rules, namely,

Ri : If xi1 is µi
1 AND xi2 is µi

2 ...AND xin is µi
n

Then yi := f(x1, x2, .., xn),
(3)

where xij = [xi1 xi2 ... xin]T denotes the input vectors for
the jth input, µi

j = [µi
1, µi

2, ...µ
i
m]T indicates the fuzzy

membership functions for ith rule, f(.) indicates a certain
function, representing the output of the Takagi-Sugeno fuzzy
system while for Mamdani counterpart it can be replaced by
a set of output membership functions, and y is the output of
the ith fuzzy rule.

Fig. 3. Block diagram of fuzzy inference system (FIS), showing three major
steps in fuzzy systems, namely, fuzzification, defuzzification, inference engine.

The system consists of three fundamental steps (see Fig. 3),
namely fuzzification (a mapping from crisp inputs into fuzzy
sets), rule-based fuzzy inference engine, and defuzzification
technique (transforming fuzzy values into real variables). The
system allows for some simple interactions as well as a direct
interpretation of the results.

Fuzzy logic’s ability to handle uncertainty and imprecision
makes it a valuable tool in cybersecurity for making more
informed and context-aware security decisions. It is particu-
larly useful in scenarios where binary decisions may not be
adequate for assessing and responding to complex security
situations.

• Intrusion Detection Systems (IDS): Fuzzy logic can be
used in IDS [92] to evaluate network traffic and identify
suspicious patterns. Fuzzy rules can help analyze data and
generate alerts by considering the degree of membership
of data points in various categories, allowing for a more
nuanced assessment of potential threats.

• Access Control: Fuzzy logic can improve access con-
trol mechanisms [109] by considering the uncertainty in
identity verification. It can facilitate adaptive and flexible
access policies based on the degree of certainty in user
identity.

• Anomaly Detection: Fuzzy logic can be applied in
anomaly detection systems [94] to assess the deviation
of observed behavior from a baseline. By using fuzzy
membership functions, it is possible to quantify the
degree of abnormality in system behavior.

• Risk Assessment: Fuzzy logic can be employed in risk
assessment models to evaluate the likelihood and impact
of security incidents [110]. It allows for a more granular
assessment of risk by considering multiple factors with
varying degrees of importance.

• Password Strength Assessment: Fuzzy systems can be
used to assess password strength [58] by considering
various criteria such as length, character diversity, and
entropy. It can provide a more nuanced evaluation of
password security.

Addressing the requirements of accommodating the un-
certainties, Zadeh [79] introduced Type-2 fuzzy systems (an
extension of the type-1 fuzzy system) by introducing a new
dimension called the footprint-of-uncertainties (FoUs) in both
the antecedent and consequent parts. Despite being more
noise-tolerant, the Type-2 fuzzy system is more computation-
ally intensive than the type-1 counterparts.

One potential challenge in implementing fuzzy systems in
robotics and autonomous system is due to the generation of
fuzzy rules and membership functions (MFs), especially for
systems with many variables [111]. Although it is possible
to use expert knowledge to set fuzzy rules, especially for a
system with only a few variables, for large-scale systems, the
process may be very tedious, inefficient, or next to impossible.

This will lead to the demand of having an automatic tuning
system (e.g., C-means clustering or hybrid approach with
neural networks). It is also possible to solve the optimization
problem using GA given the nature of the fuzzy systems as a
search algorithm in a high order of dimensional space, that is
to work out the optimal solution over a hypersurface.

2) Artificial Neural Networks: Another algorithm worth
considering is Artificial Neural Networks (ANNs). Replicating
the way the human brain operates, ANN systems (see Fig.
4) can be seen as interconnected neurons (represented by
tuneable weights), exchanging messages to each other. The
system comes under various architectures, such as feedfor-
ward, recurrent, and feedforward radial basis function (RBF),
to name a few.

Neural networks offer the potential to provide adaptive, real-
time cybersecurity for robotics, which is essential given the
increasing integration of robots and autonomous systems into
various industries. They can identify and respond to threats
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with greater speed and accuracy, safeguarding the integrity
and operation of these systems.

They offer the capability to analyze vast amounts of data,
detect anomalies, and respond to threats in real-time. Several
ways neural networks are used in cybersecurity for robotics:

• Intrusion Detection: Neural networks can be used to de-
tect anomalies in network traffic within robotic systems.
They learn to recognize normal patterns and identify
deviations that could signify a cyberattack or intrusion
[97], [105], [100].

• Behavior Analysis: Neural networks can analyze the
behavior of cyber-physical systems to identify unusual
or malicious activities [112]. By monitoring the activities
and actions of the systems, they can detect unauthorized
or anomalous behavior.

• Malware Detection: Neural networks can be used to
identify malware or suspicious code within the software
used by robotic systems. They can learn to recognize
patterns and signatures associated with known malware
[113].

• Anomaly Detection: Neural networks are effective at
spotting anomalies in sensor data, which is crucial for
robotic systems [105], [100]. They can identify unusual
sensor readings that could indicate a malfunction or
tampering.

• Password Authentication: Neural networks can enhance
authentication and access control mechanisms by evalu-
ating the strength of passwords and user authentication,
helping to prevent unauthorized access [114].

One major advantage of the system is its suitability for
highly parallel intelligent learning. Second, the system is
suitable to tackle multiple challenging optimization problems
beyond linear programming. While the NN system is suffi-
ciently robust and capable, setting up the appropriate number
of layers and neurons is somewhat challenging [115]. This
way, the concept of simulated annealing comes into the picture
as it is often used to train the system and to perturb the ANN
weights by random values in order to avoid getting trapped
in the local minima. Interested readers in the area of deep
learning are recommended to refer to [97].

Generally speaking, there are at least three learning strate-
gies normally used to train neural network systems, such as:

1) Supervised learning (e.g. [116] is a learning method
when the system is trained using the input/output pairs
provided by external/ internal resources. There are many
applications of supervised learning to address security
issues, namely,

• Malware Detection: Supervised learning algo-
rithms can be trained to recognize known malware
patterns and behaviors [117]. They can analyze
software running on robotic systems and identify
malicious code or unauthorized software.

• Intrusion Detection: Supervised learning models
can monitor network traffic and system logs to
detect unauthorized access and suspicious activities
e.g. [118]. By training on labeled datasets of normal

Fig. 4. (a) Deep learning convolutional neural networks (see [105], [100])
While input layers (input nodes) represent the input variables of interest (e.g.,
traffic data, tracking error, and received signal strength), the output layers are
related to output variables of interests, namely, the position and velocity of the
robots as well as detection rates. Each node is connected to other nodes via a
certain weight before being passed to an activation function, (b) Convolutional
Neural-Network with Long-Short Term Memory for classification.

and malicious network traffic, these models can
identify intrusions and cyberattacks.

• Anomaly Detection: Supervised learning can be
used to create models that define the normal be-
havior of systems [119]. Any deviations from this
norm can trigger alerts and potential security re-
sponses, allowing for the detection of both known
and unknown threats.

2) Unsupervised learning (e.g. [120]) is a training method
to teach the NN to respond to a certain pattern in the
absence of the output examples. Some applications of
unsupervised learning in this context include:
• Anomaly Detection: Unsupervised learning can

identify anomalies in robotic system behavior and
network traffic without the need for labeled data
[121]. It’s particularly useful for discovering previ-
ously unknown threats and unusual patterns, which
might go unnoticed by traditional supervised meth-
ods.

• Intrusion Detection: Unsupervised learning models
can analyze system logs, network traffic [122], and
sensor data to uncover suspicious activities that
don’t conform to normal behavior. This is especially
valuable for detecting novel attack vectors.

• Network Traffic Analysis: Unsupervised learning
can cluster network traffic data to identify unusual
traffic patterns or group similar network behavior,
helping to detect unauthorized access or attacks
[123].

3) Reinforcement learning (e.g. [124]) can be consid-
ered as a combination of supervised and unsupervised
learnings. Adopting the evolutionary concept, the neu-
ral network systems can undergo both structural and
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parametric changes as the systems continuously evolve.
Some applications of reinforcement learning include:
• Adaptive Security Policies: Reinforcement Learn-

ing can be used to dynamically adjust security
policies and configurations based on changing threat
landscapes and system vulnerabilities [125]. It al-
lows the systems to respond in real-time to emerging
threats and adapt their security measures accord-
ingly.

• Threat Response: Reinforcement Learning mod-
els can be trained to determine the most effective
and appropriate responses to detected cyber threats
[126], ranging from isolating compromised compo-
nents to initiating countermeasures.

• Intrusion Response: Reinforcement learning can
facilitate the development of adaptive reinforcement
learning [127], allowing the systems to effectively
defend against cyberattacks, reducing the potential
damage.

Reinforcement learning in cybersecurity enables the sys-
tems to learn from experience, adapt to new threats, and
make autonomous decisions, making them more resilient
to evolving cyber threats and enhancing overall secu-
rity posture. Considering the applications of multiple
machine learning algorithms in cybersecurity, interested
readers are referred to [128].

4) Adversarial learning is a machine learning technique
aiming for enhancing the robustness of the model against
adversarial attacks i.e. intentional attacks to manipu-
late input data in a way that they lead to corrupted
or unexpected model outputs in order to exploit the
vulnerabilities in machine learning models [129].

Fig. 5. Generative Adversarial Learning involving two competing CNNs.

In adversarial learning, there are two competing neural
networks, referred to as the generator and the discrimi-
nator (see Fig. 5). This approach is particularly common
in the context of generative models and is used to create
realistic (synthetic) data, such as images, audio, or text.
This way, a model can be trained to be robust against
adversarial attacks. Adversarial attacks involve inten-
tionally manipulating input data in such a way that it

leads to incorrect or unexpected model outputs. These
attacks are typically designed to exploit vulnerabilities
in machine learning models.
In this avenue, the term “adversarial” refers to the
adversarial relationship between the defender (the ma-
chine learning model) and the attacker (the entity trying
to manipulate the model’s behavior). The purpose of
this technique is to improve the robustness of machine
learning models for applications where security and
reliability are critical, such as in robotics, autonomous
systems, and critical infrastructures.

3) Genetic Algorithms: Mimicking the concept of natural
‘Darwinian’ evolution, GA is a heuristic optimization method
introduced by Holland [130]. Owing to the concept of the
survival of the fittest, the algorithm works by evolving the
population (candidate of solutions) to find the strongest candi-
date (as an optimum solution) which can emerge via mutation
and crossover.

Genetic algorithms (GAs) have gained attention in the field
of cybersecurity as a means to address complex optimization
and decision-making problems. They are inspired by the
process of natural selection and evolution and can be applied
to various aspects of cybersecurity. Here’s an overview of how
genetic algorithms are used in cybersecurity:

• Decrypting User’s Personal Information: Genetic al-
gorithms can be used to optimize the search for user’s
personal information [131]. By evolving a population
of potential passwords, the algorithm can improve its
chances of finding the correct password faster, especially
when dealing with strong and complex passwords.

• Intrusion Detection: GAs can aid in the development
of intrusion detection systems. They can evolve rules or
heuristics for detecting suspicious activities or patterns
in network traffic, making the system more adaptable to
new attack techniques [132].

• Botnet Detection: GAs can be used to identify and
track the behavior of botnets. They can evolve algorithms
that recognize botnet traffic patterns and facilitate early
detection and mitigation [133].

In GA, the information is encoded in the chromosomes,
comprising hundreds or thousands of genes as a part of the
DNA segment. For instance, humans have 23 pairs of chromo-
somes (46 chromosomes). Through an iterative process, each
time the mutation process occurs, an element will be adjusted
by one step random integer inside its range while an efficient
search is facilitated through crossover (to explore the search
space) and mutation (to facilitate genetic diversity) to guide
the system to move into a new region.

While it is possible to employ crossover and mutation with
a fixed probability, it is highly recommended to employ a
variable rate (starting with a higher crossover value before
increasing the mutation rate towards the end of the process)
to lead to optimum results. One potential research challenge
in GA is related to how to avoid getting stuck in local
optima (although this drawback can be addressed through the
crossover process).
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C. Intelligent Learning: Structural and Parametric Adaptation
Mechanisms

Intelligent systems such as fuzzy systems and neural net-
works require rigorous training (online and offline) before
they can be purposefully implemented to model the complex
dynamics of the systems. In the context of security, the
problem statement is related to the development of intelligent
learning systems, incorporating both structural and parametric
learning, ensuring the resilience and adaptability of cyberse-
curity defences in the face of evolving threat landscape. As
such. The goal is to investigate how these learning systems
can be harnessed to provide greater resilience and adaptability
to protect robotics against constantly evolving cyber threats.
Self-learning systems must adapt in real-time to detect and
respond to novel attacks. Ensuring that the security systems
can continuously learn and improve while avoiding false
positives and negatives is a challenge.

To make the most of it, it is also possible to combine such
systems. For instance, combining fuzzy systems and neural
networks to achieve and adaptive systems that can perform
automatic learning while keeping the knowledge in the form
of ‘if-then’ fuzzy rules. This way, one can facilitate both
structural and parametric learning.

Structural learning can be performed by modifying the
structure of the knowledge-based fuzzy system itself (e.g. by
adding new rules or removing the unnecessary old rules that
have little relevance to the dynamics of the systems), while
parametric learning is related to the optimization of each
fuzzy parameters (e.g. in the membership functions and the
consequent parts).

Such systems can mimic the way human reasons. For
instance, as we learn every day, we are constantly bombarded
by millions of information through our sensory systems (i.e.
auditory, visual, smell, tactile, etc). In fact, not every piece of
information is relevant to us, and only a small portion of the
information we receive is useful.

This way, our brain acts as a filter to remove irrelevant data
while keeping the most relevant information in our short-term
memory so that it can be easily recalled in the future. After
a while, if the information may be archived in the long-term
memory or completely removed if it is getting progressively
less relevant.

The process is iterative and it also somehow mimics the
nature of biological evolutions, that is the survival of the fittest.
It means, in the end, only the information that is most relevant
to describe the dynamics of the system will survive while the
rest will be gradually replaced.

Unlike some traditional estimation techniques (i.e. Kalman
and particle filters) relying on the accuracy of the assumed
mathematical models, AI techniques can give an accurate
prediction without the need to obtain the system models first,
saving time and costs. Moreover, advancements in Type-2
fuzzy systems could lead to substantially more robust security
systems due to the nature of Type-2 fuzzy systems to accom-
modate the footprint-of-uncertainties (FoU), making it suitable
to predict the uncertain dynamics of non-linear systems. This
way, we speculate that in the future people will heavily rely

on intelligent systems to prevent autonomous systems from
potential cyberattacks.

D. Accelerated Learning Duration

Another potential research avenue in the area of machine
learning and cybersecurity is due to processing time. While it
is necessary to learn as quickly and as efficiently as possible,
for some complex algorithms, the process may take longer,
which in turn may suppress the accuracy and increase the
false-positive rates, especially for the large data streams. This
will decrease the capabilities and the values of the systems,
especially when high detection bandwidth is required. Thus
one need to address an important research question of how
AI technologies can be harnessed to expedite the learning and
adaptation time, ensuring faster and more effective responses
to emerging threats and vulnerabilities?”

Addressing this potential research gap, it is very impor-
tant to develop machine learning algorithms that can avoid
overfitting, a common problem of the increasing complexity
of the model of the system to accommodate all variations
in the traffic data (i.e., the extraneous superfluous incoming
data). This leads to the development of efficient pruning
techniques (e.g. rule recall mechanisms in fuzzy systems [78]
or node recall mechanism in neural networks [134]) in order
to increase the computational efficiency while enhancing the
practicality (real-time values) of the algorithms.

E. Uncertainties in Data Distribution

The nature of robotics and autonomous system is marked by
uncertainties in data and measurements. Because there could
be a potential mismatch in the data structure, i.e. the I/O data
may not follow a certain predictable distribution. Therefore, it
is also important to achieve a robust security algorithm, that
is, a detection system that can work well in the face of large
uncertainties, in the presence of incoming data (drifting) that
may not lead to new knowledge of the existing model.

These uncertainties arise from various sources and can
impact the overall safety, privacy, and functionality of robotic
systems. Some key uncertainties (variability) in data distri-
bution may be due to diverse sources, such as sensors (e.g.
LiDAR) and their malfunctions (e.g. due to callibrations),
environments (lighting, weather, obstacles), adversarial attacks
(sensor spoofing and jaming), data privacy (the need to protect
sensitive information while performing tbe tasks), communi-
cation uncertainties (e.g. latency, packet loss, or interference).

Addressing this issue, one need to develop a robust system
that can effectively handle uncertainties in data distribution
while ensuring the security and reliability of these systems.
Thus, the research avenue is related to designing a robust se-
curity system, that could deal with uncertainties while filtering
out some irrelevant superfluous incoming data. As such, Type-
2 fuzzy systems may be desirable due to their ability of the
system to accommodate the footprint-of-uncertainties [78].

F. Stability and Plasticity Dilemma

In self-learning, the stability and plasticity dilemma is an
interesting research question [135]. The idea is to achieve
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a delicate balance between those two conflicting constraints,
especially in parallel and distributed systems [136]. While
plasticity is required to acquire (integrate) new knowledge,
stability is needed to avoid forgetting the previous knowledge.
However, the implication of having too much plasticity is to
constantly forget the previously acquired knowledge while too
much stability will reduce the learning efficiency.

It will be very difficult to add new knowledge in a very
stable system. In line with the research question in cyber-
physical systems, one needs to design a robust and efficient
learning system such that the degree of stability and plasticity
is the right one in order to maximize the detection rate while
minimizing all false alarms. One needs to achieve sufficient
robust learning capability in the proposed system such that
catastrophic forgetting (losing previously learned information
as soon as new information has arrived) can be avoided. Thus,
current research question is related to how to strike a delicate
balance between stability and plasticity while ensure security
and remaining adaptable to dynamic and evolving threats?

VI. CONCLUSION

By way of conclusion, we have presented a rigorous
overview of security aspects in robotic and autonomous
systems, especially when it comes to the role of machine
learning in preventing cyber attacks, and its comparison with
respect to model-based conventional algorithms. There are big
opportunities for research in this area since most systems
are not well-prepared (e.g. poor protection in ROS systems,
unencrypted communications, etc.).

Thus, one main intention of this paper is to call for mul-
tidisciplinary research for scientists with various backgrounds
(e.g. robotics, computer scientists, mechanical and electrical
engineers) to sit together to find the solutions to the existing
security problems. For instance, recent births of domestic and
hospital robots have significantly boosted up the importance
of cybersecurity, relatively new research areas that people in
the robotics community did not have to face before.

We envisage that in the future the trend will be shifted
towards the use of computational intelligence approach rather
than traditional model-based technique, whose performance is
reliant on the accuracy of the assumed mathematical model
of the systems. We will also witness more applications of
the cyber-physical systems, specifically designed for trusted
operations of robotic and industrial automation platforms.
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