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Abstract—Monitoring is a key feature to enhance systems with
the capability to anticipate, detect, predict, and mitigate failures,
while providing Quality of Service (QoS) monitoring and Service
Level Agreements (SLAs) guarantee. Monitoring frameworks can
serve these purposes by deploying probes according to many pos-
sible patterns that have different features, for instance in terms
of efficiency and privacy. So far, these probe deployment patterns
have not been systematically defined, analyzed and assessed. Thus,
engineers who design and configure their monitoring systems have
to take decisions only based on partial knowledge and personal
experience. This article addresses this knowledge gap, by presenting
a systematic analysis of 11 probe deployment patterns, their known
uses, and implementations. We assess these patterns qualitatively,
and quantitatively using both VMs and containers. Results show
the targets have negligible resource consumption (e.g., less than
1% CPU usage), while the probe holder consumption is mainly
significant in relation to memory consumption, reaching up to 10
GiB in our experiments. Our findings suggest that reusing probes
and holders among users can generally enhance efficiency and
scalability when direct access to the monitored target is not an
option. We generate a set of best practices that can assist engineers
in configuring their monitoring systems. Finally, we showcase the
application of certain patterns through three practical usage sce-
narios, which feature diverse technologies and requirements.

Index Terms—Monitoring probes, probe deployment,
deployment patterns, design patterns, monitoring best practices,
container monitoring, cloud monitoring, cloud computing.

I. INTRODUCTION

C LOUD computing is the de facto standard platform for
the global connectivity of actors (e.g., humans, robots,

devices and sensors) and services, across many heterogeneous
domains (e.g., mobile [1], health care [2], IoT [3] and telecom-
munication [4]). In this scenario, actors and services may have
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to frequently interact in ways that cannot be fully anticipated,
demanding for strong configurability, adaptability and pro-
grammability requirements [5], [6], [7], [8], [9], [10].

Highly dynamic systems require appropriate tools and tech-
niques for continuously verifying their behavior, so that devia-
tions can be timely detected and compensated. In this context,
monitoring is a key feature [11], [12], [13] to enhance systems
with the capability to detect, predict, and mitigate failures [14],
[15], [16], [17], in addition to enable more traditional operations,
such as Quality of Service (QoS) monitoring [18], [19], [20] and
Service Level Agreements (SLAs) guarantee [21], [22], [23].

There are several effective monitoring frameworks that can be
used to implement a monitoring system for cloud applications.
For instance, the Elastic Stack [24] can be used to run probes
that push the monitored data into an Elasticsearch time series
database, or Prometheus [25] can be used to pull data from
probes into its database. Regardless of the adopted framework,
the resulting cloud monitoring system is a distributed system
that runs potentially many probes configured to collect several
indicators for multiple operators.

The flexibility of monitoring frameworks and probe tech-
nologies allows for diverse probe deployment patterns, which
consist of probe deployment architectures targeting specific en-
vironments (e.g., a container-based environment) and satisfying
specific constraints (e.g., probes must be shared among multi-
ple operators). The choice of a probe deployment pattern has
implications on the effectiveness and efficiency of the resulting
monitoring system. For instance, multiple probes serving dif-
ferent operators in a multi-tenant environment can be deployed
within a same virtual machine to save resource consumption, at
the expense of a reduced degree of privacy and security. On the
other hand, one probe per container or virtual machine can be
deployed to preserve privacy, at the expense of more resources
allocated to the monitoring system.

The many possible probe deployment patterns have not been
analyzed and assessed systematically so far, and the engineers
who design their monitoring systems are called to take decisions
whose implications might be relatively well-known. The exist-
ing body of work discusses the characteristics of monitoring
systems, without investigating the many possible probe deploy-
ment patterns and their impact [11], [12], [13]. To address this
knowledge gap, this paper systematically presents and analyzes
the possible probe deployment patterns, their known uses, and
implementations. This requires the careful identification and
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characterization of the components that can be used to deploy
probes. Further, we assess these patterns both quantitatively and
qualitatively, distilling findings that can guide engineers in the
implementation and configuration of their monitoring systems.

In particular, we experimented with 11 patterns with a range
of configurations requiring a total of about 154 hours of data
collection time and more than 175 hours of total runtime for
the empirical evaluation, including setup and teardown of the
VMs and containers. Results show the trade-offs between the
patterns that require more resources while guaranteeing good
separation between users acting within multi-tenant environ-
ments, and patterns that make better use of resources while
reducing the degree of separation. We cross-validate the obtained
results by addressing three realistic monitoring scenarios. The
experimental material containing all the software artifacts and
the collected dataset is publicly available at [26].

In a nutshell, this paper provides the following contributions:
� it systematically analyzes the possible probe deployment

patterns and defines a feature diagram that comprehen-
sively captures the possible deployment strategies;

� it provides a set of empirically-derived best practices for
deploying probes, which can serve as a reference for future
use;

� it qualitatively and quantitatively assesses the patterns, to
understand their strengths and weaknesses;

� it showcases the implementation of some patterns
through three realistic usage scenarios involving different
monitoring technologies, application architectures, and
requirements.

The paper is organized as follows. Section II provides
background information about monitoring systems. Section III
defines the probe deployment patterns, which are illustrated ac-
cording to a same structure. Section IV compares probe deploy-
ment patterns qualitatively. Section V quantitatively assesses
the probe deployment patterns with a set of comparative exper-
iments. Section VI discusses some best practices distilled from
our experiments. Section VII showcases the implementation of
some patterns through realistic usage scenarios. Section VIII
discusses related work. Section IX provides final remarks.

II. BACKGROUND INFORMATION

This section provides the background information useful
to understand the probe deployment patterns introduced in
Section III.

We use the term resource to generically refer to any cloud
element that can be monitored, including services, hardware
resources, and virtualized components. A probe is an artifact
that runs close enough to the monitored resource to observe its
behavior, and it collects observations of one or more Key Perfor-
mance Indicators (KPIs). A KPI is a measurable and quantifiable
metric used to track the behavior of a resource. We mainly refer
to observations resulting in time series data (e.g., CPU consump-
tion data), but the probe deployment patterns are also valid for
observations generating other types of data (e.g., log files).

A cloud monitoring system generally consists of four key
components: a set of probes, a time series database, a data

Fig. 1. Architecture of a cloud monitoring system.

transfer channel, and a dashboard. Fig. 1 graphically illustrates
these components.

The set of probes is opportunistically distributed within a
cloud system to efficiently collect data from the monitored re-
sources. Depending on the type of probes, the collected data can
be shipped according to different patterns, for instance probes
could push or pull data according to different policies.

A time series database is used to store the data obtained
from the probes. The communication between the probes and
the database is usually mediated by a data transfer channel that
is responsible for processing and transferring the data. In some
cases the channel could be as simple as direct communication
between the probes and the database. In some other cases, the
channel is a data processing pipeline that is able to pre-process
and distribute data, according to non-trivial strategies.

The dashboard is finally used to access and visualize the data
stored in the time series database. When the collected data is
used to support advanced analysis routines, multiple tools may
analyze the collected data (e.g., alerting and notification systems
and anomaly detectors).

This work thoroughly investigates the organization of the
probes, studying the possible deployment patterns, and their im-
pact on the efficiency and effectiveness of the monitoring system.

III. PROBE DEPLOYMENT PATTERNS

Probe deployment patterns capture how probes can be de-
ployed to monitor the target resources. The possible deployment
depends on several key features that we discuss in this section
and are represented with the feature diagram shown in Fig. 2.

A feature diagram is a graphical representation of a feature
model that defines features and their dependencies in a tree
structure [27]. In this case the model characterizes the features
relevant to probe deployment patterns. The inner nodes represent
abstract features (features that are not implemented but only used
to group features), while the leaf nodes represent the concrete
features (features that are implemented). The parent-child re-
lationship represents the feature decomposition, from abstract
to concrete features. While the default interpretation of feature
decomposition is the AND relationship, other decomposition are
possible, such as the alternative decomposition that indicates that
only one feature can be selected among the ones that are available
(see the legend in the figure). Finally, features can be optional
or mandatory. All features are mandatory in our diagram. A
combination of features is a configuration. A configuration is
admissible if it satisfies its feature diagram.
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Fig. 2. Probe deployment patterns feature diagram.

A feature diagram may also include logical constraints that
limit the set of admissible configurations, that is, only the config-
urations that satisfy the specified constraints can being admitted
by the model. Our model also includes several constraints that
prevent that infeasible or highly inefficient configurations can
be admitted by the model, thus guaranteeing the reasonableness
of the result.

A feature model can be used to automatically generate the
space of all the admissible configurations. In fact, the configu-
rations admitted by the model in Fig. 2 represent every possible
probe deployment pattern.

We started from the papers that propose monitoring and
probe deployment approaches for multi-tenant and technology-
heterogeneous cloud environments [28], [29], [30], [31], [32],
[33], [34], the most used cloud monitoring tools [35], [36], [37],
[38], [39], and our experience, to identify and distill a set of
relevant features for probes deployment. We discuss below the
semantics of the considered features.
� Probe Holder: it represents the object that hosts the probes

that are executed (N.B., hereinafter referred as holder). It
can be a separate Virtual Machine or Container, or can
overlap with the target execution environment.
– Holder Type: it represents the holder type [29]
∗ Target: the holder is the target of the monitoring

activity, that is, the holder hosts both the target and
the monitoring probes

∗ External Unit: the holder is an external object which
monitors the target from the outside (e.g., a sidecar
container [29], [31], [35], [36], [37], [38], [39])

– Probe Multiplicity: it defines the number of probes that
can be executed within the unit [31], [32]
∗ Single-probe: only one probe can be executed
∗ Multi-probe: one or more probes can be executed

– Holder Sharing: it defines if the holder can be shared
among multiple users [28], [30], [33], [34]
∗ Reserved Holder: the holder is reserved to a single

user
∗ Shared Holder: the holder can be shared among users

� Probe Instance: it represents probe artifact executed within
the holder to collect data.
– Target Multiplicity: it defines the number of targets that

a single probe can monitor simultaneously [31], [35],
[36], [37], [38], [39]
∗ Single-target: a probe can monitor only one target
∗ Multi-target: a probe can monitor multiple targets

– Instance Sharing: it defines if a probe instance within a
holder can be shared among users [28], [30], [33], [34]
∗ Reserved Probe: the probe collects data for a single

user
∗ Shared Probe: the probe can collect data for multiple

users
� Execution Environment: it defines the supported execution

environment.
– Environment Type [32]:
∗ System-oriented: monitoring is performed within a

virtualized entity aimed at offering a system-level
environment. This is usually the case with Virtual
Machines and system-level containerization tech-
nologies, such as LXC, OPenVz, and Linux-VServer.

∗ Application-oriented: monitoring is performed
within a virtualized entity aimed at offering an
application-level environment. This is the case of
common containerization technologies, such as
Docker or Containerd.

The admissible configurations are bounded by constraints
that capture bad/best practices and unfeasible combinations, as
follows:

a) A shared holder that executes at most a single probe must
allow for the execution of shared probes (Shared Holder
∧ Single-probe ⇒ Shared Probe): If the holder must be
shared but only one probe can be executed within the
holder, the only way to actually share resources is to allow
for probes that can be shared among multiple users.

b) If the holder is reserved to a single user, also the probes
running within that holder must be serving that user (Re-
served Holder⇒Reserved Probe): Clearly, if the holder is
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reserved to a single user, it is impossible to install probes
serving multiple-users within that holder.

c) Each system-oriented virtualization unit should possibly
run multiple probes (System-oriented ⇒ Multi-probe):
Virtual machines are expensive units whose instantia-
tion should be limited to prevent excessive resource con-
sumption, due to their non-negligible size and signifi-
cant bootstrapping cost [40], [41]. For this reason, re-
serving a virtual machine to a single probe is strongly
discouraged, and it should rather be used to run multiple
probes.

d) Each Application-oriented virtualization unit should not
run more than one probe (Application-oriented ⇒ Single-
probe): Following good design practices concerning isola-
tion and separation of concerns [31], each container should
run one process at most, and thus each container should
be dedicated to a distinct monitoring probe, so that any
interference is prevented.

e) A probe sharing the holder with the target should only
monitor that target (Target ⇒ Single-target): When a
probe is installed within the same holder (e.g., a virtual
machine) that runs the target of the monitoring activity,
the probe should not be configured to monitor something
else hosted outside the target, otherwise it may interfere
with the activity of the target. This follows the practice
that, if needed, probes might be running within the same
holder of the target to circumvent observability issues. For
instance, collecting memory consumption either about a
process running inside a VM, or the VM itself, may not be
possible via external interfaces or at hypervisor level [33],
[42], and in such cases probes are specifically configured
to extract data from that target.

f) If probes are allowed to run within the same holder of
the target, more than one probe should be allowed to run
(Target⇒Multi-probe): Limiting the target to host a single
probe would limit the monitoring system to the collection
of a single (set of) KPIs, which would not be acceptable
in the majority of practical cases.

g) A probe sharing the holder with the target should be
shared among users (Target ⇒ Shared Probe): Using the
holder space for both the target and the probes may raise
interference issues. For this reason having multiple copies
of functionally-equivalent probes to serve multiple users
is particularly inefficient and risky, despite ownership
concerns. Thus, additional probes should be installed only
to collect data that are not collected by the already existing
probes, which have to be shared among users.

We encoded all these concepts and constraints in the feature
diagram in Fig. 2, which has been implemented using Fea-
tureIDE [43], a tool for feature-oriented software development
based on Eclipse. We generated all the admissible configurations
from the model automatically, taking also into account the
specified constraints. The tool created 11 admissible configu-
rations corresponding to 11 probe deployment patterns, which
are by product correct, according to the features and constraints
represented in the feature model. In this work, we focused on the
key features that characterize a set of monitoring probes. In the

future, the model could be extended to incorporate additional
features and constraints, which could be used to refine the set of
probe deployment patterns.

Fig. 3 provides a graphical representation of the probe deploy-
ment patterns, and proposes names coherent with their structure.
The illustrations consistently refer to a case with two targets and
two users, which is sufficient to exemplify the differences among
the various patterns. The number of monitoring units and probes
varies according to the configuration. We use colors to represent
ownership (a monitoring unit or a probe of the same color of
a user indicates the ownership of the user, while multicolored
elements represent shared resources).

We adopt a same schema to illustrate each pattern. In partic-
ular, we use the following fields: name, which defines the name
of the pattern; description, which provides a short description of
the pattern, and target technology, which indicates the technical
environment in which the pattern is used.

We also defined a naming convention to easily recall the
details of a pattern from its name. Specifically the name of each
pattern is obtained by concatenating three elements:
� The first element represents the level of sharing of the

pattern, which could be Reserved, Shared, or Partially
Shared. Reserved is used for holders reserved to individual
users. Shared is used for shared holders running shared
probes. Finally, Partially Shared is used for shared holders
that run reserved probes.

� The second element represents the type of executed probes.
We use T* for probes that can monitor multiple targets,
while we use T1 for probes that monitor a single target.

� The third element represents the probe multiplicity. We use
P1 for holders that run a single probe. While we use P* for
holders that can run multiple probes.

For example, the Partially-shared-T1P* pattern identifies the
case of a shared holder that can run multiple probes configured
to serve individual users and collect data from individual targets.

Table I contains a detailed description of each identified
pattern, along with information regarding its target technologies.

It is worth detailing further the Internal-T1P∗ pattern which is
the only one where the holder matches with the target execution
unit. In this unique instance, probes can gain the highest observ-
ability as they have the privileged viewpoint of collecting data
from inside the same execution unit hosting the target. Hence,
probes may easily observe indicators that would otherwise be
hard or even impossible to collect.

The implementation of this pattern can be highly intrusive as
the probes and target share execution unit resources. Addition-
ally, users cannot operate reserved probes unless the monitoring
system permits single-user access. There could also be chal-
lenges in precisely gathering indicators specific to the target.
This is particularly true for resource-related metrics such as
memory and CPU usage, which could be influenced by the
inclusion of probes that also consume resources.

IV. QUALITATIVE DISCUSSION

This section discusses the qualitative aspects related to the
presented patterns. We first discuss how the patterns can be
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Fig. 3. Probe deployment patterns.

implemented with different technologies. We then discuss the
trade-off between separation and resource consumption. We
conclude by discussing interoperability, portability, robustness,
affordability and security of the patterns. Table II summarizes
how patterns can be classified according to these seven dimen-
sions. For ease of comparison, patterns have been grouped into
three groups: (i) patterns that reserve both holders and probes
to individual users (column Patterns that privilege reservation);
(ii) patterns that share both probes and holders among users
(column Patterns that privilege sharing); and (iii) patterns that
share holders among users, but run probes reserved to individual
users (column Patterns that balance the two aspects).

A. Pattern Implementation

To show the practical applicability of the patterns, in this sec-
tion we provide guidance on how the identified patterns can be
implemented with current real-world monitoring tools. Further
guidance on applying patterns in real-world contexts is provided
in Section VII, where realistic usage scenarios are reported.

A common way to implement the patterns with reserved
resources (Reserved-T ∗ P1, Reserved-T ∗ P∗, Reserved-T1P∗,
and Reserved-T1P1) with platforms such as Prometheus or the
Elastic Stack is to have multiple instances of the framework,
one for each user, and then deploy their holders with agentless

Prometheus exporters [36] or Beats [35], such as SNMP [39],
[44] or HTTP based probes. This is also the case of tools
such as Zabbix [37] in its agentless configuration, where it
is expected to handle multi tenancy with the deployment of
distinct components for each tenant. The reserved aspect of
both the probes and the holders can be implemented either
deploying distinct instances of the full monitoring system or
employing a probe-deployment framework that can support
multi-tenancy [32]. These patterns are well supported also by
commercial tools, such as Nagios [38] and Dynatrace [45], and
in scientific articles, such as [33], [34].

The patterns with shared resources (Shared-T ∗ P∗, Shared-
T1P1, Partially-shared-T ∗ P∗, Shared-T ∗ P1, Shared-T1P∗,
Partially-shared-T1P∗) are easy to implement with base tech-
nologies, such as Prometheus and the Elastic Stack, as they
exploit components that can be installed in a single shared holder
configured to permit multiple users to access the data gathered
from the deployed probes. These patterns are available also
within commercial systems [37], [38], [45], and in scientific
articles, such as [46], [47], [48], [49], [50]

The Internal-T1P∗ pattern can be found in many agent-
based solutions [51], [52], [53]. It could also be obtained in
Prometheus, by installing its exporters directly in the target VMs,
and similarly with Elastic Stack, by installing beats and custom
probes directly within the target VMs.
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TABLE I
PROBE DEPLOYMENT PATTERNS: DESCRIPTION AND TARGET TECHNOLOGY

The study of approaches to switch from one pattern to another
is beyond the scope of this work. Nevertheless, designing moni-
toring systems that can automatically change the deployment
pattern according to changes in monitoring needs would be
valuable. In the context of automated deployment of holders
and probes, one feasible method involves the use of Monitoring-
as-a-Service (MaaS) frameworks [32], [53], [54]. For instance,
Tundo et al. [32] proposed a MaaS framework that has the ability
to automatically govern the entire life-cycle of the probes from
declarative inputs, thus relieving operators of any configuration
burden.

B. Separation versus Resource Consumption

One of the aspects relevant to the choice of the pattern is the
level of separation to be achieved, in comparison to the possible
resource consumption. Separation concerns with probes and
holders acting for the purpose of a single user or organization in
a multi-tenant environment. Separation is beneficial to privacy,
security and reliability.

Some patterns require a given level of sharing to be accepted
by the users in order to be used. Depending on this choice, the be-
havior of the probes serving a user may impact the probes serving
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TABLE II
CHARACTERIZATION OF THE PATTERNS

other users. On the other hand, guaranteeing separation requires
extra resources to be allocated on the monitoring system.

Patterns that privilege reservation guarantee the maximum
level of separation, but resource consumption may growth quite
quickly with a growing number of users. On the other hand,
patterns that favor sharing probes may save resources but require
sharing probe configurations (e.g., sampling rate and accuracy)
among users, and this could be problematic in some use cases.

Some patterns share the holders among users while running
probes reserved to individual users (Table II, column Patterns
that balance the two aspects). This guarantees that probes may
impact one another only through the holder, which is unlikely to
happen, although possible (e.g., due to a malfunctioning probe).
In terms of resources, although the number of probes may still in-
crease quickly, the number of holders is guaranteed to stay small.

Resource consumption growth rate is quantitatively studied
in detail in Section V.

C. Interoperability and Portability

The proposed patterns are cloud agnostic and thus are interop-
erable and portable across cloud environments [55]. There might
be however some practical aspects that make certain patterns
more suitable for an environment than another. For instance,
although the proposed patterns are conceptually applicable to
both containers and virtual machines, in practice we restricted
the application of some of them to certain technologies only,
so as not to go against well-known and widely accepted design
principles of those technologies.

Patterns are beneficial to interoperability and portability also
when used to describe and model existing monitoring systems.
In fact, they ease the understanding of different implementations
of probe deployment designs by introducing a set of reference
designs. This facilitates the understanding of the responsibilities
of monitoring components, which could be easily replaced with
compliant ones having the same or similar characteristics of the
replaced component.

D. Robustness

Robustness is an important aspect of monitoring systems.
Among the described patterns, the ones that use a holder that

is distinct from the holder of the target service provide higher
robustness (Reserved-T ∗ P∗, Reserved-T ∗ P1, Reserved-T1P∗,
Reserved-T1P1). In fact, the external holder provides failure
containment by isolating the monitoring modules into separate
units. This allows the target’s functionalities to be safeguarded
despite failures in the monitoring infrastructure. For example,
the target can continue serving even if the probe has failed.

In addition, these external units are deployed on dedicated
VMs and containers, allowing each piece of monitoring func-
tionality to be updated, configured and, when needed, rolled
back, independently from targets, and vice versa.

Shared holders may cause the propagation of failures from
the probes of a user to the probes of different users through the
holders.

Finally, shared probes imply sharing failures between users
(Shared-T ∗ P∗, Shared-T ∗ P1, Shared-T1P∗, Shared-T1P1).
Even worst, internal probes may propagate failures to the target
(Internal-T1P∗).

E. Affordability

Patterns that promote more efficient consumption of cloud
resources offer greater assurance of affordability. These are the
patterns that share resources among users, such as patterns that
share the holder and/or the probe instances. A further level of
resource sharing is given by the pattern (Internal-T1P∗) that
shares the holder with the target holder, consequently saving
also the cost of sharing messages between the probes and the
target, otherwise needed with the other patterns.

F. Security

Security concerns may derive from the definition of the
patterns and their implementation. Different patterns introduce
different levels of resource sharing among users, which might
be a source of concerns. For example, if an attacker takes
control of a holder, all the probes running in the holder might
be compromised. A compromised probe may compromise the
clients using the probe. In short, shared and partially-shared
probe deployment patterns expose users to higher security risks
compared to reserved patterns.
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Pattern implementations may also be a source of security
concerns. For instance, resource pooling enables the use of the
same pool of resource by multiple users through multi-tenancy
and virtualization technologies. Although these technologies
introduce rapid elasticity and optimal resource management,
they also introduce some risks into the system. Multi-tenancy
carries the risk of data visibility to other users and tracking
of operations. Similarly, the virtualized environment introduces
its own set of risks and vulnerabilities that include malicious
cooperation between virtual components and the leakage of
these.

V. QUANTITATIVE EVALUATION

In this section, we quantitatively evaluate the cost-
effectiveness of the probe deployment patterns by measuring
their cost in terms of CPU, memory and network consumption,
and their monthly operating costs. We discuss the research ques-
tions (Section V-A), the experimental plan that was carried out
(Section V-B), the experimental setup that we used to perform
the experiments (Section V-C), the results of the experiments that
we executed to answer the research questions (Sections V-D and
V-E), and threats to validity of our evaluation (Section V-F).

A. Research Questions

The quantitative investigation of the cost-effectiveness of the
probe deployment patterns concerns with the following main
research question

RQ - How do patterns scale with the amount of monitored
data?

Investigating the scalability of the patterns is important to
determine how well the patterns can fit situations asking for
different amounts of data to be collected. We consider multiple
scalability dimensions, including probe overhead and cost. Since
the two main target environments, system-oriented (e.g., virtual
machines) and application-oriented (e.g., Docker containers)
environments, are significantly different in terms of elasticity
and amount of resources consumed to create and run holders,
and plots would be on radically different scales, we generate
two distinct sub-research questions for each target environment
as follows.

RQ-SO - How do patterns for system-oriented environments
scale with the amount of monitored data?

RQ-AO - How do patterns for application-oriented environ-
ments scale with the amount of monitored data?

RQ-SO and RQ-AO study how probe deployment patterns
scale with respect to an increasing number of users, KPIs and
targets for system-oriented and application-oriented execution
environments, respectively.

B. Experimental Plan

To answer the two research questions, we studied the scala-
bility of the probe deployment patterns by performing 6 exper-
iments each one investigating a different scalability dimension
with 5 experimental configurations. An experimental configura-
tion consists of a triplet: the number of users considered in the

TABLE III
EXPERIMENTS CONFIGURATIONS

experiment, the number of monitored targets, and the number of
KPIs requested per user. To measure scalability, we considered
how patterns consume the CPU (%), memory (GiB/MiB), and
network I/O (MiB) of both the holder and the target holder.
To this end, we could appreciate both how probes and holders
consume resources, but also how, and if, patterns may impact on
the target, also estimating the performance overhead and cost.

In each experiment, we vary at least one out of the three
dimensions that compose an experimental configuration to study
how the patterns handle the growth of that dimension. Table III
summarizes the experiments we did. Column Experiment spec-
ifies the name of the experiment, while Column Sequence of
Exp. Configurations reports the set of experimental configura-
tions investigated to study scalability. Note that the sequence of
configurations always have at least a growing dimension. In all
the cases, the growth rate corresponds to doubling a dimension
at each step. As shown in the experiments, the selected values
are sufficient to appreciated the trend shown by each dimension.

In particular, the INCREASING_KPIS_1 and INCREAS-
ING_KPIS_2 experiments investigate the scalability of the pat-
terns with respect to an increasing number of requested KPIs by
a single user for a given target and by two users for a same target,
respectively. That is, we investigate the impact of an increasing
number of KPIs collected, both for single and multiple users.

The INCREASING_TARGETS_1 and INCREAS-
ING_TARGETS_2 experiments investigate the scalability
of the patterns with respect to an increasing number of targets,
for a user interested in collecting a given KPI, and two users
interested in collecting a same KPI. That is, we investigate how
a growing number of targets impact on the single and multi-user
scenarios.

The INCREASING_USERS_1 experiment investigates the
scalability of the patterns with respect to an increasing number
users interested in monitoring a single KPI for a given target.
Finally, INCREASING_USERS_2 investigates the scalability of
the patterns with respect to an increasing number of users re-
questing an increasing number of KPIs for a same single target.
That is, we study how a growing number of users impact on
the patterns, also considered in combination with an increasing
number of KPIs collected.

Overall, this set of experiments can provide a clear picture
about how patterns scale according to the different dimensions.
All the experiments are repeated for both patterns applica-
ble to system-oriented technologies (e.g., VMs) and patterns
applicable to application-oriented technologies (e.g., Docker
containers).
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When collecting data, we run each experimental configuration
3 times for 10 minutes to collect stable results. Since we sample
the resource-related metrics (CPU, memory and network) every
10 seconds, each of the experimental configurations results in
60 samples for a sampled resource-related metric. Overall, the
3 repetitions sustained for 10 minutes generates 180 samples
per resource-metric for a given configuration, that gives us
good confidence on the stability and significance of the results.
Since we study 30 configurations, to support the 6 experiments
shown in Table III, and we repeat the experiments for the 11
patterns, we obtain a total of 330 configurations. We avoid
repeating the execution of 22 configurations because some
pattern configurations produce the same experimental setting
(e.g., same number of deployed holders and probes). As a result,
we collected 166,320 samples instead of the expected 178,200
samples (60 samples per metrics × 3 metrics × 3 repetitions ×
330 configurations = 178, 200 samples).

C. Experimental Setup

We ran the experiments on both virtual machines (VM) and
containers. To automate experiments, we implemented Ansible
playbooks [56] that interact with the Azure Compute Plat-
form [57] and with a managed Azure Kubernetes Cluster [58] to
run VM-based and container-based experiments, respectively.

Virtual machine holders are created with the Azure Standard
B1s flavor (1 vCPU, 1GiB of RAM, Ubuntu 18.04 LTS), while
VM targets are created with the Standard A2 v2 flavor (2 vCPUs,
4GiB of RAM, Ubuntu 18.04 LTS). The Kubernetes Cluster
consists of a single node pool with 3 workers (Standard B4ms
flavor, 4 vCPU, 16GiB of RAM) and run Kubernetes v1.20.9. We
deployed container holders and targets by mean of single-replica
Kubernetes Deployments [59].

We used NGINX [60], a well-known web server and reverse-
proxy, as the target application; and Metricbeat [61] as probing
system. Metricbeat helps in monitoring servers by collecting
metrics from both the system and the services running on them.
It can ship the collected metrics to Elasticsearch [62] and can be
configured to collect tailored metrics. We configured the Met-
ricbeat NGINX module to probe the target, while we activated
the System and Kubernetes modules to measure the resource
consumption in the case of VMs and containers, respectively.

To collect CPU, memory and network metrics on virtual
machines, we run a dedicated Metricbeat instance on both the
targets and holders. In Kubernetes, we deployed Metricbeat
to measure the targets and holders resource consumption as a
Kubernetes DaemonSet [63].

We used Metricbeat also to implement the monitoring probes
that are part of the monitoring patterns, either deployed within
virtual machines or deployed as single-replica Kubernetes De-
ployments.

We compute the CPU and memory consumption of a pattern
as the sum of the resource consumption of each holder activated
by the pattern. The consumption of a holder is obtained as its
medium resource consumption along the experiment. The CPU
and memory consumption of targets is computed as the mean
value of the collected samples. For network I/O consumption,

since it is a cumulative metric, we simply compute the total
consumption of each element per experiment as the difference
between the first and last data point.

To compute the actual cost of running probes, we referred
to the monthly cost of a Microsoft Azure Standard B1s VM
operated in the West Europe zone (€8.18/month at the time of
writing), and to an Azure Container Instance operated in the West
Europe zone (€31.7762/month × 1vCPU + €3.4845/month ×
1 GB of RAM at the time of writing). We calculate the cost
range of system-oriented patterns by multiplying the monthly
expense of one VM by the number of holders generated by
the pattern. Meanwhile, the cost range of application-oriented
patterns is determined by multiplying the average CPU/RAM
consumption values collected during the experiments with the
monthly CPU/RAM costs. As for system-oriented patterns,
also for application-oriented patterns the expense of a single
container instance is then multiplied by the number of holders
generated by the pattern.

The experimental material containing all the software artifacts
(i.e., Ansible playbooks, execution scripts, configurations, data
analysis) and the collected dataset is publicly available at [26].

D. RQ-SO - How do Patterns for system-oriented Clouds
Scale With the Amount of Monitored Data?

Fig. 4 shows how the resource consumption growths for the
various metrics, considering the system-oriented patterns imple-
mented with VM holders. We do not include the Internal-T1P∗
pattern in the plots related to memory consumption because
no holder is added to the system (the holder matches with
the target holder). Thus the overhead is limited to the resource
consumption of the probe, which is negligible compared to the
resources already consumed by the target holder. We report a
selection of plots that is sufficient to illustrate the results and the
trends. The complete set of plots with resources consumed by
the holders and the targets for all the metrics and experiments is
available as an online appendix [64].

CPU and Memory Consumption: CPU and memory consump-
tion are both negligible for targets. In particular, it is less than
1% for CPU consumption and less than 502 MiB for memory,
independently of the dimension that is increasing. This is a clear
evidence that all the system-oriented patterns are non-intrusive
in terms of CPU and memory consumption for the target, in-
cluding the Internal-T1P∗ pattern (which may interfere in other
ways due to the holder matching with the target holder).

CPU consumption is also negligible in the holders (less than
1%). In fact, probes are lightweight artifacts that consume little
resources and even when their number increases, their impact
on CPU is negligible. On the contrary, memory consumption is
non-trivial in holders, for some patterns (up to 10 GiB). In fact,
an increasing number of targets makes single-target (T1) holders
used by Reserved-T1P ∗, Shared-T1P∗, Partially-shared-T1P∗
patterns subject to an exponential increase of memory consump-
tion, as shown in Fig. 4 (INCREASING_TARGETS_2). On
the other hand, an increasing number of users makes reserved
holders used by Reserved-T1P∗, Reserved-T∗ P∗ patterns sub-
ject to an exponential memory consumption as shown in Fig. 4
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Fig. 4. System-oriented probe holders patterns scalability.

TABLE IV
SYSTEM-ORIENTED PATTERNS PROBE HOLDER MONTHLY COSTS

(INCREASING_USERS_2). This trend can be expected, since
all the five probes deployment patterns create new holders for
an increasing number of users or targets, resulting in new VMs
creation, that is, new allocated resources.

Network I/O Consumption: Network I/O consumption is neg-
ligible on targets: up to 6 MiB transferred in 10 minutes for
reserved patterns in the most expensive experiment (INCREAS-
ING_USERS_2). The transferred data are due to probes extract-
ing data from the target. The limited traffic generated confirms
the suitability of all patterns in terms of their interference on the
target.

With respect to holders, network I/O consumption can
be more significant. We observe in particular that both an
increasing number of users requesting different KPIs (IN-
CREASING_USERS_1 and INCREASING_USERS_2 exper-
iments) and an increasing number of targets (INCREAS-
ING_TARGETS_1 and INCREASING_TARGET_2 experi-
ments) resulted in an exponential network consumption trend,
as shown in Fig. 4. In particular, single-target (T1) holders
(Shared-T1P ∗ and Reserved-T1P∗ patterns) and the Internal-
T1P∗ pattern are sensitive to an increasing number of targets,
while reserved holders (Reserved-T1P∗ and Reserved-T∗ P∗
patterns) are sensitive to an increasing number of users request-
ing different KPIs.

Based on this evidence, depending on the expected scalability
trend, we have patterns that should be preferred or avoided. It is
however useful to remark that the overall resource network con-
sumption that we observed has been limited, even for the most
expensive scenarios (up to 60 MiB transferred in 10 minutes).
This order of magnitude is likely relatively significant in a cloud
environment, where network resources are usually abundant,
while it is indeed relevant in resource-constrained environments,
such as fog and edge environments.

Monthly Operating Costs: We report in Table IV how these
differences may reflect in the monthly operation cost. All costs
are in euros (€) and each cost interval is obtained by considering
the minimum and the maximum number of employed holders
for a specific scalability experiment.

Cost figures directly depend on the number of holders created,
and are generally low as long as holders are not dedicated to
individual service instances, which is a case that immediately
generates unreasonable operation costs. Many scalability dimen-
sions do not impact on the cost because VMs are quite large
holders that can easily run several probes and their cost is not
affected by the number of running probes, until the number is so
large that multiple VMs have to be created. For this reason, it is
difficult to estimate the cost of the Internal-T1P∗ pattern, since
probes run within the VM that hosts the target service and they
do not induce a measurable costs as long as a larger VM has to
be created due to the presence of the probes.

Answer to RQ-SO: None of the patterns impacts on targets,
thus their selection should be entirely based on the resource
consumption of holders.

Holders are not CPU eager, so the choice of the pattern can
focus on memory and network consumption for environments
where network consumption should be carefully controlled, oth-
erwise network consumption can be overlooked due to limited
absolute consumption.

The expected resource consumption should be considered in
relation to the expected growing rate of the key dimensions. If the
monitoring system is employed in a multi-tenant environment
where the number of users requiring different KPIs can easily
increase, the patterns with reserved holders are particularly
impacted (Reserved-T1P ∗ and Reserved-T∗ P∗ deployment
patterns). This may suggest that reusing probes and holders
among users is advised when direct access to the target is not
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Fig. 5. Application-oriented probe holders patterns scalability.

possible. The use of multi-target (T∗) probe deployment patterns
(i.e., Reserved-T ∗ P∗, Shared-T ∗ P∗, Partially-shared-T ∗ P∗)
is advised when many different targets or instances must be
monitored. Overall, since the overhead is mostly due to the
holders, reducing their number increase the efficiency, making
Shared-T ∗ P∗, Partially-shared-T ∗ P∗, and Internal-T1P∗ the
more scalable patterns for applications based on system-oriented
virtualization, with Shared-T1P∗ highly recommended in
situations where the number of targets remains low, while the
number of interested users increases.

E. RQ-AO - How do Patterns for application-oriented Clouds
Scale With the Amount of Monitored Data?

Fig. 5 shows how the resource consumption growths for the
various metrics, depending on the application-oriented patterns.
We report a selection of plots that is sufficient to illustrate the
results and the trends. The complete set of plots with resources
consumed by the holders and the targets for all the metrics and
experiments is available as an online appendix [64].

CPU and Memory Consumption: Similarly to system-
oriented patterns, also application-oriented patterns do not im-
pact on the target. In fact, CPU and memory consumption of the
target is below 0.01% and 5 MiB, respectively. Again, it confirms
the suitability of the monitoring patterns to collect data from
targets without interfering with their resource consumption.

CPU consumption is also negligible in holders despite pat-
terns and growing trends (below 0.01%), while memory con-
sumption can be significant. In fact, increasing the number of
users who request for different KPIs (Fig. 5 INCREMENT-
ING_USERS_2 experiment) results in an exponential memory
consumption trend (up to more than 10 GiB for reserved holders
(Reserved-T ∗ P1 and Reserved-T1P1 patterns). Note that these
two reserved probe deployment patterns create a holder hosting
one probe only for each of the users requesting a new KPI
to be collected. For instance, the last configuration triplet (16
Users - 1 Target - 16 KPIs) of the INCREMENTING_USERS_2
experiment creates 256 holders to satisfy the user needs. Thus,
although memory consumption may growth exponentially, the
overall consumption in relation to the number of created con-
tainers is still quite good.

Network I/O Consumption: Network I/O consumption is also
negligible for targets, less than 1 MiB in all the experiments
except for the INCREASING_USERS_2 experiment where we
observed up to 6 MiB of network I/O consumption for the

patterns using reserved holders (Reserved-T1P1 and Reserved-T
∗ P1 patterns).

With respect to holders, network I/O consumption can be
still considered negligible (up to 17 MiB), but we observed
that both an increasing number of users requesting different
KPIs (INCREASING_USERS_2 experiment) and an increas-
ing number of targets (INCREASING_TARGETS_1 and IN-
CREASING_TARGET_2 experiments) resulted in an exponen-
tial network consumption trend as shown in Fig. 5. In particular,
single-target (T1) holders (Shared-T1P1 and Reserved-T1P1
patterns) are sensitive to targets increment, while reserved
holders (Reserved-T1P1 and Reserved-T ∗ P1 patterns) are
sensitive to an increasing number of users requesting different
KPIs.

Monthly Operating Costs: Table V summarizes the monthly
cost of executing application-oriented holders in the exper-
iments. We can notice how deploying probes within an
application-based environment is cheaper than in a system-
oriented environment, due to the nature of the environments
and the billing strategies. The Internal-T1P∗ VM-based pattern
is the only exception, but such a pattern introduces non-trivial
security and reliability issues, as discussed later. Interestingly,
costs based on containers is often negligible, reaching a cost
that could be appreciated on a monthly basis only for the most
demanding configurations.

Answer to RQ-AO: Although on different scale values, ex-
periments with container-based applications resulted in trends
similar to the ones obtained for VM-based applications. In fact,
resource consumption on targets is negligible and the holder
consumption is significantly mainly in relation to memory con-
sumption.

Similarly, increasing the number of KPIs and increasing the
number of users are the least impactful drivers for container-
based holders. However, their combination (i.e., the increment
of users requesting different KPIs) particularly impact reserved
holders employed by Reserved-T1P1 and Reserved-T ∗ P1
probe deployment patterns. This suggests that an optimization
and reuse of probes and holders among users is advised for
application-oriented patterns too. Single-target (T1) holders are
mostly impacted by the increase of targets, thus, the use of
multi-target (T∗) probe deployment patterns (i.e., Reserved-T
∗ P1, Shared-T ∗ P1) is advised when many different targets or
instances must be monitored. Overall, Shared-T ∗ P1 is the most
scalable pattern in the context of container-based applications,
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TABLE V
APPLICATION-ORIENTED PATTERNS PROBE HOLDER MONTHLY COSTS

with Shared-T1P1 as a solid alternative option when there are
few targets to be monitored but a potentially high number of
users, and Reserved-T ∗ P1 yet another option when several
targets must be monitored for a few users only.

F. Threats to Validity

The threats to the validity of the presented results mainly con-
cern the relationship between the setup of the experiment and the
collected resource consumption values. In fact, the consumption
is affected by both the available computational resources and
the choice of the probe technology and configuration. However,
while changing the available computational resources and the
deployed probes are likely to affect absolute values, the trends
and differences among the probe deployment patterns are clear,
despite these factors.

In fact, plots for system-oriented and application-oriented
probe deployment patterns are similar although specific values
are different. Nevertheless, the relationship between increasing
specific variables (e.g., the number of targets or the number
of users) and the pattern characteristics (e.g., single-target or
reserved patterns) are clearly identified by the resulting con-
sumption trends.

In our evaluation, we also selected a specific target service
to be monitored (i.e., NGINX) and we used a specific probe
technology (i.e., Metricbeat module for NGINX). Moreover, we
deployed the same probe when experiments required to incre-
ment the number of requested KPIs, and a probe is configured
to collect a single KPI. In a real-world scenario probes may
be configured to collect several KPIs, potentially lowering the
resource consumption. While using a single target application
(i.e., NGINX) in our evaluation may raise concerns about the
generalization of the results, it is important to remark that
the monitored application was not a factor in our study. The
monitored application has no impact on the cost and effective-
ness of the deployment patterns. We thus intentionally used a
single application in our quantitative study to ensure that the
evaluation is conducted under controlled and similar conditions,
minimizing the possibility to introduce any confounding factor
that could affect the results. To mitigate this issue we report
results about our experience with three real-world applications
of the patterns in Section VII.

Finally, the collected resource consumption values might
be affected by noise. To mitigate this issue we repeated the
experiments for 3 times for a total of 30 minutes of execution
collecting 180 samples for each resource-related metric in any
of the experiment configurations. We computed the mean and
the standard deviation by all the data samples, thus, stabilizing
the results to derive valid conclusions.

VI. BEST PRACTICES FOR PROBE DEPLOYMENT

This section discusses a distilled list of best practices for probe
deployment derived from our empirical findings. Engineers can
exploit them when designing and configuring their monitoring
systems, depending on the target environment and desired qual-
ities.

BP-1: Share probe instances and holders for non-accessible
targets in multi-user environments:

Results show that resource consumption might grow quite
quickly when the number of users and the number of
monitored KPIs increase (e.g., see experiments INCREAS-
ING_TARGETS_2 and INCREASING_USERS_2). Indeed, the
case of a large number of users asking for many KPIs in
multi-user environments must be handled carefully, regardless of
the underlying technology (e.g., system-oriented or application-
oriented). This issue is exacerbated by non-accessible targets
(e.g., third-party applications and inaccessible services for secu-
rity concerns) that require the deployment of probes that sample
the target from the outside. In such cases, the monitoring system
should be configured to share as many resources as possible. This
implies sharing the deployed probes, and possibly also the hold-
ers (see patterns Shared-T∗P∗, Shared-T1P∗, Shared-T∗P1 and
Shared-T1P1). Sometime, when probes cannot be shared, the
patterns with partially-shared holders (see Partially-shared-T ∗
P∗, Partially-shared-T1P∗ patterns) offer a valuable trade-off.
When possible, probe instances must be configured to collect
multiple KPIs to lower the consumption (see trend results for
the INCREASING_USERS_2 experiment in Fig. 4).

BP-2: Use multi-target probe deployment in large-scale mon-
itoring environments:

Single-target patterns show that probes may consume signifi-
cant amount of resources with an increasing size of the monitor-
ing system (see for instance single-target patterns trends for IN-
CREASING_TARGETS_2 experiment in Figs. 4 and 5). For this
reason, large-scale deployments with tens or more targets must
adopt multi-target probe deployments. This is strongly advised
for system-oriented environments where resource allocation for
reserved holders can be resource eager (e.g., VMs), and thus
also expensive. Suitable patterns for this case are: Shared-T ∗
P∗, Shared-T ∗ P1, Partially-shared-T ∗ P∗, Reserved-T ∗ P∗
and Reserved-T ∗ P1. Single-target application-oriented holders
(Reserved-T1P1, Shared-T1P1 patterns) can sometime still be
used thanks to the lightness of application-oriented containers.

BP-3: Privilege application-oriented holders to address high-
dynamic KPI collection requirements:

In the case of KPIs requirements that change often (e.g.,
many users with different business goals), application-oriented
holders can be life-savers. Their advantage is twofold: first,
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their bootstrapping phase is way faster than VMs, and thus
frequent creation and destruction of holders can be accomplished
efficiently; second, even when probe instances (holders) cannot
be shared to guarantee high configurability and isolation to
multiple tenants, their allocation is still affordable in terms of
resources and cost, when compared to system-oriented holders
implemented with VMs (see INCREASING_USERS_2 exper-
iment results for system-oriented holders shown in Fig. 4 and
in the online appendix [64] for further details). Again, probe
instances should be configured to collect multiple KPIs at once
to save resources.

BP-4: Prefer container-based holders for isolation require-
ments:

Dealing with third-party applications or strict security require-
ments may require satisfy isolation despite efficiency, and to de-
ploy probe instances in dedicated holders. System-oriented hold-
ers can be resource-greedy and expensive when implemented
with VMs especially. In fact, reserved patterns implemented with
VM-based holders scale significantly worse for an increasing
number of targets, as results for INCREASING_TARGETS
experiments demonstrated. Thus container-based holders should
be preferred when possible (Reserved-T ∗ P1, Reserved-T1P1
patterns). In the cases where VMs must be employed (e.g., due
to constraints on the technology stack), the best practice is to
use partially-shared holders (Partially-shared-T ∗ P∗, Partially-
shared-T1P∗ patterns) and implement isolation at probe instance
level.

BP-5: When the target is accessible and resource consump-
tion is a concern, probes should be deployed within the same
execution unit of the target:

An accessible target offers the opportunity of collecting in-
dicators efficiently, since there is not the burden of querying
any monitoring interface and sharing the holder with the target
increases observability. The low resource consumption has been
confirmed with our experiments (see Fig. 4 and the online
appendix [64] for further details). The same cannot be usu-
ally achieved with application-oriented execution environments
(e.g., due to the single main container process practice [65]).
Due to the side-effects that probes may introduce on targets, this
choice is advice when resource consumption is a primary con-
cern, compared to system reliability. Some specific technology
stacks may offer interesting compromises. For example, engi-
neers can exploit the concept of pod (i.e., Kubernetes Pod [66],
Podman [67]) to obtain a setup similar to the Internal-T1P∗
pattern. In fact, thanks to pods, it is possible to execute multiple
co-located containers that share storage and network resources,
circumventing observability issues even though the execution
unit is not the same.

VII. USAGE SCENARIOS

This section demonstrates the application of probe deploy-
ment patterns to three realistic usage scenarios that involve
different technologies, software architectures, and monitoring
requirements. In particular, we provide (i) a scenario for a VM-
based microservice application, (ii) a scenario for a microservice
application running on top of a Kubernetes cluster, and (iii)

a scenario for serverless backend functions operated with the
OpenFaaS platform.

We first describe the application architecture, the technol-
ogy stack, and the monitoring requirements for each scenario.
Second, we discuss how patterns are selected based on moni-
toring requirements and probe deployment best practices. We
also describe how the selected patterns would be impacted by
an increase in the number of the collected KPIs, the number
of target instances, and the number of users interested in the
collected data. Finally, we quantitatively evaluate the selected
probe deployment patterns by collecting the CPU (%), memory
(MiB), and network I/O (MiB) consumption for an increasing
number of target instances, mimicking real-life situations that
are faced in operation. We sample resource-related metrics every
10 seconds, repeating the experiment 3 times for 10 minutes to
collect stable results, obtaining a total of about 180 samples.

The experimental material containing both the code to repro-
duce the experiment and the collected data is publicly avail-
able [26]. In the paper we report a selection of the plots, the
complete set of plots is available in our online appendix [64].

A. Monitoring a VM-Based Microservice Application

Scenario Description: A company operates an e-commerce
application composed of 11 microservices and a Redis database
(e.g., Online Boutique1). For each service instance, the engi-
neers spin up a VM following the Service-as-a-VM deployment
pattern [68]. The payment, currency, and advertisement services
are outsourced to an external provider that does not allow direct
access to the service platform. Moreover, the company has a
strong knowledge about Elastic Stack [24], since this monitoring
service is used in several other company products.

The outsourced services expose KPIs using the Prometheus
format (i.e., running the node exporter2), so the engineers need
to collect these KPIs to obtain insights about the behavior of the
outsourced service instances. In addition, they need to monitor
the Redis database and some infrastructure KPIs (e.g., CPU and
memory consumption, filesystem usage) for the VMs they are
responsible for.

Applying the Probe Deployment Patterns: This scenario can
be effectively addressed with two patterns: the Shared-T ∗ P∗
pattern and the Internal-T1P ∗ pattern. The Shared-T∗P∗ pattern
can be used to monitor inaccessible service instances, consis-
tently with best practice BP-2. While the Internal-T1P∗ pattern
can be used to monitor the services running on their own VMs
according to best practice BP-5. The probes can be implemented
as Metricbeat [61] probe instances and can be configured to save
data in the already available Elasticsearch cluster, resulting in
the following deployment:
� Shared-T ∗ P∗ pattern: it consists of a VM hosting a

Metricbeat probe instance configured with the Prometheus
module to collect the KPIs exposed by the node exporters
of the three outsourced services.

� Internal-T1P∗ pattern:

1[Online]. Available: https://github.com/GoogleCloudPlatform/
microservices-demo

2[Online]. Available: https://github.com/prometheus/node_exporter

https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/prometheus/node_exporter
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Fig. 6. Shared-T ∗ P∗ pattern holder network I/O consumption and Internal-T1P∗ pattern network output consumption with respect to an increasing number of
payment service and recommendation service replicas, respectively.

– for each VM running application services, it consists of a
Metricbeat instance configured with the system module
to monitor CPU load, memory, and filesystem.

– for each of the Redis database replicas, it consists of a
Metricbeat instance configured with (i) the Redis mod-
ule to collect tailored Redis KPIs; and (ii) the system
module to monitor CPU load, memory, and filesystem.

Scaling Impact
� Increasing KPIs: dealing with an increasing number of

KPIs requires the reconfiguration of the Metricbeat probe
instances, activating new modules, or deploying new
probes in the case the KPIs to collect are not provided by
any of the already deployed modules. Considering that both
the patterns can hold multiple probes, no new holders have
to be created to accommodate additional probe instances.

� Increasing Targets: increasing the number of targets re-
quires to: (i) reconfigure the Metricbeat probe in the
Shared-T ∗ P∗ holder in the case new instances of the
outsourced services are deployed; (ii) run a Metricbeat
instance within any new VM they spin up to scale the
internal services or the Redis database.

� Increasing Users: increasing the number of users accessing
the monitoring system and interested in collected data do
not require any new holders or probe instances because
both the selected patterns allow sharing of resources among
users.

Quantitative Evaluation for Increasing Target Instances
We exploit our implementation of this scenario to collect

resource-related metrics for an increasing number of target
instances, measuring the overhead introduced by the two imple-
mented patterns. We increment both the number of payment and
recommendation service replicas up to 16 to observe the impact
on the Shared-T ∗ P∗ and Internal-T1P ∗ patterns. All the other
services are deployed with a single replica. Please note that in
the case of the holder implementing the Shared-T∗ P∗ pattern,
it is simultaneously collecting KPIs from a single replica of the
currency, a single replica of the advertisement service, and all
the payment service replicas deployed during the experiment.

The collected data for the holder implementing the Shared-T
∗ P∗ pattern revealed CPU consumption is negligible (less than
1%), thus an increasing number of targets does not impact on
CPU. Memory consumption was below 491.5 MiB in all the

runs, and it is also not impacted by an increasing number of
targets. Not surprisingly network I/O consumption is affected by
an increasing number of targets (up to 13.9/87.0 MiB) due to the
network traffic caused by the probes both scraping the KPI values
from the targets, and then pushing them to the Elasticsearch
instance for storage. Fig. 6(a) and (b) show the linear increment
trend for an increasing number of payment service replicas.

When the number of recommendation service replicas is
increased, no holder is added to the system since the holder
matches with the target holder for the Internal-T1P∗ pattern.
Thus the overhead in terms of CPU and memory consumption
is limited to the resource consumption of the probe, which is
negligible compared to the resources already consumed by the
target. Network output consumption is instead affected by an
increasing number of target instances due to the cumulative
amount of data transferred by the probes contained in the target
holders to the Elasticsearch instance (up to 18.2 MiB). Fig. 6(c)
shows the linear increment trend for an increasing number of
recommendation service replicas.

The trends observed in this scenario are indeed consistent with
those obtained by the controlled evaluation reported in Section V
for both the implemented patterns.

B. Monitoring a Microservice Application Running on
Kubernetes

Scenario Description: A company operates the same applica-
tion described in the previous usage scenario on top of a Kuber-
netes cluster. This time the company fully developed the applica-
tion in-house. The company has a dedicated team for managing
database infrastructure and several service development teams,
with a strong knowledge about both Prometheus [25] and the
application services.

In this case, the service development teams want to monitor
HTTP and gRPC KPIs for their application services, and some
specific KPIs for the Redis database. However, the requirements
for monitoring Redis are different between the database ops team
and the service development teams (e.g., collected KPIs and
frequency).

Applying Probe Deployment Patterns: This scenario can be
well addressed with the Shared-T ∗ P1 pattern, to monitor the
application services and gather KPIs from multiple instances
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Fig. 7. Network I/O consumption of the Shared-T ∗ P1 and Reserved-T ∗ P1 pattern holders with respect to an increasing number of cart service and Redis
replicas, respectively.

according to best practice BP-2, and the Reserved-T ∗P1 pattern,
to monitor the Redis database replicas using a different holder
to meet the conflicting requirements of the teams according to
best practice BP-4. The monitoring solution exploits an already
available Prometheus cluster as data storage, and Prometheus
exporters [36] as probe instance technology, resulting in the
following deployment:
� Shared-T ∗ P1 pattern: a Kubernetes Pod hosting a

Prometheus Blackbox exporter instance3 to collect HTTP
and gRPC KPIs from the application services.

� Reserved-T ∗ P1 pattern: two Kubernetes Pods hosting the
Prometheus Redis exporter instance4 configured to collect
Redis KPIs from all the available replicas for the database
ops team and the service development teams, respectively.

Scaling Impact
� Increasing KPIs: increasing the number of KPIs requires

the engineers to reconfigure the probe instances activating
new modules (e.g., TCP-level module for the Blackbox
exporter), or deploying new holders hosting the probe
instances for KPIs that are not already collected by any
of the deployed probes.

� Increasing Targets: No actions are required for new service
instances since both the exporters can be configured to col-
lect KPIs from annotated targets (i.e., through Kubernetes
annotations and Prometheus service discovery configura-
tion).

� Increasing Users: increasing the number of users accessing
the monitoring system and interested in the collected data
may require creating new holders and instances, as for the
database ops and the service development teams, because
the Reserved-T ∗ P1 pattern privileges isolation.

Quantitative Evaluation for Increasing Target Instances
We incremented the number of cart service replicas and Redis

replicas up to 16 to observe the impact on the Shared-T ∗ P1 and
Reserved-T ∗ P1 patterns, respectively. All the other services are
deployed with a single replica.

We observed a negligible increase (less than 1%) in CPU
consumption. Memory consumption does not exceed 340 MiB
for any of the two patterns, and it is not impacted by an increased
number of targets. Network input consumption is negligible for
the Shared-T ∗ P1 pattern holder (i.e., less than 1 MiB), while
on average network output consumption is slightly higher in
terms of absolute values, reaching up to 2.18 MiB. Results are
different in terms of absolute values for Reserved-T ∗ P1 pattern.

In particular the network input consumption is higher compared
to the output (i.e., up to 9.3/3.4 MiB), a scenario explained by
the probe specific implementation. In fact, the Redis exporter
has to query the Redis database instances to obtain the KPI
values, and than it simply exposes the values as a web endpoint
to Prometheus. However, both the patterns scales linearly with
an increasing number of targets as shown in Fig. 7.

Also in this usage scenario, we observe trends consistent
with the ones obtained in our controlled evaluation reported in
Section V.

C. Monitoring Serverless Backend Functions

Scenario Description: A company serves a serverless-based
socks e-commerce application composed of 12 functions, 6
databases, and a message queue (e.g., SockShop Serverless5)
exploiting OpenFaaS6 and Kubernetes. The engineers adopt the
FaaS model to exploit auto-scaling policies and obtain a flexible
number of function replicas in response to the volatile workload
that can affect their application (e.g., peaks of purchases during
Black Friday, intense browsing and cart usage before Christmas,
low demand in summer). They are particularly interested in
monitoring the backend functions in terms of CPU and RAM
usage in order to tweak auto-scaling policies and the cluster
nodes size. Moreover, the company has a strong knowledge on
using Prometheus to monitor the Kubernetes cluster nodes and
the application services.

Applying Probe Deployment Patterns: We can address this
scenario by implementing the Shared-T ∗ P1 pattern, to monitor
multiple targets (i.e., functions) together, enabling less effort and
resource usage in response to an increasing number of function
replicas according to best practice BP-2.

The monitoring solution exploits the Prometheus cluster pro-
vided by OpenFaaS as data storage, and cAdvisor7 as probe
instance technology. The resulting deployment consists of a
Kubernetes DaemonSet (i.e., a Kubernetes Pod for each of the
cluster nodes) hosting a cAdvisor instance to collect the needed
function KPIs at container-level.

Scaling Impact

3[Online]. Available: https://github.com/prometheus/blackbox_exporter
4[Online]. Available: https://github.com/oliver006/redis_exporter
5[Online]. Available: https://github.com/deib-polimi/serverless-sock-shop
6[Online]. Available: https://openfaas.com
7[Online]. Available: https://github.com/google/cadvisor

https://github.com/prometheus/blackbox_exporter
https://github.com/oliver006/redis_exporter
https://github.com/deib-polimi/serverless-sock-shop
https://openfaas.com
https://github.com/google/cadvisor
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Fig. 8. Network I/O consumption of the Shared-T ∗ P1 pattern holders with
respect to an increasing number of carts-get function replicas.

� Increasing KPIs: increasing the number of KPIs requires
the reconfiguration of the cAdvisor probe instances activat-
ing new KPIs, or deploying new holders and instances in
the case the KPIs to collect are not provided by cAdvisor.

� Increasing Targets: increasing the number of targets does
not require any change since cAdvisor is able to automat-
ically detect new targets (i.e., container functions running
on the Kubernetes node).

� Increasing Users: increasing the number of users accessing
the monitoring system and interested in the collected data
does not require any new holders or probe instances since
the selected pattern supports sharing of resources.

Quantitative Evaluation for Increasing Target Instances
We collect resource-related metrics for an increasing number

of carts-get function instances (i.e., up to 16) to measure the
overhead introduced by Shared-T ∗ P1 pattern. All the other
functions are deployed with a single replica.

Collected data revealed CPU consumption is negligible (less
than 1%). Memory consumption does not exceed 320 MiB,
and it is not impacted by an increasing number of targets.
Network input consumption is negligible (i.e., less than 0.2
MiB), as shown in Fig. 8(a), while on average network output
consumption reaches 3.1 MiB. Network output scales linearly
with an increasing number of function replicas, as shown in
Fig. 8(b).

As for the previous scenarios, the observed trends for the
Shared-T ∗ P1 pattern are consistent with the results obtained
with the controlled evaluation reported in Section V.

VIII. RELATED WORK

There are two distinct areas of research that are related to our
contribution: cloud patterns and cloud monitoring.

Cloud Patterns: In software engineering, patterns are used
to document knowledge about how to solve recurring prob-
lems [69]. With the rise of the cloud computing paradigm,
the community has begun working on cloud computing pat-
terns [70], [71], [72]. Although their development is still in the
early stages, several online catalogs have been published, provid-
ing both specific [73], [74] and agnostic [70] solutions. Specific
patterns refer to particular cloud providers, are customized for
a target environment, and provide solutions optimized for it.
In contrast, agnostic patterns are more generic solutions that
are not tied to a particular technology, are flexible, and can be

applied to different platforms. The patterns presented in this
article are agnostic since they are not tied to a specific cloud
technology and can be applied to any execution environment.
Agnostic pattern definition is a valuable means of improving
portability and interoperability between different cloud environ-
ments [55]. However, none of these work specifically address
the issue of probe deployment. Burns and Oppenheimer [31]
propose design patterns for distributed systems based on con-
tainers. Despite their work does not address the issue of probe
deployment, some of their patters resemble our Shared-T1P1
or Reserved-T1P1 patterns. Albuquerque et al. [75] present
proactive monitoring design patterns for cloud-native applica-
tions, basing their definitions on existing literature and tools. In
particular, they present three patterns that can generate events
according to the event-based monitoring paradigm. Compared
to our work, there are three main differences: (i) we focus on
the placement of monitoring probes and the possibility to share
monitoring resources among users; (ii) we extract features and
constraints from existing literature and bad/best practices, to
then define more generic and agnostic patterns; and (iii) we both
qualitatively and empirically assess scalability of the proposed
patterns, and further showcase their implementation in diverse
usage scenarios involving different monitoring technologies.

Cloud Monitoring: We can broadly classify the methods for
cloud monitoring into two main classes: active monitoring [76],
in which measurements are based on probes injected into the
system, and passive monitoring, in which measurements are not
based on probing, but rather on the passive observation and
analysis of existing resources, such as network flows [77] or
logs [78]. The advantage of passive monitoring is that it does
not add any communication overhead. It makes sense for some
components where important indicators can be observed, but is
less useful for others where it is not sufficient to observe existing
flows to capture the state of the monitored component. In our
work, we focus on the case of active monitoring, which requires
probe deployment.

We can further distinguish two sub-classes of approaches in
active monitoring: agent-based solutions [76] and agent-less
solutions [79]. Agent-based solutions install software agents
inside the monitored components. These agents calculate mea-
surements on the component and then send the data to an exter-
nal collector. In contrast, agent-less solutions rely on external
components to retrieve monitoring data from interfaces exposed
by the monitored components, without adding any software
to the latter. Although the agent-less solution has low mainte-
nance costs and less risk of interference, agent-based monitoring
systems provide deeper and more specialized measurements
than the protocols used by agent-less protocols, such as
SNMP [44]. In this paper we presented monitoring patterns for
both agent-based (i.e., Internal-T1P∗) and agent-less solutions
(i.e., all the other ten patterns presented in the paper).

Recently, fog and edge computing paradigms have emerged to
create a continuum of cloud services that extend from centralized
data centers to end devices. In his review, Verginadis [80]
compares twenty prominent monitoring technologies for the
cloud continuum, encompassing both active and passive so-
lutions across various dimensions, such as monitoring level,
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output types, supported metrics, and more. The analysis indi-
cates that Netdata [81] is a suitable solution for fog-edge en-
vironments, which often involve resource-constrained devices.
Netdata offers internal and external plugins for gathering KPIs,
and these plugins can be deployed according to the presented
probe deployment patterns (e.g., Internal-T1P ∗ or Shared-T∗
P∗). Other works focusing on fog monitoring [82], [83], [84],
[85] rely on monitoring agents for collecting KPIs. FMone [83]
employs agents executed in separate Docker containers simi-
larly to the Shared-T ∗ P1 and Shared-T1P1 patterns. Souza et
al.’s approach [84] involves the utilization of both internal and
external agents, which can be deployed using the Internal-T1P
∗ pattern or external unit patterns, such as Shared-T∗ P1 and
Partially-shared-T ∗ P∗, depending on the execution environ-
ment or sharing policies. Additionally, both FogMon [82] and its
self-adaptive extension [85] employ internal monitoring agents
to gather multiple KPIs, following the Internal-T1P∗ pattern.

IX. CONCLUSION

The flexibility of monitoring frameworks and probe tech-
nologies for the Cloud allows for diverse probe deployment
strategies, which may have implications on the effectiveness
and efficiency of the resulting monitoring system. For instance,
multiple probes serving different operators in a multi-tenant
environment can be deployed within a same virtual machine to
save resources, at the expense of a reduced degree of privacy and
security. On the other hand, one probe per container or virtual
machine can be deployed to preserve privacy, at the expense of
more resources allocated to the monitoring system.

This paper systematically derives, presents, and analyzes
possible probe deployment strategies, resulting in 11 probe
deployment patterns that are described and assessed empirically.
The results of this work may help engineers in designing their
monitoring systems, and generate a set of reusable solutions that
people can refer to. We also released publicly all the experimen-
tal material containing the software artifacts and the collected
dataset at [26].

Future work mainly concerns with exploiting and empirically
assessing the presented patterns in the design of novel monitor-
ing systems for a range of environments, including fog and edge
systems. An additional area of research is the identification of
the conditions that may necessitate shifting from one pattern to
another, in order to develop intelligent, self-adaptive monitoring
solutions, for instance using rule-based expert systems and
machine learning techniques.
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