
466 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2024

Cromlech: Semi-Automated Monolith
Decomposition Into Microservices

Giovanni Quattrocchi , Davide Cocco, Simone Staffa, Alessandro Margara , and Gianpaolo Cugola

Abstract—Microservices architectures conceive an application
as a composition of loosely-coupled sub-systems that are devel-
oped, deployed, maintained, updated, and scaled independently.
Compared to monoliths, microservices speed up evolution and in-
crease flexibility. For these reasons they are becoming the reference
architecture for many practitioners. A key challenge to embrace
a microservices architecture is how to decompose an application
into microservices: a choice that deeply affects all subsequent
development phases in ways that are difficult to foresee and eval-
uate. Without any tool to support their reasoning, developers may
erroneously evaluate the various alternatives, leading to inaccurate
decomposition choices that would result in increased development,
operations, and maintenance costs. This paper tackles the problem
with Cromlech, a semi-automatic tool to decompose a software
system into microservices. Cromlech (i) takes in input a high-level
model of the system in terms of functionalities and data entities
accessed by those functionalities, (ii) formulates decomposition
as an optimization problem, and (iii) outputs a proposed place-
ment of functionalities and data onto microservices, using a visual
representation that helps reasoning on the resulting architecture.
Cromlech evaluates design concerns, communication overheads,
data management requirements, opportunities and costs of data
replication. Our evaluation on a real-world industrial application
shows that Cromlech consistently delivers more efficient solutions
than simple heuristics and state-of-the-art approaches, and pro-
vides useful insights to developers.

Index Terms—Service decomposition, service modeling,
software architectures, microservice architecture.

I. INTRODUCTION

I T PRACTITIONERS are increasingly migrating from so-
called monoliths to microservices architectures, which de-

compose a software system into independently deployed ser-
vices to ease evolution and maintenance [1]. Monoliths are
developed using a single programming language and packaged
as one complex deployment unit. When the application grows in
scale, monoliths present significant limitations [2]: the intricate
dependencies among components become difficult to maintain
and individual functionalities cannot be managed independently

Manuscript received 15 December 2022; revised 7 December 2023; ac-
cepted 30 December 2023. Date of publication 16 January 2024; date of
current version 10 April 2024. This work was supported by project 3A-Italy
Circular and Sustainable Made in Italy - MICS (3A-ITALY) CUP under
Grants D43C22003120001 and PE00000004. (Corresponding author: Giovanni
Quattrocchi.)

The authors are with the Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano, 20133 Milano, Italy (e-mail: giovanni.
quattrocchi@polimi.it; davide1.cocco@mail.polimi.it; simonestaffa96@gmail.
com; alessandro.margara@polimi.it; gianpaolo.cugola@polimi.it).

Digital Object Identifier 10.1109/TSC.2024.3354457

from one another. If a single component fails, the whole sys-
tem may become unavailable, and the only way to scale the
application is to replicate the whole deployment unit. Instead,
the microservices architecture [3], [4] conceives applications
as a composition of loosely-coupled units: each of them is an
independent process that communicates with the others through
lightweight network protocols such as HTTP or MQTT. Each
unit (i.e., a microservice) includes a set of logically-related
application components and is developed, operated, and de-
ployed independently from the others. This means that each
microservice can be implemented using a different technology
stack, may use an independent data store, and can be managed
without affecting the other units. Moreover, in case of failures,
the system would not be completely unresponsive and only a
subset of its functionalities would be unavailable [5].

The main challenge in this migration is how to decompose
an existing monolith into microservices [6], [7], [8], since this
choice may significantly impact both organizational and opera-
tional concerns, which often pursue conflicting goals [9], [10].
Organizational concerns favor highly decentralized decompo-
sitions, where individual services represent a single business
aspect and include only functionalities that are strongly related to
each other, i.e., they are highly cohesive. Cohesion increases the
agility in managing the system, but may introduce an overhead
for operating it, typically in terms of an increased communica-
tion between services. Conversely, operational concerns push
towards more centralized solutions that reduce communica-
tion [11] and data management costs. Indeed, communication
costs are higher in cross-microservice calls, which are necessary
to access remote functionalities or to retrieve remote data [12]. A
common approach to mitigate the latency for remote data access
in microservices architectures is replication. Microservices can
access a local replica of the data they are interested in (improving
read access latency), but this comes at the cost of propagating
updates to all replicas. This trade-off further complicates the
design of a decomposition, making this process impossible to
manage without proper support tools.

In summary, when migrating to microservices, software en-
gineers need to carefully evaluate the complex trade-off be-
tween organizational and operational aspects, a task that may
be extremely difficult and error-prone without the help of any
support tool [13]. Some approaches have been presented in
the literature to help software engineers in the decomposition
process [14], [15]. Some solutions are only theoretical [6], [16]
and provide a set of best practices and guidelines, others [17],
[18] describe tools that analyse the application source code and

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-0405-9814
https://orcid.org/0000-0002-0023-8639
https://orcid.org/0000-0002-0921-7383
mailto:giovanni.quattrocchi@polimi.it
mailto:giovanni.quattrocchi@polimi.it
mailto:davide1.cocco@mail.polimi.it
mailto:simonestaffa96@gmail.com
mailto:simonestaffa96@gmail.com
mailto:alessandro.margara@polimi.it
mailto:gianpaolo.cugola@polimi.it

QUATTROCCHI et al.: CROMLECH: SEMI-AUTOMATED MONOLITH DECOMPOSITION INTO MICROSERVICES 467

automatically decompose it into a set of microservices. While
these solutions are an initial step in the right direction, there are
still open challenges. Theoretical frameworks leave practitioners
in charge of manually decomposing the monolith with some
complex application-specific design decisions to be evaluated;
automated tools are often tight to a single programming language
or technology stack [19] and do not guarantee that the resulting
decomposition is aligned with developers and business needs.
Most importantly, none of these solutions explicitly addresses
the tension between organizational and operational require-
ments, thus neglecting part of a multi-faceted problem.

Our research proposes Cromlech, a semi-automatic tool to
decompose a software system into microservices that care-
fully considers the subtle trade-off between organizational and
operational aspects. Cromlech takes in input (i) a high-level
description of a software system in terms of operations and data
entities, (ii) the maximum allowed number of microservices to
create, (iii) a parameter that indicates the relative importance of
organizational aspects over operational ones, allowing engineers
to set their preferences based on the specific environment in
which the system is being developed and operates. Cromlech
parses the application model and instructs a Mixed Integer
Linear Programming (MILP) solver to optimize the placement
of operations and data entities according to the users’ needs.
The computed decomposition is then displayed on a visualizer
so that users can investigate the solution, evaluate its structure
and costs, and, if needed, reiterate the process with a different
input configuration. Cromlech relies on an abstract model of
the application and consequently it is technology agnostic. It
considers several factors in the decomposition process including
cohesion, communication overhead, data management require-
ments, and the costs and benefits of data replication. Despite
the optimization problem may be difficult to solve, Cromlech
generates good solutions within some minutes to few hours,
depending on the complexity of the system under analysis. This
allows software architects to rapidly obtain viable solutions that
they can iteratively refine at will.

Cromlech builds on our experience with Pangaea [20]. Like
Cromlech, Pangaea considers both organizational and oper-
ational concerns and allows developers to set their relative
weights. In Pangaea, organizational aspects are centered around
data entities: this captures well the semantic relations among
data, but does not ensure that operations related to the same busi-
ness domain are deployed onto the same microservice. Moving
from the observations we collected from developers when using
Pangaea on a real-world software system, we designed Cromlech
to focus primarily on operations, thus targeting decompositions
where microservices expose an interface (set of operations) that
matches business domains more coherently. The placement of
data derives from the location of operations, avoids distributed
data management by co-locating data entities that require coor-
dinated access, and exploits replication to improve read access
performance when suitable.

Our evaluation suggests that Cromlech produces architectures
where microservices clearly reflect individual business function-
alities, and selects the granularity of the decomposition and the
placement of data to reduce operational costs. Moreover, our

Fig. 1. Cromlech: overview of the workflow.

experience with Cromlech highlights the complexity of manual
optimization and the benefits of a decision support tool. Com-
pared to human-designed architectures, some solutions proposed
by Cromlech were difficult to see. At the same time, it was easy
to manually adapt architectures produced by Cromlech, to better
cover the software engineers’ requirements.

In essence, this paper continues our research on designing
support tools to decompose a software system into microservices
considering both organizational and operational requirements.
Compared to our former solution, Pangaea, the paper propose:
(i) a new system model focused on operations, (ii) a novel MILP
formulation that exploits the new model, and (iii) a comprehen-
sive evaluation that features two real-world applications and an
in-depth comparison with simple heuristics, manual solutions
made by practitioners, Pangaea, and another state-of-the-art
decomposition approach called Service Cutter (SC) [21]. Results
show that Cromlech consistently outperformed other approaches
by generating more efficient solutions in-line with user needs.
Moreover, Cromlech allowed developers to easily evaluate their
manual decompositions: for instance, it highlighted that solu-
tions developed by practitioners were only optimized for orga-
nizational aspects, but were not efficient in reducing operational
costs.

The rest of the paper is organized as follows. approach and
optimization present Cromlech and the MILP optimization prob-
lem it is based on. eval presents the empirical evaluation of
Cromlech and the comparison with other relevant approaches.
related reviews related work. conclusions concludes the paper.

II. SOLUTION OVERVIEW

Fig. 1 presents the Cromlech1 workflow, organized in three
main steps: system modeling, optimization, and visualization.

System Modeling. Cromlech allows users to define a model of
the system to decompose as a YAML (a data format frequently
used for configuration tasks) text file. It describes the data entities
and operations that compose the application, along with their
mutual relations. This user-written system model is the input of
a parser that pre-processes data and generates a MILP problem.

1Source code available at http://github.com/deib-polimi/Cromlech

http://github.com/deib-polimi/Cromlech

468 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2024

System Modeling. Cromlech allows users to define a model
of the system to decompose, which describes the data entities
and operations that compose the application, along with their
mutual relations. The model is encoded following the TOSCA
standard2 (a format frequently used for architectures specifica-
tion). To facilitate this, we have developed a TOSCA library3 that
implements Cromlech concepts and enables users to easily cre-
ate application models by leveraging the standard’s guidelines.
Moreover, Cromlech uses a TOSCA parser that pre-processes
data and generates a MILP problem.

Optimization. A solver takes this MILP problem and produces
a solution according to a set of parameters (provided as input
along with the system model) that express user preferences.

Visualization. A visualizer creates a visual representation of
the solver’s solution and presents to the user the decomposition
along with a detailed analysis of its costs. Developers can then
assess the proposed solution and decide whether to accept it or
to refine the system model and input parameters.

In the rest of the section, each phase is described in detail.

A. System Modeling

The design of the Cromlech modeling framework balances
two requirements: (i) expressivity, to capture organization and
operational concerns; (ii) simplicity, to limit the effort for devel-
opers to build the model. Thus, in Cromlech data entities and
operations are characterized by small, yet meaningful, sets of
attributes.

Data Entities: Data entities are basic elements of data that
Cromlech treats as atomic units. The concept of data entity is
independent of the specific data model and level of granularity,
allowing developers to adapt the modeling framework to their
needs. For instance, in a relational data model, a data entity can
model a single table: Cromlech will treat the table as an unbreak-
able unit and map it to microservices accordingly. Alternatively,
developers may decide to model multiple related tables as a
single data entity or to split a table into multiple data entities.
In the first case, Cromlech will not distinguish individual tables
and will consider them as a whole. In the second case, Cromlech
will have the opportunity to assign the various parts of the table
to different microservices. A data entity e provides the following
properties.

name: a label that uniquely identifies e in the model.
description: an optional string that developers use to annotate

relevant information associated to e (for instance, the database
tables e refers to).

Operations: Operations represent units of execution of the
application, which are candidates to become logic functionalities
assigned to microservices. Each operation accesses (reads and
writes) data entities and is associated with a single microservice.
An operation o is characterized by the following properties.

name: a label that uniquely identifies o in the model.
data access: the list of data entities that o accesses. For each

data entity, developers can specify if the access is read-only or

2[Online]. Available: https://www.oasis-open.org/standard/tosca
3[Online]. Available: https://github.com/deib-polimi/Cromlech/tree/main/

tosca

read-write. Cromlech interprets accesses as dependency rela-
tions between operations and data entities, and it attempts to
co-locate on the same microservice an operation and the data
entities it accesses. Placing a data entity e and an operation o
that accesses e on different microservices incurs a cost in terms
of communication.

frequency: a number that says how frequently o is invoked.
In the decomposition process, Cromlech focuses on reducing
the costs associated with operations that are invoked more
frequently.

transactional: indicates whether the operation needs to be
executed with transactional semantics. As common in microser-
vices architectures, our model assumes that transactional se-
mantics is only possible within individual microservices and
not across microservices. Accordingly, a transactional operation
will be always located on the same microservice where all the
data entities it accesses are deployed.

co-located operations: list of other operations that need to be
located on the same microservice as o. Using this attribute, devel-
opers may indicate operations that belong to the same business
unit and must be deployed together on the same microservice.
Accordingly, co-located operations help developers to express
organizational constraints that Cromlech cannot break. At the
same time, the presence of co-located operations reduces the
number of acceptable solutions and may simplify the task for
the solver.

The above attributes delineate an informative model of an
application while limiting modeling complexity. We note that
some attributes could be automatically or semi-automatically
derived. For instance, static analysis tools could extract attributes
and operations, while monitoring approaches could precisely
estimate the frequency of operations in the system to be decom-
posed. We will explore the integration of these tools to further
increase the simplicity of Cromlech in future work.

B. Optimization

The system model provided by the user is parsed and pre-
processed in order to properly generate the optimization prob-
lem. In particular, the pre-processing step: (i) removes the enti-
ties that are accessed by a single operation, as they can be easily
added to the microservice that hosts the operation at the end, and
(ii) eliminates operations that do not access any remaining entity,
as they can be added to any microservice without affecting the
final decomposition in terms of organizational or operational
concerns. After the pre-processing step, Cromlech generates
the MILP problem that aims to find an optimal placement of
operations and entities onto a set of microservices, balancing
organizational concerns and operational costs.

Organizational concerns are measured by the cohesion metric
(the higher the better), that is the affinity and coherence of
operations and data entities within individual microservices and
the decoupling among different ones.

Operational concerns are measured by operational costs (the
lower the better), that sum communication and data management
costs. Communication costs measure the need of inter-service
communication. Depending on the specific technology being

[Online]. ignorespaces Available: ignorespaces https://www.oasis-open.org/standard/tosca
[Online]. ignorespaces Available: ignorespaces https://github.com/deib-polimi/Cromlech/tree/main/tosca
[Online]. ignorespaces Available: ignorespaces https://github.com/deib-polimi/Cromlech/tree/main/tosca

QUATTROCCHI et al.: CROMLECH: SEMI-AUTOMATED MONOLITH DECOMPOSITION INTO MICROSERVICES 469

adopted, microservices communicate using synchronous com-
munication (for instance, HTTP/REST API) or asynchronous
propagation of messages (for instance, using a message bro-
ker such as RabbitMQ4 or a queuing system such as Apache
Kafka5). Cromlech allows data entity to be replicated in dif-
ferent microservices with the goal of improving access speed
(fewer remote calls implies lower communication cost). Data
management costs reflect the additional effort for keeping each
replica up to date. Cromlech assumes that any operation can read
from a co-located replica, but all the updates (writing mode)
are executed on a so-called leader-replica and pushed asyn-
chronously to the others (eventual consistency). Thus, operations
that require transactional semantics must be co-located with the
leader replica, a condition that is formalized as a constraint in our
formulation (see optimization). This assumption is well-known
in the literature as the single writer principle [22].

Cromlech solver takes as input a small number of parameters
that guide the decomposition process based on the requirements
of developers. They include:

number of microservices: indicates the maximum number of
microservices that the decomposition can use. The solver may
assign entities and operations only to a subset of microservices,
resulting in a decomposition of fewer microservices.

organization-operations ratio: a real number α that indicates
the importance developers attribute to organizational concerns
(cohesion of microservices) over communication concerns (the
costs of remote data access and replication), on a scale between
0 and 1. The default value is α = 0.5, which suggests to Crom-
lech that organization and communication concerns are equally
important. Increasing the value would favor solutions where
microservices are internally highly cohesive (leading to a po-
tentially higher number of microservices and thus increasing the
cost of communication) while decreasing the value would favor
solutions that reduce inter-service communication (potentially
at the cost of decreased cohesion).

The reduced set of parameters presented above provide devel-
opers flexibility when needed without relinquishing simplicity.
Moreover, the organization-communication ratio α provides a
single parameter to steer the decomposition towards design
concerns or runtime concerns.

C. Visualization

We conceive Cromlech as a decision support tool: it may not
fully automate the decomposition process but it should help de-
velopers reason on the system and evaluate the consequences of
a given decomposition choice in terms of design and operational
costs. Accordingly, we built a visualizer component that offers
a graphical representation of the proposed decomposition as a
dynamic Web page. Fig. 2 shows an example of a decomposition
where entities (squares) and operations (circles) are mapped to
microservices. The depicted decomposition splits the monolith
into 4 microservices which clearly define, respectively, 4 differ-
ent bounded contexts: train food, food store, consign record, and
consign price.

4[Online]. Available: https://www.rabbitmq.com/
5[Online]. Available: https://kafka.apache.org/

Fig. 2. Visualization of a decomposition into 4 microservices.

For each microservices, the visualizer shows accessed entities
and provided operations. Entities colored in red, orange, and
yellow are, respectively, leader replicas, non-leader replicas,
and data that are (remotely) accessed and not replicated in the
microservice. Dark blue, light blue, and green colors indicate,
respectively, write operations with transactional semantics, write
operations without transactional semantics, and read-only opera-
tions. Lines connecting two entities from distinct microservices
show their interdependencies. Specifically, a solid line repre-
sents the requirement for a remote connection to fetch data
from the leader, while a dashed line illustrates the need for
synchronization between leader replicas and non-leader ones. In
addition, Cromlech outputs a detailed report with the cohesion,
communication, and data management costs of the proposed
solution. Developers may use the report to evaluate the trade-offs
of the solution and to refine their system model or choice of input
parameters.

III. OPTIMAL MONOLITH DECOMPOSITION

We formulate monolith decomposition as a MILP problem
by denoting E the set of data entities, O the set of operations
defined in the system model, and M the set of microservices
where data entities and operations must be placed. Two decision
variables x and y encode the placement of operations and data
entities onto microservices, respectively:

xo∈O,m∈M = 1 if o is placed on m, 0 otherwise.
ye∈E,m∈M = 1 if e is placed on m, 0 otherwise.

Our model allows data entities to be replicated at different
microservices. As common in microservices architectures, we
assume that a single service is responsible for all updates (write
accesses) to a given data entity e ∈ E. This is the leader replica
for e and we use a variable l to encode its placement.

le∈E,m∈M = 1 if the leader replica of e is placed on m, 0
otherwise.

[Online]. ignorespaces Available: ignorespaces https://www.rabbitmq.com/
[Online]. ignorespaces Available: ignorespaces https://kafka.apache.org/

470 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2024

A. Organizational Concerns

The cohesion metric represents the benefit of decomposing the
software systems into independent and highly cohesive modules.
Let us denote Om the set of operations that are associated with
microservice m ∈ M , that is:

∀m∈M ∀o∈O o ∈ Om ↔ xo,m = 1

Then, the cohesion metric for microservice m ∈ M is defined
as:

Cohm =

∑
o1∈Om,o2∈Om

S(o1, o2)

|Om|2 , if |Om| > 0

Cohm = 0, otherwise

where S(o1, o2) is the similarity between operations o1 and o2.
Ideally, a high similarity should indicate that two operations
belong to the same business domain. Accordingly, placing them
onto the same microservice increases the cohesion metric. We
build our definition of similarity on the assumption that two
operations are similar if the set of data entities they access is
similar. For each data entity e ∈ E and for each operation o ∈ O,
let us denote acce,o as a boolean variable that is 1 if and only if
o accesses e either in read or write mode. We extract the value
of such variables from the data access property of operations in
the input model. For each operation o ∈ O, let us define Eo as
the set of entities that o accesses either in read or in write mode.6

∀o∈O ∀e∈E e ∈ Eo ↔ acce,o = 1

S(o1, o2) =
|Eo1 ∩ Eo2|

min(|Eo1|, |Eo2|)
The total cohesion is the average of the cohesion metrics for

each service m ∈ M , weighted by the number of operations in
m. It is a value between 0 and 1, where higher values are better.

Coh =
∑
m∈M

Cohm · |Om|
|O|

B. Operational Concerns

Operational costs include communication and data manage-
ment costs. The former occur when an operation o ∈ O needs
to access a data entity e ∈ E but the two are placed on different
microservices, while the latter measure the costs associated
with replication. Indeed, replication allows operations to access
locally replicated data without incurring the cost of remote
data access, but it requires keeping remote replicas up-to-date.
As mentioned above, we assume that, for a given data entity
e ∈ E, a single leader replica is responsible for all updates (write
accesses) to e.

Formally, we distinguish two communication costs: Ro,e and
Wo,e, one for reading and one for writing entities, while data
management costs are associated to each entity as MngCoste.
To precisely define these elements of cost we need to introduce
two additional boolean variables accRe,o and accRWe,o for

6The formulation is generated after the pre-processing step, which already
(i) removed all data entities that are accessed by a single operation and (ii) op-
erations that do not access any (remaining) data entity.

each data entity e ∈ E and for each operation o ∈ O. They
hold 1 if and only if o accesses e in read-only or in read-write
mode, respectively. We extract these values from the data access
property of operations in the input model. We define Ro,e as
the cost that o ∈ O incurs for reading a data item e ∈ E. The
cost is 0 if e is placed in the same microservice m ∈ M where
the operation resides. Otherwise, it is the cost for accessing
the leader replica, which is proportional to the frequency fo
of invocation of o.

Ro,e =
∑
m∈M

accRe,o · fo · xo,m · (1− ye,m)

Wo,e is the cost that o ∈ O incurs for writing a data item e ∈ E.
The cost is 0 only for operations that are located on the leader
replica for e, otherwise, it is proportional to the frequency of
invocation of o. In other words, operations always access the
leader replica when writing e, even if they have a local replica
for e on the same microservice on which they are placed.

Wo,e =
∑
m∈M

accRWe,o · fo · xo,m · (1− le,m)

Thus, communication costs are computed as follow:

CommCost =
∑

o∈O,e∈E
(Ro,e +Wo,e)

Finally, an entity e ∈ E pays a data management cost for
keeping replicas up to date. It is proportional to the number of
(non-leader) replicas of e and to the frequency at which e is
updated:

MngCoste =
∑
o∈O

accRWe,o · fo ·
((∑

m∈M
ye,m

)
− 1

)

Thus, the total data management cost is computed as

MngCost =
∑
e∈E

MngCoste

Summing up all contributions, the operational costs for a
given placement of entities and operations onto microservices
are defined as:

OpCost = CommCost+MngCost

C. Objective Function and Constraints

The goal of the optimization problem is to maximize the
cohesion metric Coh while avoiding operational costs OpCost.
Since Coh is a real number between 0 and 1 we want also to
normalize the operational costsOpCost to a scale between 0 and
1. The minimum value ofOpCost is already 0 as it happens when
a fully centralized architecture is adopted (with no remote data
access and no replication). Conversely, the maximum value that
OpCost may reach occurs in a fully decentralized architecture,
where each operation is placed on a different microservice
(unless this is not allowed by some of the constraints in the
problem) and data entities are replicated in every service to
maximize the cost for propagating updates. Let us denote this
maximum operational cost as OpCostmax.

QUATTROCCHI et al.: CROMLECH: SEMI-AUTOMATED MONOLITH DECOMPOSITION INTO MICROSERVICES 471

The objective of our optimization problem becomes:

Obj = α · Coh− (1− α) · OpCost

OpCostmax

Valid solutions to the problem need to satisfy the following
constraints.

Each operation is deployed on exactly one microservice.

∀o∈O
∑
m∈M

xo,m = 1

Each entity is deployed on at least one microservice.

∀e∈E
∑
m∈M

ye,m ≥ 1

Each entity has exactly one leader replica.

∀e∈E
∑
m∈M

le,m = 1

The leader replica is a replica.

∀e∈E,m∈Mye,m ≥ le,m

Deployment needs also to enforce the constraints expressed
by the developers with respect to the co-location of multiple
operations. In particular, for any pair of operations o1 ∈ O
and o2 ∈ O, let us define a boolean variable coloco1,o2 that
is 1 if and only if developers requested the co-location of o1
and o2 (co-located operations attribute of operations in the
input model). Using this variable we may define the co-location
constraint as follow:

∀o1∈O,o2∈O
∑
m∈M

xo1,m · xo2,m ≥ coloco1,o2,

Finally, operations with transactional semantics need to be on
the same microservice of the data they access. This enforces a
common approach in microservices architectures, where trans-
actional semantics is not enforced across microservices, but only
within microservices. In other words, if an operation requires
strong guarantees in terms of atomicity, isolation, or integrity
when accessing data elements, it needs to be executed in the
same microservice that hosts the leader replica for all those
elements. For any operation o ∈ O, we define a binary variable
tro that is equal to 1 if and only if developers requested o to be
executed with transactional semantics (transactional attribute
of operations in the input model). Using this variable we may
define the transactional constraint as follow:

∀o∈O,e∈E,m∈Mxo,m ≥ tro · acce,o · le,m
Notice that the above problem is not linear for two reasons. (ii)

Some formulas include a multiplication of binary variables. For
instance computing co-located operations involve multiplying x
byx, and computing the operational costs involve multiplyingx,
y, and l. (ii) Some formulas include a multiplication of a binary
variable and an integer variable. For instance, computing the
coherence metric involves multiplying x by the overall number
of operations in a given microservice (an integer number). To
address these issues, we use well known approaches [23] to
linearize any product of two variables.

IV. EVALUATION

This section presents the empirical evaluation of Cromlech,
which aims to answer three research questions:

RQ1 What is the quality of the decompositions generated by
Cromlech and how do they compare with decomposi-
tions generated by other state-of-the-art approaches?

RQ2 How do the input parameters of Cromlech affect its
solutions?

RQ3 How do practitioners benefit from the usage of Crom-
lech?

The main challenge in evaluating a decomposition approach
is the lack of a ground truth. Given a software system there
is not a single optimal decomposition into microservices, and
developers may favor one decomposition over another depend-
ing on technological, operational, organizational constraints, or
even personal preferences. For the same reasons, comparing two
decompositions is not trivial, as small changes in the mapping
of data entities and operations onto microservices may lead
to significant differences in the quality of a decomposition as
perceived by a team of developers.

To address these challenges, we consider as case studies two
software systems, Tutored and TrainTicket, for which we have
a manual decomposition into microservices that we can use as a
reference. Tutored 7 is a real-world monolithic application, while
TrainTicket has been proposed as a benchmark for microservices
systems by the software engineering research community [24].
Moreover, we compare Cromlech results not only with the
decompositions provided by the use-cases, but also with those
generated by alternative approaches, and we compare them
using multiple quantitative and qualitative metrics, including the
objective function of Cromlech, multiple metrics of similarity
with the reference architecture, as well as a detailed manual
inspection.

We organize the rest of the section as follows:
eval:methodology presents our evaluation methodology.
eval:tutored and eval:trainticket analyze the results we obtained
using Tutored and TrainTicket as case studies, respectively.
eval:discussion comments our findings and eval:threats presents
possible threats to their validity.

A. Methodology

Case studies: The first case study we adopt for our evaluation
is a real-world software system developed by Tutored, a tech
startup that works in the education sector, and consists of a
REST API developed with Node.js, Express, and Typescript.
The application is currently live in production, and Tutored’s
Web and mobile applications are using it. The system was
designed as a monolith to speed up the initial development.
Recently, Tutored has been experiencing a significant traffic
growth on its platforms, and the developers are considering to
decompose the system into microservices to improve scalability
and flexibility. Tutored has been previously used to evaluate the
Pangaea decomposition approach [20] and we have a reference
manual decomposition provided by the developers.

7[Online]. Available: https://www.tutored.me

[Online]. ignorespaces Available: ignorespaces https://www.tutored.me

472 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2024

The second case study, TrainTicket is a Web application
consisting of 41 microservices and used as a benchmark for
software engineering research studies [24]. It represents a mock
application for buying and managing train tickets, including user
registration and session management.

Alternative approaches: We compare Cromlech with two al-
ternative state-of-the-art approaches. Like Cromlech, they both
take in input a system model and produce a decomposition of the
system into microservices. However, they differ both in terms
of the input model they require and in terms of the objective
function and optimization mechanism they adopt.

ServiceCutter [21] considers both data elements and opera-
tions as entities to be placed onto microservices. It defines a large
catalog of coupling criteria that link entities to each other, such as
semantic similarity, and consistency or security constraints. The
resulting modeling approach gives much freedom to developers,
who can represent the relations between entities in a very precise
way. For these reasons, however, ServiceCutter models may be
more complex to build and validate than those of Cromlech.
ServiceCutter internally represents the structure of the system
as a graph, using coupling criteria to determine the weights of
the relations between entities. It exploits clustering algorithms to
compute the decomposition. As entities are associated to a sin-
gle microservice, ServiceCutter decompositions do not exploit
replication. Developers can choose three different clustering
algorithms to decompose the monolith: Girvan-Newman [25],
Leung [26] and Chinese Whispers [27]. Pangaea [20] for-
mulates decomposition as a linear programming problem, as
Cromlech does. In fact, some of the authors were involved
in the development of Pangaea and many design choices in
Cromlech derive from the lessons learned while working on
Pangaea. Like Cromlech, Pangaea considers both organizational
and operational concerns and allows developers to set their
relative weights. In Pangaea, organizational aspects are cen-
tered around the relations between data elements. Conversely,
Cromlech focuses on aggregating related operations, aiming to
better identify individual business domains. Pangaea provides
a simple model of operational aspects: operations pay a cost to
access remote data and replication has an overhead (selected
as a parameter by the developer) that increases linearly with the
number of replicas. It does not include a concept of leader replica
and does not model the propagation of updates to followers, as
Cromlech does.

Similarity metrics: As both the case studies we adopt offer a
reference decomposition, we are interested in capturing the sim-
ilarity of the decompositions generated by the tools under anal-
ysis with such references. To do so, we defined two quantitative
metrics to measure the similarity between two decompositions
D1 and D2 of the same software systems.

The first one, operations similarity, looks at all possible pairs
of operations. Given a pair of operations (oi, oj), we say that two
decompositions D1 and D2 are similar with respect to (oi, oj)
if oi and oj are co-located (they are in the same microservice)
both in D1 and D2 or if they are not co-located (they are not in
the same microservice) neither in D1 nor in D2. Consequently,
we define SimD1,D2(oi, oj) as a value that is 1 if D1 and D2 are
similar with respect to (oi, oj) and−1 otherwise. The operations

TABLE I
MAIN CHARACTERISTICS OF THE TUTORED SOFTWARE ARCHITECTURE

similarity between decompositions D1 and D2, SimD1,D2 is
defined as the normalized sum of the similarities of each pair of
operations:

SimD1,D2 =

∑
oi∈O,oj∈O,oi �=oj

SimD1,D2
oi,oj

|O| · (|O| − 1)/2
.

Second similarity metric, Data similarity, is defined likewise,
but considers pairs of data entities instead of pairs of operations,
and evaluates whether decompositions co-locate the primary
replicas of the entities or not.

Experimental Environment: We performed all experiments on
a machine equipped with a 6-core/12-threads Intel Core i7-8700
CPU and 64 GB of RAM running Linux 5.10 (Debian). Crom-
lech was executed with the default input parameters presented
in approach, unless otherwise specified. As a solver, we used
Gurobi 9.5.1.8 The combinatorial nature of the problem could
make the search of an optimal solution too long. In practice, we
observed that the value of the best solution found by Cromlech
tends to stabilize after a period of time that depends from the
specific case study and configuration parameters. Hence, for
each case study, we set a maximum timeout after which we
stopped the search in all our experiments. We report the values
of the objective functions over time for each case study in the
respective section.

B. Tutored Case Study

Table I presents the most relevant characteristics of the soft-
ware architecture of Tutored. The system model was provided
by Tutored engineers and comprises 71 operations and 271 data
entities. The developers identified 7 transactional operations and
did not specify any further requirement for co-locating opera-
tions. The pre-processing step reduced the number of operations
to 69 (4 of which are transactional) and the number of data
entities to 166. These represent the input for the decomposition
problem that we consider for Cromlech, ServiceCutter, and
Pangaea. The cohesion of a monolithic architecture (that is, the
worst possible value of cohesion) is 0.1579. Later in this section,
we will use this number as the baseline to evaluate the cohesion
of the various decompositions.

1) Reference Decomposition: The reference decomposition
for the Tutored use case is a manual decomposition defined by
Tutored engineers. Designing the decomposition took about one
working day (6 to 8 hours). Given the complexity of reasoning
on a large number of data elements, the engineers considered
data at the granularity of database tables rather then individual
columns, as we did in Cromlech. We present the main statistics of
the manual decomposition in Table II and we present the size and
cohesion of individual microservices in Table III. The engineers

8[Online]. Available: https://www.gurobi.com

https://www.gurobi.com

QUATTROCCHI et al.: CROMLECH: SEMI-AUTOMATED MONOLITH DECOMPOSITION INTO MICROSERVICES 473

TABLE II
MANUAL DECOMPOSITION FOR TUTORED: MAIN CHARACTERISTICS

TABLE III
MANUAL DECOMPOSITION FOR TUTORED: NUMBER OF OPERATIONS AND

COHESION PER SERVICE

focused mostly on organizational concerns, and identified 4 main
business domains that they mapped onto 4 microservices: (1)
Content and activities provides operations to access content,
such as video streams, webinars, and posts. It also exposes
operations related to activities and events. (2) Users provides
operations to manage accounts. It includes transactional op-
erations related to social network accounts. (3) Jobs provides
operations related to job offers and interviews. (4) Curricula
provides operations to compile a curriculum vitae.

Table II includes a quantitative analysis of the manual decom-
position using the definition of cohesion metric and operational
cost of Cromlech. The analysis confirms the focus of the soft-
ware engineers on organizational aspects (at the price of higher
operational cost at run time). The cohesion metric has a value
of 0.37. Recall that cohesion is on a scale from 0 to 1, where
the worst possible value of the monolithic solution for Tutored
is 0.1579. As we will better see when discussing and comparing
other decompositions, a cohesion of 0.37 is relatively high for
a decomposition of 69 operations onto only 4 microservices.
However, this value can be improved by considering more
microservices: for instance, the microservice named content and
activities clearly includes subsets of operations and data entities
that are disconnected from each other. As we will see, Cromlech
identifies these subsets and suggests to split them to increase
cohesion and reduce operational costs. The operational cost of
the manual decomposition is 0.41 (again, on a scale from 0 to 1,
lower values are better), which is very high for an architecture
with only 4 microservices, as we will see in comparison with
alternative solutions. Most data entities are stored in a single
service, without replication. A single exception is the Education
table that the engineers decided to replicate on all services. Being
a central component in the data model of the application, this
table alone accounts for 63% of the operational costs to access
remote data and 100% of the replication costs (that is, the cost
for propagating updates to all replicas).

2) Cromlech: To evaluate Cromlech on the Tutored archi-
tecture, we performed the following experiments: (i) We forced
Cromlech to use the same number of microservices (only 4)
proposed by the software engineers for their manual decom-
position. (ii) After observing the decomposition generated by
Cromlech and the values of cohesion metric and operational

Fig. 3. Value of the best decomposition found over time (15 microservices,
α = 0.5).

TABLE IV
CROMLECH DECOMPOSITION FOR TUTORED (MAXIMUM NUMBER OF SERVICES

= 4): COHESION, OPERATIONAL COST, TOTAL VALUE OF THE OBJECTIVE

FUNCTION, AND SIMILARITY WHILE CHANGING α

costs it provides, we tried to manually improve it. This experi-
ment aims to see if the feedback Cromlech provides can be useful
for developers to gain more insight on their system and refine
the decomposition in an iterative process. (iiii) We let Cromlech
compute the best decomposition by setting a high number of
microservices (15). In all experiments, we run Cromlech with
different values of α to study the sensitivity of our algorithm
to this parameter and its ability to capture and control the
preferences of the developers.

Before analyzing the quality of the decomposition Cromlech
produces, let us discuss the time it requires to compute them.
Fig. 3 shows how the value of the decomposition computed by
Cromlech increases (i.e., improves) over time, considering 15
microservices and α = 0.5. Albeit the timeout of 36 hours was
not enough to find a global optima for the optimization problem,
the figure shows how the value of the decomposition already
becomes stable after 1 h. With a smaller number of microservices
this time further decreases: for instance, with 4 microservices,
the value becomes stable after 10 minutes. As we demonstrate
in the rest of the section, the decomposition calculated after this
time have a similar or better quality than alternative solutions.
Overall, this indicates that Cromlech can find good solutions
within tens of minutes for a real-world application.

Table IV presents a quantitative assessment of the decom-
positions we obtained when forcing a maximum number of 4
microservices, for different values of α. For each solution, we
present the value of the cohesion metric, operational cost, and
the total value of the objective function. We also present the
similarity with the reference (manual) decomposition in terms
of operations and data. Both the value of cohesion and the
operational cost increase with α, indicating that the parameter
works as expected: for small values of α, Cromlech sacrifices
cohesion to avoid incurring a high operational cost, while for
large values of α Cromlech targets higher cohesion values de-
spite the increased operational cost. Overall, the value of the
objective function increases with the organization-operations

474 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2024

TABLE V
CROMLECH DECOMPOSITION FOR TUTORED (α = 0.9): NUMBER OF

OPERATIONS AND COHESION PER SERVICE

ratio α, which led us to think that increasing the number of
microservices (which helps further improving organizational
concerns) could yield better results.

Before confirming this hypothesis with more experiments, we
compared Cromlech’s solutions with the manual one (see again
Table II), observing that Cromlech provides better cohesion for
α > 0.6, while incurring a lower operational cost for any value of
α < 1. Cromlech’s solutions become more similar to the manual
decomposition in terms of operations asα increases (last two col-
umn in Table IV): this confirms that the manual decomposition
privileges organizational (cohesion) over operational concerns.

Afterwards, we manually analyzed the solutions generated by
Cromlech in details. We present our findings and conclusions
by referring in particular to the decomposition obtained with
α = 0.9, which provides a high cohesion while maintaining a
low operational cost (about 12% of the maximum). Table V
shows the number of operations and the cohesion of each service.
The total cohesion metric (last line) is the average of the cohesion
of each service weighted by the number of operations in that
service. (1) Content and activities is similar to the corresponding
microservice in the manual decomposition, but contains a subset
of its operations (12 instead of 19), which results in a higher
cohesion (0.5008 instead of 0.2459). (2) Users is much larger
than the corresponding microservice in the manual decompo-
sition (32 operations instead of 14). It also contains operations
related to webinar and curricula, which frequently access the
same data entities as the operations on users, in particular data
entities belonging to the Education table. This choice reduces
the operational cost with respect to the manual decomposition,
with limited impact on cohesion despite the much larger number
of operations (0.4056 instead of 0.5643). (3) Jobs, as in the
case of content and activities, is a subset of the corresponding
microservice in the manual decomposition, with 8 instead of 25
operations, and a higher cohesion (0.6839 instead of 0.2429).
(4) Others contains 17 operations that appear to belong to at
least 4 sets that are highly cohesive internally but not strongly
coupled with each other (operations related to skills, experience,
academia, and languages). This service negatively affects co-
hesion metric (with a value of 0.1583). It seems that Cromlech
correctly identified cohesive blocks, but could not split them due
to the forced limit in the number of microservices.

Moving from these considerations, we evaluated the value
of a solution with 7 microservices, where we manually split
Others into the 4 sub-components we identified (see Table VI).
This solution retains similar operational costs compared to the
results obtained with 4 microservices and increases cohesion
from 0.3935 to 0.5072. These numbers indicate that the added
services are indeed independent in terms of the data elements

TABLE VI
REFINEMENT OF CROMLECH DECOMPOSITION WITH 7 SERVICES: COHESION,

OPERATIONAL COST, TOTAL VALUE OF THE OBJECTIVE FUNCTION, AND

SIMILARITY WITH α = 0.9

TABLE VII
CROMLECH DECOMPOSITION FOR TUTORED (MAXIMUM NUMBER OF

SERVICES=15): COHESION, OPERATIONAL COST, TOTAL VALUE OF THE

OBJECTIVE FUNCTION, AND SIMILARITY WHILE CHANGING α

they consider (which increases the cohesion) and do not com-
municate with each others (which lowers the operational cost).
In this scenario, Cromlech proved to be a valid tool to support
decision making: despite the number of services was limited for
the problem at hand, the proposed solution let us immediately
identify the limitation and find a better decomposition.

As a final experiment, we run Cromlech increasing the maxi-
mum number of microservices to 15 (see Table VII). The results
enable many interesting observations. Regardless of the value
of α, Cromlech proposes decompositions that include all 15
microservices. The value of the objective function increases with
α, again indicating the relevance of cohesion for the Tutored
application. Compared to the solution with 7 microservices
and considering the same value of α = 0.9, the use of 15 mi-
croservices not only increases cohesion from 0.5038 to 0.8131,
but also further decreases the operational cost from 0.3838 to
0.3491. Despite a much higher number of microservices, this
decomposition has a higher similarity with the manual one
in terms of operations for large values of α (when Cromlech
gives a higher weight to cohesion). This indicates that Cromlech
correctly identifies the semantic similarities between operations
that guided the manual decomposition (closely related opera-
tions remain co-located). Yet, it exploits the higher number of
microservices to increase the cohesion.

Interestingly, Cromlech also decreases the operational cost:
in absolute terms, the manual decomposition (with only 4 mi-
croservices) incurred an overall operational cost of over 0.4,
and Cromlech manages to always keep it below 0.35 despite
considering almost 4 times more services. As operational costs
directly derive from dependencies between operations and data
entities, they clearly indicate that using only 4 microservices
(as suggested by the developers) yields sub-optimal results in
terms of decomposition into independent units. Instead, the
computational power accessible with an automated tool, better
tackles the combinatorial nature of the problem and identifies all
independent units without negatively affecting the operational
cost.

3) Pangaea: To evaluate Pangaea, we use the same model
of Tutored as in the paper that introduces Pangaea [20]. Like
Cromlech, Pangaea offers a parameter to weight organizational
and operational concerns: for our comparison we consider the

QUATTROCCHI et al.: CROMLECH: SEMI-AUTOMATED MONOLITH DECOMPOSITION INTO MICROSERVICES 475

TABLE VIII
PANGAEA DECOMPOSITION WITH 4 MICROSERVICES AND α = 0.5: COHESION,

OPERATIONAL COST, TOTAL VALUE OF THE OBJECTIVE FUNCTION, AND

SIMILARITY WITH THE MANUAL SOLUTION

TABLE IX
PANGAEA DECOMPOSITION FOR TUTORED (α = 0.5): NUMBER OF

OPERATIONS AND COHESION PER SERVICE

reference scenario proposed in the original paper, giving the
same weight to both concerns.

Table VIII shows the main metrics of Pangaea’s solution. The
solution presents a lower cohesion metric than the solution of
Cromlech with 4 microservices for any value of α > 0, and a
higher operational cost for any value ofα < 1 (cfr Table IV). The
total value of the objective function is higher in Cromlech for
any value of α > 0.1. Recall that these numbers are computed
based on the data provided by the developers when compiling
the model of the Tutored application, so they indicate that
Cromlech better captures both organizational aspects (cohesion)
and operational costs. In fact, the developers considered Pangaea
as helpful to reason about operational costs, but they were not
willing to use the decomposition proposed by the tool [20].

As in the case of Cromlech, the solution proposed by Pangaea
presents some differences with respect to the manual decomposi-
tion, both in terms of operations and in terms of data. This seems
to confirm how automated tools that aim to optimize multiple
concerns find solutions that the developers did not consider.
The low value of data similarity (0.1030, see Table VIII) is
particularly interesting. Indeed, Pangaea models applications
based mainly on data and relations between data: despite the
developers who provided the model were the same that proposed
the manual solution, their modeling approach guided Pangaea
to a different decomposition.

Beside considering numerical values, we also manually an-
alyzed the quality of Pangaea’s solution. The decomposition
consists of the following microservices (also summarized in
Table IX): (1) Users includes 30 operations: as in the case of
Cromlech, it includes many operations that are associated to
the central education data entities, such as operations related
to skills and languages. (2) Content and job offers includes 27
operations, from two main subdomains (content and job offers,
as the name implies). (3) Experience includes only 8 operations,
but still includes operations and entities that are not always
strictly related. (4) Others includes only 4 operations that cannot
be easily ascribed to one business domain.

Despite some similarities with the solutions proposed by
Cromlech, the microservices in the final decomposition are more
difficult to describe in terms of business domains. The first
two microservices are very large and include heterogeneous
aspects. The last microservice does not represent a clear domain.

TABLE X
SERVICECUTTER DECOMPOSITIONS FOR TUTORED: COHESION AND

OPERATIONAL COST WITH DIFFERENT ALGORITHMS

TABLE XI
SERVICECUTTER DECOMPOSITION FOR TUTORED (CHINESE WHISPERS

ALGORITHM): NUMBER OF OPERATIONS AND COHESION PER SERVICE

Numerically, this reflects to relatively low values of cohesion
for all microservices. The total value of the cohesion metric is
increased by cohesion metric of Others, which benefits from
containing only few operations. In comparison, Cromlech (see
Table V) proposed microservices with much higher cohesion,
except one microservice (Others) that clearly includes more
business domains. We conclude that Cromlech better captures
the semantic relations between operations and clearly suggests
to developers how to improve: further splitting some operations.

4) ServiceCutter: In our evaluation, we consider for Service-
Cutter the same model adopted in the evaluation of Pangaea [20],
which is the most detailed representation of the use case that Ser-
viceCutter could successfully handle: models encoding entities
at a finer granularity were too complex for ServiceCutter, which
could not generate any valid solution due to runtime errors. This
model primarily captures data entities and their mutual relations.
When needed, we compute the optimal placement of operations
based on the placement of the data entities they access.

ServiceCutter may compute decompositions using three dif-
ferent clustering algorithms. Table X presents the characteristics
of the decompositions that ServiceCutter generates for each
clustering algorithm. The Girvan-Newman algorithm produces
a solution that is very similar to the monolith, and only manages
to identify one independent cluster of data entities and opera-
tions (related to the Experience database table), which slightly
improves cohesion. The Leung algorithm improves cohesion
by distributing data and operations across 10 microservices.
However, the cohesion metrics remains lower than in any so-
lution of Cromlech with 15 microservices (see Table VII), and
comparable or lower than any solution of Cromlech with 4
microservices and α > 0.1 (see Table IV). At the same time,
the communication cost is higher than any solution of Cromlech
with 4 microservices and α < 1 and any solution of Cromlech
with 15 microservices and α < 0.8.

We obtained the best solution using the Chinese Whispers al-
gorithm. The solution consists of the following 5 microservices,
also summarized in Table XI. (1) User is very similar to the one
identified by Pangaea and includes 33 operations. (2) Content
aggregates many small business domains (job offers, Webinars,

476 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2024

TABLE XII
MAIN CHARACTERISTICS OF THE TRAINTICKET SOFTWARE ARCHITECTURE

streams, posts, events), with 29 operations. The heterogeneity of
these domains reflects in a low cohesion score of 0.2275. (3) Ex-
perience includes 4 operations related to the Experiencedatabase
table. (4) Qualification includes 2 operations related to the Qual-
ification database table. (5) CareerDay only includes a single
operation. The unbalanced distribution of entities reflects in a
relatively high operational cost, higher than any decomposition
of Cromlech with 4 microservices and α < 1. Most importantly,
the proposed decomposition appears to be not very useful for the
developers, as many business domains are aggregated in 2 very
large services, while the remaining services are very small and
do not justify an independent unit of deployment.

In summary, for the Tutored application, the use of clustering
algorithms as proposed by ServiceCutter produces decomposi-
tions that are either very similar to the monolith, or incur a high
communication cost for the cohesion metric they provide, or are
unbalanced and hence not very useful to guide the decision of
the developers.

C. TrainTicket Case Study

We selected TrainTicket as a second case study because it
was conceived as a reference example of microservices ar-
chitecture. It consists of 41 microservices implemented with
four different programming languages (Java, JavaScript, Python,
Go). We analyzed the codebase and performed a cleaning step
to remove elements that could bias our study. In particular: (i)
we removed services that only perform stateless computations
without accessing or mutating any data entity (e.g., services
only exposing verification operations); (ii) we removed duplicate
services, containing two variants of the same operations, to be
used as possible alternatives; (iii) we removed services used for
administrative operations, as they are used only occasionally and
should not be considered in the evaluation of the operational
cost. In absence of other documentation, we considered all
operations to have the same frequency. After this cleaning step,
the architecture contains 27 services, 137 data entities, and 125
operations. The pre-processing step of Cromlech removed one
additional operation, as it only accesses a single data entity. From
the analysis of the project, we also identified 16 operations that
in our opinion are only correct if executed with transactional
semantics. As this is an assumption that we derived from the
codebase and could not be fully verified, we opted for consider-
ing both a scenario in which these operations are not forced to
be transactional and a scenario in which they are forced to be
transactional. Table XII summarizes the main characteristics of
the TrainTicket software architecture.

To evaluate the decomposition tools, we give them in input
the full set of data entities and operations and we observe how
they split them into microservices.

TABLE XIII
MANUAL DECOMPOSITION FOR TRAINTICKET: MAIN CHARACTERISTICS

Fig. 4. Value of the best decomposition found over time (27 microservices,
α = 0.9).

1) Reference Decomposition: The reference decomposition
presents a very high cohesion (0.88 on a scale from 0 to 1),
much higher than the reference decomposition in the Tutored
scenario. This is probably due to the fact that TrainTicket has
been designed as a microservice architecture. The operational
cost is 0.53, which means 53% of the cost that a fully distributed
solution (that does not consider any operation as being transac-
tional) would incur. While this number may appear quite high,
it is not surprising for a solution that splits 137 data entities
across as much as 27 microservices (about only 5 data entities
per microservice, on average), also considering that operations
and data entities are densely connected in this use case. As a
comparison, the manual decomposition in the Tutored use case
had 0.41 operational cost despite consisting of only 4 services.
As in Tutored, few data entities account for a large fraction of the
operational cost. For instance, the Order data entity accounts for
more than one third of the overall cost. However, the distribution
is less skewed than in Tutored.

In general, the analysis of this use case reveals a software
architecture that is clearly conceived to distinguish business
domains and associate them with microservices that are highly
cohesive (as captured by the high value of our cohesion metric)
despite requiring invocations to each other’s operations (as
captured by the relatively high value of the operational cost).
This differentiates the TrainTicket use case from the previous
Tutored use case, where the reference decomposition consisted
of a limited number of services incorporating multiple business
domains, obtaining a much lower value of cohesion (0.37).

2) Cromlech: Fig. 4 shows the value of the best decomposi-
tion found by Cromlech when we do not consider transactional
operations and when we include them. In both cases, we consider
a maximum number of 27 microservices and we set α = 0.9. In
absence of transactional operations, Cromlech has a large degree
of freedom in associating operations to microservices, which
results in a very high execution time: the value of the objective
function periodically improves even after days of execution, and
the values we report in the remainder of the paper were obtained
with 10 days of processing. However, this is a very extreme
and unrealistic scenario, as in practice a basic knowledge of

QUATTROCCHI et al.: CROMLECH: SEMI-AUTOMATED MONOLITH DECOMPOSITION INTO MICROSERVICES 477

TABLE XIV
CROMLECH DECOMPOSITION FOR TRAINTICKET WITHOUT ANY

TRANSACTIONAL OPERATIONS: COHESION, OPERATIONAL COST, AND

SIMILARITY

TABLE XV
CROMLECH DECOMPOSITION FOR TRAINTICKET CONSIDERING 16

TRANSACTIONAL OPERATIONS: COHESION, OPERATIONAL COST, AND

SIMILARITY WHILE CHANGING α

the application let developers set some constraints in the form
of transactional operations. Including transactional operations
reduces the complexity of the problem by constraining the
co-location of transactional operations and the data entities they
access. Indeed, by only considering 16 operations (out of 124) as
transactional, the value of the objective function becomes stable
after only 10 hours.

Let us start our analysis from the case in which we do not
consider transactional operations. Table XIV shows the main
metrics of the decomposition computed by Cromlech. With a
value of α greater then 0.1, Cromlech uses 27 services as the
reference architecture, and the decomposition presents a very
high similarity with the reference one both in terms of operations
and data. This indicates that Cromlech could indeed replicate
many of the choices of the reference architecture. Cromlech
manages to significantly reduce operational costs for any value
of α. For α greater than 0.1, the cohesion is also comparable to
that of the reference decomposition (and sometimes even better).
As a result, the objective function is higher than in the reference
decomposition for α equal or greater than 0.5.

We manually analyzed the decomposition of Cromlech for
α=0.9. We observed that the reduction in operational cost is
mainly achieved by moving the data entities related to Order,
which produce the highest operational cost in the reference
architecture. These data entities are co-located with other entities
that many operations access together. As a result, the total cost
of the Order data entities is reduced by nearly a factor of 4, with
no impact on cohesion.

We repeated the experiment in a scenario in which we consider
16 transactional operations, as previously mentioned. As in
the case of Tutored, we observe that parameter α works as
expected: increasingαwe obtain a better cohesion at the price of
higher operational cost. For small values of α, Cromlech avoids
operational costs by limiting the number of microservices, which
reduces their internal cohesion. Only with α > 0.3 Cromlech
exploits all 27 microservices. For α > 0.7, the decompositions
have a higher cohesion than the reference one, and the opera-
tional cost is lower for any value ofα < 1. As in the previous use

TABLE XVI
PANGAEA DECOMPOSITION FOR TRAINTICKET: COHESION, OPERATIONAL

COST, AND SIMILARITY WHILE CHANGING α

case, Cromlech manages to reduce operational cost with respect
to the reference decomposition, indicating that developers tend
to prioritize cohesion and may overlook operational costs due to
the difficulty of computing them. At the same time, Cromlech
still produces solutions that retain a high cohesion, comparable
or higher than in the reference decomposition for α ≥ 0.5.

3) Pangaea: We evaluated Pangaea using an input model
with the same operations, entities, and relationships defined for
Cromlech. Notice that in Pangaea entities where aggregated onto
tables, whereas Cromlech works at the granularity of individual
columns. As a result, the problem was much simpler for Pangaea
and it always converged to a solution within tens of minutes.
In all cases, we set a timeout of 2 hours. We retrieved five
decompositions for different values of α, which were evaluated
using the same metrics employed for Cromlech. The results,
reported in Table XVI, show that Pangaea obtained similar
results compared to Cromlech. In particular, if we consider the
results of Cromlech reported in Table XV, for low values of α,
Pangaea performed better in terms of cohesion but with higher
operational cost. On the contrary, for high values of α, Pangaea
obtained lower operational costs but also a lower cohesion.

The decompositions produced by Pangaea appear to be similar
to the reference solution. As for Cromlech, the operational
similarity is quite high (e.g., 0.9436 for α = 0.9). This demon-
strated the goodness of the reference solution, being the system
originally conceived with a microservice architecture. Pangaea
solutions obtained also a high data similarity (e.g., 0.9027 for
α = 0.9), while Cromlech obtained lower values (e.g., 0.4513
for α = 0.9). This seems to be due to the fact that, unlike
Pangaea, Cromlech exploits data replication more frequently,
resulting in decompositions that are less similar to the reference
solution but incur lower operational cost.

4) ServiceCutter: To evaluate ServiceCutter, we defined an
input model that includes data entities, operations, and their
mutual relations at the same granularity as in the input model
used for Cromlech, without defining any transactional operation.
ServiceCutter was tested using the Girvan-Newman, Leung, and
Chinese Whispers algorithms, all in their default configurations
with all the criteria set to have equal weights (corresponding to
α = 0.5 in our approach). For Girvan-Newman, we also limited
the number of services to 27, in alignment with our earlier
observations.

Table XVII presents the results we obtained. Girvan-
Newman’s decomposition yielded 26 services, closely aligning
with the maximum value set. It obtained a cohesion score of
0.8436, which is lower than both the reference decomposition
(0.8822) and Cromlech’s score of 0.8969 (with α=0.5 and no

478 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2024

TABLE XVII
SERVICECUTTER DECOMPOSITIONS FOR TRAINTICKET WITHOUT ANY

TRANSACTIONAL OPERATIONS: COHESION, OPERATIONAL COST, AND

SIMILARITY

transactional operations). In terms of operational costs, this
solution outperformed the reference decomposition (achieving
0.3135 compared to 0.5328) but not Cromlech that produced
lower values for any values of α < 0.9. Leung’s decomposition
generated 9 services, prioritizing operational costs (as low as
0.0580) over cohesion (0.5037). The Chinese Whispers algo-
rithm, on the other hand, slightly improves cohesion to 0.6555,
yet it remains below the reference and Cromlech scores, while
maintaining low operational costs (0.0855). In terms of data sim-
ilarity, all algorithms achieved identical scores, indicating a con-
sistent approach across different methods. Thus, the variations in
the scores lie in the different ways operations are grouped. In this
respect, Girvan-Newman’s decomposition perfectly matches the
reference implementation, leading to an operations similarity of
1. If we consider the total score, no matter the algorithm, Crom-
lech (with α = 0.5 and without any transactional operations)
outperformed all the algorithms, demonstrating its ability in op-
timizing both cohesion and operational costs in a balanced way.

In our pursuit to refine the assessment of ServiceCutter and
its comparison with Cromlech, we carried out an additional
analysis leveraging 4 different configurations for each algorithm.
In particular, we identified two tuning parameters that mirror our
conceptual model: ”Identity and Lifecycle Similarity” (abbrevi-
ated as ide) as a proxy for measuring cohesion and ”Latency”
(abbreviated as lat) to represent operational costs. While the
previous experiments were run with default settings, that is, all
the parameters set to ”M” (in a range from ”XS” to ”XXL”),
for this analysis we run the experiments with extreme values
(”XS” and ”XXL”) to capture the full spectrum of outcomes and
understand the trade-offs at play. We also evaluated the total
score with three values of α (0.1, 0.5, 0.9) to understand the
effects of varying emphases on cohesion versus operational costs
within our evaluation framework.

The results reported in Table XVIII indicate a significant
difference in the sensitivity of the algorithms to the tuning
parameters ide and lat. For the Girvan-Newman algorithm,
the outcomes in terms of the number of services, cohesion,
and operational cost remained invariant despite changing the
configurations for ide and lat. In contrast, the Chinese Whis-
pers and Leung algorithms exhibited variability with different
configurations, but the effects were not uniform. For Chinese
Whispers, increasing the ide parameter from XS to XXL resulted
in an increase in the number of services, which aligns with the ex-
pectation that multiple and smaller services would yield higher
cohesion. However, changes in the lat parameter did not alter the
number of services, which is counterintuitive since one would
expect latency optimization to impact service granularity. In

TABLE XVIII
SERVICECUTTER DECOMPOSITIONS UNDER DIFFERENT CONFIGURATIONS

contrast, the Leung algorithm showcased an opposite behaviour
since altering the ide parameter did not affect the number of
services, whereas adjustments to lat did. This unpredictability
underscores the algorithm-dependent nature of the configuration
effects and suggests that understanding the internal mechanics
of each algorithm is crucial for proper tuning.

Furthermore, it is important to note that none of the configura-
tions explored for these algorithms could exceed the total score
(0.7744) achieved by the best configuration of the Cromlech
(α = 0.9, without any transactional operations). This suggests
that, despite the complex and fine-grained control offered by
ServiceCutter, Cromlech achieves superior performance with
a more straightforward and intuitive parameter (the α factor)
which provides practitioners with a more direct and determinis-
tic approach to balance cohesion against operational costs.

D. Discussion

We learned several lessons from the analysis above. First of
all that the two case studies present significant differences. In
Tutored, developers provide a reference decomposition with a
small number of services, clearly insufficient to isolate indepen-
dent business domains. Based on the input information about
the system, the tools we analyzed provide very diverse answers.
Pangaea generates services with heterogeneous sizes, where it is
difficult to identify business domains. ServiceCutter is heavily
influenced by the algorithm adopted: some algorithms provide
trivial solutions (close to a monolith) or solutions that incur
high operational costs. Cromlech identifies the business domains
and clearly suggests the use of a higher number of services by
aggregating multiple business domains into one service.

Instead, TrainTicket is explicitly conceived to represent a
reference microservices architecture. Indeed, all the approaches
we considered (Cromlech, Pangaea, and ServiceCutter) pro-
duce decompositions that are similar to the reference. However,
Cromlech manages to further reduce the operational cost —
also exploiting data replication — while retaining a separation
of business domains that is close to the reference. Adjusting

QUATTROCCHI et al.: CROMLECH: SEMI-AUTOMATED MONOLITH DECOMPOSITION INTO MICROSERVICES 479

the configuration parameters of ServiceCutter has the potential
to optimize outcomes for either increased cohesion or reduced
operational costs. However, our findings demonstrate that this
tuning process is highly dependent on the specific algorithm in
use and is far from being straightforward. In contrast, Crom-
lech offers an easily adjustable parameter that simplifies the
balancing between cohesion and operational cost, providing a
user-friendly interface for practitioners seeking effective opti-
mization.

In summary, in both cases Cromlech guides towards solu-
tions that preserve the semantic relations between operations
(organizational concerns) while balancing them with operational
concerns. The latter are overlooked in previous literature, as the
results of ServiceCutter indicate. Pangaea introduces an explicit
trade-off between organizational and operational concerns, but
its simple modeling approach, based on the relations between
data entities, does not yield results that are comparable to Crom-
lech (as we observe in the case of Tutored). We think that the
main advantages of Cromlech with respect to Pangaea in terms
of modeling are: the focus on operations, which better reflect
business domains, the definition of constraints for transactional
semantics and replication that more closely reflect their concrete
implementation in microservices architectures.

E. Threats to Validity

These are the threats that may hurdle the validity of our
results [28].

Internal threats: When comparing Cromlech with other ap-
proaches, we used the same definitions of cohesion and commu-
nication cost we use to compute Cromlech’s objective function.
This can create a bias in the assessment, since Cromlech is
built with the goal of optimizing these metrics while other tools
are not. However, these metrics are defined using well estab-
lished criteria for evaluating microservices architectures such
as cohesion, inter-service communication, and data replication,
broadly discussed in the literature [9], [10], [11]. Also, their
values directly derives from a user-defined system model that
indicates the relations between data entities and operations in
an unambiguous way. Moreover, by changing the organization-
communication ratio α, we explored a broad range of cases,
from the ones that favor highly decentralized solutions to those
that favor larger microservices, and Cromlech consistently out-
performed other solutions in almost all scenarios. Finally, our
qualitative analysis confirms the quantitative one, showing that
the solutions provided by Cromlech are well balanced and able
to capture the semantic of business domains.

External threats: Cromlech was tested with two use cases,
threatening the generalization of results. While we plan to extend
our evaluation to more scenarios in the future, the use cases are
representative of a real-world system and a reference architec-
ture for microservices. To the best of our knowledge, they do
not have any peculiar aspect that could invalidate the claims
in the paper. They also show complementary characteristics:
Tutored was originally implemented as a monolithic application,
whereas TrainTicket was designed as a microservices architec-
ture.

Construct and conclusion threats: The experiments presented
in this section show that Cromlech is able to outperform alter-
native approaches in the tested use cases and that its behavior is
sensible, but yet predictable, to the input parameters. Cromlech
helps in evaluating the trade-offs that arise in the monolith de-
composition process and users can iteratively exploit its insights
by changing the inputs to test different scenarios.

V. RELATED WORK

As many developers choose microservices as their reference
architecture, the decomposition problem becomes increasingly
relevant. While decomposition remains a tedious manual task
performed by experts with a deep knowledge of the system, over
the last few years developers and practitioners have proposed
decomposition criteria, methodologies, and tools to simplify the
process. This section presents these proposals and compares
them with Cromlech.

As mentioned in Section I, our work extends Pangaea [20]
and shifts the focus from data entities to operations to better
capture organizational concerns both in its modeling framework
and in the MILP problem formulation. Our evaluation shows the
benefits of the new approach, providing decompositions that are
easier to understand by practitioners and more efficient from an
operational point of view.

ServiceCutter [21] is probably the work that most closely
resembles our proposal. Like Cromlech, ServiceCutter relies on
a model of the software system that considers data elements and
operations, together with a wide range of relations between them.
Although many of these criteria are optional, ServiceCutter
still requires more input from users compared to Cromlech.
Decomposition choices are based on clustering algorithms, and
developers can select various algorithms. We used ServiceCutter
as a reference for our evaluation in eval: our results indicate that
Cromlech generates decompositions that are less expensive in
terms of operations cost and more insightful for developers.

Levcovitz et al. [16] propose a technique to identify mi-
croservices starting from a monolithic enterprise system. They
describe the system in terms of three types of entities: (i) fa-
cades (entry points of the system), (ii) business functions, (iii)
database tables. They define a rigorous six-steps process to de-
fine microservices, which considers the dependencies between
the entities above, as well as their relations to business areas and
processes. As Cromlech, the approach dictates a structured and
precise decomposition methodology, but it is manual and does
not consider operational concerns, which are key to create an
efficient decomposition.

Laigner et al. [15] extended the above methodology in two
main ways: (i) they take in input a repository of functions and
output concrete code for microservices in the form of relational
actors; (ii) they automate allocation of functions to services,
using a MILP approach. With respect to Cromlech, the proposed
methodology is limited to three-tiered REST-based architectures
and retains a long preparatory manual procedure to define the
dependencies among entities.

Chen et al. [29] propose a semi-automatic, dataflow-driven
approach: developers need to manually construct a simplified

480 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2024

dataflow diagram for business logic functionalities and apply
some preparatory steps to make the diagram amenable to au-
tomatic decomposition. later, an automated algorithm identi-
fies microservices candidates from the diagram. The approach
outputs very fine-grained microservices, and further manual
intervention may be necessary to combine some of them into
larger units.

Two approaches use static and dynamic analysis to infer a
model of the software system. Mazlami et al. [17] rely on static
analysis of a software repository, which considers not only the
structure of the code, but also how the different developers con-
tributed to the project. This enables inferring coupling relations
between components that are both technical and managerial.
Taibi and Sista [13] introduce a data-driven approach based on
process mining. The decomposition starts from log files col-
lected from a monolith at runtime and infers functionalities and
data entities from frequent execution paths. It outputs a visual
representation of the main building blocks of the system together
with some candidate proposals for decomposition, which still
require manual validation. We plan to explore static and dynamic
analysis as future work, to (partially) infer the system model and
further simplify its definition.

The technique by Baresi et al. [18] automatically infers a
monolith decomposition starting from an OpenAPI specifica-
tion. It matches terms in the specification against a reference
vocabulary to determine their semantic similarity. In this way,
it identifies and groups together operations that share the same
reference concepts, with the goal of maximizing cohesion. We
see this technique as orthogonal to Cromlech: semantic simi-
larity could help to infer coupling between system components,
which is an input parameter for Cromlech.

The work presented by Ntentos et al. [30] assumes an existing
decomposition that is iteratively improved using three differ-
ent metrics: i) persistent data storage of services, that is how
coupled are microservices in terms of data entities, ii) service
interconnections, which measures the effect of intermediary
components and protocols that allow inter-service communica-
tions, and iii) dependencies through shared services, that is the
direct or transitive dependencies among microservices. Their
approach measures these metrics at every code base update
(e.g., at each commit onto Continuous Integration pipeline) and
automatically detects violations from set thresholds. When a
violation occurs, the approach automatically computes a set of
architectural modifications based on the aforementioned three
metrics that are proposed to the software architect. This work
is also complementary with Cromlech and can be use to refine
an initial decomposition generated with our approach. However,
compared to Cromlech, it does not consider organization con-
cerns and the cost and benefits of data replication.

Sellami et al. [31] present MSExtractor, an approach to de-
compose monoliths written in an object-oriented (OO) program-
ming language in microservices. The application is conceived
as a set of classes that are automatically classified as either
inner, if they are only used as internal components, or inter-
faces, if they expose public endpoints to the users. Through
this classification and a semantic analysis of the code, they
formulate an optimization problem that aims to i) maximize

the cohesion within each microservice, and minimize the cou-
pling among different microservices. To find a close to optimal
solution, they employ a search-based algorithm, namely IBEA
(Indicator-Based Evolutionary Algorithm). Compared to this
work, Cromlech can be used with any existing monolith and
not only OO ones. Moreover, MSExtractor does not explicitly
consider communication and replication costs.

The approach presented by Selmadji et al. [14] automatically
analyzes the source code of a monolith and, along with optional
expert recommendations, it generates a decomposition into mi-
croservices. They use a heuristic and a clustering technique
that consider both organizational and data-related aspects of
the monolith with the aim of maximizing the quality of each
generated microservice. Compared to Cromlech, they do not
consider operational costs and neither they allow data entities
to be replicated in different microservices. Moreover, their tech-
nique relies on a static analysis that assumes an application to
be written in object-oriented style, while Cromlech supports any
kind of application.

VI. CONCLUSION

Devising a suitable decomposition of an application into
microservices is key to exploit the potentials of microservices
architectures. Unfortunately, decomposition is a complex task
that encompasses both technical and managerial concerns, and
it is hard for developers to weight the benefits and shortcomings
of a given decomposition choice.

This paper introduced Cromlech, a semi-automated tool that
helps developers decomposing an application into microser-
vices. Cromlech builds on a simple but informative model of
the application and formulates an optimization problem that
balances organization, communication, and data management
requirements. It outputs a graphical representation of the pro-
posed decomposition together with detailed data on the costs it
incurs.

Our evaluation on a real-world application shows the validity
of Cromlech, which offers useful insights to developers. We plan
to further develop the research along several directions: (i) refine
the modeling approach to enable a more fine-grained modeling
when suitable; (ii) integrate static analysis and monitoring tools
to automatically generate the system model; (iii) evaluate al-
ternative solving strategies (for instance, heuristics) to improve
performance and scalability of the tool to more complex models;
(iv) extend the visualization tool, offering editing capabilities
for interactive adjustments of the solution; (v) investigate the
use of Cromlech as a decision-support tool for the evolution and
refactoring of an existing microservice-based software system.

REFERENCES

[1] N. Dragoni et al., Microservices: Yesterday, Today, and Tomorrow. Berlin,
Germany: Springer, 2017, pp. 195–216.

[2] S. Newman, Monolith to Microservices. Sebastopol, CA, USA: O’Reilly
Media, Inc., 2020.

[3] J. Thönes, “Microservices,” IEEE Softw., vol. 32, no. 1, pp. 116–116,
Jan./Feb. 2015.

[4] J. Lewis and M. Fowler, “Microservices, a definition of this new architec-
tural term,” 2016. [Online]. Available: https://martinfowler.com/articles/
microservices.html

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

QUATTROCCHI et al.: CROMLECH: SEMI-AUTOMATED MONOLITH DECOMPOSITION INTO MICROSERVICES 481

[5] O. Zimmermann, “Microservices tenets,” Comput. Sci.- Res. Develop.,
vol. 32, no. 3, pp. 301–310, 2017.

[6] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, and T. Lynn,
“Microservices migration patterns,” Software: Pract. Experience, vol. 48,
no. 11, pp. 2019–2042, 2018.

[7] S. Newman, Monolith to Microservices: Evolutionary Patterns to Trans-
form Your Monolith. Sebastopol, CA, USA: O’Reilly Media, 2019.

[8] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, “Microservices
migration in industry: Intentions, strategies, and challenges,” in Proc. IEEE
Int. Conf. Softw. Maintenance Evol., 2019, pp. 481–490.

[9] A. Singleton, “The economics of microservices,” IEEE Cloud Comput.,
vol. 3, no. 5, pp. 16–20, Sep./Oct. 2016.

[10] P. Di Francesco, P. Lago, and I. Malavolta, “Architecting with microser-
vices: A systematic mapping study,” J. Syst. Softw., vol. 150, pp. 77–97,
2019.

[11] M.-D. Cojocaru, A. Uta, and A.-M. Oprescu, “Attributes assessing the
quality of microservices automatically decomposed from monolithic ap-
plications,” in Proc. 18th Int. Symp. Parallel Distrib. Comput., 2019,
pp. 84–93.

[12] R. Laigner, Y. Zhou, M. A. V. Salles, Y. Liu, and M. Kalinowski, “Data
management in microservices: State of the practice, challenges, and re-
search directions,” in Proc. VLDB Endow., vol. 14, no. 13, pp. 3348–3361,
2021.

[13] D. Taibi and K. Systä, “From monolithic systems to microservices: A
decomposition framework based on process mining,” in Proc. Int. Conf.
Cloud Comput. Serv. Sci., 2019, pp. 153–164.

[14] A. Selmadji, A.-D. Seriai, H. L. Bouziane, R. Oumarou Mahamane, P.
Zaragoza, and C. Dony, “From monolithic architecture style to microser-
vice one based on a semi-automatic approach,” in Proc. IEEE Int. Conf.
Softw. Archit., 2020, pp. 157–168.

[15] R. Laigner, S. Lifschitz, M. Kalinowski, M. Poggi, and M. A. V. Salles,
“Towards a technique for extracting relational actors from monolithic
applications,” in Simpósio Brasileiro de Banco de Dados, San Antonio,
TX, USA: SBC, 2019, pp. 133–144.

[16] R. Laigner, S. Lifschitz, M. Kalinowski, M. Poggi, and M. A. V. Salles,
“Towards a technique for extracting relational actors from monolithic
applications,” Anais do XXXIV Simpósio Brasileiro de Banco de Dados,
SBC, pp. 133–144, 2019.

[17] G. Mazlami, J. Cito, and P. Leitner, “Extraction of microservices from
monolithic software architectures,” in Proc. Int. Conf. Web Serv., 2017,
pp. 524–531.

[18] L. Baresi, M. Garriga, and A. D. Renzis, “Microservices identification
through interface analysis,” in Proc. Eur. Conf. Service-Oriented Cloud
Comput., 2017, pp. 19–33.

[19] A. K. Kalia, J. Xiao, R. Krishna, S. Sinha, M. Vukovic, and D. Banerjee,
Mono2Micro: A Practical and Effective Tool for Decomposing Monolithic
Java Applications to Microservices, New York, NY, USA: ACM, 2021,
pp. 1214–1224.

[20] S. Staffa, G. Quattrocchi, A. Margara, and G. Cugola, “Pangaea: Semi-
automated monolith decomposition into microservices,” in Proc. Int. Conf.
Service-Oriented Comput., Cham, Switzerland: Springer, 2021, pp. 830–
838.

[21] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service cutter:
A systematic approach to service decomposition,” in Proc. Eur. Conf.
Service-Oriented Cloud Comput., 2016, pp. 185–200.

[22] A. Bellemare, Building Event-Driven Microservices. Sebastopol, CA,
USA: O’Reilly Media, Inc., 2020.

[23] F. Glover and E. Woolsey, “Converting the 0-1 polynomial program-
ming problem to a 0-1 linear program,” Operations Res., vol. 22, no. 1,
pp. 180–182, 1974.

[24] X. Zhou et al., “Fault analysis and debugging of microservice systems:
Industrial survey, benchmark system, and empirical study,” IEEE Trans.
Softw. Eng., vol. 47, no. 2, pp. 243–260, Feb. 2021.

[25] M. E. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev. E, vol. 69, no. 2, 2004, Art. no. 026113.

[26] I. X. Leung, P. Hui, P. Lio, and J. Crowcroft, “Towards real-time com-
munity detection in large networks,” Phys. Rev. E, vol. 79, no. 6, 2009,
Art. no. 066107.

[27] C. Biemann, “Chinese whispers: An efficient graph clustering algorithm
and its application to natural language processing problems,” in Proc.
Workshop Graph Based Methods Natural Lang. Process., 2006, pp. 73–80.

[28] C. Wohlin, M. Hóst, and K. Henningsson, “Empirical research methods in
web and software engineering,” Web Eng., Springer, pp. 409–430, 2006.

[29] R. Chen, S. Li, and Z. Li, “From monolith to microservices: A dataflow-
driven approach,” in Proc. Asia-Pacific Softw. Eng. Conf., IEEE, 2017,
pp. 466–475.

[30] E. Ntentos, U. Zdun, K. Plakidas, and S. Geiger, “Semi-automatic feedback
for improving architecture conformance to microservice patterns and
practices,” in Proc. IEEE 18th Int. Conf. Softw. Archit., 2021, pp. 36–46.

[31] K. Sellami, A. Ouni, M. A. Saied, S. Bouktif, and M. W. Mkaouer, “Im-
proving microservices extraction using evolutionary search,” Inf. Softw.
Technol., vol. 151, 2022, Art. no. 106996.

Giovanni Quattrocchi received the PhD degree in
computer engineering from Politecnico di Milano,
in 2018, where he is currently a assistant profes-
sor. He was a visiting researcher with the Univer-
sity of California San Diego and Imperial College
London. His research interests include self-adaptive
systems, software architectures, edge computing, and
blockchain-based systems.

Davide Cocco received the master’s degree in com-
puter engineering from Politecnico di Milano, in
2022. He is currently a software engineer with Or-
acle Labs, Zurich. His research interests include soft-
ware architectures, automated Machine Learning, and
highly distributed computations.

Simone Staffa received the master’s degree in com-
puter engineering from Politecnico di Milano. He
is currently a backend engineer with BackdropLabs,
a Web3 startup focused on Blockchain-based sys-
tems. His research interests include distributed sys-
tems, software architectures, and decentralized ap-
plications.

Alessandro Margara received the PhD degree in
information technology from Politecnico di Milano.
He is an Associate Professor with Politecnico di Mi-
lano. He was a postdoctoral researcher with the Vrije
Universiteit (VU) Amsterdam and with the Università
della Svizzera italiana (USI). His research interests
include event stream processing and software engi-
neering for distributed and data-intensive systems.

Gianpaolo Cugola received the DrEng degree in
electronic engineering from Politecnico di Milano,
in 1994, and the PhD degree in computer science
in 1998. He is a full professor with Politecnico di
Milano. His research interests include the area of
software engineering and distributed systems. In par-
ticular, his current research focuses on middleware
technology for largely distributed and highly recon-
figurable distributed applications.

Open Access funding provided by ‘Politecnico di Milano’ within the CRUI CARE Agreement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

