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Abstract—Spatial crowdsourcing is an increasingly popular cat-
egory in the era of mobile Internet and sharing economy, where
tasks have spatio-temporal constraints and must be completed at
specific locations. In this article, we focus on the Multi-Objective
Spatio-Temporal task assignment (MOST) problem considering the
worker heterogeneity in spatial crowdsourcing and model it as a
combinatorial multi-objective optimization (MOO) problem with
the goals of maximizing the overall task completion rate and
minimizing the average task time cost. Finding the optimal global
assignment turns out to be intractable since it does not simply imply
optimality for an individual worker, as a typical nearest-neighbor
heuristic generally does not render a satisfactory result. We prove
that the problem is NP-hard. Subsequently, we formulate an effi-
cient algorithm for the MOST problem — Task Clustering based
Mixed Priority Queue Scheduling (TAMP). First, we improve the
spectral clustering algorithm to evenly divide the task network into
different subdomains according to tasks’ geographical locations,
considering the task clustering phenomena in real scenarios. We
then design a mixed priority queue strategy considering the geo-
graphical influence and temporal urgency, to schedule workers fin-
ishing tasks in sequence. Experiments on synthetic and real datasets
demonstrate the efficiency of our solution over other methods.

Index Terms—Spatial crowdsourcing, task assignment, worker
heterogeneity, spectral clustering, queue scheduling.

I. INTRODUCTION

CROWDSOURCING is simply the outsourcing of different
tasks or work to a diverse group of individuals in an

open call for the purpose of utilizing human intelligence [1]. A
well-designed crowdsourcing system leverages the collective in-
telligence of the massive crowd workers to provide services and
accomplish tasks cost-effectively, and thereby it has attracted
extensive attention from both academia and industry [2] in recent
years.

With the increasing pervasiveness of GPS-equipped smart
mobile devices and decreased cost of wireless mobile network
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Fig. 1. General framework of a spatial crowdsourcing model.

(e.g., 5G network), a new class of crowdsourcing has emerged,
called spatial crowdsourcing (SC) [3]. Spatial crowdsourcing
advances the potential of a crowd to perform tasks related to
real-world scenarios involving physical locations, which were
not feasible with conventional crowdsourcing methods. The
main feature of spatial crowdsourcing is the presence of spatial
tasks that require workers (with smartphones) to be physically
present at a particular location for task fulfillment. Its natural
connection with the physical world makes spatial crowdsourcing
a computing paradigm for a broad spectrum of daily applica-
tions, such as real-time ride-hailing services (e.g., Uber) [4],
product placement checking supermarkets [5], road condition
monitoring [6], crowdsourcing-aided positioning [7], etc.

A representative spatial crowdsourcing model consists of
three types of participants: requesters (clients), workers (the
crowd), and crowdsourcing platform (server). The general
framework of spatial crowdsourcing model for task assignment
is shown in Fig. 1. The task publishers release tasks also known
as human intelligence tasks (HITs), and then the worker requests
these tasks. The crowdsourcing platform acts as a broker be-
tween the task publishers and the workers. The crowdsourcing
platform aggregates the information of publishers and workers,
then assigns tasks to suitable workers by the algorithm. In
practice, a spatial crowdsourcing platform is the core of the
system and often needs to manage massive tasks and workers
every day.

Thus, the major challenge of the spatial crowdsourcing plat-
forms is how to assign the large-scale tasks to their workers, i.e.,
task assignment. In addition, most of the existing studies focus
on task assignment based on the whole study area [8], [9], [10],
[11], [12], [13].

The platforms usually aim to arrange the tasks to suitable
workers with different optimization objectives, such as maxi-
mizing the total number of assigned tasks or the full payoff of
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the tasks to their assigned workers, minimizing the total trav-
eling costs of the allocated workers. The objective is generally
determined based on real needs and constraints. For example,
one common challenge in spatial crowdsourcing is that the tasks
reachable by each worker highly depend on the distance between
origin and destination as well as the tightness of deadline, which
have to be treated carefully in constructing the task assignment
algorithm.

Therefore, designing an efficient assignment mechanism is of
paramount importance for the SC platform, which could improve
the system efficiency by increasing the income of workers and
saving the cost of the platform. Based on the basic problem
characteristics, task assignment in SC can be classified into two
different categories: task matching and task scheduling. Task
matching provides guidance on which tasks to perform: the as-
signment mechanism tries to match a set of tasks to workers. Task
scheduling provides a plan (or order) to perform tasks located
at different places: the assignment mechanism schedules the
order of tasks for the workers. The problem of task scheduling
is unique to spatial crowdsourcing.

Geographic information is of vital importance in the field of
SC and is a necessary condition to allocate tasks in the spatial
dimension. As the task allocation problem is NP-hard in its
general form [14], it is easier to obtain an accurate solution by
dividing a complex spatial problem into multiple sub-problems
based on geographical information. However, most of these
studies ignored the temporal information of workers and tasks,
and thus do not apply readily to an SC application. Niu et al. [15]
propose a pricing model based on the distance information and
the number of workers, but the expiration time of tasks is not
considered.

In addition, in real crowdsourcing situations, it is often
observed the phenomena of task clustering, i.e., most of the
tasks are concentrated in a few regions in the space in-
stead of being distributed uniformly. The reason for this phe-
nomenon is that community structures are quite common in
real networks [16]. For example, in the take-out scene, the
locations of tasks are often concentrated in densely popu-
lated areas, such as schools or office spaces. However, in
sparsely populated places or suburbs, the distribution of tasks
is relatively sparse. If let workers select tasks by their pref-
erences, workers will only choose to complete tasks that
are closer, resulting in remote tasks that have not been re-
sponded to forever, thereby affecting the overall task completion
rate.

Based on the observation, we introduce spectral cluster-
ing [17], a graph clustering algorithm in our integrated algorithm
to partition the task network. Besides, we improve the spectral
clustering algorithm by applying θ-sparseness to reconstruct the
affinity matrix for the reasonable time complexity and enhancing
the fairness of subdomain division. In view of the divide-and-
conquer idea, we first divide the task network into different sub-
domains based on their locations in space and allocate workers
to the corresponding subdomains to finish tasks.

Compared to the previous work, the hardness of our problem
lies in that, once the traveling cost associated with moving to

tasks’ locations, the expiration time of tasks, and the hetero-
geneity of workers are taken into account, the locally optimal
assignment does not guarantee global optimality. In other words,
assigning the most jobs to each worker does not necessarily im-
ply the maximum number of accomplished tasks by all workers.

To the best of our knowledge, a unified assignment mecha-
nism considering spatio-temporal constraints of tasks, worker
heterogeneity, and task clustering, with multiple objectives in
the multi-user dynamic environment in SC systems has not been
all probed together, so far. In summary, we make the following
contributions:
� To promote the overall performance of task assignment,

the task queue scheduling problem is modeled as a multi-
objective joint optimization problem, the Multi-Objective
Spatio-Temporal task assignment (MOST) problem, which
focuses on maximizing the overall task completion rate and
minimizing the average task time cost, and considers the
worker heterogeneity simultaneously. Besides, we prove
the problem is NP-hard.

� Considering clustering phenomena of spatial crowdsourc-
ing tasks, spectral clustering is introduced to divide tasks
into subdomains. At the same time, in order to better
learn the spatial relationships between tasks and reduce the
complexity of the algorithm, we creatively reconstruct the
affinity matrix by θ-sparseness method to improve spectral
clustering.

� The proposed algorithm, Task Clustering based Mixed
Priority Queue Scheduling (TAMP) algorithm, integrates
two critical objectives, the temporal constraints and the
spatial information of spatial tasks, into one joint metric
and uses it to make decisions on sequences of task exe-
cution. The choice of the combined weight of these two
metrics is dynamic and investigated in the design.

� Extensive experiments on both synthetic and real data are
performed to compare the proposed scheme with different
comparative techniques, and the results show that the new
scheme outperforms others.

This paper extends the initial study [18], via (i) surveying
up to date literature and summarizing the comparison of task
assignment models in Section II; (ii) reformulating the combi-
natorial multi-objective optimization problem and proving it as
a NP-hard problem in Section III; (iii) designing a sparseness
method to improve the spectral clustering efficiency; (iv) adding
more explanations for model framework and the time complexity
analysis for algorithm in Section III-B3; (v) updating existing
figures and add more diagrams; (vi) improving the organization
and presentation of the paper by a major revision and careful
proofreading.

II. RELATED WORK

Spatial Crowdsourcing (SC) can be deemed as one of the main
enablers to employ smart device carriers as workers to move
to some specified locations and perform location-based tasks
physically [38]. A recent survey on spatial crowdsourcing is [39],
which reviews the existing research on major algorithmic issues
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TABLE I
TAXONOMY AND ANALYSIS OF RESEARCH CONCERNING TASK ASSIGNMENT IN SPATIAL CROWDSOURCING

such as task assignment, quality control, incentive mechanism
design, and privacy protection. Moreover, the first challenge of
the spatial crowdsourcing platforms is task assignment, which
is the basis for other research studies.

In view of the task publishing mode, SC can be classified
into two categories, namely Worker Selected Tasks (WST) mode
and Server Assigned Tasks (SAT) mode [3]. WST mode gives
workers the right to directly select the tasks based on their own
preference without coordination with the server [19], [20], while
SAT mode requires the server to assign tasks to the interested
workers based on the system optimization goals [21], [22], [23].
In WST mode, no specific task allocation algorithm is required,
and it suffices for the platform to receive and process the orders
of the workers. The users explore the optimal task assignment
to befit their own instead of the platform. One drawback of this
mode is that the SC server has no control over task allocation.
This may result in some spatial tasks never being assigned, while
others may be assigned redundantly. (The comparison of the
existing works is shown in Table I.)

Another drawback of WST is that workers choose tasks based
on their own objectives (e.g., choosing the closest spatial tasks to
minimize their travel cost), which is not necessarily the ultimate
objective of the SC-server (i.e., maximizing the overall task
assignment). Besides, incentive mechanisms have been widely
used in WST mode. Wang et al. [24] study a worker incentive
model combined with both a genetic algorithm and an ant
colony optimization algorithm to maximize the task completion
quality while minimizing the incentive budget in the whole area.
Zhu et al. [40] propose Incentive-aware Task Location (ITL)
for a location-unspecific task with a fixed budget, the aim of
which is to maximize the number of workers who are willing
to participate in the task. And the work proposes three heuristic
methods to solve it, including even clustering, uneven clustering,
and greedy location methods.

In SAT mode, the server of the crowdsourcing platform
assigns tasks to nearby workers usually based on the system
optimization goals such as maximizing the number of assigned

tasks after collecting all the locations of workers [25], maximiz-
ing the total payoff from assigned tasks [26], maximizing the
expected total utility achieved by all workers [27], maximizing
task reliability for dynamic task assignment [28], maximizing
platform profit considering worker utilities simultaneously [29],
maximizing the expected quality of results from workers by a
real-time budget-aware task package allocation [30], or maxi-
mizing the spatial/temporal coverage where/when workers per-
form tasks [31].

Most existing studies adopt the SAT mode, where an SC server
takes charge of the task assignment process. For example, Cheng
et al. [32] propose a reliable diversity-based spatial crowdsourc-
ing (RDB-SC) problem in SC, where an SC server assigns tasks
to suitable workers in order to maximize the diversity score of
assignments. Zhao et al. [33] propose a preference-based task
assignment problem and design a tensor-decomposition-based
algorithm to learn worker preferences, after which the assign-
ment problem is transformed into a Minimum Cost Maximum
Flow (MCMF) problem. However, they all assume that each
worker can only perform tasks in a specific spatial region, while
we do not exert in our model a hard constraint on the working
area. Therefore, these works have a much smaller search space
in their problem settings compared to ours.

Moreover, within the SAT publishing mode, tasks assign-
ment can be further classified into two different modes: Single
Task Assignment (STA) mode and Redundant Task Assignment
(RTA) mode [3]. STA mode assumes that all the workers are
trusted and can perform the tasks correctly without any malicious
intentions so that each task is only assigned to one worker in STA
mode. However, there inevitably exist some malicious workers
that might intentionally complete tasks incorrectly. Therefore,
RTA mode is proposed to improve the validity of task completion
by assigning each task to several nearby workers. In RTA mode,
the task completion result with the majority vote is regarded as
correct [34], [35].

Among the above studies in SC, traveling cost is critical, due to
the fact that SC workers have to physically move to the locations
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of spatial tasks in order to perform them [36], [37]. For instance,
considering task localness, which refers to workers’ preferences
based on their traveling cost (i.e., workers are more likely to
accept nearby tasks), [36] proposes an effective task assignment
framework by modeling task acceptance rate as a decreasing
function of travel distance. Cheung et al. [37] formulate the
interactions among users as a non-cooperative Task Selection
Game (TSG), and propose an Asynchronous and Distributed
Task Selection (ADTS) algorithm that balances the rewards and
traveling costs of the workers for completing tasks.

In task assignment, modeling the assignment score as the
shortest path in visiting the locations of multiple tasks becomes
similar to the traveling salesman problem (TSP) and vehicle
routing problem (VRP) [41]. Since there is only one worker in
TSP, here we discuss VRP. Different variants of VRP have been
studied [42], [43], still, there are differences between our task
assignment problem and these variants. Compared with VRP,
our goal is to maximize the overall task completion rate and
minimize the average task time cost simultaneously, whereas
VRP aims to minimize the total traveling time of all workers.
Besides, in VRP, all workers start from the same location,
whereas, in our setting, workers have different initial locations.

The latest model is extended to multiple workers in [10],
which is the closest related work to our study. In that paper,
the authors propose a Task Allocation with Geographic Partition
(TAGP) framework for the Multi-Center-based Task Allocation
problem (MCTA), which aims to maximize the allocated task
number and achieve the allocation fairness among workers.
More specifically, the work first utilizes a Voronoi diagram
mechanism to decompose a complex multi-center graph into
multiple smaller single-center-based graphs and then adopts
a Reinforcement Learning method to allocate tasks by trans-
forming the task allocation problem into a multiple traveling
salesman problem (MTSP). The idea is similar to our work,
which is to divide the whole area first and then assign tasks
for different subdomains. However, this work still transforms
the task assignment problem into a MTSP inconsistent with
facts in spatial crowdsourcing, because the center of a graph
assumed by the work does not exist in practice. Besides, worker
heterogeneity is not taken into account.

Our problem, which is discussed in this paper, is a version of
the task assignment problem considering traveling time cost and
worker heterogeneity in STA mode.

III. THE PROPOSED SCHEME

In this section, we first present our model architecture and give
a formal statement of the Multi-Objective Spatio-Temporal task
assignment (MOST) problem. Then, we explain each part of the
proposed scheme in detail.

A. Model Architecture and Problem Statement

Here we investigate a kind of task assignment mechanism
under the above spatial crowdsourcing model with Single Task
Assignment (STA) mode, referred to as single spatio-temporal
task assignment. Specifically, given a user’s current location, the
platform aims to find an optimal assignment between tasks and

TABLE II
SUMMARY OF SYMBOLS AND NOTATIONS

workers such that the overall task completion rate is maximized
and the average task time cost rate is minimized. In particular,
we note that the task assignment is actually made up of two
sub-problems: 1) for each task, we need to assign it to a suitable
worker; and 2) for each worker, we need to schedule a sequence
that each worker follows to perform the assigned tasks. (The list
of involved notations is given in Table II.)

Before presenting our problem, we first formally define the
spatial tasks and the workers in spatial crowdsourcing.

Definition 1 (Spatial Task): A spatial task si is characterized
by a 2-tuple si = 〈lsi, ei〉, which implies that the task si is
located at lsi, and will expire at time ei. lsi is a position in
2D space expressed as its coordinate (xi, yi).

For simplicity and without loss of generality, most studies
assume that the processing time of each task is 0 and the workers’
speeds are the same, but we consider the worker heterogeneity
in our model.

Definition 2 (Worker): A worker wk, characterized by a 4-
tuple wk = 〈lwk, vk, pk, ewk

〉, is a carrier of a mobile device
who volunteers to perform spatial tasks. A worker can be in either
online or offline mode. A worker is offline when she is unable
to perform tasks and is online when she is ready to accept tasks.
An online worker is associated with her current location lwk =
(xk, yk), the traveling speed and processing speed of which are
vk and pk respectively. In addition, she has to return to her initial
departure location lw0

k before her deadline ewk
.

In spatial crowdsourcing, the query of a spatial task si can
be answered only if a worker wk is physically located at that
location lsi. Therefore, considering the expiration time of task si
and the worker’s deadline, it can be completed only if a worker
wk arrives at lsi finishing the task before its expiration time
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ei and returning back to her initial departure lw0
k before her

deadline ewk
, which implies the constraint

ak,i +
1

pk
≤ ei,

ak,0 = ak,i +
1

pk
+

d(lsi, lw
0
k)

vk
≤ ewk

, (1)

where ak,i is the arrival time of wk at the location lsi for task si,
ak,0 is the time wk back to departure lw0

k, 1
pk

is the time of wk

processing task si, and d(si, lw
0
k) is the distance between task

si and the initial location of wk.
Note that in the STA mode, the platform can assign every

spatial task to one worker only. Once worker wk is online, she
sends a task inquiry to the server, which includes her current
location lwk. The server will take all the available tasks and
workers at the particular time instance into account and return a
task sequence to wk.

Let t denote the current time. The distance dki (t) between
worker wk and task si at t is calculated as their euclidean
distance, i.e.,

dki (t) = ‖lsi − lwk‖2 =
√

(xi − xk)2 + (yi − yk)2, (2)

where lsi and lwk are respectively the location of task si and
worker wk at the moment t.

The maximum allowable remaining time for task si is deter-
mined based on the time left for the task before its expiration
time, given by

ti = ei − t. (3)

Due to the foregoing descriptions, we formally formulate the
problem statement as follows.

Problem Statement (MOST Problem): In a model of spatial
crowdsourcing containing a crowdsourcing platform, plenty of
task publishers, tasks, and workers, how does the crowdsourcing
platform with STA mode simultaneously consider the spatio-
temporal interactive information of tasks and the heterogeneity
of workers to assign tasks to suitable workers, so as to maximize
the number of accomplished tasks and reduce traveling cost of
workers?

Optimal Objective: To better analyze and solve the problem,
we formalize it as a multiple-objective joint optimization prob-
lem, MOST problem, which has two optimal goals: maximizing
the overall task completion rate δ and minimizing the average
task time cost τ simultaneously.

Because a task only can be assigned to a suitable worker, then
we assume xk,i = 1 if worker wk complete task si, otherwise
xk,i = 0. Let S = {s1, s2, . . . } be the set of all tasks, and SA

denote the set of tasks that are accomplished by the task assign-
ment strategy A. Obviously, SA ⊆ S. Thus, the maximization
of the overall task completion rate δ can be expressed as:

max δ =
|SA|
|S| =

∑
xk,i

|S| , (4)

subject to:

|W |∑
k=1

xk,i = 0, or 1, ∀ i = 1, 2, . . . , |S|,

xk,i · ak,i + 1

pk
≤ ei,

xk,i · ak,i + 1

pk
+

d(lsi, lw
0
k)

vk
≤ ewk

,

xk,i = 0, or 1. (5)

Similarly, the minimization of average task time cost τ for
accomplished tasks is expressed as:

min τ =

∑
k

dwk

vk
+
∑

k tpk∑
xk,i

=

∑
k

dwk

vk
+
∑

k

∑
i xk,i

pk∑
xk,i

, (6)

subject to:

|W |∑
k=1

xk,i = 0, or 1, ∀ i = 1, 2, . . . , |S|,

xk,i · ak,i + 1

pk
≤ ei,

xk,i · ak,i + 1

pk
+

d(lsi, lw
0
k)

vk
≤ ewk

,

dwk

vk
+ tpk

≤ ewk
,

xk,i = 0, or 1. (7)

Here, dwk
is the traveling distance of worker wk, and tpk

is the
time spent on processing tasks of worker wk.

The MOST problem can be proved to be NP-hard by reduction
from the Maximum Coverage (MC) problem. In the following,
we give the definition of the achievable task set for subsequent
proof and then prove the MOST problem as NP-hard.

Definition 3 (Achievable Task Set (ATS)): A task set Sk
A is

called an achievable task set (ATS) for a worker wk, if there
exists a task assignment strategy Ak, such that,
� all the tasks of Sk

A can be completed before their respective
expiration time, i.e., ak,i + 1

pk
≤ ei for each si ∈ Sk

A, and
� worker wk can return back to departure on time after

completing all tasks Sk
A, i.e., ak,0 ≤ ewk

for each si ∈ Sk
A.

Lemma 1: MOST problem is NP-hard.
Proof: We first introduce the Maximum Coverage (MC)

problem, which is proven to be NP-hard [44]. Given a collection
of sets R = {R1, R2, . . . , RK} over a set of objects Ω, where
Ri ⊆ Ω, and a positive integer l, the MC problem is to find a
subset R′ ⊆ R such that |R′| ≤ l and the number of covered
elements by R′ is maximized.

Getting the ATSs from a given task set S = {s1, s2, . . . }
for worker set W = {w1, w2, . . . , wK}, e.g., S =
{S1

A1
, S1

A2
, . . . , S2

A1
, S2

A2
, . . . , SK

A1
, SK

A2
, . . . }, our spatio-

temporal task assignment problem is actually to find the subset
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Fig. 2. Framework of TAMP algorithm with two parts: task network division and worker queue scheduling.

S′ ⊆ S such that |S′| ≤ K and the number of covered tasks by
S′ (e.g., |⋃Sk

Ai
∈S′ Sk

Ai
|) is maximized, where each subset in S′

belongs to one worker in W .
Consider a special case of MOST problem, where each worker

has only one ATS, e.g., S = {S1
A, S

2
A, . . . , S

K
A }. The goal of our

problem is to select at most n number of ATSs from S′, such
that the total number of tasks is maximum. That is, solving the
maximum coverage problem is equal to finding a subset of the
ATSs, S′ ⊆ S, where |S′|(≤ K) maximizes |⋃Sk

A∈S′ Sk
A|.

Again, Sk
A for each worker wk ∈ W corresponds to each set

Rk of the MC problem, where each task si ∈ S corresponds to
the object ωi ∈ Ω, and the number of workers (i.e., K) corre-
sponds to the positive integer l in the MC problem. Therefore,
finding a subset S′ form S (where |S′| ≤ K) with maximized
|⋃Sk

A∈S′ Sk
A| is equivalent to solving the maximum coverage

problem. Therefore, MOST problem with single ATS for each
worker (i.e., the above special case) is NP-hard and MOST
problem with multiple ATSs for each worker is also NP-hard.�

B. TAMP: Task Clustering Based Mixed Priority Queue
Scheduling

Since the MOST problem is NP-hard, a simple greedy al-
gorithm is to use the maximum achievable task set for each
worker as the assignment result. This can hardly be a satisfying
result since multiple workers may be assigned the same set of
tasks which may leave more tasks unassigned. In this paper, we
propose the spectral clustering based scheme, Task Clustering-
based Mixed Priority Queue Scheduling (TAMP), which works
in the above problem setting for task assignment.

The whole framework of TAMP algorithm is shown in Fig. 2,
with two parts: task network division and worker queue schedul-
ing. First, TAMP initializes the network, and reconstructs the
network by θ-sparseness. Then, enhanced spectral clustering

divides the task network into subdomains according to tasks’
geographical locations by Enhanced Spectral Clustering (ESC).
Next, tasks of each subdomain are allocated to corresponding
workers. Moreover, the task queue for a worker is rearranged by
a mixed metric incorporating geographical location information
as well as the task’s temporal emergency. Finally, return the
target task that the worker needs to accomplish in the next
moment by Mixed Priority Task (MPT), which calls two sub-
algorithms — Returnable Task (RT) and Not-Returnable Task
(NRT). Finally, schedule workers to accomplish those tasks by
the final task queue through Queue Scheduling (QS) algorithm.

1) Task Network Division: In order to group the network
of tasks into subdomains, the spectral clustering algorithm
is adopted to divide the network into subareas {Ωk}, k ∈
{1, . . . , |W |}. Every Ωk has a designated worker, who is mainly
responsible for all tasks located inside.

To apply spectral clustering, the key step is to learn the affinity
matrix to measure the similarity among data points. In the paper,
we apply θ-sparseness to sparse the distance matrix for recon-
structing the affinity matrix. Here we reconstruct the affinity
matrix by matrix sparsification for two main reasons: 1) the
spectral clustering algorithm needs to calculate the eigenvectors
and eigenvalues of the affinity matrix, and the sparse processing
could reduce the computational complexity in order to study
the spatial relationships between tasks within a reasonable time;
2) the sparse processing saves the task information in a much
closer neighborhood, and the subsequent subdomain division
can divide the subarea as fairly as possible.

We first calculate the geographical distance matrix G, where
Gi,j is the euclidean distance between each pair of tasks si and
sj in 2D space:

Gi,j = ‖lsi − lsj‖2 =
√

(xi − xj)2 + (yi − yj)2. (8)
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Algorithm 1: Enhanced Spectral Clustering (ESC).

Obviously, the distance matrix elements should be non-
negative. Simply introducing the matrix into the spectral clus-
tering algorithm does not impose any constraints on the graph
sparsity, which will lead to expensive computing costs and might
introduce noise (i.e., unimportant edges). Besides, it is not sparse
enough that the spectral clustering algorithm cannot focus on the
more proximity tasks.

Therefore, we extract the sparse non-negative adjacency ma-
trix M from G by considering only the node pair with a much
closer distance. To make the hyperparameter of the extraction
threshold insensitive and not destroy the graph’s sparsity distri-
bution, we adopt a relative ranking strategy for the entire graph.
Specifically, we mask off (i.e., set to zero) those elements that
are larger than a non-negative threshold, obtained by ranking the
metric value in G. The adjacency matrix can be reconstructed
by θ-sparseness

Mij =

{
1, Gij ≤ Rankθn(Gi∗),
0, otherwise,

(9)

where Rankθn(Gi∗) returns the θn-th smallest value in ith row
of distance matrix G, n is the number of nodes, and θ controls
the overall sparsity of the generated graph.

It should be noticed that A is not necessarily symmetric based
on the definition of the connectivity. In order to obtain a sym-
metric affinity matrix required in spectral clustering algorithm,
we define the affinity matrix B as below:

B =
1

2
(M +MT). (10)

Fig. 3. Queue scheduling process for a single worker wk .

It is different from the traditional sparse method that intro-
duces KNN algorithm to calculate the affinity matrix [45]. The
latter sets an absolute number threshold to select the neighbors
by distance matrix. In our method, the hyperparameter θ could
control the sparsity of the newly generated graph, and the number
of removed elements could vary with the size of the graph.

As the value of parameter θ largely influences the obtained
clusters, we need to carefully regulate the value of θ to make the
number of tasks in each cluster more even, which considers the
fairness for workers. The choice of θ will be discussed later in
Section IV.

According to the above process, we can rebuild a new affinity
matrix, and divide the task network into different subdomains
by spectral clustering algorithm as shown in Algorithm 1 —
Enhanced Spectral Clustering (ESC). Then we begin to consider
how to assign a suitable worker to the corresponding subdomain
and schedule the worker to accomplish assigned tasks.

2) Worker Queue Scheduling: At first, we note the center of
the subdomain Ωk as (xk, yk), which is simply given by

(xk, yk) =

(
1

|Ωk|
∑

si∈Ωk

xi,
1

|Ωk|
∑

si∈Ωk

yi

)
. (11)

Additionally, we set the number of clusters as |W | when
dividing the clusters. Thus, the tasks in every subdomain could
be assigned to a specific worker, because the number of subdo-
mains is equal to the number of workers, which is shown in the
following part.

Here, we need to sort the subdomains {Ωk} by their size |Ωk|,
and the subdomain containing more tasks needs to be prioritized
by the nearest worker for the reason that the more tasks in the
subdomain, the less traveling cost need to be paid in the domain
to ensure that more tasks are completed. Then the worker who
is nearest to the subdomain center is allocated the tasks in the
subdomain.

As shown in Fig. 3, the remaining assigned tasks for a single
worker wk could be formed into a task queue Ψk, which will
be rearranged by the mixed priority strategy considering both
her geographical distance to the task and the task’s temporal
emergency. This scheme will schedule the worker to accomplish
the corresponding target task with higher mixed priority.

In the current task queue for some worker wk, we denote the
geographical distance of the nearest task by dkmin and the furthest
task by dkmax. In order to make the distance comparable among
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Fig. 4. Example 1 for a worker under different priority strategies.

workers, we first normalize the distances from wk towards
different tasks by defining her spatial priority of each task si
as:

ξ
(d)
k (i) =

dki − dkmin

dkmax − dkmin + ε
, (12)

where ε is a very small number to prevent potential overflow due
to division by zero, which is set to 10−6 by default.

Similarly, we define the temporal emergency of the task si for
some worker wk as the maximum allowable remaining traveling
time ti. Let tmin denote the remaining time of the most urgent
task and tmax denote the least. The temporal priority of task si
can be calculated as:

ξ
(t)
k (i) =

ti − tmin

tmax − tmin + ε
. (13)

To incorporate both metrics to evaluate the importance of a
task si for wk, a joint mixed priority ξ

(m)
k (i) is obtained by

combining spatial and temporal priorities:

ξ
(m)
k (i) = αξ

(d)
k (i) + (1− α)ξ

(t)
k (i), (14)

where parameter α balances weights of spatial and temporal
priorities, which is between 0 and 1. The influence of α will be
discussed and studied in Section IV through experiments.

Generally, tasks with smaller values of mixed priorities,
ξ
(m)
k (i), are given higher priorities to be served first. The results

of the algorithm proposed in this paper are quite different from
those based solely on time constraints or spatial information.
Here we give an example to explain the utility of the mixed
priority strategy.

Example 1 (Utility of the Mixed Priority Strategy). Fig. 4
shows the spatial and temporal information of worker w1 and
tasks s1 ∼ s4. Besides, let w1 could finish processing 4 tasks at
one time unit, and the traveling speed is 2.

The lines with arrowheads show the routes for w1 under
different priority strategies. w1 will first go to process s2, then
s3, s4, and back to initial location considering temporal priority
only (see the yellow route shown in Fig. 4), in whichw1 could not
finish task s1 before its expiration time (w1 accomplish s2, s3 at

Algorithm 2: Queue Scheduling (QS).

time t =
√
17+

√
26

2 + 1
4 × 2 = 4.61 + 0.5 = 5.11, and she fin-

ishes processing s1 at least at time t = 5.11 +
√
17
2 + 1

4 = 7.42,
which is exceeding s1’ expiration time e1 = 7). Whereas if only
the geographical location information is considered, w1 will
first go to process s1, then s4, s3, and back to initial location
(see the green route shown in Fig. 4), in which w1 could not
finish task s2 before its expiration time (w1 accomplish s1 at
time t = 2

√
2

2 + 1
4 = 1.66, and she finishes processing s2 at

least at time t = 1.66 +
√
5
2 + 1

4 = 3.03, which is exceeding s2’
expiration time e2 = 3).

However, for the mixed priority metric (set α = 0.5) con-
sidering both temporal constraints and spatial information, the
worker w1 will finish the task s2 first (the mixed priority of s2 is
minimum, which is 0.5×

√
17−2

√
2

3
√
5−2

√
2+ε

+ 0.5× 3−3
9−3+ε = 0.167),

then s1 and s3, and then s4 (see the red route shown in Fig. 4).
Obviously, the number of accomplished tasks is most by mixed
priority strategy, and the route of the mixed priority strategy is
quite different from the other two priority strategies with pure
temporal or spatial.

Although we could schedule the worker to process the as-
signed tasks in a subdomain by the mixed priority strategy, in
some extreme cases, when a worker is unable to tackle currently
assigned tasks, those tasks will be forwarded to a nearest worker
for help following the specific forwarding rules.

In order to ensure the shortest collaboration paths and reduce
the traveling time, we construct the shortest Hamilton path. We
use Hi to represent the length of Hamiltonian path from worker
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Algorithm 3: Mixed Priority Task (MPT).

Algorithm 4: Returnable Task (RT).

wk to the ith task created based on nodes in Ψk including the
location of wk. We denote the distance between sm and sn as
dm,n, and Hi can be calculated as:

Hi =

{
dki , i = 1,
Hi−1 + dui,ei , 1 < i ≤ |Ψk|, (15)

where ui is the first node of ith path and ei is the last node.
The worker queue scheduling scheme is mainly shown in

QS algorithm, the part of which is split into MPT, RT and
NRT algorithm. First, task subdomains are allocated to their

Algorithm 5: Not-Returnable Task (NRT).

designated workers (line 5–10). Moreover, the task queue for a
worker is rearranged by a mixed metric incorporating geographi-
cal location information as well as the task’s temporal emergency
(line 11–16). Finally, return the target task that the worker needs
to accomplish in the next moment by MPT algorithm. If current
task could be Returnable, the scheme select next task for the
worker by RT algorithm. Otherwise, the scheme will re-select a
new task for the worker by NRT algorithm. Besides, in case a
task cannot be served by its initial designated worker, this work
will send it to the nearest worker for help.

3) Scheme Analysis: In the task assignment architecture,
when the crowdsourcing platform schedules workers to accom-
plish corresponding tasks, there are still remaining two important
problems: whether the working time of the worker is exceeded
and whether the allowable arriving time of the task is exceeded.

Returnable-In-Time Test: The worker wk need to finish the
assigned tasks and return back to initial departure location before
her deadline ewk

. After selecting a target task si, a worker will
pre-calculate whether she could finish the task and return back to
her departure location before her deadline. If so, she will move
forward to the next task si; otherwise, she will re-select a new
task in the mixed priority queue and forward current task si to
a nearest worker:

Returnable Test=

{
si, ewk

≥ t+
dk
i (t)+d(si,lw

0
k)

vk
+ 1

pk
,

re-select, otherwise.
(16)

Worker-Still-Online Test: When a worker is assigned a new
task by a crowdsourcing platform, the worker should be tested
whether she’s still online.

When worker wk is assigned a new task si, wk couldn’t finish
and return back to the initial departure before her deadline. Then
if the task is the last one in the current task queue of worker
wk, the worker would enter into the offline state; otherwise, the
worker stays online and needs to re-select a new task in the
remaining mixed priority queue.

Offline Test =

{
offline, si is the last and not returnable,
online, otherwise.

(17)
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When the worker enters into the offline state, the crowdsourcing
platform does not consider assigning a new task to the worker
anymore.

When a new task is assigned to some worker, and the worker
could finish the task and return back to the initial departure
before her deadline, if the set of remaining tasks for the worker
is not empty after finishing the currently assigned task, then the
state of the worker is still online. Otherwise, the worker enters
into the online-idle state.

Idle Test =

{
online-idle, the remaining task set is empty,
online, otherwise.

(18)

If a worker is online-idle, the crowdsourcing platform will
not actively assign a new task to the worker, unless the worker’s
neighboring workers can’t complete the assigned tasks (i.e., the
task can’t be finished by her neighboring worker and its nearest
worker is her).

Reachable-in-Time Test: In the task assignment architecture,
a subtle issue is that, no matter how hard the worker works,
there might exist task requests that will never be served. Such
requests should be either removed from the queue or delivered
to a nearest region’s worker for help.

When a task si request is received, wk should compute the
earliest time to reach the location of the task and compare it
with the task’s maximum allowable traveling time. If a worker
cannot reach the task before the maximum remaining allowable
traveling time, the task request should be simply dismissed or
forwarded to the nearest subdomain for another online worker
for help. The worker’s finished time of the previous task si−1 is
ti−1 (i.e., ti−1 = Hi−1

vk
+
∑i−1

j=1
1
pk

).
This decision can be calculated by (19) as well:

Reachable Test =

{
serve, ei ≥ ti−1 +

dk
i (ti−1)
vk

+ 1
pk
,

remove, otherwise.

(19)

The platform first allocates the worker to the corresponding
subdomain and then assigns a new task to the worker who is the
first to complete a previous task and still online. (When two or
more workers finish a previous task at the same time, the platform
would choose the worker whose id is smaller.) The Queue
Scheduling (QS) algorithm is shown in Algorithm 2. Besides,
the target task is assigned to the worker with the highest mixed
priority by Algorithm 3 MPT algorithm. Moreover, If a worker
could finish the current task before her deadline, Algorithm 4
RT algorithm will return the reachable task; If a worker could
not finish the current task before her deadline, Algorithm 5 NRT
algorithm will re-select a new task for the worker.

Conventional spectral clustering typically consists of two
time-consuming phases, namely, affinity matrix construction
and eigen-decomposition. It generally takes O(N2 d) time to
construct the affinity matrix, and takes O(N3) time to solve
the eigen-decomposition problem [46], where N is the data
size and d is the dimension. Thus, the time complexity of
Enhanced Spectral Clustering in Algorithm 1 isO(|S|2 + |S|3).

Fig. 5. Sample of synthetic data.

The time complexity of Queue Scheduling in Algorithm 2 is
O(|W |2 + |W |(|S|+ |S|log|S|)).

IV. EXPERIMENTS AND EVALUATION

A. General Setup

We report the results for two sets of experiments over the
proposed scheme on both synthetic datasets (SYN) and real
datasets (REAL). All the experiments are carried out on a
machine with 6 cores of AMD R5-4600 U and 16 GByte RAM.

In the first part of experiments, we evaluate the impact of the
hyper-parameters, in particular, θ and α, on the performance of
our approach on synthetic datasets. In these experiments, we
evaluate the performance through 2 important metrics: 1) the
overall task completion rate, and 2) the average task time cost.

In the second part of experiments, we fix the hyper-parameters
determined in the first part and evaluate the scalability of our
proposed approach by varying the number of tasks and workers
on both synthetic and real datasets.

B. Experiments on Synthetic Data Sets

For the synthetic (SYN) datasets, we use random data fol-
lowing two different distributions: uniform (SYN-UNIFORM)
and skewed (SYN-SKEWED). With regard to SYN datasets,
50% of the tasks are generated in twenty clusters (with standard
deviation as 1 and randomly chosen centers) and the other 50%
of the tasks are uniformly distributed, i.e., 50% of the tasks
are SYN-SKEWED and others are SYN-UNIFORM. This is
motivated by the clustering characteristic of tasks in practice.

1) Effect of Parameter θ: Our experiments first decide the
best value of parameter θ for applying θ-sparseness to recon-
struct the affinity matrix in Algorithm 1. We conduct experi-
ments on a 200× 200 km2 space where tasks with a cluster
characteristic as illustrated in Fig. 5, where circles represent
tasks in space. The default values of all the parameters used in
our experiments are summarized in Table III.

At the first time, we have no clear idea of the effects of
parameterα in our algorithm, and we setα = 0.5, which implies
that the time and distance factors have the same level of impact
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TABLE III
PARAMETERS OF SIMULATION

Fig. 6. Determining the value of parameter θ.

on the priority of the tasks. Since the synthetic data are generated
randomly, in order to reduce the impact of randomness on
the experimental results, the experiments are repeated 1000
times for each value of θ, and the means of the metrics are
reported.

In Fig. 6, we illustrate the overall task completion rate δ and
average traveling time cost τ . We notice that in general, when
we have the parameter θ = 0.007 for θ-sparseness, the overall
task completion rate δ is largest, and the average traveling time
cost τ is relatively low and close to the minimum obtained in the
experiment. Besides, we can see from Fig. 6 when θ < 0.007 or
θ > 0.007 both measures will get worse, which shows that the
sparseness degree of the affinity matrix in Spectral clustering
would affect the effect of the whole model. This suggests that
θ = 0.007 is a reasonable choice for Spectral clustering and we
fix the value in the following experiments. At the same time,
the value of θ is very small, which will have an impression on
the complexity of Spectral clustering. A smaller value of θ can
reduce the complexity of the whole algorithm to some extent,
and improve the performance of algorithm.

2) Effect of Parameter α: With the fixed value of parameter
θ, in this part, we will decide the value of parameter α, which
influences the weights of the temporal and spatial factors in the
integrated priority function. The parameter θ is set as 0.007, and
the other parameters are shown in Table III as well. Meanwhile,
in order to reduce the impact of randomness on the experimental
results, the experiments are repeated 1000 times for each value
of α, and the means of the metrics are reported.

Fig. 7. Determining the weight of time α.

In Fig. 7, we present the value variation of δ and τ with respect
to the value of α. We notice that when α = 0.65, the accom-
plishment task rate δ is the highest, which is up to 0.782, and the
traveling time cost rate τ is relatively low. In particular, when

α > 0.5 (i.e.,
α

1− α
> 1), which indicates that the time priority

is more important than the space priority, the task completion
rate has a significant improvement compared to α < 0.5. As
shown in Fig. 7, the overall task completion rate δ is increased
from 0.731 to 0.774, rising 5.9%, when parameter α is changed
from 0.5 to 0.55. Thus, a relative proportion of time priority can
improve the performance of our algorithm.

Such a result could be due to the proper combination of these
two priorities. On one hand, if temporal priority is weighted too
heavily, tasks that are too far away will be left alone to spend a lot
of traveling costs. On the other hand, a heavy-weighted spatial
priority may skip those tasks requiring immediate accomplish-
ment with lower spatial priority.

Motivated by the results in Fig. 7, in the following experi-
ments, we fix α = 0.65. Because the task accomplishment rate
at this time is higher than 70% in the SYN data, the TAMP
algorithm is relatively stable and the optimal solution could be
obtained.

C. Comparison With Other Algorithms

In this part, we use the values of two hyper-parameters de-
termined in the first two experiments and compare TAMP with
condign methods for task assignment on both synthetic and real
data.

1) Baselines: We first briefly present the baseline methods
for comparative studies as follows.
� K-MP: The method clusters the tasks for different workers

by K-means, then schedules the tasks for every worker by
Mixed Priority Queue Scheduling.

� SC-DisGreedy: The method clusters the tasks for different
workers by spectral clustering, and then every worker
selects the nearest achievable task, which aims to reduce
the traveling costs.

� NNH: In [47], Deng et al. propose an approximation al-
gorithm named nearest neighbor heuristic (NNH). NNH
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Fig. 8. Comparison of different methods in SYN data (|S| = 2000).

Fig. 9. Comparison of different methods in SYN data (|S| = 5000).

exploits the spatial proximity between tasks by iteratively
choosing the nearest available task to the last task added
in the task sequence. At each iteration of NNH, the worker
chooses one task which is available and the closest to his
current position.

2) Results on Synthetic Data: Figs. 8 and 9 show the evalu-
ation metrics δ and τ achieved by different numbers of workers
when there are 2000 and 5000 tasks in the SYN data network.
The other parameters are the same as shown in Table III.

Intuitively, the rates δ and τ both increase in the number of
workers, as when more workers are available, it is more likely
to find a worker for any specific task, and the minimum distance
toward the task becomes lower. However, as the number of
workers k increases, the growth of the overall task completion
rate δ has begun to moderate. On the one hand, this could be
due to the possibility that the remaining uncompleted tasks are
located in remote locations. On the other hand, there are other
factors that restrict the growth of the overall task completion rate
δ, such as the traveling speed of workers, the deadline of workers,
and so on. Therefore, the growth of the overall task completion
rate δ merely driven by the increase of workers could slow down
and even saturate.

In terms of the overall task completion rate δ, the TAMP
algorithm outperforms the three baseline methods in most of the
cases. When |W | = 200 and |W | = 250 in Fig. 9 (S = 5000),
the overall task completion rate δ is lower for TAMP than
SC-DisGreedy, which means α = 0.65 is not the best weight
of time for our algorithm at this moment, i.e., the value of α
needs to be adjusted with the model. Even if the parameter
setting of the TAMP algorithm might not be optimal in all the
scenarios (The parameters’ values are not changed in subsequent

Fig. 10. Comparison of different methods in Gowalla data (|S| = 5000).

experiments), the TAMP algorithm is still significantly better
than other methods in most cases. When |W | = 200 in Fig. 8
and |W | = 500 in Fig. 9, the rate δ of TAMP algorithm is up to
0.9.

The NNH method has a lower running time since only consid-
ers the distance between workers and tasks, then the average task
time cost τ is the lowest. The NNH method pays more attention
to tasks in the neighborhood of workers, so as to minimize
the traveling time cost of workers, but Our algorithm seeks
the optimal solution of worker task assignment from a global
perspective. Meanwhile, the TAMP algorithm is better than the
two remaining methods in the average task time cost τ .

Generally speaking, the TAMP algorithm performed well on
SYN data.

3) Results on Real Data: Considering the real social network
scenarios, we use the open real-world dataset from Gowalla1.
For simplicity, we only sample the data with longitude between
−125 and−120, and latitude between 35 and 40 (approximately
440 km× 557 km rectangle region).

The dataset is a location-based social network, where users are
able to check in to different spots in their vicinity. The check-ins
include the location and the time that the users entered the spots.
For our experiments, we use the check-in data over a period
of one month (i.e., October 2010). Moreover, we assume that
Gowalla nodes are the tasks of our spatial crowdsourcing system.
Consequently, we assume all the chosen items happen in a single
day.

For each check-in, we use its location and time as the location
and expiration time of the task. Intuitively, checking in a spot is
equivalent to finishing a spatial task at that location. The worker
heterogeneity is considered in the setting, then the processing
time and traveling time are different when the same job is
assigned to different workers. For the sake of simplicity, the
traveling time cost is calculated by the euclidean distance divided
by the worker’s traveling speed, and the processing time is
calculated by the worker’s processing speed.

The initial locations of workers are randomly generated in
the restricted rectangle region, and the deadlines of workers are
uniformly distributed from 6:00 pm to 8:00 pm. In this set of
experiments, we evaluate the scalability of TAMP algorithm by
different numbers |S| of tasks, which is up to 8000. Figs. 10
and 11 show the rate δ and τ achieved by different numbers

1http://snap.stanford.edu/data/loc-Gowalla.html

http://snap.stanford.edu/data/loc-Gowalla.html
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Fig. 11. Comparison of different methods in Gowalla data (|S| = 8000).

of workers when there are 5000 and 8000 tasks in the Gowalla
data. Based on the experiments of REAL data, the advantage of
TAMP algorithm in the overall task completion rate δ is more
obvious. When |W | = 400 in Fig. 10 and |W | = 700 in Fig. 11,
the rate δ of TAMP algorithm is more than 0.7.

D. Discussion

The experiments present the efficiency and effectiveness of
our proposed method. The real-world application scenarios,
such as road condition monitoring [6] and crowdsourcing-aided
positioning [7], are more applicable to the problem situations
in our work. In these circumstances, the distance between the
worker and the task will impact the number of completed tasks,
with no special requirements on the worker’s skills and strict
time constraints on the task’s completion. In many applications,
the task assignment problem prefers to be dynamic rather than
static. It is difficult to deal with the real-time task assignment
problem in SC due to the unevenness of arriving tasks and
workers, as well as the arrival time being random to the system.
Our proposed method in this paper is applied in the static state
of each batch, where the spatial-temporal information of tasks
and workers is obtained in advance.

V. CONCLUSION

In this article, we design an adequate task assignment mech-
anism in the context of spatial crowdsourcing, which assigns
spatio-temporal tasks considering workers’ heterogeneity. We
formulate a combinatorial multi-objective optimization prob-
lem, i.e., MOST problem, and prove that it is NP-hard. To solve
the above problem, we proposed the Task Clustering-based
Mixed Priority Queue Scheduling (TAMP) algorithm focusing
on task network division and worker queue scheduling. At
first, we apply θ-sparseness to the spectral clustering algorithm
for optimizing the network partition to improve the scope of
crowdsourcing services. Subsequently, the mixed priority queue
scheduling scheme combines the temporal requirement as well
as spatial features into a single priority metric, which sched-
ules workers to complete the assigned tasks in turn. Extensive
experiments on both synthetic and real data demonstrate the
effectiveness and efficiency of our scheme.

The add-on of this work is to consider other properties of
spatial tasks, such as the rewards of spatial tasks, the task

workload, and others. Moreover, the work can be extended to
spatial crowdsourcing in a real-time/online scenario.
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