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Abstract—Federated learning (FL) emerges to mitigate the pri-
vacy concerns in machine learning-based services and applications,
and personalized federated learning (PFL) evolves to alleviate the
issue of data heterogeneity. However, FL and PFL usually rest on
two assumptions: the users’ data is well-labeled, or the personal-
ized goals align with sufficient local data. Unfortunately, the two
assumptions may not hold in most cases, where data labeling is
costly, or most users have no sufficient local data to satisfy their
personalized needs. To this end, we first formulate the problem,
DoLP, that studies the issue of insufficient and partially-labeled
data on FL-based services. DoLP aims to maximize two service
objectives: 1) personalized classification objective and 2) the per-
sonalized labeling objective for each user within the constraint of
training time over wireless networks. Then, we propose a PFL-
based service system DoFed-SPP to solve DoLP. The DoFed-SPP’s
novelty is two-fold. First, we devise an inference-based first-order
approximation metric, similarity ratio, to identify the similarity
between users’ local data. Second, we design an approximation
algorithm to determine the appropriate size and set of users for
uploading in each round. Extensive experiments show DoFed-SPP
outperforms the state-of-the-art in final accuracy and time-to-
accuracy performance on CIFAR10/100 and DBPedia.
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federated learning service system, personalized services, data

Manuscript received 17 August 2022; revised 16 January 2023; accepted
26 March 2023. Date of publication 30 March 2023; date of current version
8 October 2023. This work was supported in part by the National Science
and Technology Council under Grants 108-2221-E-194-025-MY3, 108-2628-
E-001-003-MY3, 111-2628-E-001-002-MY3, 111-2628-E-194-001-MY3, and
111-3114-E-194-001-, in part by the Academia Sinica under Thematic Research
under Grant AS-TP-110-M07-2; and in part by the Advanced Institute of
Manufacturing with High-tech Innovations (AIM-HI) from the Featured Areas
Research Center Program within the framework of the Higher Education Sprout
Project by the Ministry of Education (MOE) in Taiwan. Recommended for
acceptance by K. Joshi. (Corresponding author: Jian-Jhih Kuo.)

Cheng-Wei Ching is with the Department of Computer Science and Engi-
neering, UCSC, Santa Cruz, CA 95064 USA, and also with Research Center
for Information Technology Innovation, Academia Sinica, Taipei City 11529,
Taiwan (e-mail: cching1@ucsc.edu).

Jia-Ming Chang is with the Department of Computer Science and Information
Engineering, National Chung Cheng University, Chiayi 62102, Taiwan (e-mail:
g609410078@alum.ccu.edu.tw).

Jian-Jhih Kuo is with the Department of Computer Science and Information
Engineering, and also with the Advanced Institute of Manufacturing with High-
tech Innovations, National Chung Cheng University, Chiayi 62102, Taiwan (e-
mail: lajacky@cs.ccu.edu.tw).

Chih-Yu Wang is with the Research Center for Information Technology
Innovation, Academia Sinica, Taipei City 11529, Taiwan (e-mail: tomky-
wang@gmail.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSC.2023.3263370, provided by the authors.

Digital Object Identifier 10.1109/TSC.2023.3263370

labeling services, data classification services, heterogeneous user
data, partially-labeled data, similarity ratios, approximation
algorithm.

I. INTRODUCTION

NOWADAYS, the success of machine learning-based ser-
vices heavily relies on the massive amount of data. With

the growth of smart devices, a significant amount of data, such
as photos, voices, and positions, is generated in a timely manner
and can help model training. However, due to privacy concerns,
we cannot collect data from devices in many circumstances.
Thus, Federated learning (FL) is proposed to address the privacy
concerns [1]. With FL, a group of participants train their local
models with their own data and send their local models to the
Parameter server (PS), and PS aggregates these local models
to update the global model. Not only does FL allow training
a model jointly with less privacy concerns, but FL is adaptive
to large-scale systems. FL has achieved great success in several
applications and services, such as voice recognition [2], [3], nat-
ural language processing [4], [5], recommendation systems [6],
[7], word candidate prediction [6], [8], and healthcare [9], [10].

The conventional FL aims to minimize the loss of the aggre-
gate of local models. In particular, in heterogeneous settings
where the underlying data distribution of the user data is usually
divergent, the final global model obtained by minimizing the av-
erage loss (see Section II for more details) might perform rather
poorly once applied to the local data of each user [11], [12], [13].
To this end, Personalized federated learning (PFL) is proposed
to mitigate the negative impact of heterogeneous settings [11],
[13], [14]. Compared to FL, PFL aims at minimizing the loss of
each local model with respect to their local data in a federated
manner in hope of improving personalized service experiences.

However, the existing PFL and FL work usually rests on the
assumption that the users’ data is all well-labeled. They focus
more on the supervised learning, where the local data is usually
well and correctly labeled. Nonetheless, such an assumption is
rather unrealistic in numerous applications and services since
labeling is considered time-consuming and costly [15], [16],
[17], [18]. Practically, users are more likely to have a certain
amount of labeled data that they can easily obtain and another
amount of partially-labeled data that they have difficulty in fully
labeling [13], [19], [20]. Moreover, the PFL further assumes
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the personalized goals align with the sufficient local data. The
existing PFL work usually assumes that the users’ personalized
goals are to find a model best fit for all of their local data, and the
users can enhance the generalized performance of personalized
goals by participating PFL. Unfortunately, users in practice are
likely to have only a small amount of data benefit to their
personalized goals [14], [21], [22]. Under the circumstances, the
final personalized models that the users obtain from participating
the existing PFL systems may not reach their expectations.
For practical personalized model training, a better collaboration
approach is required to relax these two assumptions.

To study the impact of insufficient and partially-labeled data
on personalized model training, we firstly propose the Dual-
objective Learning Problem with partially-labeled data within
the constraint of training service time (DoLP) as the main goal
of this paper. Specifically, we consider the service environment
over wireless networks, where there are a set of devices (i.e.,
the users) and one Base station (BS) that coordinates the wire-
less transmission of the users. The users each have a training
dataset and a target dataset, where the data distributions of the
two datasets are heterogeneous. The data points in the training
dataset are well labeled, whereas those in the target dataset are
partially-labeled. The users each have two service objectives.
One is the personalized classification objective that asks for a
model best fit for their labeled data points in the target dataset.
On the contrary, the other is personalized labeling objective
which aims to find another model that labels the unlabeled data
points in the target dataset as correctly as possible. Meanwhile,
a user-defined training service time composed of on-device
computation and wireless transmission necessary for training
is given such that the necessary training time does not exceed
the given threshold.

Addressing DoLP gives rise to three challenges as follows.
The first challenge is heterogeneous data distributions between
the training dataset and the target dataset. Since the data distri-
butions of the two datasets may be significantly heterogeneous,
FL or PFL is expected to perform poorly for them, as models
trained using FL or PFL are for their labeled training datasets
only, and there is no guarantee for these models to perform well
on their target dataset as well as the training dataset in either
classification or labeling services. Then, the second challenge is
training on the small and partially-labeled target dataset. Con-
ventionally, this can be considered as Semi-supervised learning
(SSL), which refers to a learning problem with partially-labeled
data, where the ratio of unlabeled data is usually much larger
than that of the labeled data (e.g., 1 to 10), and the objective of
SSL is to label the unlabeled data as correctly as possible. As we
have assumed that the dataset owned by each user is insufficient
to train the models, conventional SSL cannot be applied [23].
Federated semi-supervised learning (FSSL) is proposed recently
to improve the generalized performance of SSL by aggregating
local models from different users [20]. However, FSSL aims at
generalized performance over all users [20] rather than personal-
ized performance, which is incompatible with the personalized
labeling objective. The last challenge is unrepresentative train-
ing and testing performance. When training a machine learning
model for a specific application or service, the data is usually

split into two disjoint sets. One is the training set that accounts
for most of the data. The other is the testing set. The training set is
used for training the model from scratch, whereas the testing set
serves to measure the performance of the model during training.
However, the users are short of a large amount of labeled target
data, implying that they can neither perform local training with
respect to the personalized classification objectives nor measure
how well a model trained via FL or PFL performs in term of the
personalized classification objective (see Section VI for more
details).

To this end, we propose Dual-objective Federated Learning
System for the Services of Personalization and Partially-labeled
Data (DoFed-SPP) to address DoLP and the three challenges.
The key innovation is that DoFed-SPP proposes a comple-
mentary training scheme, in which users each train a recip-
rocal model fit for their training data and use the first-order
approximation-based Similarity ratios (IRs) to download the
relevant reciprocal models of other users. Then, the users each
exploit the downloaded reciprocal models to label the unlabeled
data points in the target dataset in an ensemble-based manner for
the personalized labeling objective. Lastly, we adopt the teacher-
student architecture to train the target model for the personalized
classification objective. Specifically, the users each establish a
pseudo-labeled dataset composed of the original labeled data
points and the pseudo-labeled data points in the target datasets
(i.e., labeled by the downloaded reciprocal models), and execute
local training using an initialized model (i.e., the student) with
the pseudo-labeled dataset (i.e., the teacher) for the personalized
classification objective. For the constraint of training time, we
first break it down into the computation time and the communi-
cation time, where the former is estimated by dividing required
CPU cycles by computational capacity of devices, and the latter
is estimated by dividing the model size by Shannon capacity [24]
given the channel quality in wireless networks. Based on the
estimations, we formulate an optimization problem to determine
the number and the set of reciprocal models downloaded, and
then propose a matching algorithm which achieves (1− 1

e )
approximation ratio in a model accuracy-dependent indicator
(refer to Section IV-D for more details).

On the implementational side, we consider two performance
metrics. One is the final accuracy, and the other is the time-
to-accuracy performance. The experimental results show that
DoFed-SPP makes significant improvement on both perfor-
mance metrics using three benchmarks, CIFAR10, CIFAR100,
and DBPedia. Moreover, we conduct extensive experiments on
the parameters of DoFed-SPP to show DoFed-SPP is robust to
different settings.

The contributions of this paper are summarized as follows.
� We make the first attempt to study the impact of insufficient

and partially-labeled data to PFL, and thereby formulate the
problem DoLP that aims to maximize two personalized
service objectives: classification and labeling accuracy,
within the constraint of training time.

� We propose a novel PFL-based service system DoFed-
SPP to solve DoLP. DoFed-SPP adopts an inference-
based first order approximation metric, Similarity ratios,
to identify the similarity between the local data of devices.
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Meanwhile, DoFed-SPP uses an approximation algorithm
with a theoretical proof to select a near-optimal set of de-
vices in each communication round to upload local models
in order to maximize the two personalized objectives within
the constraint of training time.

� Extensive experiments show that DoFed-SPP outper-
forms two state-of-the-art methods, FedFomo [14] and
FedBE [5], and the conventional one, FedAvg [1], in terms
of final accuracy and time-to-accuracy performance, using
three benchmarks, CIFAR10, CIFAR100, and DBPedia.

The rest of this paper is organized as follows. Section II
introduces the preliminaries. Section III first details the system
model, and then defines DoLP. The proposed system DoFed-SPP
is presented in Section IV. Section V summarizes the workflow
of DoFed-SPP. Section VI shows the experimental results. The
related work is reviewed in Section VII. Section VIII concludes
this paper.

II. PRELIMINARIES

A. Federated Learning (FL)

In conventional FL, there are N users and a PS that aim to
solve the following problem:

min
Θ∈Rd

f(Θ) :=
1

N

N∑
n=1

fn(Θ), (1)

where Θ is the global model. The function fn(Θ) for each n ∈
[N ] denotes the expected loss over the data distribution of user
n:

fn(Θ) := Eξn [Fn(Θ; ξn)], (2)

where ξn is a random data sample drawn according to the distri-
bution of user n and Fn(Θ; ξn) is a loss function corresponding
to this sample and Θ.

In practice, the user n ∈ [N ] has a set of dataDn. In commu-
nication round t, a set of users [K] ⊂ [N ] are sampled randomly,
each of which downloads the global model Θt (i.e., the global
model in communication round t) from PS. Then, each sampled
user k ∈ [K] performs the following local training with its local
data Dk,

θt+1
k = Θt − γ∇Θtfk(Dk; Θ

t), (3)

where θt+1
k denotes the local model of user k in communication

round t and γ ∈ (0, 1] denotes the learning rate. Then, users
upload local models to PS. Upon collecting K local models,
PS performs aggregate to attain updated global model Θt+1 as
follows:

Θt+1 =
∑
k∈[K]

wkθ
t+1
k , (4)

where wk := |Dk |∑
j∈K |Dj | . Remark that users can upload the gra-

dients ∇Θtfk(Dk; Θ
t) to PS instead. Both of the methods are

mathematically equivalent [1], [12], [25], [26].

B. Personalized Federated Learning (PFL)

The learning objective of FL (i.e., (1)) minimizes the aggre-
gate of individual loss functions (i.e., (2)) and derives gener-
alized and common results for all users using a single global
model without any personalization. Given the emergence of
data heterogeneity across all users, directly optimizing average
individual loss functions without personalization usually leads
to unsatisfactory performance [11], [13], [14]. As a result, PFL
instead considers a learning objective closer to each user. We
refer to the setup in [13] to formalize PFL. Specifically, the loss
function fn(Θ) for each n ∈ [N ] changes to

fn(Θ) = min
θn∈Rd

fn(θn) +
λ

2
‖θn −Θ‖, (5)

where θn is the personalized model of user n and λ is a
regularization parameter that controls the strength of Θ to the
personalized model θn. The rationale behind is to enable users
to pursue their own models in different directions based on the
global model Θ. As such, PFL can be formulated as a bi-level
problem:

min
Θ∈Rd

f̂(Θ) :=
1

N

N∑
n=1

gn(Θ),

where gn(Θ) = min
θn∈Rd

gn(θn) +
λ

2
‖θn −Θ‖. (6)

For communication, PFL usually follows the communication
scheme of FL (i.e., (4)) to update the global model Θ so there is
no additional communication overhead [13].

C. Semi-Supervised Learning (SSL)

Labeled data is considered difficult and costly to acquire in
many cases, such as object detection in pictures or videos. SSL is
an appropriate approach to resolve this difficulty. It assumes that
a small amount of labeled data and a large amount of unlabeled
data are available during training. Formally speaking, given a
set of labeled data x1, . . ., xl ∈ X with corresponding labels
y1, . . ., yl ∈ Y and a set of unlabeled data xl+1, . . ., xl+u ∈ X ,
the goal of SSL is to infer a mapping from X to Y such that the
labels Y are as closer as possible to the ground truth labels Y
[27]. Existing work on SSL is divided into two main categories.
One adds an unsupervised loss term (i.e., a regularizer) into
the loss function so the training model is expected to learn the
labeled and unlabeled data at the same time [28], [29], [30], [31];
the other labels the unlabeled data with pseudo labels and the
pseudo-labeled data are then used in training with a supervised
loss [32], [33], [34], [35].

D. Ensemble Learning

Ensemble learning is a general approach to improve predictive
accuracy by combining the predictive results from multiple
independent models. There are three major classes of ensemble
learning methods: bagging, stacking, and boosting. Bagging
fits multiple learning models with different training data and
aggregates the predictive results by voting or averaging. Then,
stacking that makes use of varying model types to fit on the
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Fig. 1. We consider a scenario where a BS serves a set of devices. The devices each have two datasets, the training dataset and the target dataset. The data points
in the training dataset are fully-labeled, whereas those in the target dataset are partially-labeled. Moreover, the number of labeled data points in the target dataset
(i.e., the texts and images in blue) is the smallest among the labeled data points in the training dataset (i.e., the texts and images in red) and the unlabeled data
points in the target dataset (i.e., the texts and images in green).

training data and uses another model to combine the predictive
results. Finally, boosting incrementally adds models that correct
the predictive results made by the previous models and aggre-
gates the final predictive results by weighted averaging [36],
[37], [38].

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first elaborate the system model and back-
ground in Section III-A, and then we introduce the dual-objective
learning problem in Section III-B.

A. System Model

We consider a cellular network that consists of one BS serving
a set of devices [N ]. BS plays the role of PS and the set of devices
are the users in FL as shown in Fig. 1. In each communication
round of FL, PS first broadcasts the global model to the users.
Upon receiving the global model, users perform local training
using their local data. When the local training is over, users
upload the trained local models to PS for model aggregate.

The computational and transmission overhead and the data
distributions of the devices are modeled as follows.

1) Computation on the Devices: Denote fn as the compu-
tational capacity of device n. The computational capacity is
usually measured by the number of CPU cycles per second.
Let In, Dn, and Cn denote the number of local iterations at
device n, the number of training data device n holds, and
the number of CPU cycles for device n to traverse one data
point (i.e., forward and backward propagation in local training),
respectively. Therefore, the computation time on device n for

local training is

tln =
InCnDn

fn
, ∀n ∈ [N ]. (7)

2) Transmission on the Devices: Recall that the devices
should upload the local models to BS for the model aggregate.
Following Shannon capacity, the transmission rate of device n
is up to

rn = bn log2

(
1 +

gnpn
N bn

)
, ∀n ∈ [N ], (8)

where bn is the bandwidth allocated to device n, gn, the channel
gain between device n and BS, pn, average transmit power
of device n, and N , the Gaussian noise. Since the uploaded
local models are usually dimensionally identical, we denote
the local model size by m (e.g., the size of MobileNetV2 [39]
is approximately 5 MB). Therefore, the transmission time on
device n to upload its local model is

tun =
m

rn
, ∀n ∈ [N ]. (9)

3) Computation and Transmission on BS: The role of BS in
FL is responsible for the coordination of local models (com-
putation and transmission). Since BS is usually equipped with
high computational capacity, and the downlink bandwidth is
much more sufficient than the uplink bandwidth, computational
overhead and downlink transmission are assumed negligible
compared to local training overhead and uplink transmission
from devices [14], [25], [40], [41]. Therefore, we ignore the
computational and model downlink transmission overhead at
the BS side.
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4) Data Distributions: We assume that each device n has
a set of training dataset Dtrain

n and target dataset Dtarget
n . In

particular, the training dataset Dtrain
n consists of the data that

are all well-labeled and can be acquired easily by the user of the
device n. In contrast, the target datasetDtarget

n is rather difficult
for the user of device n to attain and correctly label. Each data
point in the training dataset Dtrain

n is presented in the format
of a feature-label pair (x, y). The features represent the data
itself. For example, features in the image classification task are
images that cover multiple objects. Labels represent the ground
truth of the corresponding features. In the image classification
task, for example, the labels show the classes of the objects
in the corresponding image. For the target dataset Dtarget

n on
device n, we assume that only a tiny amount of data points is
labeled, denoted asDtarget

n,l ⊂ Dtarget
n . Furthermore, due to the

difficulty in acquiring the target data, we assume that the number
of the labeled data points in the target dataset is much smaller
than that of the unlabeled data points in the target dataset, i.e.,
|Dtarget

n,l | << |Dtarget
n,ul | for all N devices, where | · | denotes the

cardinality and Dtarget
n = Dtarget

n,ul ∪ Dtarget
n,l .

B. Problem Formulation

1) Learning Objectives: Recall that each device owns two
datasets, the training dataset Dtrain

n and the target dataset
Dtarget

n , where the target dataset consists of labeled dataDtarget
n,l

and unlabeled data Dtarget
n,ul , and Dtarget

n,l ∪ Dtarget
n,ul = Dtarget

n .
The users of the devices participate in FL in order to satisfy
their own two goals. First, the users each wish to find an optimal
model that best fits the labeled data in their target datasets as
formally defined as follows.

Definition 1 (The personalized classification objective). The
personalized classification objective demands an optimal model
θtar

∗
n,l that yields the minimum loss with respect to the labeled

target data Dtarget
n,l , i.e.,

θtar
∗

n,l = argmin
θtar
l ∈Rd

lclan (θtarl ;Dtarget
n,l ), ∀n ∈ [N ], (10)

where lclan (·, ·) represents the loss function for classification on
device n.

Note that the loss function depends on the application. It
might be the cross entropy for image classification tasks (e.g.,
CIFAR10 [42]), or mean square error alternatively for natural
language processing tasks (e.g., Spam Text Message Classifica-
tion [43]). In addition to the personalized classification objective,
the users each also wish to find an optimal model that labels their
unlabeled data Dtarget

n,ul as correctly as possible.
Definition 2 (The personalized labeling objective). The per-

sonalized labeling objective seeks an optimal model θtar
∗

n,ul such
that

θtar
∗

n,ul = argmin
θtar
ul ∈Rd

llabn (θtarul ;Dtarget
n,ul ), ∀n ∈ [N ], (11)

where llabn (·, ·) is the loss function for labeling on device n.
Remark The objectives (10) and (11) differ from the objec-

tives of FL (i.e., (1)) and PFL (i.e., (6)) in two aspects. On the one
hand, (10) asks for an optimal model for inferring the labeled

target data, while (1) and (6) focus on the entire data (i.e., all
the devices) and the entire personalized data (i.e., all the local
data), respectively. On the other hand, (11) requires that a model
label the unlabeled target data as accurately as possible without
the aid of ground truth labels, while (1) and (6) assume that
all the data used for training are well-labeled. Therefore, this
paper studies a substantially more challenging problem than the
existing work.

2) Time Constraints: Based on (7) and (9), it takes device n
at least tln to finish local training and at least tun to upload its
local model to BS in each communication round. Suppose that
the number of total communication rounds is G. Then, the total
training time for device n is at least

Tn = G(tln + tun), ∀n ∈ [N ]. (12)

Since the longer the training time is, the more the computational
and transmission resources are used, the total training time is
not allowed to exceed the predefined maximum training time T ,
that is,

Tn ≤ T, ∀n ∈ [N ]. (13)

Remark that the above constraint on training time is more
user-friendly, since users care more about how long it takes
their devices to complete training over the specific amount
of transmission and computational resources (i.e., bandwidth
allocation and CPU cycles) [44], [45].

Finally, we formulate the Dual-objective Learning Problem
with partially-labeled data within the constraint of training ser-
vice time (DoLP) as follows.

Definition 3. (DoLP) Given a set of devices [N ], where each
device n owns two datasets, the training dataset Dtrain

n and the
target dataset Dtarget

n , total training time for device n Tn, the
predefined maximum training time T , and the total communica-
tion roundG, DoLP asks for two models for each devicen ∈ [N ]
that minimize the personalized classification objective:

argmin
θtar
l ∈Rd

lclan (θtarl ;Dtarget
n,l ), ∀n ∈ [N ],

and the personalized labeling objective:

argmin
θtar
ul ∈Rd

llabn (θtarul ;Dtarget
n,ul ), ∀n ∈ [N ],

subject to the time constraint:

Tn ≤ T, ∀n ∈ [N ].

IV. DOFED-SPP DESIGN

In this section, we introduce Dual-objective Federated Learn-
ing System for the Services of Personalization and Partially-
labeled Data (DoFed-SPP) design to solve the proposed DoLP.
We first propose a complementary training scheme and then
introduce the deliberately designed similarity ratios to measure
the heterogeneity of the data between devices in Section IV-A.
Then, Section IV-B introduces the ensemble-based method for
the personalized labeling objective. Third, an approach to ad-
dressing the personalized classification objective is presented in
Section IV-C. Fourth, Section IV-D addresses the optimization
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problem in DoFed-SPP. Lastly, the integration of Principle com-
ponent analysis (PCA) in DoFed-SPP for scalability is studied
in Section IV-E.

A. Complementary Training Scheme

1) Reciprocal Model Training: In response to the first chal-
lenge of heterogeneous data distributions between the training
dataset and the target dataset, we design a complementary
training scheme in DoFed-SPP. Specifically, each device in
DoFed-SPP performs local training according to the following
objective.

θrecn = argmin
θrec∈Rd

ln(θ
rec;Dtrain

n ), ∀n ∈ [N ], (14)

where it aims at training a reciprocal model θrecn via

θrecn ← θrecn − γ∇θln(θ
rec
n ;Dtrain

n ). (15)

Local training in DoFed-SPP is equivalent to that in FL or
PFL, where (15) leverages Stochastic gradient descent (SGD)
to attain a better reciprocal model (i.e., θrecn in (15)) with the
gradient (i.e.,∇θln(·; ·) in (15)). The reciprocal models can best
represent the data distributions of the training dataset on the
devices. Although the reciprocal model trained on one device
may not be able to satisfy its own personalized classification
and labeling objectives, it might be complementary to other
devices’ two personalized objectives if the data distribution of
the training dataset fits the target datasets of other devices.
The challenge here is that the complementary relations among
the target dataset of devices and the reciprocal models are
unknown, as the dataset are kept by the devices privately. Thus,
we design an inference-based metric in DoFed-SPP to measure
the similarity between all the devices as an indirect metric to
estimate the complementary relations through IRs.

2) Inference-Based Similarity Ratios: Recall that FL em-
ploys the weights wk to average multiple local models in (4).
The hidden assumption behind the model averaging (i.e., (4)) is
that the users share a similar data distribution. If the assumption
does not hold, the model averaging would not work properly [1],
[22], [46]. To make the model averaging work in more general
scenarios, such as heterogeneous data distributions on users’
local data, it is indispensable to determine the optimal weights
for aggregate by solving the following optimization problem.

w∗ = argmin
w∈RN

f(Θ), (16)

where Θ =
∑N

n=1 wnθn, and w∗ = [w∗1w
∗
2. . .w

∗
N ]� are the op-

timal weights for the model averaging (i.e., (4)). Following the
same logic, we derive the IRs for each device. Denote by θtarn

the target model of device n. We aim to solve the optimization
problem as follows to find the optimal IRs for each device n:

ρ∗n = argmin
ρn∈RN

lclan (θtar;Dtarget
n,l ), ∀n ∈ [N ], (17)

where θtar =
∑N

n=1 ρ
1
nθ

rec
n and ρ∗n := [ρ1

∗
n ρ2

∗
n . . . ρN

∗
n ]� de-

notes the optimal similarity vector of the reciprocal model of
device i on the labeled target data of device n. An intuitive
method is iteratively solving (17) by leveraging SGD as follows

to attain the optimal IRs:

θtar,t+1
n = θtar,tn − γ1�∇ρn

lclan (θtar,tn ;Dtarget
n,l ), (18)

where ρn := [ρ1nρ
2
n . . . ρ

N
n ]� and 1� is a size-N vector of one.

However, this straightforward method is infeasible in practice for
the following two reasons: First, additional computational and
transmission overhead for computing (18) among the devices is
necessary to find the optimalρ∗n. Second, the devices do not have
sufficient labeled target data to learn the optimal IRs. Were it the
case, they could explicitly learn a target model by themselves
rather than the IRs alone, that is, no crucial need for them to
participate in FL.

In light of the two reasons above, we approximate ρ∗n with
first order approximation. Before derivation, we require some
assumptions about the analysis of gradient-based iterations. For
notational convenience, let ‖ · ‖ denote l2 norm in the following
sections unless otherwise specified.

Assumption 1. The maximum distance between θ, θ′ ∈ R
d is

bounded by a nonnegative constant G1, that is, ‖θ − θ′‖ ≤ G1.
Assumption 2. For every n ∈ [N ], lclan is L-smooth, and its

gradient is bounded by a nonnegative constant G2, that is,

‖∇lclan (θ)−∇lclan (θ′)‖ ≤ L‖θ − θ′‖, ∀θ, θ′ ∈ R
d,

‖∇lclan (θ)‖ ≤ G2, ∀θ ∈ R
d.

The assumptions above are standard and typical for analyzing
the iteration of gradient descent [47], [48], [49], [50], [51], [52],
[53], [54]. Remark that we do not assume the convexity on lclan

such that the IRs can be extended to more general cases.
Theorem 1. Suppose that Assumptions 1 and 2 hold, the

optimal Similarity ratio (IR) ρi
∗
n of the reciprocal model of the

device i on the labeled target data set of the device n, Dtarget
n,l ,

can be approximated by ρ̂in, where

ρ̂in =

max

{
γLt+1

n,i +G1+γG2

‖θrec,t+1
i −θrec,t

n ‖ , 0
}

∑
j∈N max

{
γLt+1

n,j +G1+γG2

‖θrec,t+1
j −θrec,t

n ‖ , 0
} , (19)

whereLt+1
n,i := lclan (θtar,tn ;Dtarget

n,l )− lclan (θrec,t+1
i ;Dtarget

n,l ) is
the target loss between the loss of the target model of device n
on its labeled target data in communication round t and that of
the reciprocal model of device i on the labeled target data of
device n in communication round t+ 1.

Theorem 1 also holds for stochastic gradient descent (SGD)
cases, and the proof can be found in Appendix A, (available
online). The approximate ρ̂in is time-varying by t and t+ 1, so
the devices update their IRs in every communication round.

Remark The two terms in Lt+1
n,i represent how complemen-

tary the reciprocal model θrec,t+1
i can be. Specifically, if device

n’s target model θtar,tn is insufficiently fit to his target dataset
Dtarget

n , then the first term in Lt+1
n,i will be large. Similarly,

if device i’s training data Dtrain
i is similar to Dtarget

n , then the
second term inLt+1

n,i will be small. As a result,Lt+1
n,i will be large,

implying that the reciprocal model of device i is complementary
to the personalized objectives of device n so device n should
weigh the reciprocal model of device i much more than other
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devices. Therefore, the physical meaning of IR is to grasp the
importance of a reciprocal model for the labeled target data of
another device.

3) Local Training Warm-Up: The rationale behind the re-
ciprocal model training and inference-based IRs is to find the
relations between devices’ training dataset and target dataset.
However, it is likely that the reciprocal models are not represen-
tative to their training data, leading to unrepresentative results
of IRs. To this end, at initialization, the devices are required to
perform local training warm-up.

Specifically, the devices should perform a given number of
round L of local training using the objective in (14) and the
SGD-based model update in (15) before uploading the reciprocal
models. The local training warm-up can make the reciprocal
models more representative to their training datasets, thereby
leading to more stable and accurate IRs and superior final per-
formance (see Appendix B, available in the online supplemental
material for more details).

B. Personalized Labeling

1) Ensemble-Based Pseudo-Labeling: Recall that each de-
vice establishes an approximatedN -dimension similarity vector
ρ̂n through (19), where the similarity vector helps the devices
grasp how similar other devices’ reciprocal models are to their
labeled target data. Then, each device downloads a subset of re-
ciprocal models [B] = {θreci , . . . , θrecB } that score theB highest
similarity ratios out of the set of available reciprocal models [K]
from BS, where [B] ⊆ [K] ⊆ [N ]. We defer the decision of K
and B to Section IV-D.

The rationale behind Personalized Labeling is that devices use
multiple reciprocal models to achieve different opinions about
unlabeled data points in the target datasets, and then weight the
opinions with IRs. Thus, each device infers the unlabeled data
points in the target dataset Dtarget

n,ul with the set of reciprocal
models [B] to predict the labels and averages the results with
similarity ratios, that is,

p̂(x) = OneHot

⎛
⎝∑

i∈[B]

�p(x; θreci ) · ρ̂in

⎞
⎠, ∀x ∈ Dtarget

n,ul ,

(20)

where OneHot(·) denotes the one-hot function that rounds up
the maximum element to 1 and rounds off the rest to 0, and p̂, the
pseudo label for the unlabeled data point x in the target dataset
Dtarget

n,ul . With (20), the devices can attain the pseudo labels for
their unlabeled data points. The name pseudo is since the labels
predicted by the reciprocal models are not ground truth.

2) Fundamental Difference in Personalized Labeling: This
ensemble learning-based method has been shown to be effective
and to avoid overfitting [23], [55]. However, there are two critical
designs in DoFed-SPP that differ from the previous work. First,
DoFed-SPP takes advantage of IRs to distinguish a set of the
most complementary reciprocal models from the device pools
for an individual device. Then, the opinions of the high-IR
reciprocal models are weighted with the corresponding IRs such

that the opinions from the data distributions more similar to the
current device hold much more sway than other opinions over
the final labels (i.e., p̂(x)). It should be noted that devices can
accurately achieve the labels of unlabeled target data without
conducting SSL or FSSL, which solves the second challenge
(i.e., training on the small and partially-labeled target dataset).

C. Personalized Classification

Recall that each device can label the unlabeled data points in
the target dataset with the reciprocal models that present similar
data distributions. Intuitively, the set of reciprocal models can
also be used for personalized classification using ensemble-
based techniques. However, the direct adoption of reciprocal
models in an ensemble-based fashion cannot overcome the third
challenge of unrepresentative training and testing performance,
as the number of labeled target data is too small to reflect exact
performance. Moreover, the pseudo labels are not helpful at all
since the pseudo labels are the predictive results of the set of
reciprocal models itself.

To this end, DoFed-SPP uses the teacher-student architecture
for the personalized classification objective. The high-level idea
is that the devices can use a larger and more sufficient dataset
(i.e., the teacher or the pseudo-labeled dataset) to train a target
model (i.e., the student) for their personalized classification
objectives. Iteratively, when the pseudo-labeled dataset is closer
to the ground truth, the target model can be stronger and stronger.
As a result, the final target models achieve generalized perfor-
mance and are free from the limit of scarcity of labeled target
data, which means the challenge of unrepresentative training and
testing performance is resolved.

Specifically, the teacher is the set of labeled data predicted
by reciprocal models (i.e., p̂(x) in (20)), called pseudo-labeled
dataset Dp

n. Meanwhile, the student is an initial model at the
beginning and will keep learning the teacher’s decisions by
performing local training using the pseudo-labeled dataset as
the training set. Thus, the student’s objective is

θtar∗n = argmin
θtar∈Rd

ln(θ
tar;Dp

n), ∀n ∈ [N ], (21)

and the student solves the above objective by iterating

θtarn ← θtarn − α∇θln(θ
tar
n ;Dp

n), (22)

where α denotes the learning rate. Eq (22) leverages SGD and
the pseudo-labeled dataset to attain a better target model θtarn

iteratively.

D. Decision of K and B

Recall that each device requires a set of reciprocal models for
Personalized Labeling (Section IV-B) and Personalized Classi-
fication (Section IV-C). The greater the size of [K] becomes,
the more the uplink transmission is necessary (i.e., uploading
of reciprocal models from devices to BS). Similarly, the greater
the size of [B] becomes, the more the computational resource
on devices is consumed (i.e., labeling in Personalized Labeling).
Furthermore, the selection of composition of reciprocal models
[K] to upload is also critical as selecting the set of devices
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whose reciprocal models complement the most of other devices’
objectives (i.e., Definitions 1 and 2) can maximize final predic-
tive performance. Therefore, it is necessary to cherry-pick the
beneficial reciprocal models for uploading and downloading so
that the two objectives can be maximized within the constraint
of transmission and computational resources.

1) The Size of [K]: We first study the size of [K] (i.e., K).
To explore the intrinsic nature of the decision of K, we assume
that each device is equipped with an identical computational
unit and has identical transmission conditions. Therefore, the
number of reciprocal models downloaded by devices (i.e., B)
for Personalized Labeling device is identical. Note that B ≤ K
since only the uploaded reciprocal models can be downloaded
and used for Personalized Labeling. Following the setup for the
computation and transmission in Section III-A, the computation
time of one device in one communication round of DoFed-SPP
can be formulated as follows.

tl =
I · Ctra ·D

f
+

CIR

f
+

B · Cpse

f
, (23)

where Ctra, CIR, Cpse denotes the number of CPU cycles for
executing local training (i.e., training reciprocal models and
teacher-student training), for calculating the IRs, and for in-
ferring the unlabeled data points in Dtarget

n,ul with a reciprocal
model (i.e., Personalized Labeling), respectively, and I,D, f
represents the number of local iterations, the number of training
data, and the computational capacity, respectively. x

For transmission time, we assume the total uplink transmis-
sion bandwidth is b and those K devices will share the uplink
bandwidth equally. Then, the transmission time of uplink from
K devices to BS is formulated as follows.

tu =
K ·m

b log2(1 +
g·p
Nb )

, (24)

where m denotes the model size, g, the channel gain, p, the
average transmit power, and N , the Gaussian noise. Then, the
total time of one device to execute one communication round of
DoFed-SPP is

Tr = tl + tu (25)

Recall that the total training time should not be greater than
T . Suppose that the number of total communication rounds is
G, and thus the training time of each communication round
should not be greater than T/G, so we can obtain the following
inequality.

T

G
≥ Tr = tl + tu

=
I · Ctra ·D

f
+

CIR

f

+
B · Cpse

f
+

K ·m
b log2(1 +

g·p
Nb )

Algorithm 1: The (1− 1
e ) Approximation Algorithm.

Input: Given parameters: B, K, ρ̂ = [ρ̂1ρ̂2 · · · ρ̂N ], and a set of
devices [N ].

Output: The set of selected devices [K]B
1: [K]B ← ∅;
2: while |[K]B | < K do
3: n← argmaxn∈[N ]ρ̂([K]B ∪ {n})− ρ̂([K]B); �ρ̂([K]B)

denotes the total similarity ratios of the set of reciprocal
models [K]B (see Definition 5 in Appendix C, available in
the online supplemental material).

4: [K]B ← [K]B ∪ {n};
5: N ← N \ {n};
6: return [K]B

By rearranging the term on the left-hand side, we have the
following.

T

G
− I · Ctra ·D + CIR

f
≥ B · Cpse

f
+

K ·m
b log2(1 +

gp
Nb )

(26)

It is worth noting that the first term and the second term on
the right-hand side of (26) represent how much time remains
for computation and transmission, respectively. Thus, we can
examine every combination of B and K, according to (26),
where 1 ≤ B ≤ K ≤ N , to find one combination of B and K
that maximizes the expected performance since all the variables
other than B,K are already known1. Specifically, let

C1 =
T

G
− I · Ctra ·D + CIR

f
,

C2 =
Cpse

f
, and C3 =

m

b log2(1 +
gp
Nb )

.

It suffices to examine the following combinations of B and
K, where max{1, � C1

C2+C3
�} ≤ K ≤ min{N, �C1−C2

C3 �} and

B = min{K, �C1−K·C3

C2
�}. Next, we formulate the expected

performance for a given specific combination of B and K.
2) The Set for a Combination B and K: Given a specific

combination of B and K, we now turn to another problem that
which K reciprocal models should be selected such that all the
devices can expect to have maximum performance on their two
personalized objectives. For ease of reading, denote by [K]B
the set [K] given with B. Based on the previous work regarding
ensemble learning, the more the models trained with similar data
distributions come to serve, the better the final performance can
be [5], [58] (See Section VI for more details). Therefore, the
optimization problem of the set [K]B is defined as follows.

Definition 4 (The optimization problem of the set [K]B).
Given the parameters, B, K, ρ̂ = [ρ̂1ρ̂2 · · · ρ̂N ], and a set of
devices [N ], the optimization problem of the set [K]B asks for

1It is reasonable to assume that BS is able to get hold of the computational ca-
pability and transmission conditions of the devices with which it associates [56],
[57].
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a set of reciprocal models such that

maximize
xni,yi∈{0,1},
∀n,i∈[N ]

∑
n∈[N ]

∑
i∈[N ]

xni · ρ̂in (27)

subject to
∑
i∈[N ]

xni ≤ B, ∀n ∈ [N ], (28)

∑
i∈[N ]

yi ≤ K, (29)

xni ≤ yi, ∀n, i ∈ [N ], (30)

xni, yi ∈ {0, 1}, ∀n, i ∈ [N ], (31)

where xni and yi are two decision variables that denote whether
device n uses the reciprocal model of device i for Personal-
ized Labeling and whether the reciprocal model of device i is
uploaded to BS, respectively.

The objective (27) maximizes the sum of the IRs over all the
devices. Two constraints (28) and (29), derived from In(26),
limit the total numbers of the reciprocal models for Person-
alized Labeling and uploading to B and K, respectively. The
third constraint (30) indicates that only the uploaded reciprocal
models can be used. Finally, the last constraint (31) indicates
two decision variables xni and yi.

Obviously, the optimization problem of the set [K]B is NP-
hard since it is a variant of the weighted maximum coverage
problem [59]. To this end, we design an approximation algorithm
(i.e., Algorithm 1) and show the approximation ratio in Theorem
2.

Theorem 2. Algorithm 1 achieves an approximation ratio of
1− 1

e ≈ 0.632.
Please refer to Appendix C, available in the online supplemen-

tal material for the proof of Theorem 2. In each communication
round, DoFed-SPP calls Algorithm 1 to calculate [K]B for each
possible combination of B and K and then determine which
K reciprocal models should be uploaded so that the expected
training performance on all devices can be maximized while
adhering to time constraints. That is, the selected [K] has the
maximum sum of the IRs among all sets [K]B of the different
combinations of B and K.

E. Scalability With Respect to Large Models

In light of the varying requirements on Machine learning
(ML)-based applications, distinct models that have different
sizes and number of parameters are used. For example, Convo-
lutional neural networks (CNNs) that have different number of
layers and structures aim at image classification tasks, and Bidi-
rectional encoder representations from transformers (BERT) and
its variants for Natural language processing (NLP) tasks. The
model sizes may range from 5 MB (e.g., MobileNet [39]) to
100 MB (e.g., BERT [60], [61]). The larger the model size,
the larger the extra computational and transmission overhead in
DoFed-SPP.

To this end, DoFed-SPP leverages PCA [62] to downsize the
dimensions of the given models. PCA is shown to be effective
and barely compromises the testing performance [25], [62] if

the reduced size is well defined empirically (refer to Section VI
for more details). In practice, BS runs PCA to downsize the di-
mensions of all the reciprocal models before broadcasting them
back to the devices. The advantages are two-fold. On the one
hand, the devices can consume less computational and memory
resources to calculate IRs (Section IV-A) and execute inference
(Section IV-B) because the dimensions of the reciprocal models
are reduced. On the other hand, no additional computational
overhead on the devices for executing PCA is generated since
BS finishes the execution of PCA first, and then broadcasts the
reduced reciprocal models to the devices.

V. WORKFLOW OF DOFED-SPP

In this section, we summarize all the phases in DoFed-SPP.
The system diagram of DoFed-SPP is shown as Fig. 2. Suppose
that there is a set of devices [N ] that participate the training and
a BS that coordinates the wireless transmission. For each phase
in DoFed-SPP, the descriptions are as follows.

Phase 0: Cold Start. All devicesn ∈ [N ]first initialize models
in Phase 0-1, then performL rounds of local training to establish
reciprocal models θrecn in Phase 0-2, and finally upload the
reciprocal models to BS in Phase 0-3. BS first calls PCA to
downsize the dimensions of the reciprocal models in Phase 0-42

and broadcasts all of them to the devices in Phase 0-5. The
devices calculate IRs in Phase 0-6 (i.e., (19)) and send IRs back
to BS in Phase 0-7.3

Phase 1: Decision ofK andB. BS examines each combination
of B and K by (26), by running Algorithm 1, to calculate
the corresponding set of devices [K]B and then determine the
optimal set of devices [K] that should upload their reciprocal
models and the set of reciprocal models for each device (i.e., the
solution with the decision variables yi and xni that maximizes
the sum of the IRs) in Phase 1-1. Then, the BS runs PCA for
the reciprocal models uploaded from the set of devices [K] in
Phase 1-2, and transmits the set of reciprocal models downsized,
denoted by [K̂], to all devices in Phase 1-3.

Phase 2: Personalized Labeling. When receiving the set of
reciprocal models downsized [K̂], the devices use the subset of
reciprocal models received [B̂] ⊆ [K̂] to execute (20) so that the
unlabeled data points inDtarget

n,ul can be pseudo-labeled, and the
pseudo-labeled data points combines with the ground truth data
points in Dtarget

n,l to generate the pseudo-labeled dataset Dp
n in

Phase 2-1.
Phase 3: Personalized Classification. After establishing the

pseudo-labeled datasets, the devices use the teacher-student
architecture to update the target model θtarn for personalized
classification (i.e., to follow the objective in (21) and the iterative
process in (22)) in Phase 3-1.

Phase 4: IRs and Reciprocal Model Update. The devices
update IRs of all other devices with the set of reciprocal models
downsized [K̂] in Phase 4-1 and perform a one-round local
training to update their own reciprocal models in Phase 4-2

2The reciprocal models downsized by PCA can infer data as well. Please refer
to Section VI for more details.

3Since IRs are a N by N vector with elements ranging from [0,1], we omit
the communication overhead of IRs from devices to BS.
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Fig. 2. The system diagram of DoFed-SPP.

to update reciprocal models in Phase 4-3. Devices can use the
cached reciprocal models to calculate IRs if they are not involved
in the current set [B̂]. Finally, the devices upload the renewed
IRs to BS in Phase 4-4.

Phases 1 to 4 will repeat until the given stopping criteria are
met (please refer to Section VI-A for more details). Remark that
the accuracy of the pseudo-labeled dataset in phase 2 will be
improved iteration by iteration since the reciprocal models will
be updated in phase 4, which also helps enhance the personalized

classification models in phase 3. The pseudocode of DoFed-SPP
is presented in Algorithm 2.

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments on DoFed-
SPP. Subsection VI-A details the setup of the experiments. The
performance of DoFed-SPP and the four baselines using two
performance metrics is presented in Subsections VI-B and VI-C,
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Algorithm 2: DoFed-SPP.

Input: Target model θtar,tn for the personalized classification objective,
and a set of downsized reciprocal models Ŝt for the personalized
labeling objective.

Phase 0: Cold Start

1: t← 0;
2: for each device n ∈ [N ] runs in parallel do
3: θrec,0n , θtar,0n ← model_init();
4: θrec,1n ← local_training_warmup(θrec,0n ,Dtrain

n , L);
5: upload_to_BS(θrec,1n );
6: for each model θrec,1n , BS runs in sequential do
7: θ̂rec,1n ← sklearn.decomposition.PCA(θrec,1n );
8: broadcast_to_dev(θ̂recn );
9: for each device n ∈ [N ] runs in parallel do

10: ρ̂n ← Calculate_SR(θ̂
rec,1

, θtar,0n , θrec,0n ,Dtarget
n,l

); �run
(19) in Theorem 1.

11: upload_to_BS(ρ̂n);
12: t← t+ 1;

Phase 1: Decision of K (All the statements run by the BS)

13: All combinations of B,K ← value_of_B_K(); � run In(26).
14: [K]B ← Algorithm_1(B,K, [ρ̂n]n∈[N ]) for each combination

of B and K;
15: [K]t ← argmax[K]B

ρ([K]B);

16: [K̂]t ← ∅; �the set of downsized reciprocal models.
17: if t > 1

�PCA should be called again if not at the first round then
18: for each θrec,tn ∈ [K̂]t do
19: θ̂rec,tn ← sklearn.decomposition.PCA(θrec,tn );
20: [K̂]t ← [K̂]t ∪ {θ̂rec,tn };
21: for each θ̂rec,tn ∈ [K̂]t
22: broadcast_to_dev(θ̂rec,tn );

Phase 2: Personalized Labeling

23: for each device n ∈ [N ] runs in parallel do
24: Dp

n ← ∅; �the pseudo-labeled dataset.
25: for each x ∈ Dtarget

n,ul
do

26: p̂(x)← OneHot(
∑

i∈[K̂]t
�p(x; θ̂rec,ti ) · ρ̂in) �run (20).

27: Dp
n ← Dp

n ∪ {(x, p̂(x))};
28: Dp

n ← Dp
n ∪ Dtarget

n,l
�combine the ground truth

labeled target data.

Phase 3: Personalized Classification

29: for each device n ∈ [N ] runs in parallel do
30: θtar,t+1

n ← θtar,tn − α∇θln(θ
tar,t
n ;Dp

n); �run (22)

Phase 4: IRs and Reciprocal Model Update

31: for each device n ∈ [N ] runs in parallel do

32: ρ̂n ← Calculate_SR(θ̂
rec,t

, θtar,t−1n , θrec,t−1n ,Dtarget
n,l

);
� run (19) in Theorem 1.

33: θrec,t+1
n ← θrec,tn − α∇θln(θ

rec,t
n ;Dtrain

n ); �run (15)
34: upload_to_BS(ρ̂n);
35: t← t+ 1;

respectively. Due to the page limit, we perform the sensitivity
analysis of DoFed-SPP in Appendix B, available in the online
supplemental material to view the impact of several parameters
in DoFed-SPP.

A. Implementation Setup

1) Datasets and Default Model: Three datasets, CIFAR10
(10 classes), CIFAR100 (100 classes) [42], and DBPedia (14

classes) [63], are used for evaluating the performance of DoFed-
SPP and other baselines. CIFAR10 and CIFAR100 are two image
classification datasets, whereas DBPedia is a text classification
dataset. A model composed of two nn.conv2d layers and two
nn.linear layers serves as the default model for the two
image classification datasets, while the model composed of one
nn.EmbeddingBag layer plus one nn.Linear layer [64] is
used as the default model for the text classification dataset. The
sizes of the two models are approximately 2.1 MB and 51 MB,
respectively. For the hyperparameters setup and model detail,
please refer to Appendix D, available in the online supplemental
material.

2) Data Distributions: We refer to [12], [14] to split the data
of the three datasets in two ways. The first one is SUBSET. In
SUBSET, we split all classes of data into K ∈ Z

+ clusters at
random. If the number is not divisible by K, then the remaining
classes are assigned to any cluster at random. Then, each device
n ∈ [N ] is assigned a set of training dataset Dtrain

n and a set
of target dataset Dtarget

n , both of which are drawn from two
distinct clusters, whereDtrain

n = 500 · CK ,Dtarget
n = Dtarget

n,l ∪
Dtarget

n,ul , |Dtarget
n,l | = 10 · CK , |Dtarget

n,ul | = 190 · CK , where C is
the number of all classes. For example, sayK = 5 in CIFAR10,
then each device n has only 10

5 = 2 classes in its training dataset
and two other classes in its target dataset, and the number of train-
ing data points is 500 · 105 = 1000, the number of labeled and
unlabeled target data points is 10 · 105 = 20 and 190 · 105 = 380,
respectively. Obviously, the value of K represents the degree of
data heterogeneity among the devices.

The second one is NORMAL. In NORMAL, each device is
assigned a random number of classes in its training dataset and
its target dataset, while only the assumption that the classes in
the training dataset and those in the target dataset of one device
do not completely overlap is made. Specifically, the numbers of
classes in the training dataset and the target dataset of a device
are drawn randomly in a range from 2 to 10. If the classes in the
target dataset perfectly align with those in the training dataset,
the classes for the two datasets are redrawn again. For instance, a
device may be assigned class No.1 to No.2 in its training dataset
but class No.2 to No.5 in its target dataset. The numbers of data
points in the training dataset and the target dataset in NORMAL
are similar to those in SUBSET.

3) Baselines: We compare DoFed-SPP with following four
baselines: Federated Averaging (FedAvg) [1], FedFomo [14],
Federated Bayesian Ensemble (FedBE) [5], and Local, all of
which are implemented in PyTorch. More specifically, FedAvg is
a naïve FL framework. FedFomo asks each device to learn a per-
sonalized model by averaging local models from other devices
with specially designed weights. FedBE combines Bayesian
model ensemble with FL in order to overcome the challenge of
heterogeneous data. Local performs local training all the time
without any model exchange. For more implementational details
regarding DoFed-SPP and the baselines, please see Appendix E,
available in the online supplemental material. The experimental
results are averaged over 10 trials.

4) Reference Training Environment: We refer to the setup
in [1], [14], where there are 25 devices that wish to
participate the training for their individual personalized



3276 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

TABLE I
FINAL ACCURACY (CLASSIFICATION ACCURACY / LABELING ACCURACY)

classification objective and personalized labeling objective (i.e.,
N = 25). In each communication round, only a subset of de-
vices, [K], can upload the local models to the BS, where the
default size of [K] for FedAvg, FedFomo and FedBE is 10. For
DoFed-SPP, the computation time is measured on an RTX3090
GPU, whereas the transmission time is a random variable from
the transmission rate between 2 MB/s to 10 MB/s for uploading
a single reciprocal model. For fair comparison,K = B = 10 for
DoFed-SPP.

5) Performance Metrics and Stopping Criterion: We refer to
two metrics to measure performance. One is Final accuracy (FA)
and the other is Time-to-accuracy performance (TTAP). For FA,
the final top-1 mean testing accuracy over all the devices’ target
models on their target data is presented. For TTAP, the wall clock
time (i.e., computation and transmission time) to train a model
to achieve the top-1 accuracy over all target models of devices
on their target data is considered.

The stopping criterion for FA is that the top-1 mean testing
accuracy between two consecutive communication round is less
than 0.01. The stopping criterion for TTAP is that the training
process is shut down when the maximum wall clock time is up.
The maximum wall clock time for CIFAR10/100 and DBPedia
is 250 sec and 21,000 sec, respectively.

B. Final Accuracy

The FA of DoFed-SPP and the baselines are summarized in
Table I, whose field shows the classification accuracy and label-
ing accuracy on three datasets using two data distributions (i.e.,
SUBSET and NORMAL). It is obvious to see that DoFed-SPP
significantly outperforms other methods regardless of datasets
or data distributions. Remark that the performance of Local
and FedAvg is rather awful, which implies that the naive local
training without any collaboration and naive FL cannot satisfy
DoLP directly.

Furthermore, we can see that for DoFed-SPP the labeling
accuracy is regularly no lower than the classification accuracy. It
is because DoFed-SPP adopts the teacher-student architecture,
where the teacher is the set of reciprocal models downloaded
while the student is a single model that learns the behavior
of the teacher. However, the four baselines do not consider
the personalized labeling objective so they use the models for
classification to infer the personalized labeling tasks and the

classification accuracy is similar to the labeling accuracy. Due
to the page limit, more experimental results of labeling accuracy
are in Appendix F, available in the online supplemental material.

C. Time-to-Accuracy Performance

Fig. 3 reports the TTAP of DoFed-SPP and the baselines
in the three datasets using two data distributions, SUBSET
and NORMAL. Clearly, DoFed-SPP stills outperforms the four
baselines regardless of datasets and data distributions. Remark
that DoFed-SPP performs the same as Local initially since
DoFed-SPP initializes the local training warm-up on reciprocal
models without any mode exchange. The accuracy of DoFed-
SPP after the local training warm-up (i.e., Phase 0) skyrockets.
It is because reciprocal models are sufficiently representative
to their training datasets and using IRs the devices can find the
most beneficial set of reciprocal models to satisfy personalized
objectives. Moreover, the accuracy after the local training warm-
up is ever-increasing since the teachers (i.e., the pseudo-labeled
datasets) are enhancing the labeling accuracy, thereby improv-
ing the student’s classification accuracy accordingly (i.e., the
classification model).

VII. RELATED WORK

Existing studies can be divided into three categories: Commu-
nication efficiency for FL, federated semi-supervised learning,
and personalized federated learning.

Communication efficiency for FL. Since training FL usually
consumes a substantial deal of communication resources, much
work attempts to improve the communication efficiency in
training FL. Konečnỳ et al. proposed to use smaller number of
variables to represent the local models from the participants so
that the communication complexity between PS and the partic-
ipants can be reduced [65]. Bonawitz et al. viewed the training
of FL from the perspective of a top-down system and proposed
a training mechanism to improve the communication and op-
eration efficiency [66]. Han et al. sparsified the gradients from
the participants with different degrees adaptive to participants’
local data and strike a balance among the training performance,
communication efficiency, and degrees of gradient sparficia-
tion [67]. Huang et al. presented a novel encoding scheme for
communication of FL between the participants and PS so that the
communication efficiency can be further improved [68]. Jin et
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Fig. 3. TTAP of DoFed-SPP and the baselines on CIFAR10, CIFAR100, and DBPedia using two data distributions, SUBSET and NORMAL.

al. proposed an online participant selection algorithm for FL in
favor of the dynamic scenarios where available participants are
time-varying [48]. Wang et al. designed a three-layer (i.e., among
participants and between PS and participants) communication
hierarchy and combined the asynchronous updating technique
with FL on to mitigate communication overhead derived from
straggler effect [47]. Li et al. developed a flexible communica-
tion compression scheme guided by the convergence bound of
FL and adaptive to the computing and communication condi-
tions across the participants [51]. The work above focuses on
the minimization on the average loss and do not consider the
unlabeled data points, making them unsuitable for DoLP.

Federated Semi-Supervised Learning (FSSL). Zhang et al.
incorporated graph normalization into FSSL such that the gra-
dient diversity from the different users can be mitigated, thereby
improving testing accuracy [69]. Che et al. proposed FedTriNet,
an FSSL framework that exploits the subtly-designed labeling
mechanism to augment the insufficient amount of labeled data
such that the test accuracy can be improved [70]. Kang et
al. presented FedCVT to improve the testing accuracy when
the amount of labeled data is insufficient. FedCVT estimates
representations for missing features, predicts labels for unla-
beled data to expand the training set, and trains three classifiers
jointly based upon different views of the expanded training set
to improve the test accuracy [71]. Jeong et al. proposed an FSSL
framework named FedMatch that minimizes the inter-client
consistency loss for mitigating model diversity among the clients
such that the test accuracy can be improved, and decomposes
parameters into one for labeled data and the other for unlabeled
data in order to reduce the training overhead [20]. However, the
above work aims to minimize the loss of the aggregate of local
models, that is, they do not consider the personalization of the
users. Therefore, they are unable to address DoLP.

Personalized Federated Learning (PFL). Smith et al. pro-
posed MOCHA, a multi-task learning for FL that considers the
users as tasks and each user learns one model [72]. Fallah et
al. employed a meta-learning approach to realize fast person-
alization, where the users can be easily adaptive to their local
data by executing a few steps of gradient descent with respect
to their local data [11]. Dinh et al. used Moreau envelopes as
the users’ regularized loss functions so that the personalized
model optimization can be decoupled from the global model
training for personalization [13]. Ghosh et al. proposed to cluster
the users according to their local data distributions. The users
in the same cluster update a global model such that the data
heterogeneity can be mitigated [54]. Collins et al. proposed that
the central server aggregates the representation layers of local
models while the users keep unique heads of local models for
personalization [73]. It is obvious to see that the aforementioned
work assumes that the users’ personalized objectives align with
their local data, thereby unable to address DoLP.

VIII. CONCLUSION

In this article, we make the first attempt to study the issue of
insufficient and partially-labeled data in PFL, based on which we
formulate the problem DoLP that has two personalized service
objectives and the constraint of training time over wireless net-
works. Then, we propose a PFL service system DoFed-SPP that
1) adopts an inference-based first order approximation metric to
determine the similarity between the local data of devices, and
2) uses an approximation algorithm to select the optimal size
and set of devices to upload their local models. The extensive
experiments show that Com2DoFed outperforms the state of the
art in terms of two performance metrics on three benchmarks.
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Due to the page limit, we defer the discussion and future work
to Appendix G, available in the online supplemental material.
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