IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 2, MARCH/APRIL 2023 845

A Novel Graph-Based Computation Offloading
Strategy for Workflow Applications in Mobile
Edge Computing

Xuejun Li

, Member, IEEE, Tianxiang Chen
Jia Xu, Member, IEEE, and Xiao Liu

, Dong Yuan™, Member, IEEE,
, Senior Member, IEEE

Abstract—With the fast development of mobile edge computing (MEC), there is an increasing demand for running complex
applications on the edge. These complex applications can be represented as workflows where task dependencies are explicitly
specified. To achieve better Quality of Service (QoS), computation offloading is widely used in the MEC environment. However, many
existing computation offloading strategies only focus on independent computation tasks but overlook the task dependencies.
Meanwhile, most of these strategies are based on search algorithms which are often time-consuming and hence not suitable for many
delay-sensitive complex applications in MEC. Therefore, a highly efficient graph-based strategy was proposed in our recent work but it
can only deal with simple workflow applications with linear (namely sequential) structure. For solving these problems, a novel graph-
based strategy is proposed for workflow applications in MEC. Specifically, this strategy can deal with complex workflow applications
with nonlinear (viz. parallel, selective and iterative) structures. Meanwhile, the offloading decision plan with the lowest energy
consumption of the end-device under deadline constraint can be found by using the graph-based partition technique. We have
comprehensively evaluated our strategy on FogWorkflowSim platform for complex workflow applications. Extensive numerical results
demonstrate that the end device’s energy consumption can be effectively reduced by 7.81% and 9.51% compared with PSO and GA by
the proposed strategy. Meanwhile, the strategy running time is 1% and 0.2% of PSO and GA, respectively.

Index Terms—Mobile Edge computing, workflow management, energy consumption, computation offloading, directed acyclic graph

1 INTRODUCTION

WITH the continuous improvement of the computing
capacity of various smart end-devices, an increasing
number of intelligent applications are deployed on mobile
end-devices such as smart logistics. Meanwhile, massive
computation requests submitted by the end-devices can be
offloading to cloud data centers. However, public networks
with limited bandwidth will cause significant delays, which
is unacceptable for many delay-sensitive applications. Now-
adays, mobile edge computing (MEC) has been widely used
to provision computing resources from the network edge to
the end-device in order to reduce response delay [1]. Com-
putation tasks on the end-devices can be offloaded to the
edge servers for execution through low-cost and high-band-
width transmission such as the 5G and WIFI networks [2],
[3]. Computation offloading plays a key role in effectively

o Xuejun Li, Tianxiang Chen, and Jia Xu are with the School of Computer
Science and Technology, Anhui University, Hefei, Anhui 230093, China.
E-mail: xjli@ahu.edu.cn, biyisi_96@qq.com, xujia@stu.ahu.edu.cn.

o Dong Yuan is with the School of Electrical and Information Engineering,
University of Sydney, Sydney, NSW 2006, Australia.

E-mail: dong.yuan@sydney.edu.au.

e Xiao Liu is with the School of Information Technology, Deakin University,

Geelong, VIC 3220, Australia. E-mail: xiao.liu@deakin.edu.au.

Manuscript received 2 July 2021; revised 16 Apr. 2022; accepted 25 May 2022.
Date of publication 3 June 2022; date of current version 10 Apr. 2023.

This work was supported by the National Natural Science Foundation of
China under Grants 61972001 and 62076002.

(Corresponding author: Xiao Liu.)

Digital Object Identifier no. 10.1109/TSC.2022.3180067

improving the Quality of Service (QoS) of MEC-based appli-
cations by reducing the response delay and the energy con-
sumption of end-devices [4], [5].

Given the success of MEC, there is an increasing demand
for running complex applications on the edge. For example,
in the UAV (Unmanned Aerial Vehicle) based smart delivery
system, there are many complex applications such as
dynamic route planning, obstacle detection and face recogni-
tion [6]. At the same time, UAVs are limited by their comput-
ing power and battery life so that they are unable to execute
computation-intensive tasks as mentioned above. Fortu-
nately, the UAV’s energy consumption and task response
time can be effectively reduced by the computation offload-
ing technology in the MEC environment [7]. Most of complex
applications in the real-world can be represented by work-
flows where task dependencies are explicitly specified [8].
Business workflows usually focus on the modeling of con-
trolflow oriented business processes. Scientific workflows
aim to model large-scale, distributed, data-intensive and
computation-intensive scientific processes [9]. This paper
focuses on data-centric scientific workflows. Specifically, the
task dependencies expressed as the input data of each task
or whether it is executed depends on the execution result of
the previous task. Most of research works are either based on
independent tasks or simple task composition where tasks
are executed in a sequential manner [10], [11].

The graphical description for scientific workflow is an
intuitive way, such as Petri net and Directed Acyclic Graph
(DAG). Petri net have the function of simple graphical

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6630-2958
https://orcid.org/0000-0001-6630-2958
https://orcid.org/0000-0001-6630-2958
https://orcid.org/0000-0001-6630-2958
https://orcid.org/0000-0001-6630-2958
https://orcid.org/0000-0002-7492-1377
https://orcid.org/0000-0002-7492-1377
https://orcid.org/0000-0002-7492-1377
https://orcid.org/0000-0002-7492-1377
https://orcid.org/0000-0002-7492-1377
https://orcid.org/0000-0003-1130-0888
https://orcid.org/0000-0003-1130-0888
https://orcid.org/0000-0003-1130-0888
https://orcid.org/0000-0003-1130-0888
https://orcid.org/0000-0003-1130-0888
https://orcid.org/0000-0001-8400-5754
https://orcid.org/0000-0001-8400-5754
https://orcid.org/0000-0001-8400-5754
https://orcid.org/0000-0001-8400-5754
https://orcid.org/0000-0001-8400-5754
mailto:xjli@ahu.edu.cn
mailto:biyisi_96@qq.com
mailto:xujia@stu.ahu.edu.cn
mailto:dong.yuan@sydney.edu.au
mailto:xiao.liu@deakin.edu.au

846 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 2, MARCH/APRIL 2023

description and interpretation ability, but make graphs too
redundant. DAG is one of the most general representation
models for workflow tasks, and has the advantage of being
easier to use and more intuitive [12]. In this paper, the work-
flow applications defined in DAG and also can be adapted
to the workflow applications defined in other models. The
Graph4Edge-Nonlinear strategy can be executed only by
converting other workflow models into DAGs, and many
existing research studies have already demonstrated the
feasibility of model conversion, such as [13], [14].

Generally speaking, all real-world applications can be
represented by a mix of linear (namely sequential) and non-
linear (viz. parallel, selective, and iterative) structures work-
flow [15]. It needs the computation offloading strategy
should be able to deal with linear and nonlinear structures
simultaneously. The greedy type of strategies have been
widely used to obtain a feasible solution in a short time, but
they cannot produce optimal offloading decisions [16]. In
order to improve the quality of the decisions, many studies
employed search algorithms such as particle swarm optimi-
zation (PSO) and genetic algorithm (GA) to search for the
optimal offloading decision by an iterative process, which
could produce significant time overhead [17], [18], [19], [20].
At present, most computation offloading strategies are
either simple but not good enough, or they are too time-con-
suming to be unsuitable for delay-sensitive complex appli-
cations [21].

To address the above issues, a novel computation off-
loading strategy using graph partition technology is pro-
posed in this paper for workflow applications in MEC. To
distinguish with our previous preliminary work which can
only deal with linear workflow structures [22], we name the
previous strategy Graph4Edge-Linear, name the new strat-
egy proposed in this paper Graph4Edge-Nonlinear. Our
proposed strategy considers the influence of the complex
task dependencies on the computation offloading decisions,
and the end device’s energy consumption is optimized
effectively under the given deadline constraints. Please note
that the energy consumptions of edge servers are not con-
sidered in this paper. This is because edge servers are usu-
ally connected to the power grid, and hence their energy
consumptions are not regarded as limiting factors in a MEC
environment.

Specifically, the novel contributions of this paper are
summarized as follows:

1) A novel nonlinear workflow model for complex
MEC-based applications is proposed. The model is
based on WDG (Workflow Dependency Graph)
which considers both complex task dependencies
and the objective of reducing the end-device’s
energy consumption.

2) Wepropose a novel graph-based computation offload-
ing strategy named Graph4Edge-Nonlinear based on
the WDG which can find the best computation offload-
ing decision with the minimum end-device’ energy
consumption under the given deadline. Its perfor-
mance is significantly better than popular search-algo-
rithm based strategies.

3) Both a case study on a real-world UAV delivery sys-
tem [23], [24] and extensive simulation experiments

on the FogWorkflowSim platform [25] for MEC
based workflow applications are presented. The
experimental results demonstrate the effectiveness
of our proposed strategy and its overall better per-
formance than other representative strategies, espe-
cially in terms of strategy running time.

The rest of this paper is structured as follows: Section 2
introduces a motivating example on a MEC-based UAV
delivery system. Section 3 presents some preliminaries for
this study. Section 4 proposes our novel graph-based com-
putation offloading strategy for workflow applications with
nonlinear structures. Section 5 presents the evaluation
results. Section 6 reviews the related works for computa-
tions offloading. Finally, Section 7 makes the conclusions
and points out some future work.

2 MOTIVATION EXAMPLE AND PROBLEM ANALYSIS

In this section, in order to describe the motivation of compu-
tation offloading in the MEC environment, an example of the
MEC-based UAV last-mile delivery scenario is presented.

In the MEC-based UAV last-mile delivery system [23],
there are various delay-sensitive applications such as
dynamic flight route planning and autonomous obstacle
avoidance for UAVs, pose and face recognition for receivers
[26], [27]. In fact, because of the UAV’s limited battery life
and computing power, these computation-intensive tasks
are not suitable for execution locally under the fast response
and energy efficiency requirements. Therefore, computation
offloading to the edge server is often required.

Here, we illustrate the computation offloading problem
with a partial workflow of the whole UAV delivery process,
namely the final parcel delivery workflow. The MEC-based
UAV delivery system is conceptually divided into two
layers. As shown in Fig. 1, the upper layer is the edge server
layer, which consists of various edge servers. These edge
servers can provide computing resources close to the end-
device. The bottom layer is the final parcel delivery work-
flow which consists of a set of computation tasks with
dependencies. In this paper, we simply refer temporal and
data dependencies as task dependencies, and they can be
explicitly specified using DAG as will be introduced in the
next section. Specifically, as shown in Fig. 1, there are many
computation-intensive tasks in the UAV last-mile delivery
scenario, such as target detection, image segmentation, pose
and face recognition. The processing of each target (namely
the receiver) in the video frame is independent with each
other. Hence, it can be regarded as parallel tasks in the
workflow. The system needs to run multiple poses and face
recognition tasks in parallel to ensure timely detection of
the actual receiver from the crowd. Once the UAV detects
the actual receiver, it will approach the receiver and begin
to land and unload the parcel. More information about this
UAV delivery system can be found in our previous works
[23], [24].

Obviously, these real-time tasks are delay-sensitive, and
fast response time is essential. According to different char-
acteristics (such as task workload, data size and deadline
constraints) of the computation tasks, some of them are off-
loaded to edge servers to achieve faster response time and

LI ET AL.: NOVEL GRAPH-BASED COMPUTATION OFFLOADING STRATEGY FOR WORKFLOW APPLICATIONS 847

lower energy consumption [28]. However, computation off-
loading is a difficult decision-making problem.

While there are some existing strategies that are based on
heuristic algorithms or search algorithms, they all have
some limitations. For example, heuristic algorithms have
the premature convergence issue so they may not be able to
find the best computation offloading decision. While search
algorithms such as PSO and GA can find the better deci-
sions, they are usually very time-consuming and hence not
suitable. Meanwhile, to the best of our knowledge, none of
the existing strategies can effectively deal with complex
task dependencies which can be represented by nonlinear
workflow structures.

For solving the above issues, a novel graph-based strat-
egy is proposed to solve the computation offloading prob-
lem in the MEC environment. Our proposed strategy can
deal with nonlinear workflow structures and find the best
computation offloading decision with the minimum energy
consumption under the deadline constraint.

3 PRELIMINARIES

Generally speaking, for the purpose of computation off-
loading, there are two kinds of computation tasks in the
workflow, which are general tasks and local execution
tasks. General tasks are those tasks which are executed
either at end-device or edge server via computation off-
loading. Local execution tasks are those tasks that can only
be executed on end-device due to the required input data
is only available at the end-device and cannot be moved
due to security restrictions, or some tasks which require
user input at the end-device [22]. In this situation, edge
servers cannot handle these tasks. In other words, these
tasks must be processed on the end-device. These nodes
can be expressed as localSet.

This paper uses the workflow dependency graph
(WDG) to represent the workflow model and its task
dependencies. WDG is a directed acyclic graph that is com-
posed of workflow tasks with dependencies. Each task T’
of WDG contains three basic attributes z;, y;, z;, which rep-
resent the energy consumption in different situations of the
end-device.

In Fig. 2, the symbol — denotes that there is a depen-
dency relationship between two task nodes. For example,
the T'; — T';, indicates that T’; is the predecessor of T'; in the
WDG. There are T1 — T2, T2 — T3, TQ — T5, T3 — T4,
Ts — T, etc. Ty points to T, which means there is a direct
dependency between T'; and T'5. We use the task T';’s out-
put data as task T'’s input data. In addition, — is defined as
having transitivity, where T, =T} —T;&T; =T}

The symbol «+ indicates that there is no dependency
between the two tasks, where T; +»T; means the 7T; and
T; are disparate branches in WDG. For instance, we have
T3 s 7-157 Ty T6/ etc.in Flg 2.

Here, z; means the energy consumption of the data trans-
mission when decide offloading 7; to edge server. The
data transmission between T; and T; (MB) indicated
as Comm(T;,T;). Tys direct predecessor node is T);.
Bandwidth is the data transfer speed of the computation
tasks (Mbps). Pyqns denotes the end-device’s transmission

Edge Servers

©

WLAN @D =c A LAN
"" — — |f— — —€omputation Offloading— — 4~ — ——> 87
Final Parcel Delivery Workflow
Frame Target Image Pre-processin
Filtering Detection Segmentation P 2]

Face Pose

Recognition Recognition
Face Pose
Recognition Recognition

Fig. 1. Computation offloading for an example workflow in a MEC-based
UAV delivery system.

Confirm
Receiver

power (W).

= Prrans (D)
i Bandwidth ¥ Hrans

Where y, is end-device’s idle energy consumption
when decide offloading T to edge server. The task Ty’'s
workload (Megacycles) is denoted as 1;. The edge server’s
CPU frequency (GHz) is feqee. The end-device’s idle
power (W) is Pjq.

I
Yi =
f edge

The end-device’s load energy consumption is denoted as
z; when Tj is executed on the end-device. The end-device’s
CPU frequency (GHz) and execution power (W) is denoted
as fenqg and Pepg respectively.

l;
f end

In our previous work [22], the proposed method can con-
vert the computation offloading problem of the linear WDG
into the shortest path problem. The weight of the edge
between two nodes is expressed as w(T;,T;) , which is the
end-device’s energy consumption. At this time, the compu-
tation task 7'; and T'; are decided offloading to edge server
and the tasks between T; and T'; are executed locally. All
possible offloading decisions in WDG can be mapped to
edges between different task nodes. The weight of each
edge represents the energy consumption of end-devices. As
mentioned before, the energy consumptions of edge servers
are not considered as edge servers are usually connected to
the power grid. There are two types of virtual nodes in the
WDG, which are the start node 7T’y and end node 7', in prob-
lem of the shortest path. By adding 7s and 7. to the
localSet, the energy consumption of returning the final
result to the end-device can be calculated.

Fig. 3 demonstrates simple example to building an
Energy consumption Transitive Graph (ETG) for a lineaer
WDG where localSet = {T3} . There are only two virtual
nodes in graph, which are the start node with only in-edges
and the end node with only out-edges. Add energy con-
sumption edges for task nodes, and set the weight to the
energy consumption required for offloading.

* Pigle (2)

2 = * Pend (3)

848 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 2, MARCH/APRIL 2023

T)—>(T)

T)—=®) T)—{)

T)—>1)

Fig. 2. An example workflow dependency graph.

According to the WDG, ETG an is constructed [18]. Spe-
cifically, we design a one-to-one mapping for all paths in
the graph to all possible offloading decisions of the work-
flow, and the classic Dijkstra algorithm is used to find the
shortest path in ETG. Since the complexity of graph-based
algorithm is low, this strategy can efficiently obtain excel-
lent results.

4 GRAPH-BASED MINIMUM ENERGY
CONSUMPTION COMPUTATION OFFLOADING
STRATEGY

We present the strategy of Graph4Edge-Nonlinear in this
section. This strategy will find the best offloading decision
with minimum energy consumption of the end-device
under the given deadline. First in Section 4.1, we introduce
our model definition and how to convert workflow struc-
ture to WDG. Then in Section 4.2, we discuss how to find
the best offloading decision plan for complex WDG with
Graph4Edge-Nonlinear. Finally, in Section 4.3, we use
pseudo-code to describe the detailed process for our strat-
egy and the discussion of its algorithm complexity is also
presented.

4.1 Problem Formulation
We introduce the model definition in this section. Then the

conversion from nonlinear workflow structure to WDG is
described.

4.1.1 Model Definition

For the computation offloading purpose, the attributes of
task T; are defined as x;,y,, 2;, flag,, E;. flag; denotes the
constraint whether T’; is local execution task or not. Specifi-
cally, flag; = 1 means that T’ is a local execution task. Oth-
erwise, the task 7 is sending to the edge server for
execution. E; denotes the T;’s execution energy consump-
tion in end-device. The calculation method of F; as follows:

x; +y;, tfflag; = 0 andflag;_; = 1;
x; + ziyifflag; = 1 andflag;_; = 0;
Y;,ifflag; = 1 andflag;_; = 1;
zi,ifflag; = 0 andflag;_; = 0;

According to the offloading decision, the calculation
method of E; has two situations. When either of task 7'; and
T;_: offloaded to edge server, the data transmission energy
x; appears between the two tasks. Otherwise, when both of
the two tasks are offloaded or not offloaded, there is no data
transmission energy between the two tasks. The end
device’s energy consumption y; or z; depends on offloading

Data dependency: — Energy consumption edge: 4

WDG Xet2rt2tzs
(x1,y1,21)

Ty = T; - T, —- T; — T,

(X3, v3,23) XXy L HYrtzs

ETG
Add edges 5
Ts —h' T —# T2 —" T3 -—h“ Te

Set weight ety

(x2,¥2,22)

Fig. 3. An example of building an ETG for simple linear WDG.

decision plans of task 7). The time consumption of each
task T'; consists of transmission time T,fm”s and execution
time 777, According to the above definition, the total time
to complete all tasks is defined as follows:

Time cost = (Et/mns + Tfu’,cu) (5)
{T;|T;eWDG}

Then the destination function is defined as MinEC,
which is calculated as follows:

MinEC = min (Ey)
{T3|T;eWDG}

s.t. Timegst < Deadline 6)

The final optimization goal is to find the best computa-
tion offloading plan with the minimum energy consump-
tion of the end-device under the deadline constraints.

As shown in Fig. 4, the WDG has a sub-branch within
one block. To find the task offloading decision with mini-
mum energy consumption in WDG, one branch is chosen
randomly to construct the ETG which is called “main
branch” (indicated as MB). The rest of branches are called
“sub-branches” (indicated as SB). such as the MB =
{T1,T5,T3,T4,T7,Ts} and SB = {T5,Ts} in Fig. 4. If the
energy consumption of the SB in the block can be mapped
to the weight of the MB, all offloading decesions can be rep-
resented on the MB. The weight of the SB in Fig. 4 is defined
as E5 + Eb

The weights on the SB need to be taken into account
when the weighted edge on the MB crosses the Block. At
this point, the weight of SB depends on whether the prede-
cessor node of the Block is offloading or not. Therefore, we
need to discuss the in-block edge, out-block edge and nor-
mal edge separately. For the offloading decision that does
not cross through the internal nodes of the Block, it will be
easier to discuss their weights, so the Over-block edge is
defined for consideration. To better present our problems
and methods, here are some detailed definitions:

Block: In WDG, A block (denoted as B) is defined as a set
of sub-branches which are forked from one task node and
merged at another task node. A WDG with simple block
B = {T3,T4,T5,T¢}is shown in Fig. 4.

In-block edge: In-block edge e(T’;, T';) represents the edge
begins with T'; preceding the block, and points to 7’; in the
block, for example, e(T,T3, €I'1,T4) in Fig. 4. Formally,

mm(Eg+E6)
Sub Branch | Ts e T5
MamBjanch e = Bl.(!Ck T Y Y i
SRR 3 O ',i.\ e o
T - T1 - Tz T; —.-\ e TZ;';". Tg)—>(Te)

Fig. 4. An example of building ETG for single-block WDG.

LI ET AL.: NOVEL GRAPH-BASED COMPUTATION OFFLOADING STRATEGY FOR WORKFLOW APPLICATIONS 849

o
OO HEn
mm@w
s

(a) parallel structure

e(T;,T;) is an in-block edge, where 3T, € WDG AT; — T,
/\Tj R ad Tk

Out-block edge: Out-block edge e(T;,T;) represents the
edge begins with T'; in the block, and points to 7'; succeed-
ing the block, for example, e(T'5,Ts), e(T4, Ts) in Fig. 4. For-
mally, e(T;,T;) is an out-block edge, where
T, € WDG AT T NTj — T,

Ower-block edge: Over-block edge e(T';,T;) represents the
edge crosses over the block. T’; is the task node which pre-
cedes the block and 7', is the task node which succeeds the
block. For example, e(T,Ts), e(T,Ts) in Fig. 4. Formally,
e(T;,T;) is an over-block edge, where 3T}, T, € WDG A
T, =T, — T//\TL — T —>Tj/\Th<7L>Tk.

Ordinary edge: An ordinary edge e(T’;, T;) means that tasks
between T; and T'; when they are totally ordered, such as
e(T1,T9), e(Ts,T4), e(T7,Tg) in Fig. 4. Formally, e(T;,T';) isan
ordinary edge, where =37}, € WDG A ((T; — Ty AT, <+ T)
\/(Ti<—/L>T1g/\T}C —>Tj)\/ (Th c WDG ATy, «» T} NT; —
T *)Tj NT; =T — T]))

In this paper, we can define the weight of the ordinary
edge as Eq. (7). For an edge e(T;, T;), we denote its weight
as w(T;,T;), which is defined as the sum of the T’s idle
energy consumption, the transmission energy consumption
of the T';’s successor and 7'j, and the load energy consump-
tion of the tasks between T'; and T'j, supposing that only T;
and T'; are all offloaded to edge server.

w(T;, Tj) = y; + Tiy1 +x; + Z z (7)
{Tk| TReWDGAT—T)—T;}

4.1.2 Convert Nonlinear Workflow to Complex WDG

The topology of workflow is represented by WDG. In the
real-world, the structure of workflow contains four basic
topology types, viz. sequential, parallel, selective and itera-
tive structures [15]. Specifically, in this paper, we name the
workflow only composed with the sequential structure as the
linear workflow. If it contains the other three structures, we
name the workflow as the nonlinear structure. Although the
real-world workflow structures can be very complex with the
mix of the four basic workflow structures, all of them can be
converted to WDGs by a simple method are proposed in [29].
In [22], a strategy that can find minimum energy consump-
tion of a simple linear structure workflow is proposed. How-
ever, the task dependencies in the remaining three workflow
structures are much more complicated. Through the conver-
sion process, any structures can be converted into multiple
sequential structures. Fig. 5 shows how the three nonlinear
basic workflow structures are converted to WDG.

As shown in Fig. 5a, three sequential structures are
obtained by constructing three subtask instances for a paral-
lel structure [29]. Firstly, add the virtual start node and end
node. Secondly, the different paths to 7'y are constructed as
separate branches. Finally, connect all paths to form a com-
plete WDG. Figs. 5b and 5c show the conversion examples
for the selective and iterative structures, respectively [8]. In
Fig. 5b, still have to add two virtual start node and end node,
then list three different path options to reach the 7’5, shown
as complex branch structure. The three cases of reaching T’
are fully represented. In Fig. 5¢, at least one passes through
T, and at most two passes through the iterative loop. Accord-
ing to [8], it can be expressed as two branches in parallel.

(b) selective structure

NG
BB D

(c) iterative structure

Fig. 5. Convert nonlinear workflow structures to WDG.

Any workflow is a combination of the four basic struc-
tures, and they can be converted into corresponding WDG
models. In real-world workflow applications, WDGs with
nonlinear structures are very common [30]. Due to the exis-
tence of nonlinear structures, the existing computation off-
loading strategy for linear structures cannot be used
directly. For solving the problem of computation offloading
for complex workflow applications with nonlinear struc-
tures, we propose the Graph4Edge-Nonlinear strategy. This
strategy is able to optimize the end-device’s energy con-
sumption under the given deadline constraints.

4.2 Graph4Edge-Nonlinear for Complex WDG

In this subsection, we introduce our strategy implementa-
tion steps by single-block WDG firstly. Then, the Multi-
block WDG strategy is introduced.

4.2.1 Single-Block WDG

In this section, the single-block WDG is analyzed as an
example to describe the problem and detailed steps for Gra-
ph4Edge-Nonlinear based on above model definition.

850 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 2, MARCH/APRIL 2023

Block
Sub-branch '—- ------ — \T;
Main Branch
[— S e
T;'_"TI,'_" T)/ i T,_L'i—lv ------ e :_T[_,':’_' Th'_"Tk’_"'Te'

x r 3 b 3 ! ¥
Fig. 6. The initial ETG of single-block WDG.

The purpose of the Graph4Edge-Nonlinear strategy is to
map the energy consumption of the possible offloading
decision to the weight of the edge. Therefore, the shortest
path of the linear workflow structure can be easily found by
the optimal offloading strategy. e(T;, T;) means that tasks
T; and T; are offloaded to the edge server, and tasks
between T'; and T'; are executed locally. As a result, it is nec-
essary to calculate the energy consumption of locally exe-
cuted tasks which include transmission and idle energy
consumption. In the single-block WDG, Eq. (7) is suitable
for in-block edges and ordinary edges. But when e(T;, T;) is
either out-block or over-block, Eq. (7) is no longer suitable
for its weight calculation due to the tasks succeeding the
block may have more than one task as their predecessor
node. For example, the edge of (T'3,T’s) in Fig. 4 can be cal-
culated by w (T's,Ts) = x4 + x3 + yg + 24 + 27 according to
Eq. (7). However, the offloaded situation of the sub-branch
tasks T5 and T is not considered. Therefore, the obtained
shortest path cannot represent the overall decision of WDG.

For the above reasons, the weight of e(T;,T;) is defined
as follows:

w(Ti, Tj) = y; + x; + 7,
+ Z 25 + Z Ep | Smin (8)
{4 | TeWDGAT,—T}—T;} (T} TiesB}

In Eq. (8), <Z{T1\Tz <SB) ET]>Smin means the minimum

energy consumption of the tasks that are in the sub-branches
of the block. zj, | represents the transmission energy consump-
tion of the task that directly depends on T;. The out-block or
over-block edge’s shortest path length is equal to the task’s
minimum energy consumption by Eq. (8), i.e., Pyip, (T3, T;) =
21,1, eWDG AT —Ty—T; yEr - Hence, in order to calculate the

out- or over-block edge’s weights, the offloaded strategy of
sub-branch in single-block WDG is essential. For instance, the
weight of edge e(T's, T's) in Fig. 4 is calculated as w (T'5,Ts) =
Ty +xs+ys+ 21+ 27+ (E5 + Eg) Sy where S,,;, is the best
computation offloading decision of the SB.

For any sub-branch, the offloading decision of the previ-
ous node of the block decides the transmission energy con-
sumption of the first task node in SB. If e(T;, T;) is an over-
block edge, we need to consider two different situations. If
T; is the previous node of the block and it will be offloaded,
then when the first task of the SB is offloaded, the transmis-
sion energy consumption is not calculated as they are both
executed on the edge. Otherwise, the transmission energy
consumption must be calculated when the first task of the
SB is offloaded. In order to solve this problem, when T is
not the previous node of the block, a special non-offloaded
virtual node 7" is added between the start node 7', and the
first task node T, and set ;z:/s = y; = z:, = 0. In this way,

Sub-branch i@>:+ ------ »(T)\
___B_lO_C]_(. g = e
§ g :

= s = 4 - A
(T (T - (T (T) eeeeee (T") ' T (T>—{(T.)
'Ts,—""Tu, —p]‘v/ = \{\) "“‘\Ty \Z‘b,-p _’gb _\Z'g}.

Fig. 7. Examples of in-block edges in two different situations.

we account the energy consumption for transmission of the
first node of the SB. As shown in Fig. 8, the nodes on the
branch are constructing a linear structure. Then, we use the
linear strategy to calculation the energy consumption of SB
[22]. Otherwise, if the remaining tasks within the block still
compose a complex WDG, the Graph4Edge-Nonlinear strat-
egy must be recursively called to search for the best offload-
ing decision plan S,,,.

For an out-block edge e(T’;, T';), the previous task of sub-
branch is unknown. For example, for calculating the out-
block edge weight e(T'3, T’s) in Fig. 4, the optimal offloading
decision S,,;, is necessary for the sub-branch {75, Ts}. How-
ever, Spi, depends on the status of T and T';. Therefore,
multiple ETGs for WDG must be constructed to measure
the out-block edge’s weight. Specifically, the minimum
energy consumption strategy is the minimum length path
among all ETGs. The specific steps for Graph4Edge-Nonlin-
ear strategy are shown below:

Step 1: Construct the initial ETG of WDG. An arbitrary
branch in WDG is chosen as the main branch. At the same
time, the energy edges are added to construct ETG. And for
the set of {T;|T; € localSet}, the edges are pruned when T;
serves as the head or tail.

Step 2: Set the weight of edges in the ETG. The weights of
the ordinary and in-block edges are set by Eq. (7). For the
over-block edges, the Graph4Edge-Nonlinear strategy is
recursively called to find its S,,i,, then set the weights by
Eq. (8). Finally, the weight of all out-block edges is set to
infinity. The initial ETG is shown in Fig. 6.

Step 3: Construct two different branch ETG models
based on in-block edge situations. The specific description
is as follows:

(1) If the in-block edge is not from the previous node of the
block, and firstly discovered. A new ETG is created, and then
the Graph4Edge-Nonlinear strategy processes the sub-
branch in the block to find the optimal energy consumption
offloading decision. For example, when we find e(T",,T,) in
Fig. 6, mark the current situation and create a new ETG to
record according to the current ETG. First of all, the infor-
mation of the current ETG is copied to the new ETG. Then,
we prune all the in-block edges which head from the previ-
ous task of block, which ensures the correct calculation of
the sub-branch’s minimum energy consumption strategy.
At this time, the ETG generated by the linear branch WDG
is shown in Fig. 8a. Finally, the weights of all out-block
edges for this block in ETGs are updated.

(2) If the in-block edge is from the adjacent predecessor task of
block, and this situation was first discovered. We can make
adjustments in the current ETG. Specifically, when the in-
block edges from the previous task node of this block were
discovered for the first time, such as e(T’,,, T) in Fig. 7, situa-
tion (1) has been completely traversed, so it can be proc-
essed directly on the current ETG. Prune all in-block edges
that are not from the previous task node, and it ensures that

LI ET AL.: NOVEL GRAPH-BASED COMPUTATION OFFLOADING STRATEGY FOR WORKFLOW APPLICATIONS 851

Strategy: Graph4Edge-Nonlinear

Input: A workflow dependency graph (WDG); local-execu-
tion tasks in WDG (localSet);
The workflow task’s deadline constraint (Deadline);
Output: tasks in WDG (5);
Compute (z;,y;, z;) for all tasks by Egs. (1), (2), (3);
Add T, T.into WDG and set attributes;
if T! is needed then
Add a virtual task 77 succeed T's and set attributes;
end if
if WDQG is linear workflow then
return Graph4Edge-Linear (WDG, localSet, Deadline);
end if
Get a main branch MB from WDG and construct ETG;
10 Prune e(T;,T;) if T; or T'; in localSet;
11 Set all out-block edges e (1;,T;) = oc;
12 Compute weight for other edges by Eq. (7-8);
13 ETG _Set = ETGim'[}
14 for each in-block edge e(7;, T;) in ETG_Set do
15 if isFirstFind(T;) and notPreviousNode(T;) then
16 F1Ggy — F1G;
17 Sgp « Iterate Graph4Edge-Nonlinear;
18 endif
19 if isPreviousNode(T;) then
20 Ssp « Iterate Graph4Edge-Nonlinear (need 77);
21 endif
22 Compute out-block edge in ETG _Set by Eq. (8);
23 end for
24 fork = n+1downto1do
25 Pupin = Dijkstra_Algorithm(Ts, Ty, ETG);
26 S = Py (Ts,T},) traversed tasks;
27 if Time.,s < Deadline then

IO U WN -

O

28 break;
29 endif
30 end for

31 if & = Othen
32 S = null;
33 end if

34 return S;

all sub-branches can be directly calculated using the Gra-
ph4Edge-Nonlinear strategy. The ETG created by the linear
branch WDG is shown in Fig. 8b. Finally, all out-block edge
weights are updated for this block in ETGs.

Step 4: Use the Dijkstra algorithm to search the minimum
length path in ETGs, and perform verification to ensure that
deadline constraints are met. The nodes on the shortest path

\Ts { T;/ —isi 900 0ne —]v]

(a) In-block edges not from the previous node

(x%y,2)s=(0,0,0)
. TS Ts' Ti y

(b) In-block edges from the previous node

Fig. 8. Construct the ETG for branch structure.

Sub-branch Bry || 4 B
/ Block By -&
T e =T Ty —rer (T Tyl (T

Sub-branch Br; ,‘ e ()
Block B, _&
Do)
)

&

Fig. 9. WDG with multiple serial blocks.

are the minimum energy consumption offloading strategy
have found.

4.2.2 Multiple-Blocks WDG

In real workflow-based applications, WDG’s structures can
be complex with multiple blocks in the WDG. Therefore,
Graph4Edge-Nonlinear strategy should be able to deal with
multiple-blocks in the WDG.

A WDG may consist of many blocks. At first, any branch
can be selected as the main branch. This main branch is
used to construct the initial ETG. Then, multiple ETGs are
built for different blocks. In the calculation process of out-
block and over-block edge weights, two new situations
need to search minimum energy consumption offloading
decision for the sub-branch.

(1) WDG with multiple serial blocks. In this situation, there is
an edge that is both an out-block edge for one block and an
in-block edge for another block, e.g., (T, T,) in Fig. 9. In our
strategy, depending on the head node of the in-block edge
for B1, the offloaded strategy with the sub-branch is differ-
ent. As a result, both the head node and the in-block edge
weight for Bry will change. In order to calculate the out-block
edge weight for B2, e.g., (T, T':), the offloading strategy of
Brs for B2 must make sure, which depends on the offloading
strategy of SB1 for B1. So it is necessary to find its minimum
energy consumption offloading strategy from Br; of B1.

(2) WDG with nested branches. In this situation, it is neces-
sary to recursively call the Graph4Edge-Nonlinear strategy to
find its optimal offloading strategy. For example, e(T', T';) in
Fig. 10 is an in-block edge of blocks B1 and B2, multiple new
ETGs should be created based on the different situations of
the two blocks, to find the optimal offloading strategy of sub-
branches Br; and Bry. Hence it is necessary to recursively call
the Graph4Edge-Nonlinear strategy for the WDG Br; U Br,.

The ETG for an example complex WDG is shown in Fig. 11.
By recursively calling the Graph4Edge-Nonlinear strategy for
the sub-branches, the minimum energy consumption offload-
ing decision of the whole WDG can be found. For example,
given an in-block edge e(T;, T;) in Fig. 11, the Graph4Edge-
Nonlinear strategy calculates the sub-branch {7,|T, €
WDG AT, — Ty NTy»Tj ATy +» Ty}, and gets the weight
of out-block e(T'),, T'k,).

4.2.3 Strategy Description

Clearly, no matter how complicated the structure of the
WDG is, it can always be transformed to the linear structure
by calling Graph4Edge-Nonlinear strategy recursively.

|'Sub-branch Br; i‘_ e ()

|‘.- e Ti:"/t _BI"d’BZ_ \:31}_.._.._) I

Sub-branch Br;

———T,—lv - T“,\‘:BT&—- T,

A A

Fig. 10. WDG with nested branches.

852 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 2, MARCH/APRIL 2023

ol iy W
o \/; 3

Block \ \
]‘}-- _"T.h‘ T—— ——-T -bTi,—- "‘Te

| Block

)t _n;A Tp)>-~TA

Fig. 11. The ETG of WDG.

Here, we present the pseudo-code for the Graph4Edge-
Nonlinear strategy.

First, WDG is initialized (Lines 1-5). If the WDG is a lin-
ear structure, the Graph4Edge-Linear strategy is directly
called (Line 7). Otherwise, an arbitrary branch from 7's to 7',
is chosen as the main branch, and this main branch is used
to construct the initial ETG (Lines 9-10), and compute the
weight of the ordinary, in-block and over-block edge by Eq.
(7-8) (Line 12). Next, all the in-block edges are traversed in
sequence. When the in-block edge of a block is found for the
first time, and its head node is not the previous task for this
block, a new ETG is created and added to the
ETG _Set(Lines 15-18). Then, the shortest path of the sub-
branch can be found in the new ETG. When an in-block
edge of which the head node is the previous task of this
block is found, the current ETG is processed (Lines 19-21) to
obtain the sub-branch’s optimal offloaded strategy. Mean-
while, the weight of the out-block edges is updated in
ETG _Set(Line 22). Finally, the Dijkstra algorithm can find
the shortest path from T's to 7'}, (Line 25). In the worst situa-
tion (Line 31), if all solutions do not meet the deadline con-
straints, all tasks in the workflow are executed locally.

5 PREFORMANCE EVALUTION

In this section, we first revisit our motivating example as a
real-world case study to illustrate the effectiveness of our
strategy. Afterwards, we describe the simulation environ-
ment and parameter settings, followed by comprehensive
simulation experiments. We evaluate the performance of
Graph4Edge-Nonlinear and compare with other representa-
tive computation offloading strategies in the end-device’s
energy consumption, strategy execution time and task
response time based on both the real-world data of UAV-
EXPRESS and the simulated workflows using the FogWork-
flowSim platform. UAV-EXPRESS is a prototype UAV
delivery system developed based on EXPRESS which is an
energy-efficient and secure framework for MEC and block-
chain [23]. FogWorkflowSim is a simulation platform for
workflow applications with the focus on the performance
evaluation of computation offloading and task scheduling
strategies [25].

5.1 Case Study

Similar to the motivating example shown in Fig. 1, Fig. 12
shows the detailed workflow for the final parcel delivery
process in the UAV delivery system [24]. In our delivery
system, the UAV and the edge server is connected by 100
Mbps WiFi. Before the UAV reaches the destination for par-
cel delivery, the edge server downloads the facial images of
the parcel receiver from the cloud server of the logistics sys-
tem. When the UAV arrives at the destination, the video
stream captured by the camera of the UAV is analyzed

Store all order T T 77T " Update order
information 4" information

Images

Containing People% ;:F R

.
.
’

Download the face i ﬁ_,,.__VldCO Data
infages of the -
goods receiver from % S : i
the cloud server End diewce Video |
. 7 Tl Data |
N “ @ Pre-processing : Normalize the split P}dcess video ;

__picture frames process
X
N

‘“ oo /
1
Process video . N
& -~ - _ frames process @D Video frame filtering /
!

Edge Server
@ Target Detection ,
o /
/
/3| ® Image Segmentation
| /
Images o N ;
Contain @ |:> "y _cabes .
People B ® Pose & |£:> l
Recognition i ©® Face Sy
“Recognition g

(@ Confirm the goods
receiver and dispatch

Fig. 12. A case study on the MEC-Based UAV delivery system.

frame by frame to locate the position and confirm the iden-
tity of the parcel receiver.

The final parcel delivery process can be described in
three stages. In the first stage (including Tasks 1-3), the orig-
inal video frames are filtered on the UAV. We use the target
detection function to search for video frames containing
people, and frames without people are filtered directly. A
small proportion of the images containing people in the
whole video frame is further extracted by using the image
segmentation algorithm according to the detected location
coordinate of the people. In the second stage (including
Task 4 and Task 5), extracted video frames are further proc-
essed. In a real-world scenario, there could be a lot of pedes-
trians near the destination, and hence there will be many
images containing multiple people. We use pose recognition
(i.e., the parcel recipient will receive an instruction on her/
his mobile App to make a specific pose such as waving the
right hand from right to left) to further identify the receiver
from the crowd. Finally, in the third stage (including Task 6
and Task 7), identification of the parcel receiver is con-
ducted using face recognition. Face recognition confirms
whether the person waving hand matches the face images
downloaded in advance from the cloud server. If matches,
the UAV will approach the receiver for landing and then
hand over the goods. Otherwise, more image frames are
processed until the correct parcel receiver is found, or the
delivery process terminates without successfully locating
the parcel receiver.

For the experiment, we select a one-minute video clip,
with 1920"1080 pixel and 30 FPS recorded by the DJ Mavic
Air UAV'. With our computation offloading strategy, the
generated computation offloading decision is that Task 1-3

1. https:/ /www.dji.com/cn/mavic-air

https://www.dji.com/cn/mavic-air

LI ET AL.: NOVEL GRAPH-BASED COMPUTATION OFFLOADING STRATEGY FOR WORKFLOW APPLICATIONS 853

TABLE 1
MEC Environment Parameter Setting
Parameters END SErvER Edge Server
MIPS 1000 1300
Load Power (mW) 700 N/A
Idle Power (mW) 30 N/A
Data Transmission Power (mW) 100 N/A

and Task 4 are to be executed locally, while Task 5 and Task
6 are to be offloaded to the edge server. Specifically, Task 1-
3 and Task 4 are the video pre-processing tasks that can be
executed on the UAV since the characteristic of data size
but the required computing power is low. After the UAV
completes the video pre-processing tasks, the remaining
data size is reduced to 10% of the original video frames. The
deep neural network-based computation tasks (Task 5 and
Task 6) are executed at the edge server because the size of
data transfer for Task 5-6 is very small but they both require
high computing power.

5.2 Simulation Environment and Parameter Settings
In our experiments, we compare Graph4Edge-Nonlinear
with three types of computation offloading strategies.
According to the pseudo-code of Graph4Edge-Nonlinear
given above, the worst time complexity is O(n?) and the
space complexity is about O(n?) , does not exceed O(n).
For the comparsion algorithms, the first type is based on
search algorithms including PSO and GA which are most
widely used for computation offloading. According to [32],
the average time complexity of the standard PSO algorithm
is O(n?), and the worst is O(n!). The time complexity of the
GA algorithm [33] is about O(n?), but multiple iterations
will bring additional time overhead. The second type is a
Greedy strategy which makes the offloading decision for
each task through comparison the energy consumption
required for offloading with local execution. Obviously,
Greedy only needs one traversal, the time complexity is
O(n). If the energy consumption of task offloading is less
than execution locally, then the task will be offloaded to the
edge server for execution. Otherwise, the task will be exe-
cuted locally. The third type is the All-in-End strategy,
which means that all of the tasks are executed in the end
device. Although the time complexity of the All-in-End
strategy is only O(1), the extremely high energy consump-
tion will seriously affect the quality of service. All computa-
tion offloading strategies are applied with the Min-Min task
scheduling algorithm [31] at the edge server.

All simulation experiments are implemented on the Fog-
WorkflowSim platform, which is a simulation platform for
Fog/MEC-based workflow applications [25]. It supports
different kinds of workflow structures and different evalua-
tion index metrics such as time, energy and cost. The experi-
ments are run on a laptop with the following configuration:
Intel Core™ 17-9750H CPU 2.60GHz, 16G RAM, NVIDIA
GeForce GTX 1660Ti.

Table 1 describes experimental parameter settings of the
MEC environment. The simulated MEC environment con-
sists of three edge servers and one end-device. The

TABLE 2
PSO, GA Strategy Parameter Setting

PSO GA

Parameters Setting PARAMETERS Setting
Particles 30 Particles 50
Iterations 100 Iterations 100
Factor C1, C2 2 Cross Rate 0.8
Inertia Weight 1 Mutation Rate 0.1
Repeated 10 Repeated 10

processing speed of the computing resources is randomly
chosen between 100 and 1500 Megacycles. According to the
EXRESS framework and actual data collection in UAV last-
mile delivery scenarios, the input and output data size for
each task is generated between 0.625 and 30 MB randomly
[23], [32], [33]. In this paper, we only consider the energy
consumption of the end-device. In order to fairly evaluate
our strategy and other strategies, we define the data trans-
mission rate between end-device and edge server as 100
Mbps and the bandwidth is assumed to be relatively stable
[32], [34].

Table 2 describes the parameter settings of PSO and GA
strategy respectively [35], [36]. For each workflow applica-
tion, we simulate 100 times to obtain the average result. In
order to comprehensively evaluate the overall performance,
we randomly generate many complex WDG of different
sizes from 10 to 100 tasks with both linear and nonlinear
workflow structures. The percentage of the local execution
task (namely those cannot be offloaded to the edge) is set
as 20%.

5.3 Simulation Evaluation
Now we present the detailed simulation results. Deadline
constraint is the most important QoS constraint in any real-
world business systems. According to actual business
requirements, there is usually a strict time constraint. Based
on the results of our actual program [23], our workflow
application’s deadline constraint is set between 70% and
140% of the total task local execution time. Note that the
deadline constraint considered in this paper is the soft dead-
line, which means that missing the deadline will not cause
task failures but only decrease the service quality.

Fig. 13 shows the energy consumption results under dif-
ferent deadline constraints. Initially, all tasks are executed

—@— Energy Consumption

—— Offloading Tasks
120% 80%

= 100%

£ 60% g
S 80% E
: N 2
2 60% 40% &
g £
S 40% \.&_ 3
g 40% =
5 20% &
g 20% O

0% —I—J 0%

70% 80% 90% 100% 110% 120% 130% 140%
Deadline constraint

Fig. 13. Energy consumption and task’s offloading per-cent with different
deadline constraints.

854 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 2, MARCH/APRIL 2023

B Graph4Edge B Greedy B All-in-End mPSO BGA

400

J)
w
wn
(=]

~

300 A
250 1
200 -

—

i

(=]
1

100 4

Energy consumption

W
(=
L

o o A
[PITFITIIIS sy

10 20 30 40 50 60 70 80 90 100
Number of tasks

Fig. 14. Comparison of Graph4Edge-Nonlinear and other four methods
for energy consumption.

locally on the end-device. Initially, all tasks are executed
locally on the end-device. When the value of deadline con-
straint increases, the percentage of offloaded tasks also
increases. It can be seen that the end-device’s energy con-
sumption becomes stable when the deadline constraint
reaches 130%. The results show that when the deadline con-
straint becomes more flexible, the room for the computation
offloading strategy becomes larger and hence our Graph4E-
dge-Nonlinear strategy becomes more effective in reducing
the end-device’s energy consumption. However, when
deadline constraint reaches a certain value, the effectiveness
of reducing energy consumption levels off since the percent-
age of offloaded tasks also reaches its maximum 80% (as we
have set 20% of local execution tasks). In order to compare
the best performance of different computation offloading
strategies, we focus on the deadline is 130% (30% extra time
than execute locally) in the following experiments.

To comprehensively evaluate its performance, we com-
pare Graph4Edge-Nonlinear with others in energy con-
sumption, strategy running time and task response time.

Fig. 14 shows that the end-device’s energy consumption
of the over different sizes of nonlinear workflows. The
experimental result demonstrates that energy consumption
with Graph4Edge-Nonlinear is always lower than the other
four strategies. For example, when the task number is 50,
the energy consumption with Graph4Edge-Nonlinear is
7.81% and 9.51% lower than PSO and GA respectively. The
Greedy strategy and All-in-End strategy always have higher
energy consumption than Graph4Edge-Nonlinear which is
about 94% and 310% respectively. This is because they place
too many tasks on the end device for execution.

Fig. 15 illustrates the results of strategy running time
over different sizes of nonlinear workflows. Please be noted
that the basic time units for Graph4Edge-Nonlinear, Greedy
and the All-in-End strategies are milliseconds (ms), while
the basic time units for PSO and GA are 100ms and 500ms
respectively. Clearly, Graph4Edge-Nonlinear is much faster
than search-based strategies PSO and GA. Specifically, it is
running about 110 times and 540 times faster than PSO and
GA respectively. In the FogWorkflowSim platform [25], All-
in-End strategy running needs to count the number of tasks
that make up the workflow, which usually takes a few milli-
seconds. Although the Greedy and All-in-End strategies
have the smallest execution time, it always has the worst
performance in reducing energy consumption. In particular,

B Graph4Edge B Greedy B All-in-End BPSO(x100)ms BGA(x500)ms
50

40 -

30 A

20 4

Strategy running time (ms)

10 20 30 40 50 60 70 80 90 100
Number of tasks

Fig. 15. Comparison of Graph4Edge-Nonlinear and other four methods
for strategy running time.

even if the number of tasks is as high as 100, the Graph4E-
dge strategy only needs an additional 30ms to get the opti-
mal offloading decision. When it is necessary to perform
offloading of delay-sensitive tasks, our strategy can guaran-
tee real-time performance.

It is also important to investigate the impact of workflow
structures on the strategy running time. Fig. 16 compares
the strategy running time of Graph4Edge-Nonlinear and
linear strategy on nonlinear workflows and linear work-
flows respectively with 10 to 50 tasks. The result shows that
with the same workflow sizes, the strategy running time of
Graph4Edge-Nonlinear is about 20% higher than linear
strategy, which is not a significant increase considering the
much more complex structures of the nonlinear workflows.
Meanwhile, even with 50 tasks, the strategy running time of
Graph4Edge-Nonlinear is only increased by 2ms.

Fig. 17 illustrates the results of task response time over
different sizes of tasks in nonlinear workflows. The work-
flow tasks are executed according to the offloading decision
plan. In FogWorkFlowSim platform [25], the task response
time is defined as the sum of task execution time and data
transfer time. Note that the strategy execution time is not
included since it is trivial compared with task execution
time. Obviously, our proposed Graph4Edge-Nonlinear
strategy requires minimal task response time.

In summary, given the experimental results above, we
can conclude that the Graph4Edge-Nonlinear strategy is
able to find the optimal computation offloading decision
with the lowest energy consumption under the given dead-
line constraint for a complex workflow application. Most
importantly, for delay-sensitive applications, our proposed

® Nonlinear Workflow @ Linear Workflow
2 20
E
D
E s
)
=
= 10
=
s
St
B S I
I [|l
[
: LAl

10 20 30 40 50
Number of tasks

Fig. 16. Comparison of nonlinear workflows and linear workflows for
strategy running time.

LI ET AL.: NOVEL GRAPH-BASED COMPUTATION OFFLOADING STRATEGY FOR WORKFLOW APPLICATIONS 855

B Graph4Edge 8 Greedy BAll-in-End BPSO BGA

N
=
S

W
(=
S

IS
(=]
(=]

Task response time (ms)
oW
S 2
S 3

B T T T P rrir

—_
o

PRy Py yrrryia

e

B

A A A
T
o o - s 3 |

s

(=
rararar

10 20 30 40 50 60 70 8 90 100
Number of tasks

Fig. 17. Comparison of Graph4Edge-Nonlinear and other four methods
for task response time.

strategy can meet their real-time requirements given its
faster running time.

6 RELATED WORK

In a MEC environment, the main objective of the computa-
tion offloading strategy is to find the best offloading deci-
sion according to the characteristics of tasks, computing
resources and network conditions [37]. In addition, these
methods can improve the utilization rate of computing
resources in MEC [38] and minimize the end-device’s
energy consumption with the QoS constraints of users and
reduce the cost of the service providers [39]. Computation
offloading is used for solving the problems caused by insuf-
ficient computing power and insufficient battery capacity of
the end-device. With the gradual promotion of MEC plat-
form, computation offloading has become an important
research topic [28]. There are many preliminary research
works focusing on the problem of computation offloading
in the MEC environment.

Currently, a range of research works focuses on the prob-
lem of computation offloading to reduce end-device’s
energy consumption and task response time. In the aspect
of the energy consumption optimization, Zhang et al. [40]
focused on the multi-access characteristics of the 5G and an
minimize the energy consumption offloading strategy in 5G
MEC networks is proposed. The [41] proposed online
multi-task offloading schemes for MEC system. For the tar-
get of time optimization, Xing et al. [42] propose a MEC sys-
tem that can reduce the task’s computation latency
significantly. Currently, many research works are based on
popular optimization algorithms such as PSO and GA [35],
[36]. However, most studies only focused on the indepen-
dent tasks, and ignored the computational overhead needed
to make decisions. Most of the tasks in real-world applica-
tions are highly correlated. Each task depends on the execu-
tion result of the previous task and provides the necessary
data flow for the successor task [19], [32].

Graph as a kind of classical data structure. Many
research works about graph-based algorithms in Cloud and
Edge Computing. In the cloud computing environment,
many studies adopted graph-based algorithms to solve task
management problems for different workflow structures.
Yuan et al. [43] aimed at the problem of data set storage in
data-intensive scientific workflow execution and proposed

the CTT-SP algorithm to trade-off computation and storage
cost in the cloud environment. In recent years, there are also
many studies in the MEC environment. Khare et al. [44]
focused on the data placement problem of operators in
streaming applications and proposed an algorithm to con-
vert streaming DAG into a set of approximate linear chains
and perform data placement and time prediction. Zhang
et al. [45] proposed an efficient and large-scale graph com-
puting adaptive solution named GraphA, which can
achieve fine-grained and low-cost graph structure data stor-
age. Most research focuses on resource management issues
in cloud or edge conditions. However, these works have not
paid attention to the problems of end-device’s limited com-
puting power and battery capacity in the MEC environ-
ment. In [22], the authors proposed a graph-based strategy
that can provide a solution for the generation of the optimal
energy consumption offloading strategy for linear work-
flow, but this strategy cannot handle the nonlinear work-
flow of complex applications.

Most existing works focused on reduce end-device’s
energy consumption and task response time, but very few
studies take into account the complexity of scientific work-
flow tasks in real-world. However, in the MEC-based UAV
delivery system, the existing tasks with nonlinear structure
can seriously affect the QoS. Due to the complexity of com-
puting and delivery services in the MEC environment and
the requirement of real-time response in various smart sys-
tem scenarios, traditional cloud-based computing offload-
ing strategies and heuristic search algorithms cannot be
effectively utilized. Therefore, this paper deals with various
problems of computation offloading in the MEC environ-
ment using graph-based technology. We focus on workflow
applications with complex structures (viz. parallel, selec-
tive, and iterative) and propose the Graph4Edge-Nonlinear
strategy as an effective solution.

7 CONCLUSION AND FUTURE WORK

Computation offloading is a key technology to optimize the
QoS of MEC-based applications. However, most existing
strategies did not pay more attention to the dependency
between computing tasks or are usually based on heuristic
search algorithms. This is unacceptable for delay-sensitive
applications. For solving these problems, a novel graph-
based computation offloading strategy to minimize the end-
device’s energy consumption under the given deadline con-
straint is proposed in this paper. Motivated by a MEC-based
UAV delivery system, we first built the nonlinear workflow
model for complex applications. Then, using the graph-
based partition technique, we proposed the Graph4Edge-
Nonlinear strategy to search for the best computation off-
loading decision with the lowest energy consumption under
the deadline constraint. Finally, both a real-world case
study and comprehensive simulation experiments imple-
mented on the FogWorkflowSim platform with different
workflow structures and data sizes are conducted to evalu-
ate the effectiveness of our proposed strategy. The experi-
mental results have shown that Graph4Edge-Nonlinear can
achieve overall better performance with strategy running
time and energy consumption than other representative
computation offloading strategies.

856 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 2, MARCH/APRIL 2023

This paper mainly focused on reducing end-devices
energy consumption and improving decision-making effi-
ciency in the MEC environment. In the future, we will inves-
tigate the problem of computation offloading together with
workflow scheduling at the edge servers, and take the
energy consumption of edge servers into account to pro-
duce a holistic solution that can improve the QoS for the
whole MEC-based delivery system. Besides, the dynamic
fluctuation of the network in the real world and the signal
loss caused by end-device moving will also be further
considered.

REFERENCES

[1] R.Roman,]J. Lopez, and M. Mambo, “Mobile edge computing, fog
A survey and analysis of security threats and challenges,” Future
Gener. Comput. Syst., vol. 78, no. 1, pp. 680-698, 2018.

[2] S. Kekki et al., “MEC in 5G networks,” ETSI White Paper, vol. 28,
no. 1, pp. 1-28, 2018.

[3] S. K. Battula, S. Garg,]. Montgomery, and B. Kang, “An efficient
resource monitoring service for fog computing environments,”
IEEE Trans. Serv. Comput., vol. 13, no. 4, pp. 709-722, Jul./ Aug.
2020.

[4] X. Lyu et al., “Selective offloading in mobile edge computing for
the green Internet of Things,” IEEE Netw., vol. 32, no. 1, pp. 54-60,
Jan./Feb. 2018.

[5] Y.]Jiang, “A survey of task allocation and load balancing in dis-
tributed systems,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2,
pp- 585-599, Feb. 2016.

[6] T.Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzel-
man, “Cloud-vision: Real-time face recognition using a mobile-
cloudlet-cloud acceleration architecture,” in Proc. IEEE Symp.
Comput. Commun., 2012, pp. 1-8.

[7]1 Z. Kuang, L. Li, J. Gao, L. Zhao, and A. Liu, “Partial offloading
scheduling and power allocation for mobile edge computing sys-
tems,” IEEE Internet Things]., vol. 6, no. 4, pp. 6774-6785, Aug.
2019.

[8] W.M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski,
and A. P. Barros, “Workflow patterns,” Distrib. Parallel Databases,
vol. 14, no. 1, pp. 5-51, 2003.

[91 X. Fei, S. Lu, and C. Lin, “A mapreduce-enabled scientific work-
flow composition framework,” in Proc. IEEE Int. Conf. Web Serv.,
2009, pp. 663-670.

[10] F. Zhou, Y. Wu, H. Sun, and Z. Chu, “UAV-enabled mobile edge
computing: Offloading optimization and trajectory design,” in
Proc. IEEE Int. Conf. Commun., 2018, pp. 1-6.

[11] A. Alioua, H. E. Djeghri, M. E. T. Cherif, S. M. Senouci, and
H. Sedjelmaci, “UAVs for traffic monitoring: A sequential game-
based computation offloading/sharing approach,” Comput. Netw.,
vol. 177, no. 1, pp. 1-15, 2020.

[12] W.Song, L. Wang, R. Ranjan, J. Kolodziej, and D. Chen, “Towards
modeling large-scale data flows in a multidatacenter computing
system with petri net,” IEEE Syst. ., vol. 9, no. 2, pp. 416-526, Jun.
2015.

[13] H. Cao, H. Jin, S. Wu, and S. Ibrahim, “Petri net based grid work-
flow verification and optimization,” J. SuperComputing, vol. 66,
no. 3, pp. 1215-1230, 2013.

[14] Z.Guanet al., “Grid-Flow: A grid-enabled scientific workflow sys-
tem with a petri-net-based interface,” Concurrency Computation:
Pract. Experience, vol. 18, no. 10, pp. 1115-1140, 2006.

[15] W. Van Der Aalst, K. M. Van Hee, and K. van Hee, Workflow Man-
agement: Models, Methods, and Systems. Cambridge, MA, USA: MIT
Press, 2004.

[16] J. Meng, H. Tan, X. Li, Z. Han, and B. Li, “Online deadline-aware
task dispatching and scheduling in edge computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 6, pp. 1270-1286, Jun. 2020.

[17] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung, “An efficient
computation offloading management scheme in the densely
deployed small cell networks with mobile edge computing,”
IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2651-2664, Dec. 2018.

[18] X. Xu et al., “An energy-aware computation offloading method
for smart edge computing in wireless metropolitan area
networks,” J. Netw. Comput. Appl., vol. 133, no. 1, pp. 75-85,
2019.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

S. Deng, L. HUang, J. Taheri, and A. Y. Zomaya, “Computation
offloading for service workflow in mobile cloud computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 12, pp. 3317-3329,
Dec. 2015.

L. Yu, J. Ge, S. Zhang,]J. Wu, Z. Tang, and B. Luo, “A utility-based
optimization gramework for edge service entity caching,” IEEE
Trans. Parallel Distrib. Syst., vol. 30, no. 11, pp. 2384-2395, Nov. 2019.
M. Hu, L. Zhuang, D. Wu, Y. Zhou, X. Chen, and L. Xiao,
“Learning driven computation offloading for asymmetrically
informed edge computing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 30, no. 8, pp. 1802-1815, Aug. 2019.

L. Fan, X. Liu, X. Li, D. Yuan, and J. Xu, “Graph4Edge: A graph-
based computation offloading strategy for mobile-Edge workflow
applications,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun.
Workshops, 2020, pp. 1-4.

J. Xu, X. Liu, X. Li, and Y. Yang, “Express: An energy-efficient and
secure framework for mobile edge computing and blockchain
based smart systems,” in Proc. 35th IEEE/ACM Int. Conf. Automated
Softw. Eng., 2020, pp. 1283-1286.

H. Gao et al., “Edged4Sys: A device-edge collaborative framework
for MEC based smart systems,” in Proc. 35th IEEE/ACM Int. Conf.
Automated Softw. Eng., 2020, pp. 1252-1254.

X. Liu et al., “FogWorkflowSim: An automated simulation toolkit
for workflow performance evaluation in fog computing,” in
Proc. 34th IEEEJACM Int. Conf. Automated Softw. Eng. 2019,
pp. 1114-1117.

G. K. Garge and C. Balakrishna, “Unmanned aerial vehicles
(UAVs) as on-demand QoS enabler for multimedia applications
in smart cities,” in Proc. Int. Conf. Innov. Intell. Inform. Comput.
Technol., 2018, pp. 1-7.

N. H. Motlagh, M. Bagaa, and T. Taleb, “UAV-based IoT platform:
A crowd surveillance use case,” IEEE Commun. Mag., vol. 55, no. 2,
pp- 128-134, Feb. 2017.

P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Commun. Surv.
Tut., vol. 17, no. 3, pp. 1628-1656, Jul.—Sep. 2017.

Z. Wu, X. Liu, Z. Ni, D. Yuan, and Y. Yang, “A market-oriented
hierarchical scheduling strategy in cloud workflow systems,”
J. Supercomputing, vol. 63, no. 1, pp. 256-293, 2013.

J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, “A survey of data-
intensive scientific workflow management,” J. Grid Comput.,
vol. 13, no. 4, pp. 457-493, 2015.

K. Etminani and M. Naghibzadeh, “A min-min max-min selective
algorihtm for grid task scheduling,” in Proc. 3rd IEEE/IFIP Int.
Conf. Central Asia Internet, 2007, pp. 1-7.

J. Xu et al., “Mobility-aware workflow offloading and scheduling
strategy for mobile edge computing,” in Proc. Int. Conf. Algorithms
Architectures for Parallel Process., 2019, pp. 184-199.

T.Zhu, T. Shi, J. Li, Z. Cai, and X. Zhou, “Task scheduling in dead-
line-aware mobile edge computing systems,” IEEE Internet Things
J., vol. 6, no. 3, pp. 4854-4866, Jun. 2019.

R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal work-
load allocation in Fog-cloud computing toward balanced delay
and power consumption,” IEEE Internet Things]., vol. 3, no. 6,
pp- 1171-1181, Dec. 2016.

A. Kaswan, V. Singh, and P. K. Jana, “A multi-objective and PSO
based energy efficient path design for mobile sink in wireless
sensor networks,” Pervasive Mobile Comput., vol. 46, no. 1,
pp. 122-136, 2018.

H. Hallawi, . Mehnen, and H. He, “Multi-capacity combinatorial
ordering GA in application to cloud resources allocation and effi-
cient virtual machines consolidation,” Future Gener. Comput. Syst.,
vol. 69, no. 1, pp. 1-10, 2017.

J. Hu, M. Jiang, Q. Zhang, Q. Li, and J. Qin, “Joint optimization of
UAV position, time slot allocation, and computation task partition
in multiuser aerial mobile-edge computing systems,” IEEE Trans.
Veh. Technol., vol. 68, no. 7, pp. 7231-7235, Jul. 2019.

M. G. R. Alam, M. M. Hassan, M. Z. Uddin, A. Almogren, and
G. Fortino, “Autonomic computation offloading in mobile edge
for IoT applications,” Future Gener. Comput. Syst., vol. 90, no. 1,
pp- 149-157, 2019.

S. Wang ef al., “QoS prediction for service recommendations in
mobile edge computing,”]. Parallel Distrib. Comput., vol. 127,
no. 1, pp. 134-144, 2019.

S. Wang, Y. Zhao, L. Huang, J. Xu, and C. H. Hsu, “Energy-effi-
cient offloading for mobile edge computing in 5G heterogeneous
networks,” IEEE Access, vol. 4, no. 1, pp. 5896-5907, 2016.

LI ET AL.: NOVEL GRAPH-BASED COMPUTATION OFFLOADING STRATEGY FOR WORKFLOW APPLICATIONS 857

[41] W. Chen, D. Wang, and K. Li, “Multi-user multi-task computation
offloading in green mobile edge cloud computing,” IEEE Trans.
Serv. Comput., vol. 12, no. 5, pp. 726-738, Sep./Oct. 2019.

H. Xing, L. Liu, J. Xu, and A. Nallanathan, “Joint task assignment
and resource allocation for D2D-enabled mobile-edge computing,”
IEEE Trans. Commun., vol. 67, no. 6, pp. 4193-4207, Jun. 2019.

Y. Dong, L. Cui, W. Li, X. Liu, and Y. Yang, “An algorithm for
finding the minimum cost of storing and regenerating datasets in
multiple clouds,” IEEE Trans. Cloud Comput., vol. 6, no. 2, pp. 519—
531, Apr.—Jun. 2018.

S. Khare et al., “Linearize, predict and place: Minimizing the
makespan for edge-based streamprocessing of directed acyclic
graphs,” in Proc. ACM/IEEE Symp. Edge Comput., 2019, pp. 1-14.

Y. Zhang, D. Li, C. Zhang,]. Wang, and L. Liu, “GraphA: Efficient
partitioning and storage for distributed graph computation,”
IEEE Trans. Serv. Comput., vol. 14, no. 1, pp. 155-166, Jan. 2021.

[42]

[43]

[44]

[45]

Xuejun Li (Member, IEEE) received the PhD

degree in computer application technology from

the School of Computer Science and Technology,
f Anhui University, Hefei, Anhui, China, in 2008. He
is currently a full professor with the School of
Computer Science and Technology, Anhui Univer-
sity, Hefei, Anhui, China. His major research
interests include mobile edge computing, work-
flow systems, cloud computing, and intelligent
software.

Tianxiang Chen received the bachelor’'s degree in
Internet of Things engineering from the School of
Computer and Information Engineering, Fuyang Nor-
mal University, Fuyang, Anhui, China, in 2018. He is
currently working toward the master's degree with
the School of Computer Science and Technology,
Anhui University, Hefei, Anhui, China. His current
research interests include mobile edge computing,
workflow system, deep learning, resource
management.

Dong Yuan (Member, |IEEE) received the BEng
and MEng degrees in computer science from
Shandong University, Jinan, China, in 2005 and
2008, respectively, and the PhD degree in com-
puter science from the Swinburne University of
Technology, Melbourne, Australia, in 2012. He is a
senior lecturer with the School of Electrical and
Information Engineering, University of Sydney,
Sydney, Australia. His research interests include
cloud computing, parallel and distributed systems,
scheduling and resource management, deep
learning, data management and Internet of Things.

Jia Xu (Member, IEEE) received the bachelor’s
and master's degrees in computer science and
technology from the School of Computer Science
and Technology, Anhui University, Hefei, Anhui,
China, in 2010-2017, respectively. He is cur-
rently working toward the PhD degree with the
School of Computer Science and Technology,
Anhui University, Hefei, Anhui, China. He was
a software engineer focusing on industrial proj-
ects and solutions in iFLYTEK Company, Ltd
from 2017-2018. His current research interests
include mobile edge computing, workflow system, cloud computing,
resource management.

Xiao Liu (Senior Member, IEEE) received the
bachelor's and master's degrees in information
management and information system from the
School of Management, Hefei University of Tech-
nology, Hefei, China, in 2004 and 2007, respec-
tively, and the PhD degree in computer science
and software engineering from the Faculty of
Information and Communication Technologies,
Swinburne University of Technology, Melbourne,
Australia, in 2011. He was an associate professor
with the Software Engineering Institute, East China
Normal University, Shanghai, China. He is currently an associate professor
with the School of Information Technology, Deakin University, Melbourne.
His current research interests include software engineering, distributed
computing, and data mining, with special interests in workflow systems,
cloud/fog computing, and human-centric software engineering.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

