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Abstract—The policy-basedmanagement paradigm in a flexiblemanner governs the system behavior. For Cloud-native applications,

additionally, it simplifies the compliance with CI/CD objectives. Hence, the velocity of changes in requirementsmade at runtime does not

influence the system implementation. Continuously the adjustments are integrated into the system on the fly. This paper evaluates the

rule-based approach to representing policies in the context of Cloud-native applications. Deploying applications in orchestrated

environments is one of themain principles of Cloud-native. Our approach represents the extension of themanagement characteristics

that are available in current implementations of the orchestrators. The presented studyalso shows a general methodology for experimental

evaluation of complex Cloud-native environments.We propose two categories of experiments. Both evaluate the rule-based approach.

The first category evaluates the impacts of dynamic adjustment of resources in the context of the Cloud-native execution environment.

The second category assesses the influence of the rule engine approach on the autonomicmanagement process. Given the wide range of

available experiments, we additionally assume that evaluation is performed from the point of view of the execution environment’s resources.

This approach tightly embraces the capabilities of the proposed solution realized by the AMoCNA system and demonstrates its usability.

Index Terms—Autonomic computing (AC), Cloud-native, resource management, policy-driven management, rule-based management,

experimental evaluation
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1 INTRODUCTION

CLOUD-NATIVE [1], [2] is a concept which is changing our
approach to developing, deploying and operating appli-

cations. While it brings clear advantages, definitely stated
should be some negative aspects and difficulties.

To meet internal and external requirements [3], many
organizations implement strong governance practices and
controls. These rules ensure compliance with existing stand-
ards through policy-based management [4], [5], [6]. It is
hard to avoid violating Service Level Agreement (SLA)
requirements, especially when the demands are still grow-
ing. The resulting complication of basic management tasks
has led researchers to seek novel ways of accomplishing
these vital operations. One possible remedy is the Auto-
nomic Computing (AC) paradigm [7], [8], [9], [10] in the
context of Cloud-native environments.

High-level directives called policies usually include
parameters of a SLA contract. They express the intended
means of systemmanagement [11].We propose a declarative
policy management approach in Cloud-native execution
environments to significantly reduce the burden of defining

their enforced actions. Policy-based management aims
to address the encountered obstacles. It represents a stan-
dard, default technique even in modern commercial systems
(e.g., Microsoft SQL Server [12], Cisco Identity Services
Engine [13], Motorola LTE System Management [14], etc.).
An undeniable convenience is the ability to change system
behavior without reimplementing it. Usage of policies can
enhance the presets of managed elements at runtime while
dynamically applying the changes without modifying the
underlying implementation.

The proposed AMoCNA framework that we presented
in [15] realizes the suggested recommendations. AMoCNA
is an acronym for (AutonomicManagement of Cloud-native
Applications). We propose to achieve the autonomy fea-
tures via declarative policies and to process these policies
with rule engine support. This paper is a comprehensive
evaluation of proposed rule-based management concepts.

The paper proposes a methodology that verifies princi-
ples leading to effective management of Cloud-native appli-
cations through an experimental study. The evaluation
covers many areas of AMoCNA usage, each checking the
effectiveness of the rule-based approach. The evaluation
strategy requires a thorough understanding of Cloud-native
environments and their current state of the art. Only detailed
evaluation of all tiers which comprise the Cloud-native exe-
cution environment [15] can produce meaningful outcomes.
The evaluation, based on experience drawn from using the
AMoCNA system [16], assesses the quality of proposed con-
cepts. Conducted experiments confirm that AMoCNA sig-
nificantly enhances the autonomic management of CNApps.
In particular by increasing the potential of the included
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orchestrator. Cloud-native application (abbreviated as
CNApp) is composed of communicating microservices run-
ning as containers. The orchestration process that manages
themicroservices is so tightly coupledwith a CNApp that set-
ting it up can be considered an integral part of the application.
In our opinion, the paper should also consider AMoCNA’s
influence on the orchestrators.

Summarizing, the main contribution of this paper is the
introduction of a general methodology for the experimental
evaluation of complex Cloud-native environments. We pro-
pose two categories of experiments. Both evaluate the rule-
based approach. The first category evaluates the impact of
resources’ dynamic adjustments, and the second assesses
the influence on the autonomic management process.

We have chosen only those experiments that convinc-
ingly demonstrate AMoCNA’s capabilities. In particular,
selected experiments relate to horizontal and vertical scal-
ability. The experiments also reveal that proper automation
of Cloud-native environments may facilitate efficient alloca-
tion of resources.

The structure of this paper is as follows. The Related work
section includes a brief description of policy-based manage-
ment. It discusses some optimization techniques of the
orchestrator operation. This section also compares AMoCNA
with themanagement available in current clusters implemen-
tation. Based on this knowledge, the following section deter-
mines the requirements of a system for policy-driven
infrastructure management for a Cloud-native application.
The subsequent section divides the system into threemanage-
ment parts. It also provides a brief background addressing
AMoCNA’s rule-basedmanagement strength. The remainder
of this paper evaluates AMoCNA. It proposes two categories
of experiments that further are conducted. The proposed
methodology requires to set up a dedicated testbed, governed
by established SLA statements. Such constructed environ-
ment with installed example CNApp validates concepts
underlying the AMoCNA framework. The final section con-
cludes the paper.

2 RELATED WORK

Many organizations research the structure of policy-based
frameworks [18], [19], [20], with the most well-known
approach jointly proposed by IETF and DMTF [21]. [22] pro-
poses policy-based management. It elaborates in detail a
security framework for resources in the cloud. Also, it
presents an example of this framework implementation.
However, the proposed model is too difficult for ordinary
users. The work does not pay attention to the way policies
are defined. Similar topic but related to different managed
resources presents paper [23]. Proposed policy-based secu-
rity architecture touches network aspects. The architecture
derives from previously mentioned DMTF functional ele-
ments. But again, policy definition is in infancy. A CPVS
(Cloud Policy Verification Service) proposed in [24] for
simplicity of usage defines a Domain Specific Language
(DSL) that allows creating XACML policies. IBM Research
Center presented a work [25] that resulted in a proposed
policy framework combined with the AC technology.
Their findings constitute an interesting background to our
research.

The Cloud-native application is treated here as a man-
aged object, which utilizes resources (computing, network,
storage) that are also indirectly managed. Acceptable sys-
tem behavior depends on the specification of user require-
ments. The system needs tools that help acquire and
represent these requirements (policies) and map them into
lower-level actions [7]. Providing for the above aspects pol-
icy is defined as a high-level specification of goals and con-
straints, typically denoted as rules or utility functions.

The most common case is to use processing rules (rule
engine) as a tool for implementing policy decisions point [26],
[27], [28] (according to the IETF/DMTF Policy Architec-
ture [21]). Rules express the system policies. Their process-
ing [29] needs to enable easy modifications of policies, thus
simplifying the development of policy management tools
and policy storage in repositories. Moreover, the rule engine
fulfills the objectives of the strategy pattern. At runtime, it
selects actions that are to be enforced [30] depending on the
processed policy. Support for specification and processing
policies and runtime reconfiguration constitute the core set
of rule engine capabilities, making them perfect tools
to apply in Cloud-native environments. Therefore we pro-
pose to use rule engines as building blocks of our concepts in
the context of Cloud-native applications [15]. Their principal
role in these environments is to aid fulfillment of policy-
based management. In [15] we discuss many Cloud-native
resource management tools, each of them enhancing the exe-
cution environment. In [31] a self-management architecture
is even proposed; however, to the best of our knowledge,
none of the existing solutions involve rule-based manage-
ment to process the declared policies.

Optimization in a Cloud-native environment regards
diverse vital tasks. These include techniques on cloud
scheduler configuration, load balancing [32] or sustainabil-
ity to bursts in traffic [33], etc. These themes are so vast that
they need separate studies. However, the most obvious is
the resource utilization [34], [35] that management we
included in section 6. Also, the developed in work [36]
AdaptiveConfig runtime configurator that automatically
adapts to the changes in workload use a rule engine to com-
pare the performance of different configurations in the
cloud. However, the constructed Facts consider only the
characteristics of the workload and available resources. In
turn, we propose to reason over observations related to the
whole environment. The same topic, but with AI technique,
is proposed in [37].

All the cited work optimize at runtime the orchestrator’s
operation. However, our method is simple to use by ordi-
nary users. The declarative policy approach that uses DSL,
gives another significant benefit. The AMoCNA potential
over the mentioned research lies in the possibility of declar-
ing many policies at once. They can touch, at the same time
couple of aspects. Policies can be composed on the fly at
runtime. With AMoCNA, it becomes possible to declare any
management action.

CNApp represents a graph of communicatingmicroservi-
ces [38]. Microservices run as containers in an orchestrated
environment. Cloud-native paradigm tightly couples con-
tainers with their orchestrators. Table 1 presents key advan-
tages of AMoCNA management compared to management
currently available in Kubernetes (AMoCNA successfully
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used also Docker Swarm as an orchestrator). Distinguished
in this Table, features and their values allow classifying the
declarative approach to policy management as a right choice
to achieve autonomic capabilities of a Cloud-native applica-
tion. Such an attitude improves the quality of resource man-
agement offered by existing orchestrators.

Support for policy specification, processing, and runtime
reconfiguration makes AMoCNA an essential tool in Cloud-
native environments. The following sections address this
topic.

3 REQUIREMENTS OF POLICY-DRIVEN

INFRASTRUCTURE

A policy is a set of restrictions imposed on all possible forms
of system behavior in a way that the result is a subset of
acceptable system behaviors [39]. We propose to process
declared policies via a rule engine. Our concept of the MRE-
K loop (Monitor - Rule Engine - Execute over a shared
Knowledge, explained in [15]) enables enforcement of
declaredmanagement policies in the context of Cloud-native
environments. MRE-K loop is an adaptation, with appropri-
ate modifications, of the MAPE-K loop in the context of

Cloud-native operation. MRE-K loop uses a rule engine as a
means of enforcingmanagement policies.

The main requirements of the rule-based AC manage-
ment framework involved at the system design stage in the
context of Cloud-native applications include:

– Low resource management overhead – the overload
generated through the operation of the framework’s
components should be as low as possible. At the
same time, the overhead generated by resource con-
trol and management techniques should also remain
low. This requirement determines the selection of
observation techniques [40], [41], [42].

– The possibility to specify the application’s demand
for resources (particularly application level band-
width guarantees [43]) – the specification should
describe the configuration of computational resour-
ces influencing the effectiveness of processing opera-
tions. The requirements can change dynamically at
runtime.

– Reacting to events concerning resource allocation – the
environment has to discover changes in requirements
for resources and changes in the level of resource
availability on each layer of theCloud-native stack [44].
Hence, it should be possible to discover cases of ineffi-
cient resource allocation resulting from their partial
use or lack of required resources.

– Transforming system state to the form required by the
decision module – apart from transforming informa-
tion about the application or the state of environment
components to a proper structure, it is necessary to
update such transformation regularly, or as a reaction
to significant events.

– Flexible definition of system operation rules – in the
Resource Management System (RMS) a crucial role
falls to the decision module that performs resource
allocation modifications. These decisions should be
taken based on the current state of the application,
its requirements, and restrictions established based
on system policies. Decision rules should enable a
flexible definition of all aspects of the resource allo-
cation subsystem and provide a way to adapt to vari-
ous application requirements.

– Undertaking decisions – decisions result from policy
configuration based on system state information.
Then they are delegated to proper components. These
decisions usually involve changes in resource alloca-
tion parameters and the execution of operations
related to themanagement of the CNApp lifecycle.

The proposed design and development of a framework
for Cloud-native applications management involves several
challenges. The main one is undoubtedly the design and
deployment of a rule-based closed loop implementing the
concepts of self-management and adaptability [45].

4 ORGANIZATION OF THE RULE-BASED CLOSED

LOOP

The proposed AMoCNA framework has been thoroughly
described in [16] and is available at AGH University’s Main
Library. Just for the record, AMoCNA framework (Fig. 1) is

TABLE 1
Comparison of Management Characteristics Offered by

Proposed AMoCNA Framework and the Current Orchestrators’
Implementations (On the Example of Kubernetes [17])
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built of five layers that realize the Cloud-native autonomic
element’s (this concept is introduced in [15]) functions. The
presented layers realize the capabilities of a closed loop of
feedback control [46] (in Fig. 1 it is a set of consecutive blue
arrows). Moreover, the AMoCNA framework is compliant
with the model of AS3 element presented in [45]. As
depicted in Fig. 1 these layers are (starting from the bottom):

� Instrumentation Layer – This is the lowest AMoCNA
layer and is the only layer having direct access to the
managed CNApp. Its responsibility is to gather data
from different sensors (a term introduced in AC). In
Fig. 1 it is the beginning of the loop. The effectors (a
term introduced in AC) are closing the loop. Through
them, the layer executes management actions. These
actions reduce to actuating the resources.

� Observation Layer – The management of a CNApp
connects with its observability. It is natural and
required that the CNApp is equipped with sensors
to start any control of an application. The sensors
enable gathering observability-related information
and the mechanisms enabling further processing of
collected data. The following layer realizes the
component’s observability requirement.

� Inference Layer – This layer realizes primary
AMoCNA functionalities. The functionalities corre-
spond to retrieval of observation data, their transfor-
mation into a format accepted by the rule engine,
namely into facts, reasoning over the facts, and pro-
ducing management actions based on declared poli-
cies and prior results.

� Control Layer – This layer accomplishes two essen-
tial AMoCNA tasks. First, it drives the overall man-
agement process of CNApp, based on declared
management policies. And second, it ensures the
compatibility between contracted SLA and enforced
management actions.

� Management Layer – This layer indirectly comple-
ments the management loop. It operates at the same
level as the Observation Layer. Based on produced
earlier management actions, this layer triggers the
reconfiguration of the Cloud-native application.

The management process of a CNApp (depicted in Fig. 2)
divides into three logical parts. These are as follows: (i)
Cloud-native Execution Environment Part, (ii) Cloud-native
Autonomic Computing Part, and (iii) Cloud-native Manage-
ment Policies Part. Part names are self-explanatory and
indicate the main functionality of each.

AMoCNA distinguishes two types of actions: (i) those
triggered internally by Cloud-native autonomic elements
(as a result of autonomic capabilities), and (ii) actions that
are declared externally to the system. The latter type, com-
prising declarative management policies (the topmost
entity in Fig. 2), drives the overall process of setting up a
hierarchy of Cloud-native autonomic elements. However,
the principal aim of these policies is to manage the opera-
tion of AMoCNA. They influence the operation of the Pol-
icy Controller entity (depicted in Fig. 2), which serves as a
wrapper for all components responsible for policy process-
ing. The Policy Controller performs three categories of
actions (depicted as an internal flow) against the
AMoCNA system. The type of actions refers to those run
before, during, and after AMoCNA startup. First, the ini-
tialization configuration action triggers proper actions
before AMoCNA startup. These actions set up the Cloud-
native Execution Environment for AMoCNA usage. They
reduce to specifying directives that contain the initial con-
figuration and then passing them to the Cloud-native plat-
form. The Cloud-native Execution Environment is ready,
and the Policy Controller proceeds with AMoCNA startup
(middle arrow). This step constructs the hierarchy of
Cloud-native autonomic elements.

Finally, Policy Controller triggers management policies.
Policies are requested by the administrator or by AMoCNA
clients. For human readability, policies are expressed in a
Domain Specific Language (DSL) using a graphical notation
(e.g., in the Eclipse Modeling Framework [47]), decision
tables, etc. In most cases, AMoCNA clients would declare
policies triggering the actions of upper layers of the Cloud-
native Execution Environment using DSL and/or natural
language constructs. These policies are meta-policies and
need mapping to include actions, pointing to specific
resources that can execute them. An example policy is in
listing Policy 1.

Policies ensure that the Cloud-native execution environ-
ment is configured following defined rules. CNApp begins
to run. Runtime reconfiguration in the cluster triggers the
orchestrator controllers to enforce management actions,
including mentioned load balancing.

Fig. 1. Simplified view of AMoCNA architecture.

Fig. 2. High-level view of AMoCNA management process design.
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Policy 1. Policy That Triggers Scaling up of a Microser-
vice (Meta-Policy)

Require: RT – [milliseconds] (response time) duration of the
execution of the given microservice.

Ensure: Load-balancing of CNApp.

if RT > 20 then
trigger scaling up

end if

5 EVALUATION METHODOLOGY

AMoCNA evaluation aims to confirm that the proposed
rule-based framework significantly enhances the autonomic
management of CNApps. Particularly by increasing the
potential of the Kubernetes orchestrator. Regardless of the
level of available resources, AMoCNA helps to meet the
agreed SLA. Particular policies (rules) need to be declared
to fulfill this capability.

A comprehensive and objective evaluation of concepts
underlying AMoCNA is performed based on two categories
of experiments:

Experiment 1 The impacts of dynamic adjustments of the
Cloud-native execution environment’s resources.

The execution environment describes the context in
which the execution of a CNApp takes place. [15] pro-
poses its model. This model follows that its further
advancement should refer to distinguished layers. The
essential aim of this experiment is to show the impact of
management in the Cloud-native execution environment.
As an example of management action, the executed test
scenarios reveal the horizontal and vertical scaling of the
Cloud-native execution environment at runtime. These
experiments that adjust various computing resources
show another approach of augmenting Kubernetes clus-
ter scheduling capabilities.

Experiment 2 Influence of the rule engine approach upon
autonomic management process.

This category of experiments reveals the effective-
ness of the rule engine for autonomic management pur-
poses. The conducted experiments uncover the weak
and strong points of including a rule engine in Cloud-
native execution environments. To research the poten-
tial of this approach, we propose that the evaluation
consists of (i) evaluation of the duration of translation
of metrics, (ii) assessment of the system response time
and (iii) estimation of system behavior under fluctuat-
ing SLA.

A necessary complement to the above evaluations contains
paper [15]. In a couple of experiments, it evaluates the system
overhead. The experiments estimate the imposed load of
infrastructure resources generated by deploying proposed
autonomic management solutions. Regardless of the quantity
(that essentially is not high) of introduced additional load,
gained valuable performance improvements of Cloud-native
application allow to state that the described solution is an
effective enhancement of Cloud-native environments.

A constructed dedicated environment depicted in Fig. 3
comprehensively evaluates the concepts underlying the
AMoCNA framework. The environment consisted of a

seven-member Kubernetes cluster. The cluster initially
consisted of one master, which subsequently joined six
additional nodes to carry the workload. The constructed
testbed constitutes a baseline for further experiments. Its
initial configuration is described below.

To make the evaluation more realistic, a specific CNApp
is used. Weaveworks [48] and Container Solutions [49] have
developed a microservice-based demo application named

Sock Shop [50] (abbreviated here as SS). The SS Cloud-native

application consists of 14 microservices, distributed as

Docker containers or incorporated in code. SS was tested

with many simultaneous users. A load simulation (also pro-

videdwith the microservices demo) with the Locust [51] tool

tested SS against a specified number of clients and requests.

Its configuration is given in Table 3. Results of this simula-

tion (of only two microservices) are depicted in Fig. 4.

Depicted graphs show that the highest load is generated after

1.5 minutes. Correspondingly after that time, the noticed

increased load starts to generate high latency (Fig. 5).
Experiments reveal that the highest latency (i.e., the

interval measured between the input and output of a micro-
service) occurs in frontend and orders microservices
(Table 2). Therefore these two represent targets for further
performance improvements and are presented in most fig-
ures. We propose that base metric values for all experiments
is the defined SLA:

� The orders microservice latency is lower than 230
ms.

� The frontend microservice latency is lower than
850 ms.

� Every node has CPU utilization lower than 50%.
SLA thresholds are defined as lower values than observed

in many experiments. However, they are still achievable and
present a compelling area for further improvements. In the
case of latency, values should remain below the 99th percen-
tile and derive from graphs depicted in Fig. 5.

Fig. 3. Network and Service layout of the evaluation infrastructure.
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The presented research environment represents an ideal
situation where hardware is allocated only for the CNApp.
In a real-world scenario, we must assume that diverse

workloads will run simultaneously and share the resources.
The simulation hypothesizes that the test scenarios experi-
ence a significantly increased workload. For this purpose,
we use the docker-stress [52] container. It can generate CPU
load, memory load, I/O load, and disk load. By using it, we
can simulate increases in resource consumption and there-
fore failures to meet SLA commitments regarding CPU utili-
zation. Table 4 shows the parameters of the stress container
set in the presented scenarios. Knowledge regarding the
placement of microservices (Table 5) enables running the
stress container on a specific node while increasing to the
maximum that node’s resource consumption. This type of
execution is only meaningful at the node level because the
application runs in a separate container and does not influ-
ence the operation of other containers.

Table 5 presents the initial configuration of SS microservi-
ces amongKubernetes cluster nodes.At runtime, this configu-
ration changes because of Kubernetes dynamic provisioning
and runtime reconfiguration management capabilities. More
importantly, because of the potential of AMoCNA (shown
practically in further experiments) to autonomously manage
the Cloud-native application.

6 EXPERIMENT 1 - THE IMPACTS OF DYNAMIC

ADJUSTMENT OF THE RESOURCES

This experiment aims to present how AMoCNA increases
the potential of a Cloud-native execution environment by
adjusting its resources at runtime.

In this scenario, we distinguish two aspects of autonomic
management, resulting in a range of subexperiments. As a
whole, the experiments concern:

1) Autonomic management in the Containerization Layer –
underscores the importance of autonomic changes in
resource requests and limits.

Fig. 4. Queries per Second (QPS) simulation with load tests.

Fig. 5. Latency of SS for aforementioned (base) configuration.

TABLE 2
The Peek Values of SS Microservices Latency

Two microservices with highest latency are highlighted.

TABLE 3
Configuration of Load Tests

Key Value

No clients 3000
No requests (total) 15 000
Duration of the experiment 10 minutes
Distribution of clients 5 clients/second
Number of orders 16 831
Number of logins 24 514
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2) Autonomic management in the Infrastructure Layer –
mainly highlights the importance of autonomic hori-
zontal and vertical scalability.

Because the present research does not cover Continuous
Integration/Continuous Delivery (CI/CD) objectives, we
cannot distinguish the third aspect that covers management
in the Application Layer.

Autonomic Management in the Containerization Layer. The
principal paradigm of Cloud-native operation is that contain-
erized entities are managed in an orchestrated environment.
The characteristics of the orchestrator dictate the behavior
and capabilities of the Cloud-native execution environment
embodied in deployed objects. Autonomic management in
the Containerization Layer regards runtime modifications of
the current configuration. This type addresses the following
experiment in which declared management actions cause
scaling of a Cloud-native execution environment.

Kubernetes orchestrator provides two products for scal-
ing, namely, Horizontal Pod Autoscaler (HPA) and Vertical
Pod Autoscaler (VPA). Both scale available resources for
containers. HPA often uses CPU measurements to trigger
the scaling of a pod, whereas VPA allocates more (or less)
CPU or memory to existing pods. Similar to VPA, in the pre-
sented experiment, AMoCNA’s exemplary declared policy
adjusts resource requests based on the observed latency cor-
related with resource usage.

Observations of QPS enable to classify the Cloud-native
application as a high- or low-traffic system and, with a
properly declared management policy that triggers recon-
figuration, to handle more load while maintaining adher-
ence to the SLA. This behavior is shown in the present
experiment that automatically adjusts the CPU limits
and requests of a pod. Graphs depicted in Fig. 6 qualify the
SS as a high-traffic system and enable us to assume that the
system is overloaded. Therefore AMoCNA proceeds some
improvements in the Cloud-native execution environment.
These improvements concern enhancement of the Container-
ization Layer that results from the execution of declared rule.
The declared management policy triggers autonomic man-
agement in a waywhich is similar to VPA (Policy 2).

Policy 2. Check Whether it is Necessary to Increase CPU
Request

Require: RT – [milliseconds] (current response time) duration
of the execution of a given microservice.
SLA RT – [milliseconds] (acceptable response time) dura-
tion of the execution of a given microservice.

Ensure: Initialize the increase of Pod’s CPU request.
if RT > SLA RT then
create rule engine fact (fact)
for fact do
increase CPU Request

It is important to check the
number of successive neighbor
facts, hence to check whether
SLA is violated occasionally or
is SLA violated repeatedly in a
period and only in this case take
preventive actions.

end for
end if

Fig. 8 depicts latency of frontend microservice1 after
AMoCNA executes Policy 2. Comparing the gained results
with Fig. 7a, one can notice that CPU request modifications
have influenced the pod’s latency, decreasing it almost by
50% (from about 5s to 2.5 s depicted in Y-axis).

TABLE 5
Initial Deployment of Microservices

Node Microservice

worker-1 orders
worker-2 frontend
worker-3 payment
worker-4 shipping
worker-5 cart, catalogue
worker-6 user

Fig. 6. QPS observations during load tests configured to produce 3000
clients and 150 000 requests.

TABLE 4
Configuration of stress container

Parameter Meaning Value

placement Compute machine that runs the stress worker-2
cpu No. of spawned workers spinning on sqrt() 2
vm No of. spawned spinning on malloc()/free() 2
vm-bytes No. of malloc bytes per vm worker 512M
timeout Duration of stress container 120s

1. To remind a microservice is a collection of containers. Particularly
the relation can be 1:1 as in SS. The front-end Pod is directly mapped
to frontendmicroservice.
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Fig. 9b depicts CPU usage of frontend microservice also
during the present experiment2. AMoCNA executes Policy 2
twice what is denoted by two trigger points. After a while,
from the trigger point, the incline decreases. And only if the
same policy executes two times significantly improves CPU
usage. Graph 9a is presented in this paper only as a compar-
ison with graph 9b to emphasize the AMoCNA improve-
ments. Meanwhile, optimizing the pod’s latency, the CPU
usage of frontend microservice is also optimized. The
CPU usage reduces from 1.0 core to 0.5 core.

The drawback (even in HPA and VPA solutions) is the
necessity to create a new pod while killing the original one
leading to microservice downtime. In the present scenario,
AMoCNA deletes the front-end pod twice (depicted in
Fig. 8 as twowhite areas). Each time Kubernetes orchestrator
recreates the pod with new settings. At that time frontend
microservice is not processing any requests.

The result achieved by AMoCNA is similar to the out-
come of Kubernetes VPA controller actions. However,
Kubernetes does not provide vertical autoscaling function-
ality out of the box. An additional controller that has to be
installed and configured enables this feature. AMoCNA
also must be installed and configured, but its usage is
straightforward and convenient for ordinary users. The
next difference is in the implementation mechanism that we
propose to accomplish by means of a rule engine.

This experiment points to the conclusion that if we execute
only a single policy, this does not necessarily solve all arisen
problems. The SLA contract, despite significant improve-
ments, can still be violated. This is depicted in Fig. 8.

AutonomicManagement in the Infrastructure Layer.Anemerg-
ing area of research in autonomic management of CNApps is
vertical and horizontal scalability. In the case of the Infrastruc-
ture Layer, scalability implies changes in the number of infra-
structure resources allocated and available in the given
cluster. The present experiment demonstrates horizontal scal-
ability (cluster scaling) by increasing the number of Kuber-
netes nodes.

To meet the SLA criterion – Every node has CPU Utiliza-
tion lower than 50% – additionally, it is necessary to trigger

Fig. 7. Latency of SS for load depicted in Fig. 6.

Fig. 8. Latency of frontendmicroservice after AMoCNA adjustments.

Fig. 9. CPU usage of frontendmicroservice before and after AMoCNA
adjustments.2. Because the timestamp in both Figs. 8 and 9b is the same.
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appropriate actions in the Infrastructure Layer. Kubernetes
provides a Cluster Autoscaler (as an additional component)
controller. It automatically adjusts the cluster size based on
one of the preconditions: (i) there are pods awaiting to be
scheduled, but the available cluster resources are insuffi-
cient, and (ii) there are underutilized nodes in the cluster.
AMoCNA augments these possibilities, and instead of tak-
ing into account only the resource requests and limits, the
decision is made based on observations of actual resource
utilization.

The result of AMoCNA improvement is shown in Fig. 10.
The first peak denotes the usual SS run. The second peak

indicates the same load but after AMoCNA optimizations.
The optimizations resulted in adding a new node (worker-
7 in this case) to the cluster. After joining another node
to the cluster, the total utilization automatically declines. In
this case, the utilization did not decrease significantly. Nev-
ertheless, the new node is at first strongly underutilized
(depicted in Fig. 11). The existing workload in the cluster
does not immediately migrate to the new node. This reflects
the configuration of the Kubernetes orchestrator.

Obtained in this subexperiment results are satisfactory;
however, they suggest that AMoCNA does not always offer
noticeable improvements in a CNApp. Other factors, such
as the configuration of the Kubernetes scheduler, play a cru-
cial role.

Discussion of Results. Autonomic management of Cloud-
native applications typically involves some minor or major
improvements of the Cloud-native execution environment.
These include adjustments in one of its layers. A union of
adjustments in multiple layers is also possible, considerably
enlarging the scope of autonomic management. At its core,
AMoCNA does not support direct Cloud-native application
code modifications. It follows the management possibility
only in the Infrastructure and Containerization Layers. The
presented experiments show the dynamic adjustment of the
Cloud-native execution environment in those layers. The out-
comes are strongly dependent on the declared management
policies, yet the overall effect of the presentedmodifications is
favorable. AMoCNA enables different policies to coexist, suit-
ably prioritizing them in the rule engine. This feature facili-
tates parallel adjustments in different layers, which further
strengthens the results of dynamicmanagement.

The experiment that involves increases in the pod’s CPU
requests highlights the benefits of operating in a control
loop, whereas the experiments focusing on different layers

indicate advantages of combining features provided by vari-
ous controllers. The presented experiments reveal that,
through the proper definition of policies, AMoCNA integra-
tes the capabilities of both controllers – VPA and Cluster
Autoscaler. Finally, AMoCNA lets to take decisions at run-
time. Hence it supports runtime modifications and reconfi-
gurations of the Cloud-native execution environment. These
changes enable to achieve the contracted SLA.

7 EXPERIMENT 2 - INFLUENCE OF THE RULE

ENGINE APPROACH UPON AUTONOMIC

MANAGEMENT PROCESS

The intent behind the presented experiment is to under-
stand the proposed MRE-K loop. MRE-K loop improves the
processing performance of the declared management poli-
cies. This experiment reveals the effectiveness of such an
approach.

To meet the stated objectives, the evaluation conforms to
the following scheme:

� Realistic appraisal of the duration of translation of
metrics.

� Assessment of the system response time.
� Estimation of system behavior under dynamic change

of SLA.
The proposed scheme implies the types of experiments.

The first two items relate to the duration of brokering
between monitoring and reasoning controllers. During
these experiments, we turned off the autonomic manage-
ment capabilities of AMoCNA as their effects are less criti-
cal in this particular case. In turn, the evaluation of the third
item is dependent on the declared management policies,
which reflect modifications of the SLA. Subsequent subsec-
tions present the pointed scheme of experiments.

Realistic Appraisal of the Duration of Translation of Metrics.
The monitoring and reasoning controllers use different for-
mats to represent data (e.g., monitoring system metric for-
mat versus rule engine facts). These data need translation to
benefit from cooperation between both controllers. Fig. 12

Fig. 11. CPU Utilization of worker-7 node.

Fig. 10. CPU Utilization of the cluster.
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depicts the total time consumed while translating individual
metrics configured in the current AMoCNA scenario. The dif-
ference in the value of particular measurements mainly
relates to the number of time series. The time series needs
translation. For two metrics:container_memory_usage_-
bytes and node_cpu_seconds_total it significantly dif-
fers from the rest. Notably, the former metric has 114 time
series while the latter has 7 (the relation between the metric
and its time series illustrates the following example: for the
node_name metric and seven nodes in the cluster, there are
seven time series, each related to one individual node).

Assessment of the System Response Time. [15] describes this
subexperiment and widely discusses the overhead intro-
duced by AMoCNA. The obtained results conclusively prove
that, in the set configuration of AMoCNA, its latency and
response time is relatively low, definitely below 2 seconds.
The evaluation shows that the AMoCNA response time is
closely dependent on the number of collected metrics and is
also dependent on the number of defined rules.

Evaluation of System Behavior Under Dynamic Change of
SLA. This part of the experiment evaluates the system’s
response to dynamic change of SLA observed at runtime. It
can occur in two situations. Either the changes are manual,
or they result from autonomicmanagement actions. The pur-
pose of the presented experiment is to evaluate the quality of
adaptationmechanisms and, most importantly, to determine
to what extent the new SLA definition is obeyed. It is not cru-
cial whether the SLA values increase or decrease. Any
change in the declared values that violates SLA contract trig-
gers AMoCNA actions.

Let remind that the SS application is under load
according to values listed in Table 3. As a result of prior
adjustments (mainly experiments involving autonomic
management in the Containerization and Infrastructure
layers), the SLA is not violated. AMoCNA does not trig-
ger any management actions. After some time, one of the
SLA statements changes in the following way: every node
has CPU Utilization lower than 80%. Defining the SLA
values as global variables causes that it is not necessary to
declare new policies. It is sufficient to modify the value of
the existing variable.

We run stress container on worker-2 node, to simulate
an exceed of the new SLA requirements. Fig. 13 shows the
results generated in the presented scenario. As depicted, the
CPU utilization of worker-2 increases to maximum. This
situation occurs due to the additional stress load run at
the beginning of the experiment. AMoCNA notices the SLA
violation (at AMoCNA trigger point time), and through
declared management policies, attempts to migrate the load
(node worker-7, created in the previous experiment car-
ries no load and therefore, Kubernetes algorithms schedule
load migration to that node). The management policy is
fired at 09:51:47, just after AMoCNA notices the rapid
increase of CPU utilization that exceeds SLA limits. Kuber-
netes scheduling mechanisms trigger the Front-end pod
migration to worker-7 which results in the increase of
CPU utilization on that node at 09:52. Worth noticing is that
despite the improvements, CPU utilization remains high.
That happens due to the nature of stress container, which
is a standalone Docker container not running in an orches-
trated Kubernetes cluster.

Nevertheless, the adjustments prove that the proposed
concepts can cope with SLA changes during runtime. K8s
does not support this feature.

Discussion of Results. The proposed concept of using a
rule engine in the context of CNApps offers a flexible mech-
anism of enforcing autonomic management. The rule engine
introduces initial processing delays (although the presented
scenario shows that these delays are not significant) – they
result from matching the declared management policies
against factual metrics (observations). Notwithstanding, the
overall quality of the proposed concept remains satisfactory.

8 CONCLUSION

Autonomic management is not a new topic, but it remains a
hot trend in the context of Cloud-native applications. This
paper evaluates the proposed rule-based framework for the
management of Cloud-native applications. AMoCNA helps

Fig. 12. Duration of translating individual metrics configured in the current AMoCNA scenario.

Fig. 13. CPU Utilization of worker-2 and worker-7 nodes after
dynamic change of SLA.
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to meet the SLA agreement. Particular policies (rules) need
to be declared to fulfill this capability. The recommended
by us solution is flexible enough to declare meaningful poli-
cies for Cloud-native environments.

This research presents a general methodology of experi-
mental evaluation of Cloud-native environments.Wepropose
two categories of experiments to evaluate the rule-based
approach. The first category evaluates the impacts of dynamic
adjustment of resources. The second category evaluates the
influence during the autonomicmanagement process.

Meanwhile, conducted experiments proved the impor-
tance of observability. Knowledge gained in this process is a
good source of information about the past and current state
of the Cloud-native applications. Utilizing such knowledge
while declaring management policies is an effective means of
achieving autonomicmanagement. The presented study high-
lights the usefulness and added value of the proposedMRE-K
loop concept. Successfully validated is the concept of a rule
engine treated as a means of enforcing management policies.
The same experiment also reveals that the policy-based
approach to autonomicmanagement of Cloud-native applica-
tions is accurate even when dynamic and frequent modifica-
tions occur. The defined policies need to cover many aspects
of the execution environment to strengthen the consequences
of dynamic adjustments. We also considered the potential of
the declarative management policy approach to autonomic
management of Cloud-native applications by comparing its
benefits to those offered by themanagement options available
in Kubernetes. This discussion basis on experiences gained
while operating theAMoCNA framework.

All experiments and the discussion proved that AMoCNA
features significantly enhance the orchestrator’s capabilities.
Particularly AMoCNA helps meet the agreed SLA regardless
of the level of available resources. Our approach represents a
significant extension of the management characteristics avail-
able in current implementations of orchestrators. This area
requires further research. Requirements of policy-driven
infrastructure (stated in section 3) provide a solid foundation
for further research. However, some of them are worth addi-
tional in-depth investigation. Highly desirable are improve-
ments in the area of management through declarative
policies. The undertaken efforts could direct towards Group-
based policy [53] and an attempt tomap its concepts toKuber-
netes abstractions. Such an approach to management many
top vendors already established (e.g., Cisco Application Cen-
tric Infrastructure (ACI)).
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