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Abstract—Edge computing, as a new computing paradigm, brings cloud computing’s computing and storage capacities to network

edge for providing low latency services for users. The networked edge servers in a specific area constitute edge storage systems

(ESSs), where popular data can be stored to serve the users in the area. The novel ESSs raise many new opportunities as well as

unprecedented challenges. Most existing studies of ESSs focus on the storage of data replicas in the system to ensure low data

retrieval latency for users. However, replica-based edge storage strategies can easily incur high storage costs. It is not cost-effective to

store massive replicas of large-size data, especially those that do not require real-time access at the edge, e.g., system upgrade files,

popular app installation files, videos in online games. It may not even be possible due to the constrained storage resources on edge

servers. In this article, we make the first attempt to investigate the use of erasure codes in cost-effective data storage at the edge. The

focus is to find the optimal strategy for placing coded data blocks on the edge servers in an ESS, aiming to minimize the storage cost

while serving all the users in the system. We first model this novel Erasure Coding based Edge Data Placement (EC-EDP) problem as

an integer linear programming problem and prove itsNP-hardness. Then, we propose an optimal approach named EC-EDP-O based

on integer programming. Another approximation algorithm named EC-EDP-V is proposed to address the high computation complexity

of large-scale EC-EDP scenarios efficiently. The extensive experimental results demonstrate that EC-EDP-O and EC-EDP-V can save

an average of 68.58% (and up to 81.16% in large-scale scenarios) storage cost compared with replica-based storage approaches.

Index Terms—Edge computing, erasure code, data placement, approximation algorithm

Ç

1 INTRODUCTION

IN recent years, the world has witnessed the explosive
growth of smart devices and mobile users. It is predicted

that by 2021 there will be 32 billion connected mobile devi-
ces, and the global data traffic will reach 19.5 ZB per year
[1]. The transmission of such massive data incurs heavy net-
work traffic and consumes excessive network resources,
leading to network issues, including service interruptions
and high network latency. To tackle these challenges, edge
computing has emerged as a new computing paradigm. It
moves computing and storage resources onto edge servers
at the edge of the cloud [2], [3]. Edge computing offers two
key advantages to various online applications. First, users’
data retrieval latency can be significantly reduced because
they can retrieve data from their nearby edge servers rather

than from the cloud. From app vendors’ perspective, this
ensures their users’ quality of experience (QoE) because
latency has become the key performance concern for online
applications [4]. Second, service interruptions caused by
network congestion can be alleviated by reducing the net-
work traffic over the backhaul network [5]. This benefits
app vendors by reducing the costs incurred by transmitting
their data from the remote cloud to edge servers [6], [7].

In the edge computing environment, adjacent edge serv-
ers in an area are connected by high-speed links [8] to form
an edge server network that constitutes an edge storage sys-
tem (ESS) [3], [6], [9]. Compared with the edge-cloud archi-
tecture, ESS overcomes the single-point failure problem and
performance bottleneck problem encountered [6], [10]. New
challenges raised by ESS are starting to attract researchers’
attention in recent years, who attempt to achieve various
optimization objectives by caching data replicas on edge
servers, e.g., minimum data retrieval latency [11], maximum
cache hit ratio [12], [13], maximum caching benefits [14],
[15], maximum caching capacity [16], [17]. A common
assumption made by these replica-based approaches is that
storage resources on each edge server in an ESS can always
be hired on-demand or reserved in advance for caching
data replicas. However, this assumption is not always real-
istic in a real-world edge computing environment where
edge servers’ storage resources are limited by the con-
strained physical sizes of base stations[18]. Even if it is feasi-
ble, caching massive data replicas on dense edge servers in
an ESS - is often not cost-effective because the storage
resources on edge servers are expensive [19]. This issue is
especially critical when app vendors need to store large-size
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data that do not require real-time access, e.g., system
upgrade files, popular app installation files, videos in online
games, in ESSs mainly to save on the expenses incurred by
transmitting data out of the cloud for every user. A new
approach is needed to enable the cost-effective storage of
such large data in ESSs.

In this paper, we study the use of erasure coding in cost-
effective storage of large data in ESSs. Under an erasure code
scheme, a data X to be stored can be divided into M data
blocks andK parity blocks. These data and parity blocks are
distributed to be stored on different storage nodes (e.g., edge
servers in an ESS) accessible to users. A user can retrieve M
data and/or parity blocks (together referred to as coded blocks
hereafter) from any accessible edge servers to constructX for
use. Erasure codes have been widely employed to reduce
storage costs in cloud-based storage systems [20], [21]. How-
ever, the unique characteristics that fundamentally differen-
tiate ESSs from cloud-based storage systems render existing
approaches obsolete and raise a number of new challenges.
First, in the edge computing environment, the coverage of an
edge server is limited. A user can only access coded blocks
from edge servers that cover the user. This is the proximity
constraint [22], [23]. A storage approach based on erasure
code (referred to as EC-based storage approach hereafter)
must ensure that every user in the area can retrieve enough
coded blocks to construct data X . This is the encoding con-
straint. In addition, data can be transmitted across edge serv-
ers over the edge server network topology to be delivered to
users, but only within a limited number of transmission net-
work hops [8], [18], [24]. Compared with traditional cloud
storage systems, coded data blocks cannot be stored in differ-
ent storage nodes arbitrarily in ESSs. This is the transmission
constraint [6], [23], [25].

From the perspective of app vendors, the coded blocks of
data stored in an ESS must be able to serve all the users at
minimum storage cost while fulfilling the proximity, cover-
age, and transmission constraints. This problem is referred
to as the erasure coding based edge data placement (EC-EDP)
problem. This paper makes the first attempt to study this
new problem, and the key contributions include:

� We formally model the EC-EDP problem as an inte-
ger linear programming problem and prove that it is
NP-hard.

� We propose EC-EDP-O, an approach for finding
optimal solutions to small-scale EC-EDP problems
based on integer programming solvers.

� We propose EC-EDP-V, an approximation approach,
which used to find approximate solutions to large-
scale EC-EDP problems with a lnQlimit þ 1 approxi-
mation ratio guarantee.

� We evaluate the performance of EC-EDP-O and EC-
EDP-V against five representative approaches through
extensive experiments conducted on a widely-used
EUAdataset.

2 MOTIVATING EXAMPLE

Since Windows-10, Microsoft has employed peer-to-peer dis-
tribution, in addition to traditional client-server distribution,
to deliver large upgrade packages to its clients to reduce the

network resource consumption incurred. In the meantime,
app vendors like Microsoft can significantly reduce the costs
of distributing such data to their clients by storing it in the
ESSs facilitated at the network edge - Amazon Web Services
charges up to US$0.11 to transfer 1GB data out of its S3 data
storage facilities to the internet1.

Fig. 1 presents an example of ESS comprised of ten net-
worked edge servers collectively serving the users in a spe-
cific area, e.g., New York CBD. A straightforward replica-
based solution to the distribution of Microsoft’s 1GB Win-
dows-10 upgrade package is to store a replica on each of the
ten edge servers. In the edge computing environment, a
user can access the edge servers that cover the user. The dis-
tance between the user and the edge server may impact its
data rate, as considered in some studies, but not the latency
between them. Thus, the latencies between users and edge
servers are not considered in the formulation of EC-EDP
strategies in this study. In this way, all the users in the New
York CBD can download the package from their nearby
edge servers. However, there are two critical limitations to
this solution. First, it costs Microsoft tremendously to save
10 data replicas (10GB in total) in the ESS over a long time
due to the expensive storage resources on the edge servers
[19], [23], [26]. Second, it does not take advantage of the col-
laboration of edge servers to transmit data to each other to
deliver data for users [8], [18], [24]. Take the ESS presented
in Fig. 1 for example. Assume that it allows data to be trans-
mitted via two hops over the topology of edge sever net-
work. In real-world EC-EDP scenarios, the transmission
latency between edge servers could be different. To general-
ize the models and approaches presented in this paper, we
measure the transmission constraint by the number of hops
over the edge server network, which can also be easily mea-
sured by specific milliseconds, similar to [6], [27]. On this
edge storage system, Microsoft only needs to store two rep-
licas of its Windows-10 upgrade package (2GB in total) in
the system to serve all the users in the area, e.g., v4 and v9,
as illustrated in Fig. 2a, or v5 and v8.

To further reduce the storage cost of storing data in this
ESS, Microsoft can first encode the upgrade package into 2

Fig. 1. Example of edge storage system.

1. https://aws.amazon.com/s3/pricing/
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data blocks (0.5GB each) and 1 parity block (0.5GB) through
erasure coding to be placed on 3 of the edge servers in the
ESS, e.g., v4; v5, and v8, as illustrated in Fig. 2b. Under the
erasure coding scheme, a user can retrieve any 2 of the three
coded blocks from edge servers within two network hops to
construct the upgrade package. For example, the user in
Fig. 2b can retrieve a data block and a coded block from v4
and v8, respectively, to construct the upgrade package. In
this way, Microsoft only needs to store a total of 1.5GB data
in the ESS to satisfy all the user’s access requests in the area,
much less than the above replica-based approach.

An alternative solution is to encode the package into 3+1
coded blocks, 0.33GB each, to be placed at v4, v5, v8, and v9 as
illustrated in Fig. 2c. This solution requires 1.33GB storage
resources in total. Fig. 2d illustrates the third solution that
encodes the package into 4 coded blocks to be placed. A total
of 2GB storage resource is needed. Among the three solu-
tions shown in Fig. 2, the ECð3; 1Þ solution presented in
Fig. 2c incurs the least storage cost. Compared with replica-
based storage solutions, EC-based solutions aremore flexible
because they require less storage occupation on individual
edge servers. This is a critical advantage in the edge comput-
ing environment where the storage resources of edge servers
are highly constrained and expensive [19], [23], [26].

Given an ESS, there are usually a large number of feasible
EC-EDP solutions combining different data encoding and
placement strategies. These solutions incur different storage
costs. Meanwhile, in the real-world EC-EDP scenarios, the
number of edge servers could be much larger and the net-
work topology could be more complex. Finding the solutions
to the EC-EDP problems in such scenarios is challenging.
Therefore, it is important for app vendors to find the optimal
one that serves all the users in the ESS at minimum storage
cost. Please note that EC-based approach incurs computa-
tional overheads to users, i.e., the time taken to construct data
from coded blocks [28], [29]. Thus, EC-based approaches are
most suitable for storing large data that do not require real-
time access but consume a large amount of network band-
width, e.g., system upgrade files, popular app installation
files, videos in online games.

3 PRELIMINARIES

Erasure coding is widely used in the field of distributed
storage system to yield low storage overhead and high reli-
ability, such as Microsoft’s Azure [20] and Facebook’s F4
[30]. By applying erasure coding, a piece of data is divided
into M data blocks, which are encoded into K parity blocks.
The total of M þK coded blocks is distributed to be stored

on M þK nodes. The data can be constructed from any M
of the M þK coded blocks [31]. Fig. 3 presents an example
where ECð3; 2Þ erasure coding (M ¼ 3; K ¼ 2) is employed
to encode data X . Data X is divided into three data blocks
f1, f2, and f3, which are encoded into two parity blocks f

0
1

and f
0
2. The five coded blocks can be distributed to be stored

on different edge servers. To construct data X , any user
needs to retrieve at least three of the five coded blocks in the
ESS. The encoding principle of the erasure code is to multi-
ply the data by the coding matrix, and the decoding process
is realized with the matrix inversion technique [28]. Actu-
ally, to ensure that the result of multiplication remains
within a fixed size such as one byte, the results of matrix
multiplication in the erasure code are obtained by mapping
the matrix multiplication to a finite field [29].

In this research, we study the most general EC-EDP sce-
narios where at most one coded block on each edge server
in the ESS. This storage limit generalizes the number of
coded blocks that can be stored on each edge server. Allow-
ing multiple coded blocks to be stored on each edge server
will make it easier to find a storage solution but will lower
the reliability of the data stored in the system. Take an
extreme case for example, where all the M þK coded
blocks are stored on only one of the edge servers in the ESS
to serve all the users. If that edge server fails, the data will
become unavailable to all the users. On the contrary, if only
one coded block can be stored on each edge server, the fail-
ure of an edge server does not significantly lower the reli-
ability of the data. In fact, the ESS may still be able to serve
all the users as long as they can still retrieve M coded
blocks. The storage limit also generalizes our EC-EDP
approach (to be presented in Section 5) by relaxing the need
for app vendors to reserve a large number of storage resour-
ces on individual edge servers.

4 MODEL AND PROBLEM FORMULATION

In this section, we first formulate the EC-EDP problem and
then reduce it to another classic NP-hard problem for prov-
ing its NP-hardness. The main notations used throughout
this paper with their definitions can be found in Table 1.

Fig. 2. Replica-based solution versus EC-EDP solutions.

Fig. 3. EC(3,2) erasure coding scheme.
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4.1 Problem Formulation

Similar to [6], the S networked edge servers in an ESS can be
modeled as a undirected graph GðV;EÞ. In this graph G,
each edge server vi 2 V corresponds to a vertex, and the
connection between two edge servers corresponds to an
edge. In the edge computing environment, encoding multi-
ple data for storage in an edge storage system is not cost-
effective. For example, if five data are encoded as a bundle
into a number of coded blocks, a user requesting one of
these data will have to retrieve the coded blocks for con-
structing all five data. Transmitting these coded blocks will
consume extra network resources. It will also take extra
time for the user to construct data from the coded blocks.
Thus, encoding multiple data for storage is not cost-effec-
tive in the context of this study.

Given a coded block ft, divided from X , and a set of edge
servers vi, a block placement decision, denoted by ri;t, indi-
cates whether block ft is placed on edge server vi

ri;t ¼ 0 if block ft is not placed on vi
1 if block ft is placed on vi

�
(1)

Let qi denote the number of coded blocks placed on
server vi. It can be calculated as follow:

qi ¼
XN
t¼1

ri;t; 8vi 2 V; 8ft 2 F (2)

Constraint (3) enforces the storage limit, i.e., at most one
coded block needs to be stored on any edge server.

qi 2 f0; 1g; 8vi 2 V (3)

Let hlimit represent the transmission constraint intro-
duced in Sections 1 and 2. Let ai;j 2 f0; 1g indicate whether
user uj can access server vi, and bj indicate the number of
edge servers that user uj can access without violating the
transmission constraint. There is

ai;j ¼ 1 if uj 2 covðvwÞ; hi;w � hlimit; vw 2 V
0 otherwise

�
(4)

bj ¼
XS
i¼1

ai;j (5)

where hw;j is the distance (measured by hops) between user
uj and edge server vw with a coded block.

To ensure that each user can retrieve adequate coded
blocks for constructing data X , M, i.e., the number of data
blocks divided from X , should not exceed the minimum
number of edge servers accessible to any users uj 2 U
within hlimit hops over G. Theoretically, an erasure coding
schemed divides X into at least 2 data blocks. Thus, there is

2 �M � minfbjj 8uj 2 Ug (6)

According to the encoding constraint, when users are
covered by more than one edge server, they can access any
one of these. Take Fig. 1 for example, u2 can only directly
access edge servers v4 and v5. Let di;j denote the minimum
distance from user uj 2 U to server vi 2 V and it can be cal-
culated as follow:

di;j ¼ minfhi;wj qi ¼ 1 ; uj 2 covðvwÞg; vi 2 V (7)

To ensure that each uj 2 U can retrieve adequate coded
blocks for constructing X , there must be at least M edge
servers with a coded block within hlimit hops over the edge
server network

bi;j ¼ 1 if di;j � hlimit

0 otherwise

�
(8)

XS
i

bi;j �M; uj 2 U; vi 2 V (9)

where
Ps

i bi;j is the number of coded blocks that user uj can
retrieve within hlimit network hops. Please note that variable
bi;j is defined to ensure the feasibility of the data placement
strategy by allowing users to retrieve necessary coded
blocks for constructing data X under the transmission con-
straint, which is different from the definition of variable ai;j.

The optimization objective of the EC-EDP problem is to
minimize the total storage cost. It is calculated based on the
number and the size of the coded blocks stored in the ESS.
Since matrix multiplication and inverse operations are
involved in every erasure coding scheme, the size of coded
blocks must be divided equally. Thus, the size of each coded
block, denoted by sizeðftÞ 2 F can be calculated by sizeðftÞ ¼
sizeðXÞ=M. Let N , M þK. Based on the storage limit, there
is

N ¼
XS
i¼1

qi; vi 2 V (10)

TABLE 1
Summary of Notations

Notation Description

bj number of servers that user uj can access within
transmission constraint

costðRÞ storage cost achieved by caching strategy R
covðviÞ set of users covered by edge server vi
di;j distance between user uj and edge server vi
ft coded block of the data X , where t ¼ 1; 2; . . . ; N
F set of coded blocks
G graph presenting a particular area
hi;w distance from server vi to server vw
hlimit maximum hops for data transmission over G
K number of parity blocks with erasure code of X
M number of data blocks with erasure code of X
N number of total coded blocks of X
P number of total users
qi number of coded blocks stored on server vi
ri;t binary variables indicating coded block dt on edge server vi
R set of binary variables indicating coded blocks placement

strategies
sizeðftÞ size of coded block ft
S number of total edge servers
uj edge user j
U set of user uj, where j ¼ 1; 2; . . . ; P
vi edge server i
V set of edge server vi, where i ¼ 1; 2; . . . ; S
X the original data
ai;j binary variable indicating whether uj can access vi

within hlimit hops
bi;j binary variable indicating whether uj can access coded

blocks on vi within hlimit hops
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The total storage cost incurred by an EC-EDP strategy is
computed as N � ðsizeðXÞ=MÞ. Given that sizeðXÞ is a con-
stant specific to X , the cost incurred by an EC-EDP strategy
R can be presented as follow:

costðRÞ ¼ N=M (11)

Thus, the optimization objective in the EC-EDP, i.e., tomin-
imize the storage cost incurred, can be expressed as follow:

min costðRÞ (12)

s.t.: ð3Þ; ð6Þ; ð9Þ
.

4.2 Problem Hardness

In this section, we reduce EC-EDP to a classic NP-hard
problem, i.e., minimum dominating set (MDS) problem [32],
for proving itsNP-hardness.

Given an undirected graphG ¼ ðV;EÞ, there is a subset of
V
0 � V . Given an arbitrary vertex D

0 2 V , we always have
D
0 2 V

0
or the neighbor ofD

0 2 V
0
. The set V

0
with the mini-

mum elements can be called the minimum dominating set of
graph G. For each vertex vi, we define a binary variable yi to
denote whether it is in V

0
(yi ¼ 1) or not (yi ¼ 0). Let gðiÞ

denote the vertex set composed by vertex vi and its adjacent
vertexes inG. TheMDS problem can be expressed here.

min
X
i2V

yi (13)

s:t::
X
j2gðiÞ

yj � 1; 8i 2 V (13a)

yi 2 f0; 1g; i 2 V (13b)

The reduction from the MDS problem to the EC-EDP
problem can be done as follows: 1) let the number of coded
blocks M be a deterministic value; 2) let every user access a
fixed edge server. Given an undirected graph G ¼ ðV;EÞ in
the MDS problem, we can find an instance of the MDS prob-
lem MDSðV 0 ; E; wsÞ, where ws ¼Pi2V yi. We can also con-
struct an instance of the EDP problem EDP ðV �; E�; csÞ with
the reduction above where jV �j ¼ jV 0 j and jE�j ¼ jEj, and
cs ¼Pj2U;i2V ðbi;jÞ. Then, constraint (9) can be converted toP

j2�ðiÞ yj �M, where �ðiÞ represents a vertex set com-
prised of vertex vi and the vertexes within hlimit hops over
G. We can easily see that it is equal to constraint (13a).
According to (3), at most one coded block can be placed on
each edge server. Thus, constraint (13b) can be fulfilled. In
conclusion, any M values always satisfy the MDS problem.
Thus, the EC-EDP problem isNP-hard.

5 APPROACH DESIGN

In this section, we first model the EC-EDP problem as an
integer linear programming problem. Then, we propose
two approaches, i.e., EC-EDP-O and EC-EDP-V. The EC-
EDP-O approach is proposed to solve the small-scale EC-
EDP scenarios based on integer programming. The EC-
EDP-V is proposed to solve the large-scale EC-EDP scenar-
ios with a lnðQlimit þ 1Þ approximation ratio guarantee.

5.1 Optimal Approach

The EC-EDP problem can be modeled as a integer linear pro-
gramming (ILP). Given an edge server network G ¼ ðV;EÞ,
where V ¼ fv1; . . . ; vSg and E ¼ fe1; . . . ; ePg, let us define a
set of variable Y ¼ fy1; . . . ; ySg to represent an EC-EDP
strategy, where yi ¼ f0; 1g. If yi ¼ 1, it indicates that a coded
block is placed on the edge server i, and yi ¼ 0 if not. There-
fore, the formula of the ILP model for the EC-EDP problem
is presented here

min

P
ui2U yi

M
(14)

s.t.: yi 2 0; 1; 8i 2 ½1; S� (15)

dw;i � hlimit; 8i; w 2 ½1; S� (16)

XS
i

bi;j �M; 8i 2 ½1; S�; 8j 2 ½1; P � (17)

Constraint (16) guarantees that the users covered by edge
server vi can only retrieve coded blocks within the transmis-
sion limit. Constraint (17) is converted from (9) to guarantee
that every user can retrieve adequate coded blocks to con-
struct data X .

Algorithm 1. EC-EDP-V

Input: GðV;EÞ,M, hlimit

Output:Minimum storage cost C, the best solution set S�

1: Initialization:
2: S�  ; ;
3: Ai  servers that vi can access within hlimit;
4: A�i  the size of the edge server set Ai, vi 2 V ;
5: End of initialization
6: forM  2 to argminA�i do
7: initialize the number of coded blocks required per edge

servermi  M;
8: CM  0;
9: S�M  ; ;
10: while 9vi 2 V;mi 6¼ 0 do
11: update the vote weight of edge server Vi by wi  mi;
12: for vi 2 V do
13: Vote for vj 2 Ai n S�M with wj;
14: end
15: sort the edge servers in V by their votes;
16: find vk, i.e., the edge server with the most votes;
17: S�M  S�M [ fvkg;
18: for vr 2 Ak do
19: mr  mr 	 1;
20: end
21: end
22: CM  jS�M j=M ;
23: if CM < C then
24: C  CM ;
25: S�  S�M ;
26: end
27: end
28: return C, S�

This ILP can be solved by some classic widely-used inte-
ger programming solvers, such as IBM CPLEX Optimizer2.

2. https://www.ibm.com/products/ilog-cplex-optimization-studio
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This optimal approach for solving the EC-EDP problem
named EC-EDP-O. It uses three binary variables, i.e., ri;t, ai;j,
and bi;j, and must fulfil three constraints. There are a total of

CM
N CM

S AM
M feasible solutions. Since the number of data blocks

obtained from encoding data X is between 2 and S 	 1, the
size of the solution space is ð S!N !

M!ðN	MÞ!ðS	MÞ!ÞS	1. It takes long
time for EC-EDP-O to explore such a large solution space
even in a small-scale EC-EDP scenario discussed in Section 2.

5.2 Approximation Approach

As proven in Section 4.2, the EC-EDP problem is NP-hard.
EC-EDP-O may solve small-scale EC-EDP problems. How-
ever, it is not tractable in large-scale EC-EDP scenarios. To
address the complexity of solving large-scale EC-EDP scenar-
ios, an efficient approximation approach named EC-EDP-V is
proposed. Algorithm 1 presents the pseudocode of EC-EDP-
V, and Fig. 4 illustrates its approximation process for finding
the solution to the EC-EDPproblem presented in Fig. 2.

The key idea of EC-EDP-V is to select the edge servers
that produce the maximum benefits by storing coded blocks
in the edge storage system. We design a new voting mecha-
nism where EC-EDP-V adjusts the voting weight for each
edge server and each edge server votes for the edge servers
within its hlimit hops iteratively. In each iteration, the edge
server with the highest number of votes will be selected.
During the voting process, if multiple edge servers have the
same highest number of votes, EC-EDP-V will randomly
select one of them and update the vote weight for each edge
server. First, the algorithm starts with an initial S� ¼ ;,
which is used to save the current optimal solution of EC-
EDP problem (Line 2). Note that Ai (i ¼ 1; :::; n) on Line 3 is
the set of edge servers within hlimit hops from vi. On Line 4,
A�i is the number of neighbor edge servers of edge server vi
within hlimit network hops limit. To find the final solution,
the algorithm iterates for n times, one for each of the num-
ber of data blocks M, to produce n candidate EC-EDP solu-
tions on Lines 7-21. In each iteration, the algorithm initiates
the number of coded blocks needed for each edge server
mi ¼M (Line 7), the current storage cost CM ¼ 0, and the
set of selected candidate edge servers S� ¼ ; (Lines 7-9).
Take the ESS presented in Fig. 4a for example. Let us
assume that data can be transmitted via two network hops.
Edge servers v1; v2; :::; v10 are initialized with the same vote
weight of 3, i.e., the number of coded blocks needed for
each edge server. Then, the algorithm loops Lines 10-21. In
each iteration of the loop, it assigns mi as the vote weight wi

to each edge server vi 2 V without a coded block (Line 11).
Next, all the edge servers within hlimit hops from vi vote for

vi with vote weight wj (Lines 12-14). As shown in Fig. 4b,
edge servers v4 and v5 receive 27 votes from their neighbor
edge servers within 2 hops, i.e., 3 votes from each of v1, ...,
v9 and 3 votes from each of v1, ..., v6 and v8, ..., v10, respec-
tively. In this example, v4 is chosen over v5. After that, all
the edge servers in V are sorted by the number of their
votes, the algorithm selects the one (vk) with the most votes
to be included into S�, i.e., the set candidate edge servers
(Lines 15-17). Next, for each edge server vr 2 Ak, the num-
ber of its required coded blocksmr decreases by 1 (Lines 18-
20). In this way, as shown in Fig. 4b, when edge server v4 is
chosen, its vote weight m4 will decrease to 0. Let us now
take a look at Fig. 4c, where v4 and v5 are chosen for their
highest votes. The vote weights of their neighbor edge serv-
ers within 2 hops, including v1; v2; v3; v6; v8; v9, and v10,
decrease by 1. Next, it compares the current storage cost CM

with all the candidate EC-EDP solutions. If it is lower than
the current lowest storage cost, the corresponding EC-EDP
solution S�M replaces the current best solution (Lines 22-25).
As shown in Fig. 4d, the final solution contains v4; v5; v8,
and v9. It achieves the lowest storage cost ratio of 1.33.

5.3 Theoretical Analysis

In this section, we theoretically analyze the approximation
ratio and time complexity of the proposed approach EC-
EDP-V.

5.3.1 Approximation Ratio

Given an edge server network G ¼ ðV;EÞ, let Nhlimit
ðviÞ

denote the set of edge server vi’s neighbor edge servers
within hlimit hops, Qhlimit

ðGÞ denote the maximum number
of Nhlimit

ðviÞ, �opt ¼ f�0
opt; :::; �

n	1
opt g denote the optimal solu-

tion to the EC-EDP problem, and � denote the sub- optimal
solution found by EC-EDP-V. For each edge server over the
network topology of edge servers, the number of its neigh-
bor edge servers within hlimit network hops is less than
Qhlimit

þ 1. When an edge server with the most votes is
included into OPT , we have the following inequality

n � ðQhlimit
þ 1Þ þQhlimit

� ðj�OPT j 	 1Þ (18)

From (18), we can infer j�OPT j � ðn	 1Þ=Qhlimit
. Let us

assume that the number of remaining encoded blocks to be
placed after the i-th iteration inAlgorithm 1 isci withc0 ¼ n.
Considering the i-th iteration, the optimal solution can reduce
the number of coded blocks by ci 	 1. Thus, the lower bound
of the number of selected edge servers in the i-th iteration by
Algorithm 1 is dðci 	 1Þ=j�OPT je. Now,we can infer:

Fig. 4. Approximation process.
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ciþ1 � ci 	 dðci 	 1Þ=j�OPT je

� ci 1	 1

j�OPT j
� �

þ 1

j�OPT j (19Þ

By the inductive proof, we can easily prove (20) based on
(19). The details of the proof are omitted here.

ci � c0ð1	
1

j�OPT jÞ
i þ 1

j�OPT j
Xi	1
j¼0

 
1	 1

j�OPT j

!j

¼ ðc0 	 1Þ
 
1	 1

j�OPT j

!i

þ 1 (20Þ

When i ¼ j�OPT j � ln c0	1
j�OPT j , and the ith sub-decision is

made, we can obtain the number of the remaining coded
blocks to be placed as follow:

ci � ðc0 	 1Þ
 
1	 1

j�OPT j

!i

þ 1

¼ ðc0 	 1Þ
 
1	 1

j�OPT j

!j�OPT jln c0	1
j�OPT j

þ 1

� ðc0 	 1Þ
 
1

e

!ln
c0	1
j�OPT j

þ 1 ¼ ðc0 	 1Þ j�OPT j
c0 	 1

þ 1

¼ j�OPT j þ 1 (21Þ

This proves that after the j�OPT j � ln c0	1
j�OPT j-th iteration, the

number of remaining coded blocks will not exceed j�OPT j þ
1. Let us assume that the iterative process will end by select-
ing cf more edge servers. The total number of selected edge
servers fulfills:

j�j ¼ j�OPT j � lnc0 	 1

j�OPT j þ cf � lnðQhlimit
þ 1Þ � j�OPT j

(22)

Therefore, the approximation ratio of EC-EDP-V algo-
rithm is lnðQhlimit

þ 1Þ.

5.3.2 Time Complexity

Suppose an EC-EDP problem with n edge servers V ¼
fv1; v2; :::; vng in a geographic area. For each edge server vi 2
V , let p denote the average number of its neighbor edge
servers within hlimit hops. We first analyze the time com-
plexity of Lines 11-14 of Algorithm 1. The voting process
takes OðnÞ time because all of n edge servers will vote. The
time complexity of sorting these edge servers and selecting
the highest one on Line 15 at most OðlognÞ. The upper limit
of M impacts the number of inner iterations (Lines 10-21),
which is determined by argminjAj. When argminjA�j � p,
the complexity of the overall process in the worst-case EC-
EDP scenario is no more than Oððn	 pÞlognÞ. After the
inner iteration (Lines 10-21), Algorithm 1 has obtained a
total of n	 2 candidate solutions. Therefore, the time com-
plexity of Algorithm 1 is Oðn2lognÞ.

6 EVALUATION

In this section, we conduct extensive experiments to evalu-
ate the performance of EC-EDP-O and EC-EDP-V in differ-
ent EC-EDP scenarios.

6.1 Settings

6.1.1 Dataset

In order to evaluate these competing approaches realisti-
cally, we conduct the experiments on the realistic EUA data
set3. This dataset contains 1,464 real-world edge servers and
131,312 users in Metropolitan Melbourne, Australia.

6.1.2 Competing Approaches

Five representative approaches are implemented in Java 8 to
be compared against EC-EDP-O and EC-EDP-V:

� Greedy Degrees (GD): This EC-based approach selects
the edge server with the highest degree to place
coded blocks each time, until all the users are cov-
ered, i.e., they can all retrieve adequate coded blocks
within hlimit hops.

� Random Block Placement (RBP): This EC-based
approach randomly selects one edge server at a time
to place a coded block, one after another until all the
users are covered.

� LGEDC [33]: This replica-based approach heuristi-
cally places replicas of dataX to minimize the storage
cost while covering all the users within hlimit hops.

� GRED [11]: This replica-based approach tries to
spread replicas of data X across all the edge servers.
Specifically, it first heuristically selects n

hlimitþ1 candi-
date edge servers that can serve all the users with
minimum data retrieval latency within hlimit hops.
Then, from these candidate edge servers, it selects
those that are connected to the fewest other candi-
date edge servers within hlimit hops until all the users
are covered.

� TMC18 [34]: This replica-based approach partitions
edge servers into multiple groups with the Lagrang-
ian method based on the number of user requests for
data X received by individual edge servers. Then, it
always places replicas of data X in the group with
the lowest overall number of replicas of data X until
all the users are covered.

In the implementation of EC-EDP-O, IBM’s CPLEX Opti-
mizer is employed for finding the solution by traversing all
possible solutions to the ILP problem.

6.1.3 Experiment Setup

Two scales of experimental settings are conducted. Set #1 is
conducted within the Melbourne CBD area to evaluate the
performance of EC-EDP-O and EC-EDP-V in small-scale
EC-EDP scenarios. Set #2 is conducted within Metropolitan
Melbourne to evaluate EC-EDP-V in large-scale EC-EDP
scenarios. To facilitate comprehensive evaluations, we sim-
ulate different EC-EDP scenarios by varying the specific val-
ues of three setting parameters, as summarized in Table 2.

3. https://github.com/swinedge/eua-dataset
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� Number of edge servers (n ¼ jV j): This parameter is the
size of the edge server network G, increasing from
10 to 35 in Set #1 and from 50 to 250 in Set #2.

� Density of edge servers (d ¼ jEj=jV j): This parameter
decides the density of the edge server network G. It
increases from1 to 2.5 in Set #1, from2.0 to 5.0 in Set #2.

� Hop limit (hlimit): This parameter is specified to
enforce the transmission constraint, increasing from
1 to 5 in both Set #1 and Set #2.

6.1.4 Performance Metrics

Two metrics are employed for performance evaluation:

� Storage cost (cost). The storage cost denotes the ability
of an approach to achieve the optimization objective
of the EC-EDP problem. It is calculated by Eq. (11),
the lower the better.

� Computational overhead (time). This metric indicates
the efficiency of an approach, which is measured by
the CPU computation time, the lower the better.

6.2 Experimental Results

In this section, we comprehensively present and analyze the
experimental results in Set #1 and Set #2.

6.2.1 Experiment Set #1

Effectiveness. Fig. 5 illustrates the storage costs incurred by
the seven approaches and impacts of the three parameters
in Set #1. We can clearly see the significant advantages of
EC-based approaches over replica-based approaches in
minimizing storage costs. Among all the four EC-based
approaches, EC-EDP-O and EC-EDP-V are the clear winners
in all the cases. This illustrates the importance of leveraging
the ability of edge servers to cost-effectively utilize the

constrained and expensive storage resources in the ESSs.
EC-EDP-O achieves the lowest storage cost in all the cases.
Compared with EC-EDP-O, EC-EDP-V incurs about 3.94%
more storage cost on average in Set #1. Meanwhile, EC-
EDP-V incurs much less storage costs compared with GD,
RBP, LGEDC, TMC18, and GRED, by 23.99%, 36.19%,
56.28%, 53.47%, and 58.29%, respectively.

Fig. 5a shows the impact of the number of edge servers n
on the storage cost in Set #1.1. The storage costs incurred by
the approaches increase when n increases. The storage costs
incurred by LGEDC and RBP increase at higher rates com-
pared with the other five approaches. When n increases, the
scale of the EC-EDP problem increases. Accordingly, replica-
based approaches need to place more data replicas to serve all
the users. EC-based approaches also need to placemore coded
blocks to serve all the users. However, the total size of these
extra coded blocks ismuch smaller than the extra data replicas
to be placed by LGEDC, TMC18, and GRED. Among all the
six approaches, EC-EDP-O always achieves the lowest storage
costs, 4.01% lower than EC-EDP-V, 27.97% lower than GD,
33.35% lower than RBP, 59.43% lower than LGEDC, 53.30%
lower than TMC18, and 60.06% lower thanGREDon average.

Fig. 5b demonstrates the impact of the edge server density
d on storage costs in Set #1.2. When d increases, the storage
costs incurred by all the seven approaches decrease. The root
cause is that a larger d connects each edge server tomore adja-
cent edge servers within hlimit hops. Fewer coded blocks or
data replicas need to be stored in the ESS to cover all the users.
This immediately results in a decreases in the total storage
cost incurred and indicates the importance of leveraging the
collaboration of edge servers. In Set #1.2, EC-EDP-V outper-
forms GD, RBP, LGEDC, TMC18, and GRED by an average of
24.47%, 38.05%, 59.26%, 64.49%, and 70.98%, respectively.We
can see that EC-EDP-O always achieves the lowest storage
cost, 3.35% lower than EC-EDP-V on average.

Fig. 5c shows the impact of the hop limit hlimit in Set #1.3.
When hlimit increases, coded blocks or data replicas can
travel via more hops to be delivered to the users. The total
storage costs incurred by the approaches decrease accord-
ingly. When hlimit varies from 1 to 5, EC-EDP-V outperforms
GD, RBP, LGEDC, TMC18, and GRED by an average of
24.34%, 41.21%, 53.85%, 53.47%, and 58.29%, respectively.
EC-EDP-O, again, achieves the lowest storage costs in all
the cases, outperforming EC-EDP-V by 5.31% on average.

Efficiency. In Fig. 6, we can clearly see that EC-EDP-O
incurs the highest computational overhead of all in the entire
set of experiments. This is expected and confirms the

TABLE 2
Parameter Settings

n d hlimit

Set #1.1 10, 15, ..., 35 1.0 1
Set #1.2 20 1.0, 1.3, ..., 2.5 1
Set #1.3 20 1.0 1, 2, ..., 5

Set #2.1 50, 100, ...,250 2.0 1
Set #2.2 150 2.0, 2.6, ..., 5.0 1
Set #2.3 150 2.0 1, 2, ..., 5

Fig. 5. Effectiveness evaluation in Set #1.
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NP-hardness of the EC-EDP problem proved in Section 4.2.
As shown in Fig. 6a, EC-EDP-O takes an average of 2,112.40
milliseconds to find the optimal solution when n ¼ 35 in Set
#1.1. In the meantime, it takes up to 3,444.80 milliseconds in
Set #1.2 and 4,047.70 milliseconds in Set #1.3 to find a solu-
tion, as illustrated in Figs. 6b and 6c. The increase in density
in Set #1.2 connects the edge servers in the ESS with more
edges. This rapidly increases the number of solutions that
can cover all the users, taking EC-EDP-O considerably more
time to find the optimal solution. In Section #1.3, as shown in
Fig. 6c, the relaxation of hlimit also increases the number of
solutions that can cover all the users, but less significantly
compared with density. Interestingly, when hlimit increases
from 4 to 5, the increase in EC-EDP-O’s computational over-
head is marginal. The reason is that EC-EDP-O can already
cover all the users by storing coded blocks on a few of the
”key” edge servers within four hops in most cases. A further
increase in hlimit from 4 to 5 does not significantly expand the
solution space for EC-EDP-O to explore, and thus does not
increase its computational overheadmuch.

Compared with EC-EDP-O, EC-EDP-V is multiple-order-
of-magnitude faster. For example, in Set #1, it takes only 1.087
milliseconds on average to find the solution, only 0.05% of
what EC-EDP-O takes. In those figures, EC-EDP-O’s multi-
ple-order-of-magnitude higher computational overhead in
Set #1 renders those of other approaches indistinguishable.
The computational overheads of other approaches are close
to 0, but not 0. Specifically, GD, RBP, LGEC, TMC18, and
GRED’s computation time is less than 5 milliseconds in Set
#1. Therefore, Fig. 6 does not illustrate EC-EDP-V’s efficiency
clearly. In the next section, without EC-EDP-O, we will illus-
trate and discuss the performance differences between EC-
EDP-V and GD, RBP, LGEDC, TMC18, GRED in large-scale
EC-EDP scenarios in Set #2 clearly.

6.2.2 Experiment Set #2

Effectiveness. Fig. 7 demonstrates the advantages of EC-EDP-

V approach in minimizing storage costs in large-scale EC-

EDP scenarios. It always manages to achieve the lowest

storage cost in all the cases in Set #2. Specifically, the storage

cost achieved by EC-EDP-V is 55.63%, 65.7%, 79.01%,

81.06%, and 83.52% lower than GD, RBP, LGEDC, TMC18,

and GRED, respectively.
As demonstrated in Fig. 7a, when n increases, the storage

costs incurred by the EC-EDP strategies formulated by the
approaches increase linearly. We can see EC-EDP-V’s signif-
icant advantages over the other five approaches, i.e., 69.10%,
74.80%, 83.33%, 78.05%, and 80.24% over GD, RBP, LGEDC,
TMC18, and GRED on average. The reason behind this is
similar to Set #1 and thus is not repeated here. It is worth
mentioning that when n reaches 250, the storage cost
achieved by EC-EDP-V is only 20.23%, 19.56%, 18.23% of
what is achieved by LGEDC, TMC18, and GRED. These are
considerable storage cost savings and clearly show EC-
EDP-V’s prominent advantage over LGEDC, TMC18, and
GRED in storing data cost-effectively in large-scale ESSs.

As illustrated in Figs. 7b and 7c, the impacts of the
increases in d and hlimit on storage cost in Set #2 are similar to
what we observed in Set #1. Specifically, EC-EDP-V can save
an average of 48.89% storage cost against GD, 61.15% against
RBP, 76.58% against LGEDC, 82.86% against TMC18, and
85.61% against GRED. The underlying reasons are also simi-
lar to those in Set #1 and thus are not discussed in detail here.

Efficiency. Fig. 8 shows the computational time produced
by all the approaches in Set #2. EC-EDP-V always takes
more time than the other five approaches to find a solution,
170.71%, 205.59%, 241.88%, 233.26%, and 243.12% more
than GD, RBP, LGEDC, TMC18, and GRED, respectively.

Fig. 6. Efficiency evaluation in Set #1.

Fig. 7. Effectiveness evaluation in Set #2.
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Fig. 8 shows that computational overheads of all the the
approaches increase gradually with n, d, and hlimit. Overall,
EC-EDP-V scales with n, d, and hlimit, taking no more than
150 milliseconds. This significant advantages in minimizing
storage costs over GD, RBP, LGEDC, TMC18, and GRED
illustrated in Fig. 7make its extra computational time tolera-
ble. When n, d or hlimit increases, the number of possible EC-
EDP solutions that can fulfil all the constraints in the ILP
model presented in Section 5.1 increases. According to
Algorithm 1, it takes EC-EDP-V more iterations (Lines 10-
21) to process the votes for each edge server. Thus, EC-EDP-
V takes more time to complete.

6.2.3 Conclusion

The experimental results show that EC-EDP-O is a clear
winner in small-scale EC-EDP scenarios, while EC-EDP-V is
the best option for solving large-scale EC-EDP problems.
They collectively offer a package for formulating cost-effec-
tive EC-EDP strategies in various ESSs.

7 RELATED WORK

The edge computing paradigm enables data caching at the
network edge by facilitating edge storage systems (ESSs)
within users’ close geographic proximity. ESSs offer various
novel opportunities and also raise many new challenges. It
has attracted widespread attention in very recent years [11],
[14], [34].

Existing studies of ESSs are performed from the perspec-
tive of edge infrastructure provider, e.g., Amazon and Veri-
zon, aiming to achieve various optimization objectives by
storing or caching data and data replicas on the edge servers
in an ESS. To name a few, Xie et al. [11] propose GRED, an
efficient edge data placement algorithm that aims to balance
the data retrieval workloads across the entire ESS and
shorten the path for delivering data to users. Zhang et al.
[34] explore data placement in ESSs to minimize overall
data retrieval latency based on network topology, traffic dis-
tribution, and data popularity. Ren et al. [14] propose a
cooperative edge data caching framework for ESSs that sets
up cooperative caching regions to minimize data caching
density and to promote data retrieval at the edge instead of
from the remote cloud.

To accommodate data traffic at the network edge cost-
effectively, network coding can be employed to split data
into small blocks to be encoded for high data reliability and
low storage occupation. Kim et al. [35] propose a coding
framework that employ error-correcting data encoding and

computation decoding to enable high data reliability in the
edge computing environment. Wu et al. [36] introduce net-
work coding into the mobile ad hoc network environment
to minimize the energy required to transmit data between
nodes. They model the physical broadcast links as a graph
and construct a minimum-energy multicast tree as the opti-
mal routing mechanism. Bulut et al. [37] study the erasure
code based data routing problem in mobile networks and
focus on parameter selection for reducing cost of message
delivery. Xu et al. [38] propose a game theory based
approach to jointly optimize the content service satisfaction
degree and network throughput in edge caching systems by
deploying network coding for data routing. However, these
studies adopt the same assumption made for cloud storage
systems, i.e., the storage nodes are fully and directly reach-
able to each other over high-speed links. This is, however,
unrealistic in edge computing environment. In the edge
computing environment, the topology of the edge server
network must be properly considered.

In very recent years, researchers also start to investigate
the use of ESSs from the perspective of app vendor. For
example, Cao et al. [15] propose an auction-based approach
for edge cache space allocation, aiming to maximize app
vendor’s caching benefits while guaranteeing the quality of
services of different users. Xia et al. [23] propose CEDC-O,
an online edge data caching algorithm, which aims to mini-
mize app vendors’ caching cost plus the data migration cost
based on Lyapunov optimization. They also investigate the
problem of cost-effective edge data distribution from the
cloud to ESSs for app vendors [6].

It is widely acknowledged in these studies that the storage
resources on edge servers are constrained and expensive [6],
[39]. The competition among app vendors makes it hard and
often impossible for them to hire or reserve adequate resour-
ces for storing large data. Thus, storing an app vendor’smulti-
ple data replicas in an ESS to serve users covered by different
edge servers in the ESS will cost the app vendor deeply. It is
in fact too expensive and too resource-demanding to be prac-
tical. Existing studies of ESSs accommodate app vendors’
need for low service latency by leveraging the ability of ESSs
to minimize data retrieval latency for users. There is a lack of
effort in helping app vendors with storing large data in ESSs
cost-effectively. In this paper, we innovatively employ era-
sure coding to tackle this particular challenge. The key idea is
to encode data into a number of coded blocks to be placed on
the edge servers in an ESS so that all the users in the ESS can
be served at minimum storage cost. This problem is referred
to as the EC-EDPproblem in this paper.

Fig. 8. Efficiency evaluation in Set#2.
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8 CONCLUSION AND FUTURE WORK

In this paper, we employ erasure coding to tackle the new
EC-EDP problem of storing large data cost-effectively in an
edge storage system, aiming to serve all the users in the sys-
tem for app vendors at minimum storage cost. We first
introduced, motivated, and formulated the EC-EDP prob-
lem. Then, we proposed two approaches, one for solving
small-scale EC-EDP problems optimally and the other for
finding approximate solutions provable performance guar-
antee in large-scale EC-EDP scenarios. The extensive experi-
mental results indicate that by leveraging erasure coding
and the ability of edge servers to cooperate, our approaches
can formulate cost-effective EC-EDP strategies efficiently.

This study establishes the foundation for further study of
the EC-EDP problem. In the future, we will study the trade-
off between data reliability and storage cost in EC-based
data storage at the edge.
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