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Abstract—For the offshore energy industry, virtual environment
technology can enhance conventional training by teaching basic
offshore safety protocols such as onboard familiarization and
emergency evacuation. Virtual environments have the added benefit
of being used to investigate the impact of different training approaches
on competence. This pilot study uses decision tree modeling to
examine the efficacy of two pedagogical approaches, simulation-based
mastery learning (SBML) and lecture-based training (LBT), in a
virtual environment. Decision trees are an inductive reasoning
approach that can be used to identify learners’ egress strategies in
offshore emergencies after training. The efficacy of the virtual training
is evaluated in three ways: 1) analyzing participants’ performance
scores in test scenarios; 2) comparing the decision tree depiction of
participant’s understanding of emergency egress to the intended
learning objectives; and 3) comparing the decision strategies
developed under a different pedagogical approach. A comparison of
the resulting decision trees from the SBML training with trees
generated from the LBT showed that the different training methods
influenced the participants’ egress strategies. The SBML approach
resulted in concise decision trees and better route selection strategies
when compared to the LBT training. This pilot study demonstrates
the diagnostic capabilities of decision trees as training assessment tools
and recommends integrating decision trees into virtual training to
better support the learning needs of individuals and deliver adaptive
training scenarios.

Index Terms—Decision making in emergencies, decision trees,
enter simulation-based mastery learning (SBML), offshore emer-
gency egress, training efficacy, virtual environments.

I. INTRODUCTION

EGRESS training is essential for coordinating the safe

evacuation of offshore platforms and maritime vessels.

For instance, in response to the January 2012 Costa Concordia

accident that resulted in 32 fatalities [1], the International

Maritime Organization enacted regulatory changes to the

Safety of Life at Sea (SOLAS) Convention on Emergency

Training and Drills [2]. As a result, to ensure crews and pas-

sengers are adequately prepared for emergencies at sea, the

SOLAS Resolution MSC.350(92) requires that all passengers

onboard are provided with muster drills and safety briefings

prior to or immediately after departure [2].

Virtual environment technology can enhance conventional

training for maritime and offshore energy industries by pro-

viding crews with worksite familiarization, practice with

safety-critical operations, and experience in responding to

emergencies. Virtual environment training, which will be

referred to as virtual training throughout the remainder of this

article, also has built-in capabilities to track and record the

learner’s performance during the training. The data are pre-

dominately used to assess the learner’s competence, provide

feedback, and deliver adaptive training scenarios. An addi-

tional advantage of the data recording capabilities of the vir-

tual training is the added value of using data to evaluate the

efficacy of the virtual training itself. Conventional ways of

evaluating new training technologies involve experiments

with volunteer participants to collect and report the statistical

differences in human performance between multiple training

interventions. However, these methods can be logistically

challenging, time consuming, and costly.

This pilot study maximizes the use of data collected from

empirical approaches and explores whether decision tree

modeling can offer an alternative to evaluating training effi-

cacy. This article uses the published human performance data

from the two experiments [3], [4], to investigate the utility of

decision tree modeling for evaluating different virtual training

methods. The separate experiments were originally designed

to test the application of two different pedagogical approaches

in training na€ıve personnel for basic emergency duties, specifi-

cally, lecture-based training (LBT) and simulation-based mas-

tery learning (SBML). The first experiment used conventional

LBT training [3] to expose participants to emergency egress

using video tutorials, platform walkthroughs, practice scenar-

ios, and test scenarios in a first-person perspective virtual

environment. The second experiment was conducted to assess
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the relative merits of the SBML pedagogical approach [4].

Applying the SBML framework in this experiment, the train-

ing repeatedly exposed participants to emergency egress using

platform walkthroughs, practice scenarios, and test scenarios.

Further, the SBML training also included a minimum passing

standard that required participants to master a topic before

moving on to the next module.

Overall, the same first-person perspective virtual environ-

ment, learning objectives, test scenarios, and performance

metrics were used in both studies. The key difference between

the two experiments was the pedagogical approach, which

included the delivery framework, formative assessment, mini-

mum passing requirement, and feedback method. This was

intentionally controlled so the results from both experiments

could be compared in terms of pedagogy.

While the datasets collected from the pedagogical experi-

ments were small, it is considered sufficient for a pilot study

to demonstrate the value of using human performance data to

model learning. As part of this pilot, data mining methods

were applied to the datasets from the two experiments to fur-

ther evaluate the efficacy of the different virtual delivery

methods. Specifically, a decision tree algorithm was applied

to the training datasets to create a collection of decision trees

for each training approach. This information was used to

determine how well the virtual training prepared participants

for emergency scenarios. As an example, Musharraf et al. [5]

applied decision trees to the LBT dataset to identify individu-

als’ decision-making strategies in the context of selecting safe

egress routes in virtual offshore emergencies. This article

builds on the research from Musharraf et al. [5] by developing

decision trees from the SBML dataset and comparing them to

those developed from the LBT dataset.

The results of this pilot study provide a closer look at the

diagnostic capabilities of decision tree modeling, as a comple-

ment to conventional performance metrics, to investigate the

training efficacy of the pedagogical approaches. The analysis

involves three methods to evaluate the virtual training:

1) an empirical analysis of the participants’ performance

scores in the test scenarios;

2) a comparison of the resulting decision trees against the

intended learning objectives;

3) a comparison of the decision trees generated from two

training studies as a way of assessing the relative merits

of the two pedagogical approaches in terms of improv-

ing the performance of participants.

To orient the reader, the introductionwill continue by outlining

the two pedagogical frameworks employed in the research and

explaining the decision tree theory used as a data-informed

diagnostic lens to assess the virtual training.

A. Pedagogical Frameworks

LBT is a learning approach that is instructor-centered and in

line with traditional lecture-style instruction [6]. This method

is a passive form of training in which learners are exposed to

the content through video instructions, demonstrations, and

practice exercises. LBT represents a virtual facsimile of the

orientation training that crews receive in the offshore energy

and maritime industries. However, there are limitations to this

form of training. Mainly the passive assessment often does not

include a minimum passing component or feedback on how to

improve performance, which can leave the learner with little

means to assess their comprehension or gauge their progress.

SBML is designed to meet the needs and pace of the individ-

ual learner. SBML is a pedagogical approach developed in the

medical education field [7], [8], [9], [10], [11], [12], [13], [14]

and is based on Bloom’s competence-based theory of learning

for mastery. Bloom’s mastery learning is an instructional strat-

egy that ensures all learners achieve competence by providing

them with formative assessment, opportunities for deliberate

practice, individualized feedback, and corrective measures

[15], [16]. The SBML protocol builds on Bloom’s theory by

using virtual environments and simulation to provide instruc-

tion and assessment. The SBML framework assesses the

learner’s entry-level knowledge, gradually walks the learners

through the increasingly difficult content, and requires that the

learners deliberately practice the exercises until they demon-

strate competence. Learners are provided with formative

assessments throughout the training, which includes construc-

tive feedback for them to improve or correct their performance.

The instructions, assessment, and feedback are automated in

the AVERT simulator. Once the learners have demonstrated

their understanding in test exercises (e.g., performing at or

above the minimum passing requirement), they are able to

move on to more advanced content. The SBML training allows

learners to gauge their progress and requires that they demon-

strate competence in completing the training.

B. Decision Tree Modeling

Decision trees are common classification approaches used

in educational data-mining applications [17] and in artificially

intelligent enabled adaptive instructional systems [18]. This

pilot study uses decision trees to evaluate how well the virtual

training prepared participants for emergency scenarios. Deci-

sion trees were selected for their visual simplicity, quick con-

struction, and because they require no prior assumptions about

the data, particularly when compared to other methods, such

as artificial neural network or support vector machines [19].

Further, decision trees have behavioral pattern recognition

capabilities that go beyond conventional methods of tracking

trainee progress and performance outcomes and offer a diag-

nostic lens to assess training efficacy.

Decision tree modeling is one of several supervised learning

techniques that are particularly well-suited for virtual training

applications because they employ a repository of solved prob-

lems to draw inferences. For instance, virtual training can

record each user’s in-simulation performance data during

practice exercises and store this data in a user-specific data

repository. Decision tree modeling applies an algorithm to the

observed performance data (i.e., collected during the virtual

training) to develop generalized decision rules [20]. These

generalized rules can be used for many applications, as illus-

trated by Musharraf et al. [5] application of decision trees for
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identifying individual’s egress route strategies in virtual train-

ing. The main benefits of decision trees for the offshore emer-

gency egress application were that the decision trees were

easy to interpret, useful in identifying patterns in participants’

performance, and had diagnostic potential for determining the

strengths and weaknesses of different decision-making strate-

gies. Building on the research from [5], this article investigates

decision tree modeling as a tool to assess different delivery

approaches to virtual training.

C. Organization of the Paper

The rest of this article is organized as follows. Section II

presents the theoretical background for the decision tree

induction process. Section III explains the design of the virtual

training experiments and the application of the decision tree

modeling to the datasets. Section IV presents the performance

results and subsequent decision trees from the two virtual

training approaches. Finally, Section V concludes the stre-

ngths and weaknesses of the training and the utility of decision

trees in assessing the virtual training.

II. THEORETICAL BACKGROUND

The decision tree algorithm employs an induction process

whereby generalizations are made based on observed phenom-

ena [20]. Following the rule-based methodology [21], a data

matrix is created using human performance data from virtual

training. In this pilot study, information from each participant’s

performance in virtual training scenarios is used to populate a

data matrix consisting of scenarios (S1--Sn), attributes (A1–An),

attribute values (V11–Vnn), and actions (E1–En). The scenarios

and attributes are labeled inputs to the matrix and the partic-

ipants’ corresponding actions in the scenarios are known as clas-

ses. As depicted in Fig. 1, the induction process creates

generalized decision rules based on the content of the data

matrix. The goal of the induction process is to classify the data

in the matrix into groups such that the dataset in each group

belongs to the same class. This article uses the ID3 decision tree

algorithm, which uses information gain as an attribute selection

measure, to classify the data into groups [22].

The ID3 decision tree algorithm takes two basic inputs: the

performance data matrix from the virtual training scenarios

and the list of attributes that were varied in each scenario. The

output is a decision tree that describes a participant’s decision

preferences and can also be used to predict their future deci-

sions based on the value of the attributes in a given scenario.

During the decision tree induction, data are iteratively classi-

fied using the attribute that has the highest information gain.

The ID3 algorithm calculates the highest information gain

using three main calculations:

1) the entropy of the dataset;

2) the average information entropy of attributes;

3) the information gain for each attribute.

First, the entropy of the entire dataset is calculated as a mea-

sure of the uncertainty of the data [19]. This is achieved by

defining the data matrix training set as S, where S contains m

class labels and Si is a subset of scenarios within the training

set S. Then the entropy of S is calculated as

Entropy Sð Þ ¼ �
Xm

i ¼ 1

Sij j
Sj j log 2

Sij j
Sj j : (1)

Second, the training set S is partitioned using attribute A,

where A has k distinct outcomes. This partition will result in

subset Sj with j ¼ 1 to k values. The average information

entropy for all attributes (A1--An) in Sj is calculated as

Entropy Að Þ ¼
Xk

j¼1

Sj

�� ��
Sj j Entropy Sj

� �
: (2)

Finally, the information gain, which is the difference in

entropy before and after splitting the dataset on the attribute A

is calculated for each attribute in the data matrix as

Gain Að Þ ¼ Entropy Sð Þ � Entropy Að Þ: (3)

The attribute with the highest information gain is selected as the

root node, which begins the partition of the dataset. The root node

represents the attribute that minimizes the information needed and

reduces the randomness of the partitions [22]. This process repeat-

edly splits the data subsets at each internal node until no attributes

are left for classification, or the dataset is empty, or data in each

group belong to the same class and no further classification is

needed [5]. A complete tree has branches to leaf nodes (that repre-

sent the class label or final action of the participant). Algorithm 1

describes the iterative steps used to develop a decision tree.

III. METHODOLOGY

This section describes the design of the experiments and

explains the decision tree modeling from the dataset.

Fig. 1. Decision tree development. Attributes in the data matrix are classi-
fied using the ID3 algorithm so that the data in each group belongs to the same
class. The class is the participant’s action in the scenario (e.g., route choice).
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A. Virtual Training Experiments

This pilot study used previously published datasets from

two separate experiments to test the LBT and SBML pedagog-

ical approaches to virtual training [3], [4]. The following will

describe the participants, the AVERT simulator, and how the

training approaches were applied to virtual training.

1) Participants: To measure learning from the virtual

training, all participants from both experiments had no prior

offshore experience and no exposure to the AVERT simulator

prior to the study. Most participants for both experiments

were undergraduate and graduate students. The LBT experi-

ment had 36 na€ıve participants. For this experiment, the par-

ticipants were divided into two treatment groups: one group

received multiple training exposures, and the control group

received only one training exposure. This pilot study includes

the results of 17 participants from the multiple training expo-

sure groups (represented by the label LBT, and of which 13

participants were male and four participants were female).

The LBT participants’ ages ranged from 19 to 39 years (mean

¼ 27 years, standard deviation ¼ � 5.0 years). This pilot study

also includes the results from the SBML training experiment

which had 55 na€ıve participants (42 participants were male

and 13 participants were female). The SBML participants’

ages ranged from 18 to 54 years (mean ¼ 27 years, standard

deviation ¼ � 7.9 years).

2) AVERT Simulator: Both experiments trained participants

in offshore emergency egress using the AVERT simulator.

AVERT is a desktop virtual environment (e.g., computer-based

simulator) that provides participants with a first-person perspec-

tive naturalistic representation of an offshore Floating Production

Storage and Offloading vessel [23]. Participants use a gamepad

controller (Xbox) to control their avatar of an offshore worker

and interact with the virtual offshore platform. AVERT is config-

ured to train general personnel in basic offshore emergency

egress duties. General personnel are individuals whose responsi-

bility during an emergency is to muster at their designated muster

stations. The AVERT learning objectives were developed with

guidance from subject matter experts to address both spatial and

procedural knowledge. The learning objectives included familiar-

ity with the platform layout, emergency alarms, egress routes,

safety protocols, and mustering procedures.

3) Applying the Pedagogical Frameworks to AVERT:

Both implementations of the virtual training involved an ini-

tial habituation stage, followed by training and testing mod-

ules. The habituation stage familiarized participants with how

to use the AVERT controls and introduced participants to the

offshore platform. After the habituation stage, participants

proceeded to the training and testing modules. The training

and testing modules targeted the same learning objectives for

both the LBT and SBML training. For the LBT training, par-

ticipants were provided with tutorials, video instructions, and

practice scenarios in the virtual environment before complet-

ing the virtual testing scenarios for each module. Details of

the LBT training are provided in [3].

The SBML training involved four training and testing mod-

ules as depicted in Fig. 2. Each module was designed to train

specific learning objectives and gradually taught participants

the platform layout, how to recognize alarms, what to do in

the event of blocked routes, and how to assess the situation

and avoid hazards while evacuating the platform. Each train-

ing and testing module involved 1–3 practice scenarios and

one test scenario. As shown in Fig. 2, the SBML training con-

sisted of 12 scenarios in total (eight practice and four test sce-

narios). As part of the SBML training, participants were

required to demonstrate competence in each scenario before

they could advance to scenarios that were more complex.

Module 1 taught participants the platform layout and all

the available egress routes from their cabin. Participants

were tested on their spatial knowledge in scenario T1 by

asking them to meet their supervisor at their designated

lifeboat station. Module 2 taught participants the different

alarm types on the platform: general platform alarm

Algorithm 1: Generate Decision Tree from Data Matrix [22]

Input: data matrix, attribute list, attribute selection method

Output: decision tree

1: create a node, Ai

2: if all scenarios Sn at current node are of same class then

3: label the leaf nodes with the class labels

(e.g., branch, Vn; leaf node, En);

4: end if

5: if data subset at the current node is empty then

6: label the node with the majority class label in its parent

dataset (e.g., branch, Vn; internal node, An);

7: end if

8: if no attributes are left for further classification then

9: label leaf node with majority class label in current data

subset (e.g., branch, Vn; leaf node, En);

10: end if

11: for each remaining attribute An

12: compute Gain(An) according to (1), (2), and (3);

13: choose An with highest Gain(An) to branch current node;

14: end for

15: for each branch node Vn go to step 2

16: end for

Fig. 2. SBML training and testing stages. The squares represent practice
scenarios and included in-simulation instruction, exercises, and feedback. The
circles represent test scenarios that were performed until the criterion was
reached.
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(GPA), prepare to abandon platform alarm (PAPA), and

mustering procedures. Participants were tested on their

spatial and procedural knowledge in scenario T2 by asking

them to respond to a muster drill. Module 3 reminded par-

ticipants of the alternative routes from the cabin to ensure

they knew the route options in the event their egress route

was obstructed. Module 4 taught participants the protocols

necessary to respond to emergency scenarios with hazards

such as smoke and fire. Test scenarios T3 and T4 tested the

participants’ ability to respond to emergency conditions

and reroute if their planned route was blocked by hazards.

After each training module in AVERT, the participants’

performance was assessed using test scenarios. In the scenar-

ios, participants were tasked with responding to muster drills

or emergency alarms and selecting the safest egress route

from their cabin. There were two main routes for participants

to choose from: primary or secondary. Each route had multiple

decision points along the path. Participants were instructed to

listen to the alarm, pay attention to the public address (PA)

announcements, and follow the safest route to their muster or

lifeboat station. Participants were assessed on their ability to

recognize the alarm, take their safety equipment, follow the saf-

est egress route, avoid exposure to hazards, reach the correct

muster location, and register at the temporary safe refuge area.

Participants received corrective feedback on their performance

after each scenario attempt. To demonstrate competence, some

participants required multiple attempts at the scenarios.

B. Decision Tree Modeling of the Virtual Training Data

The decision tree development and analysis framework are

depicted in Fig. 3. This process involves six steps. First, each

participant’s performance data collected from the two virtual

training experiments were separated into two datasets: a train-

ing and a testing dataset. Second, the training dataset (repre-

senting 2/3 of the participant’s data) was used to develop a data

matrix consisting of scenarios, attributes, values, and actions.

The test scenarios (representing 1/3 of the participant’s data)

were set aside to form the testing dataset. Third, the decision

tree algorithm was applied to the data matrix to form decision

trees, which represent each participant’s behavioral pattern for

route selection [5]. Once the decision trees were generated, the

fourth step involved using the testing dataset to check the deci-

sion tree classification performance. The final steps involved

using the decision trees to analyze the training efficacy. In step

five, the resulting decision trees were used to compare the par-

ticipants’ understanding of the training with the learning objec-

tives for each test scenario. Finally, in step six, the decision

strategies from the SBML training were compared with the

decision trees generated using data from the earlier LBT exper-

iment [5].

1) Virtual Training Data Collection: As participants com-

pleted the scenarios, their performance data was collected in

AVERT report files for each scenario. Observation logs were

kept by the researcher to note any details that were not recorded

in the automated report files. Each participant’s data were orga-

nized into training and testing datasets. Of the 12 scenarios, 11

were used for the decision tree development. One training sce-

nario was an orientation scenario and was not used in the analy-

sis. Among the remaining 11 scenarios, 9 were used to populate

the data matrix to train the decision tree algorithm and form the

decision trees. These scenarios are referred to as the training

dataset. Two test scenarios, T2 and T4, were set aside to form

the testing dataset and are described in Table I. The testing

dataset was used to evaluate the classification performance of

the decision trees.

By T2, participants had familiarized themselves with the

platform layout, the different alarm types, and the mustering

procedures at the temporary safe refuge area. By T4, partici-

pants were able to assess the emergency, listen to cues in the

PA announcement, recognize the tenability of the egress

routes, and reroute if the primary or secondary egress route

was obstructed due to poor lighting or other barriers.

2) Data Matrix: A two-dimensional data matrix was cre-

ated using each participant’s performance data collected from

the AVERT report files and from observations logged in situ.

As shown in Fig. 2, the data matrices were developed to

Fig. 3. Process used for each participant’s data to develop decision trees and
assess the training efficacy. After the decision trees were developed, the classi-
fication performance was evaluated. Then the decision trees were compared to
the learning objectives and across training techniques.

TABLE I
DESCRIPTION OF THE TEST SCENARIOS [4]
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correspond with the training scenarios that were completed in

two training modules: module 2 (denoted Data Matrix 1) and

module 4 (denoted Data Matrix 2). The data matrix consisted

of a combination of programmed attributes and the partic-

ipants’ actions. The programmed scenario attributes were var-

ied for each scenario, such as the end location, alarm type,

information presented in the PA announcements, presence of

hazards, and location of obstructed routes. For each scenario,

the data matrix included a record of the participant’s actions,

such as their route choices in the current and previous scenar-

ios. Table II lists the attributes varied in the scenarios and their

possible values.

Based on the value of the scenario attributes, the participant’s

goal was to select a safe egress route. Since the SBML training

required participants to reattempt the scenarios until they dem-

onstrated competence, only the participant’s successful final

attempt was stored in the data matrix. Table III shows the state

of the data matrix for a sample participant after finishing all the

training modules. Each row in the matrix contains different

attribute values for the scenario and the corresponding route

choice. As a basic example, scenario P4 from Table III is a situ-

ation in which participants practiced their egress routes and

muster procedures. For a sample participant, the scenario attrib-

utes were recorded as End location ¼ Muster; Alarm type ¼
GPA; Route directed by PA¼ Primary, Hazard presence¼ No,

Blocked route ¼ none, and Previous route ¼ Primary. In this

case, the participant’s choice of route was the primary route.

Complex emergency scenarios were dynamic in the sense

that the value of some attributes changed during the scenarios.

To capture the dynamic aspect, these scenarios were divided

into multiple frames so that the attribute values in each frame

remained static (e.g., the first frame F1 depicted the initial con-

ditions and the second frame F2 depicted the changed condi-

tions). Consequently, many of the emergency scenarios were

multiframes scenarios. Fig. 4 shows an example of a two-frame

training scenario (P8) and how the data matrix was updated to

reflect the change in attributes. Scenario P8 is an emergency in

which participants responded to changing conditions. For this

sample participant, the scenario attributes in F1 were initially

recorded as End location¼Muster; Alarm type¼ GPA; Route

directed by PA ¼ None, Hazard presence ¼ No, Blocked route

¼ None, and Previous route ¼ Secondary. However, the sever-

ity of the situation escalated in F2 and some attributes changed:

End location ¼ Lifeboat; Alarm type ¼ PAPA, Route directed

by PA ¼ Primary, Hazard presence ¼ Yes, and Blocked route

¼ Secondary. As such, the participant’s choice was originally

the primary route, but they rerouted to the secondary route

when the attribute values changed.

3) Decision Trees: The data matrix generated in the previ-

ous step was used as an input for the decision tree algorithm.

The resulting decision trees were used to visualize how partic-

ipants formed emergency egress rules based on the content in

the data matrix. They also provided insight as to which attrib-

utes had the biggest impact on participants’ decision-making.

Fig. 5 shows a decision tree based on the matrix in Table III

for a sample participant.

The decision tree is based on evidence from the partic-

ipant’s performance in a series of virtual scenarios. The deci-

sion tree can be used to predict a participant’s choice of route

for a given future scenario. In this case, the participant’s route

selection was decided based on their understanding of the PA

announcement. In future scenarios, if the PA directs the partic-

ipant to a safest route, then the participant will likely take that

route. If the PA does not provide any information regarding

the safest route, then the participant’s choice will likely

default to their primary egress route.

4) Evaluating the Decision Tree Classification: There are

limitations to the method used to split the participants’ data to

develop the decision tree and evaluate the classification, spe-

cifically when compared with other methods such as cross-val-

idation. For example, cross validation involves dividing the

dataset into mutually exclusive and equal-sized training sets

to train the decision algorithm and test the resulting decision

tree models on all the subsets [22], [24]. However, the cross-

validation approach would not allow for researchers to obs-

erve the participants’ learning as they progressed through the

training which required the time-series formation of decision

trees throughout training.

Using human performance data to develop the decision trees

created an inherent class imbalance in the training dataset. For

each participant, the training dataset was comprised of the par-

ticipants’ training exercises. These training exercises often

contained more classes of a certain type over other classes

(e.g., more examples of choosing the primary egress route). In

this case, the route options were binary. The majority class

label was used for the instance when the participant chooses

the primary route and the minority class label was used for the

instance when the participant choose the secondary route.

Common classification measures like classification accu-

racy or error are not appropriate when a class imbalance

exists. Therefore, three threshold metrics specific for class

imbalance were used to evaluate the decision trees. Methodol-

ogy outlined in [22], [25] was used for defining the confusion

matrix and calculating the classification performance. To test

the decision tree’s classifying performance, the predicted

routes of the decision trees for the test scenarios (T2 and T4)

were compared to the routes taken by the participants. For

each comparison, the correct and incorrect classifications of

the binary route choices were counted.

The terms used to evaluate the classification are outlined in

the confusion matrix in Table IV. For the secondary route,

TABLE II
DESCRIPTION OF SCENARIO ATTRIBUTES
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known as the minority class, the number of correct predictions

is denoted as a true positive (TP) and the number of incor-

rectly predicted secondary route is denoted as a false positive

(FP). For the primary route, known as the majority class, the

number of correct predictions is denoted as a true negative

(TN) and the incorrectly predicted primary route is denoted as

a false negative (FN).

The confusion matrix was used to calculate the sensitivity,

specificity, and geometric mean for all the SBML and LBT

participants’ decision trees

To evaluate the decision trees’ classification performance, the

following three evaluation measures that take class imbalance

into consideration were used: 1) sensitivity, 2) specificity, and 3)

geometric mean [20], [25]. Sensitivity is a measure of the pro-

portion of the minority class that is correctly classified (e.g.,

choosing the secondary route). The sensitivity was calculated

using (4) and represented the proportion of matches between the

predicted secondary route and the observed secondary route

outcome

Sensitivity ¼ TP

TP þ FNð Þ : (4)

Specificity is a measure of the portion of the majority class

that is correctly identified (e.g., choosing the primary route).

The specificity was calculated using (5) and represented the

proportion of matches between the predicted primary route

and the observed primary route outcome

Specificity ¼ TN

FP þ TNð Þ : (5)

Finally, the geometric mean is a combined score that meas-

ures the balance between sensitivity and specificity [25] and

was calculated as

GeometricMean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity � Specificity

p
: (6)

TABLE III
SAMPLE DATA MATRIX FOR TRAINING MODULE 2 (DATA MATRIX 1) AND TRAINING MODULE 4 (DATA MATRICES 1 AND 2)

Fig. 4. Example of scenario frames 1 and 2 for scenario P8.

Fig. 5. Example decision tree developed after data matrices 1 and 2 in
Table III. The decision rules for this tree were based on the participant’s
understanding of the PA announcement.

TABLE IV
CONFUSION MATRIX
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The resulting geometric mean scores for the SBML and LBT

participants decision trees are represented in Figs. 6 and 7,

respectively. The results indicate that the decision trees were

suitable for classifying the decision strategies of participants.

The results also show the decision trees’ predictive potential.

IV. RESULTS AND DISCUSSION

The virtual training efficacy was assessed using three

measures:

1) analyzing the trained participants’ performance scores in

the test scenarios;

2) comparing the participants’ decision trees to the intended

learning objectives; and

3) comparing the SBML and LBT-trained groups decision

strategies.

The following subsections summarize the findings.

A. Empirical Results of SBML Training

Table V shows the percentage of SBML and LBT-trained

participants who successfully completed each learning objec-

tive for scenarios T2 and T4. Differences in compliance were

observed between the groups for the spatial and procedural

learning objectives.

Statistically comparing the results from two groups that

were not randomly assigned in a controlled experiment is con-

sidered a quasi-experiment as it violates the assumptions of

statistical independence [26]. This is the case for comparing

the results of the SBML and LBT-trained participants in their

ability to respond to virtual emergencies. To allow for com-

parisons, measures were taken to control aspects across the

two experiments (e.g., recruiting from a similar population

and testing participants using the same virtual environment

and test scenarios). However, since the two training

approaches were not tested in a controlled experiment, the

observed differences between the groups may not be solely a

result of the training but other confounding factors (e.g., the

age ranges for the groups are different, with an older popula-

tion in the SMBL group).

Fisher’s Exact test [27] was used to determine if there was a

relationship between the training received and the perfor-

mance outcome for each learning objective. Contingency

tables were created for each of the learning objectives and the

number of participants from each training group who passed

or failed the learning objectives were counted. The null

hypothesis was that there would be no difference in the perfor-

mance of the learning objectives between the two trained

groups. The critical value for rejecting the null hypothesis was

set to a ¼ 0.05.

From a spatial competence perspective, both the SBML and

LBT-trained groups were able to locate the correct muster

location and follow the egress routes in benign conditions.

This is shown in the results from the muster drill scenario (T2

in Table V). In the emergency scenario (T4 in Table V), the

main spatial competence differences observed between the

SBML and LBT groups were related to route selection and

rerouting when the egress path was blocked by hazards. This

is supported by the Fisher’s Exact tests, which resulted in no

Fig. 7. Geometric mean for all participants from the LBT training.

Fig. 6. Geometric mean for all SBML trained participants.

TABLE V
PERCENTAGE OF SUCCESSFUL PARTICIPANTS BY LEARNING OBJECTIVE [4]
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statistical association between the training and the pass rate of

the spatial tasks for the test scenarios, with the except for one

learning objective for scenario T4. The Fisher’s Exact test

indicated that the proportion of SBML-trained participants

who correctly rerouted to avoided hazard exposure in T4 was

statistically different from the proportion of LBT-trained par-

ticipants (p ¼ 0.00059). Table V shows how differently partic-

ipants in each group reacted to hazards blocking their egress

routes, four participants from the SBML group (representing

7%) and eight participants from the LBT group (representing

47%) continued on the unsafe route and went directly through

the smoke hazard.

While this work focused mainly on the spatial learning

objectives 1–5 in Table V, it is worth noting that large differen-

ces were observed between the trained groups in the procedural

performance. Specifically, learning objectives 7, 8, and 9 (i.e.,

avoiding hazards, refraining from running, and remembering to

close the fire and watertight doors). The Fisher’s Exact tests

indicated statistical associations between the training and the

pass rate of the procedural tasks for the test scenarios. The pro-

portion of SBML-trained participants who correctly avoided

hazards, refrained from running, and closed the fire and water-

tight doors were statistically different from the proportion of

LBT-trained participants (e.g., avoiding hazard exposure, p ¼
0.00059; avoiding running, p ¼ 3.36e-11; and closing the fire

and watertight doors, p¼ 0.0089).

B. Decision Trees and Learning Objectives for SBML

Data collected from the LBT study was used by [5] to develop

decision trees and identify general problem-solving strategies

in emergency egress situations. The resulting decision trees

showed that given the same training, people employed different

learning strategies and developed their understanding of emer-

gency protocols differently. Decision-making in high-stress

emergencies varied from person to person. These results coin-

cide with the empirical results [3], which found that the LBT did

not provide an adequate assessment (i.e., practice and feedback)

to ensure all participants gained competence.

The decision trees were also used to judge the efficacy of

the SBML training by comparing the SBML-trained group’s

decision trees to the intended learning objectives at two stages

of the training program. The different decision trees for the

SBML training are summarized in Table VI. This table shows

how the trees evolved as more training content was added to

the participants’ data repository.

1) Alarm Recognition Decision Tree (From Data Matrix

1): In the muster drill (T2) and the emergency (T4), the alarm

type indicated the severity of the situation and dictated the

final muster location (e.g., muster or lifeboat station). During

the GPA alarm, personnel were required to gather at the mus-

ter station. During the PAPA alarm, personnel were required

to muster at the lifeboat station. The main learning objective

for module 2 was for participants to listen to the alarm and

relevant instructions from the PA announcement and take the

safest route available in response to the situation.

Table VI, column data matrix 1 (DM1) shows the intended

decision tree that was taught for a muster drill situation

(denoted as Type 1). Seventy-three percent of participants

achieved this type of decision tree before the test scenario

(T2). The remaining 27% of participants also formed their

route selection based on the PA announcement, but when the

TABLE VI
TYPES OF DECISION TREES FORMED AFTER FINISHING THE SBML TRAINING
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PA announcement provided no route information, they relied

on their intended end location, which was dictated by the

alarm type. For these participants, the muster station meant

taking the primary route and the lifeboat station meant taking

their secondary route (denoted as Type 2). The formation of

both decision trees (Type 1 and 2) after module 2 demon-

strated that all participants achieved the intended learning

objectives and were adequately prepared to respond to the

muster drill (T2).

2) Assess Emergency Situation Decision Tree (From Data

Matrices 1 and 2): Building on earlier learning objectives,

module 4 trained participants in how to assess the emergency

situation, avoid hazards, and follow the safest egress path to

the designated muster or lifeboat station. In an emergency, if

personnel encountered an obstructed route, they were required

to reroute in response to the hazardous situation. A variety of

decision trees were developed after module 4.

Table VI, column data matrix 2 (DM2) shows that there

were six different strategies used by participants at the end of

training. Sixty-four percent of participants continued to use

the same decision tree in which they selected an egress route

based on information from the PA announcement (Type 1).

Sixteen percent of participants continued to use the strategy in

which the end location (dictated by the alarm type) indicated

the route choice in absence of a PA announcement (Type 2).

Ten percent of participants followed the alarm type and PA

announcement (Type 3). If no clear route direction was pro-

vided over the PA announcement, the participants would link

the alarm type to an egress route. For example, if the GPA or

PAPA alarm sounded, the participants would take the primary

route. However, in the event of no alarm, they would take their

secondary route. The remaining 10% of participants demon-

strated more varied behaviors. In these cases, when the PA did

not provide a route direction, some individuals put emphasis

on different attributes to make their decision. One partic-

ipant’s data (representing 2%) formed a correct but incomplete

decision tree where the route decision was based solely on

whether the route was obstructed or not (Type 4). The remain-

ing four participants’ data (representing 8%) formed incorrect

decision trees that wrongly considered the presence of hazards

(Type 5) and the previous route taken (Type 6).

When comparing the decision tree variations with the learn-

ing objectives, some weaknesses in the training and the partici-

pants were identified. The formation of an incomplete decision

tree (e.g., Type 4) suggests that this participant required more

targeted scenarios to focus on the missing decision rules (e.g.,

additional practice for situations to create the intended PA deci-

sion rules). The incorrect decision trees (e.g., Types 5 and 6)

show that some participants (7%) require additional practice

opportunities and feedback to ensure they reach the intended

competence. If incorrect trees persist, then it is possible the par-

ticipants are not suitable for virtual training or are not taking the

training seriously (e.g., Type 6 where the participant’s decision

involved their previous route taken).

3) In-Depth Decision Tree Analysis of SBML Training:

The decision tree analysis revealed information about the

participants’ performance that would otherwise not be apparent

when looking solely at the performance metrics of the learning

objectives. Specifically, the diagnostic capabilities of decision

trees were used to identify the strengths and weaknesses of par-

ticipants’ decision-making strategies. Looking at the benefits

of the SBML training, the majority of participants’ decision

trees matched the intended learning objectives (100% for data

matrix 1 and 90% for data matrix 2). These participants, whose

data formed decision tree types 1, 2, and 3, demonstrated the

decision-making skills taught by the SBML program. They

were able to identify attributes that were critical to success and

come up with strategies that led to safe egress.

The decision trees also provided indications of deficiencies

in the SBML training. Such as, the need to provide partici-

pants with sufficient practice to establish robust rerouting

strategies and the participants over reliance on PA announce-

ments during emergencies. For example, three decision trees

(Types 1, 2, and 3) revealed that the participants’ egress strate-

gies centered on the PA announcement. In the absence of an

announcement, some participants focused their attention on a

variety of different attributes (e.g., presence of hazards),

which were useful in terms of making effective egress deci-

sions. However, the formation of decision trees due to missing

or unclear PA announcements provides valuable information

on whether the decision-making skills taught during the train-

ing were sufficient for all emergencies. These are areas that

could be improved in future iterations of the training. Adap-

tive training could recognize these deficiencies in real time

and provide additional training scenarios that focus on teach-

ing participants what to do if there is no PA announcement or

instructions on what is happening during the emergency.

C. Comparison of SBML and LBT Trees

For this pilot study, the decision tree results from both train-

ing experiments were compared directly as another lens to

observe the overall training efficacy. The decision trees mod-

eled from the SBML training data are summarized in

Table VII. The decision trees modeled from the LBT data are

summarized in Table VIII.

Comparing the resulting decision trees generated from the

SBML and LBT data showed that the different training meth-

ods influenced the participants’ egress strategies. Over the

course of the SBML training, the SBML-trained participants’

behaviors in responding to emergencies gradually converged

to a few expected decision trees (except for a few partici-

pants). Ninety percent of SBML-trained participants achieved

the intended learning objectives as demonstrated by the deci-

sion trees (Types 1, 2, and 3). Only 10% of SBML-trained par-

ticipants displayed varied behaviors that could be addressed

with targeted training.

Conversely, the decision trees of the LBT participants’

behaviors for the emergency response scenarios diverged. Only

29% of LBT-trained participants achieved the intended learn-

ing objectives as demonstrated by the decision trees (Type 1).

Many of the remaining LBT participants had a poor under-

standing of the egress procedures and were not compliant.

Thirty-five percent of the LBT participants’ data presented
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TABLE VII
RESULTING SBML DECISION TREES FOR ALL 55 PARTICIPANTS AFTER FINISHING TRAINING MODULES 2 AND 4
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TABLE VIII
RESULTING LBT DECISION TREES FOR ALL 17 PARTICIPANTS FOR TEST SCENARIOS T2 AND T4 [5]
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decision tree strategies that included special conditions for PA

announcements, alarm type, obstructed routes, and hazards. The

decision trees for two participants (representing 12% of LBT-

trained participants) showed how inflexible they were in their

route choice. For example, their decision tree represented behav-

iors of taking the same route regardless of the emergency

condition.

For 24% of LBT-trained participants, the choice of route

was random, and the decision trees could not provide any

more generalization than the data matrix. Overall, the LBT

participants’ decision trees weighted attributes of the sce-

nario that were not useful for making effective egress deci-

sions [5]. The variability and incorrect behaviors observed

in the LBT decision trees show that this method of training

was inadequate for preparing participants for emergency

conditions.

The SBML approach resulted in better route selection

strategies compared to the LBT approach. As shown in the

previous section, the majority of the observed route strate-

gies for the SBML-trained participants (representing 90%)

led to the successful completion of the test emergency sce-

nario. Conversely, the majority of LBT-trained participants

(representing 71%), displayed incomplete or incorrect deci-

sion trees. Therefore, the SBML training resulted in higher

safety compliance and more concise decision trees than the

LBT training. This indicates that participants from SBML

training were generally better equipped for managing emer-

gency scenarios.

V. CONCLUSION

In this pilot study, decision tree modeling was used to eval-

uate the training efficacy of two pedagogical approaches,

SBML and LBT, which were assessed in the context of train-

ing na€ıve personnel for basic emergency duties. The article

presents the proof-of-concept of using decision tree modeling

as an alternative evaluation method to compare with conven-

tional experimental performance outcomes.

In terms of measured performance, the SBML pedagogical

approach was clearly superior to the alternative LBT

approach. The comparison of performance metrics in both

training experiments indicated that the SBML-trained partici-

pants performed better than the LBT-trained participants did;

however, the performance metrics did not offer information as

to why one group outperformed the other.

As a complement to conventional performance outcomes,

the decision tree modeling provided a comprehensive anal-

ysis of the participants’ route performance. The decision

trees generated by the participants’ data in both training

experiments provided an explanation as to how the route

selection performance in the SBML and LBT trained

groups differed. The decision trees showed that when

selecting egress routes in virtual emergencies, the decision-

making strategies of the SBML-trained participants were

more consistent with the intended learning objectives and

represented safer behaviors than the decision tree strategies

of LBT-trained participants.

This pilot study demonstrated the diagnostic capabilities

of decision trees as training assessment tools. In both train-

ing cases, the decision trees provided a convenient visual

representation of the individual strategies employed by

participants. As illustrated in this work, the visual simplic-

ity of the decision trees can be useful for identifying sys-

temic deficiencies in training (and even in how procedures

are designed). This is a useful feature for instructional

designers.

Decision trees can also be used to diagnose the strengths

and weaknesses of individual trainees, a capability that has

additional value in terms of adapting the virtual training to

meet the needs of individuals. This adaptive training poten-

tial could be realized by coupling the SBML approach with a

built-in decision tree diagnostic tool in the virtual training

such that each learner’s performance can be automatically

tracked and assessed in real-time, thereby providing the data

required by a built-in decision tree diagnostic tool. The diag-

nostic tool would compare the individual learner’s data-

informed decision trees at various stages in the training with

the intended learning objectives and suggest adaptive train-

ing scenarios for the learner to perform to assist them in

achieving the intended decision strategies. For this to work

in practice, the training scenarios must be carefully designed,

as they are, in effect, experiment conditions for the diagnos-

tic decision trees. Additional training scenarios would also

be required to provide sufficiently specific pathways for

adaptive training.

Finally, the decision trees were shown to have the consider-

able predictive capability. This feature could also be useful to

instructional designers in terms of evaluating pedagogical

strategies, such as determining when trainees are likely to be

sufficiently capable of responding to a wide variety of emer-

gencies, without necessarily training them for all potential

eventualities.

VI. LIMITATIONS AND RECOMMENDATIONS

The pilot study had limitations that impacted the results.

Specifically, the pilot employed a small sample size that was

not representative of the offshore and maritime population.

The choice of student participants with no prior offshore

experience and no exposure to the simulator was intentional

to measure the learning of basic emergency duties of na€ıve
personnel. However, the small dataset collected from mostly

student participants, rather than members from the offshore

and maritime workforce limits the generalizability of the

findings.

Further, the pilot study used small datasets to generate indi-

vidual decision trees for each participant. Human performance

data can be logistically difficult to collect and often results in

small individual datasets. As such, this article applied a deci-

sion tree algorithm to an available sample of human perfor-

mance data. While the datasets were small, there was valuable

information gained from using human performance data in

this proof-of-concept pilot to investigate the utility of decision

trees for modeling learning.
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To address these limitations, future full-scale empirical stud-

ies should increase the sample size and recruit personnel work-

ing in the offshore and maritime domains. Additionally, future

full-scale modeling and testing of decision trees should involve

a larger source of human performance data. Both limitations

could be achieved by testing the virtual training technology

with a large group of offshore personnel receiving basic safety

training at an onshore facility prior to the individuals boarding

offshore platforms and maritime vessels.

ACKNOWLEDGMENTS

The authors acknowledge with gratitude the financial support of

the Natural Sciences and Engineering Research Council (NSERC)

– Husky Energy Industrial Research Chair in Safety at Sea.

REFERENCES

[1] Marine Casualties Investigative Body, “Cruise ship Costa Concordia
marine casualty on January 13, 2012: Report on the safety technical
investigation,” Italian Ministry of Infrastructures and Transports, Italy,
May 2013.

[2] IMO, “Resolution MSC.350(92) amendments to the international conven-
tion for the safety of life at sea (SOLAS), chapter III, part b, regulation 19
emergency training and drills,” International Maritime Organization, Lon-
don, U.K., Jun. 2013.

[3] J. Smith, B. Veitch, and S. MacKinnon, “Achieving competence in off-
shore emergency egress using virtual environment training,” in Proc.
ASME 34th Int. Conf. Ocean Offshore Arctic Eng. Struct., Saf. Rel.,
2015, pp. 1–8, doi: 10.1115/OMAE2015-41132.

[4] J. Smith and B. Veitch, “A better way to train personnel to be safe in
emergencies,” ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B,
Mech. Eng., vol. 5, no. 1, Mar. 2019, Art. no. 011003, doi: 10.1115/
1.4040660.

[5] M. Musharraf, J. Smith, F. Khan, and B. Veitch, “Identifying route
selection strategies in offshore emergency situations using decision
trees,” Rel. Eng. Syst. Saf., vol. 194, Feb. 2020, Art. no. 106179,
doi: 10.1016/j.ress.2018.06.007.

[6] S. S.Wingfield andG. S. Black, “Active versus passive course designs: The
impact on student outcomes,” J. Educ. Bus., vol. 81, no. 2, pp. 119–126,
Nov./Dec. 2005, doi: 10.3200/JOEB.81.2.119-128.

[7] J. H. Barsuk, E. R. Cohen, W. C. McGaghie, and D. B. Wayne, “Long-
term retention of central venous catheter insertion skills after simula-
tion-based mastery learning,” Acad. Med., vol. 85, no. 10, pp. S9–S12,
Oct. 2010, doi: 10.1097/ACM.0b013e3181ed436c.

[8] E. R. Cohen et al., “Making july safer: Simulation-based mastery learn-
ing during intern boot camp,” Acad. Med., vol. 88, no. 2, pp. 233–239,
Feb. 2013, doi: 10.1097/ACM.0b013e31827bfc0a.

[9] F. Moazed et al., “Retention of critical care skills after simulation-based
mastery learning,” J. Graduate Med. Educ., vol. 5, no. 3, pp. 458–463,
Sep. 2013, doi: 10.4300/JGME-D-13-00033.1.

[10] W. C. McGaghie, S. B. Issenberg, J. H. Barsuk, and D. B. Wayne, “A
critical review of simulation-based mastery learning with translational
outcomes,” Med. Educ., vol. 48, no. 4, pp. 375–385, Apr. 2014,
doi: 10.1111/medu.12391.

[11] J. H. Barsuk, E. R. Cohen, D. B. Wayne, V. J. Siddall, and
W. C. McGaghie, “Developing a simulation-based mastery learning cur-
riculum: Learning from 11 years of advanced cardiac life support,”
Simul. Healthcare, vol. 11, no. 1, pp. 52–59, Feb. 2016, doi: 10.1097/
SIH.0000000000000120.

[12] W. C. McGaghie, S. B. Issenberg, E. R. Petrusa, and R. J. Scalese,
“Effect of practice on standardised learning outcomes in simulation-
based medical education,”Med. Educ., vol. 40, no. 8, pp. 792–797, Aug.
2006, doi: 10.1111/j.1365-2929.2006.02528.x.

[13] S. Griswold-Theodorson, S. Ponnuru, C. Dong, D. Szyld, T. Reed, and
W. C. McGaghie, “Beyond the simulation laboratory: A realist synthesis
review of clinical outcomes of simulation-based mastery learning,”
Acad. Med., vol. 90, no. 11, pp. 1553–1560, Nov. 2015, doi: 10.1097/
ACM.0000000000000938.

[14] D. A. Cook, R. Brydges, B. Zendejas, S. J. Hamstra, and R. Hatala,
“Mastery learning for health professionals using technology-enhanced sim-
ulation: A systematic review and meta-analysis,” Acad. Med., vol. 88,
no. 8, pp. 1178–1186, Aug. 2013, doi: 10.1097/ACM.0b013e31829a365d.

[15] B. S. Bloom, “Mastery learning,” in Mastery Learning: Theory and
Practice, J. H. Block, Ed. New York, NY, USA: Holt, Rinehart and
Winston, 1971, pp. 47–63.

[16] T. R. Gusky, “Closing achievement gaps: Revisiting Benjamin S.
Bloom’s ‘learning for mastery’,” J. Adv. Acad., vol. 19, no. 1, pp. 8–31,
Nov. 2007, doi: 10.4219/jaa-2007-704.

[17] H. Aldowah, H. Al-Samarraie, and W. Fauzy, “Educational data mining
and learning analytics for 21st century higher education: A review and
synthesis,” Telematics Inform., vol. 37, pp. 13–49, Apr. 2019,
doi: 10.1016/j.tele.2019.01.007.

[18] T. Kabudi, I. Pappas, and D. H. Olsen, “AI-enabled adaptive learning sys-
tems: A systematic mapping of the literature,”Comput. Educ. Artif. Intel.,
vol. 2, Mar. 2021, Art. no. 100017, doi: 10.1016/j.caeai.2021.100017.

[19] Y. Liu, “Data mining and its applications in digital human modeling,” in
Handbook of Digital Human Modeling: Research for Applied Ergonom-
ics and Human Factors Engineering, V. G. Duffy, Ed. Boca Raton, FL,
USA: CRC Press, 2009.

[20] M. Badino, “An application of information theory to the problem of the
scientific experiment,” Synthese, vol. 140, no. 3, pp. 355–389, Jun. 2004.

[21] P. C. Cacciabue, F. Decortis, B. Drozdowicz, M. Masson, and
J. P. Nordvik, “COSIMO: A cognitive simulation model of human deci-
sion making and behavior in accident management of complex plants,”
IEEE Trans. Syst. Man, Cybern., vol. 22, no. 5, pp. 1058–1074, Sep./
Oct. 1992, doi: 10.1109/21.179844.

[22] J. Han, M. Kamber, and J. Pei, “Classification: Basic concepts,” in Data
Mining: Concepts and Techniques, 3rd ed. Waltham, MA, USA: Morgan
Kaufmann, 2012, pp. 327–391, doi: 10.1016/B978-0-12-381479-
1.00008-3.

[23] A. W. H. House, J. Smith, S. MacKinnon, and B. Veitch, “Interactive
simulation for training offshore workers,” in Proc. MTS/IEEE OCEANS
Conf. Exp., 2014, pp. 1–6, doi: 10.1109/OCEANS.2014.7003211.

[24] S. B. Kotsiantis, “Supervised machine learning: A review of classifica-
tion techniques,” Informatica, vol. 31, pp. 249–263, Jul. 2007.

[25] J. Brownlee, “Model evaluation,” in Imbalanced Classification with
Python: Choose Better Metrics, Balance Skewed Classes, and Apply
Cost-Sensitive Learning, Self-published, 2021, pp. 38–46.

[26] W. R. Shadish, T. D. Cook, and D. T. Campbell, “Experiments and gen-
eralized causal inference,” in Experimental and Quasi-Experimental
Designs For Generalized Causal Inference. Boston, MA, USA:
Houghton Mifflin, 2002.

[27] G. Corder and D. Foreman, “Tests for nominal scale data: Chi-square
and fisher exact tests,” in Nonparametric Statistics: A Step-By-Step
Approach, 2nd ed. New Jersey, NY, USA: Wiley, 2014.

Jennifer Smith received the B.S. degree in applied science from the Acadia
University, Wolfville, NS, Canada, in 2002, the B.Eng. degree in biological
engineering from the Dalhousie University, Halifax, NS, Canada, in 2008,
and the M.Eng. and Ph.D degrees in ocean and naval architectural engineer-
ing from the Memorial University of Newfoundland (MUN), St. John’s,
NL, Canada, in 2015 and 2020, respectively.
From 2008 to 2020, she was a research coordinator on several projects

with MUN’s Faculty of Engineering and Applied Science. She is currently
working as an instructor (research) with the School of Maritime Studies,
MUN’s Marine Institute. Her research interests include pedagogical and
human factors issues in marine and offshore simulation training.

Mashrura Musharraf received the B.Eng. degree in computer science and
engineering from the Bangladesh University of Engineering and Technol-
ogy, Dhaka, Bangladesh, in 2009, and the M.Eng. and Ph.D. degrees in
computer engineering from the Memorial University of Newfoundland
(MUN), St. John’s, NL, Canada, in 2013 and 2018, respectively.
From 2018 to 2020, she was a postdoctoral research fellow with the

Safety at Sea project and a per-course instructor with the Faculty of Engi-
neering and Applied Science, MUN. Since 2020, she has been an Assistant
Professor of marine technology with Aalto University, Espoo, Finland. Her
research interests include data mining, machine learning, and artificial intel-
ligence for building and deploying human-centered systems and solutions to
create a safer marine industry.

SMITH et al.: PILOT STUDY USING DECISION TREES TO DIAGNOSE THE EFFICACY OF VIRTUAL OFFSHORE EGRESS TRAINING 825

https://dx.doi.org/10.1115/OMAE2015-41132
https://dx.doi.org/10.1115/1.4040660
https://dx.doi.org/10.1115/1.4040660
https://dx.doi.org/10.1016/j.ress.2018.06.007
https://dx.doi.org/10.3200/JOEB.81.2.119-128
https://dx.doi.org/10.1097/ACM.0b013e3181ed436c
https://dx.doi.org/10.1097/ACM.0b013e31827bfc0a
https://dx.doi.org/10.4300/JGME-D-13-00033.1
https://dx.doi.org/10.1111/medu.12391
https://dx.doi.org/10.1097/SIH.0000000000000120
https://dx.doi.org/10.1097/SIH.0000000000000120
https://dx.doi.org/10.1111/j.1365-2929.2006.02528.x
https://dx.doi.org/10.1097/ACM.0000000000000938
https://dx.doi.org/10.1097/ACM.0000000000000938
https://dx.doi.org/10.1097/ACM.0b013e31829a365d
https://dx.doi.org/10.4219/jaa-2007-704
https://dx.doi.org/10.1016/j.tele.2019.01.007
https://dx.doi.org/10.1016/j.caeai.2021.100017
https://dx.doi.org/10.1109/21.179844
https://dx.doi.org/10.1016/B978-0-12-381479-1.00008-3
https://dx.doi.org/10.1016/B978-0-12-381479-1.00008-3
https://dx.doi.org/10.1109/OCEANS.2014.7003211


Brian Veitch received the B.Eng. degree in naval architectural engineering
and the M.Eng. degree in ocean engineering from the Memorial University
of Newfoundland (MUN), St. John’s, NL, Canada, in 1988 and 1990,
respectively, and the Ph.D. degree in mechanical engineering from the Hel-
sinki University of Technology (now part of Aalto University), Espoo, Fin-
land, in 1995.

Since 1998, he has been teaching ocean and naval architectural engineering
with the Faculty of Engineering and Applied Science, MUN.

Dr. Veitch is also the Natural Sciences and Engineering Research Council of
Canada’s Husky Energy Industrial Research Chair in Safety at Sea.

Faisal Khan received the B.Eng. degree in chemical engineering from the
Aligarh Muslim University, Aligarh, India, in 1992, the M.Eng. degree in
computer-aided process plant design from the Indian Institute of Technol-
ogy, Roorkee, India, in 1994, and the Ph.D. degree in computer-aided risk
analysis from the Pondicherry University, Pondicherry, India, in 1998.
From 2019 to 2021, he was a Professor and the Associate Dean (graduate

studies) with the Faculty of Engineering and Applied Science, MUN and
the Canada Research Chair (Tier I) of Offshore Safety and Risk Engineer-
ing. From 2008 to 2019, he was the Discipline Chair and Head of process
engineering and founder of the Centre for Risk Integrity and Safety Engi-
neering (C-RISE), MUN. Since 2021, he has been a Professor of chemical
engineering with Texas A&M University, College Station, TX, USA. He is
also the Mike O’Connor II Chair and Director with the Mary Kay O’Connor
Process Safety Center, Texas A&M University.

826 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 15, NO. 6, DECEMBER 2022



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


