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Abstract—Educational assessments often require uniform test
forms, for which each test form has equivalent measurement
accuracy but with a different set of items. For uniform test
assembly, an important issue is the increase of the number of
assembled uniform tests. Although many automatic uniform test
assembly methods exist, the maximum clique algorithm (MCA)-
based method is known to assemble the greatest number of
uniform tests with the highest measurement accuracy based on
the item response theory. In that method, the graph is
constructed by sequentially adding a randomly formed test as a
vertex without considering the graph structure. However, an
important difficulty is its high space complexity, which interrupts
search cliques with more than a hundred thousand vertices. To
overcome this difficulty, this article proposes a new uniform test
assembly algorithm: hybrid maximum clique algorithm using
parallel integer programming. The first step searches a
maximum clique that is as large as possible up to computer
memory limitations using a state-of-the-art MCA with low time
complexity but with high space complexity. The second step
repeatedly searches a vertex connected with all vertices of the
current maximum clique from the remaining vertices using
integer programming with low space complexity but with high
time complexity. The proposed method constructs a larger
number of tests than the traditional methods do. Finally, we use
simulation and actual data experiments to demonstrate the
effectiveness of the proposed method. Results show that our
method assembles a 1.5–2.7 times greater number of uniform
tests than traditional methods can.

Index Terms—E-testing, integer programming (IP), item
response theory (IRT), maximum clique problem (MCP), uni-
form test assembly.

I. INTRODUCTION

RECENTLY, automatic assemblies of uniform test forms

(also called parallel test forms), for which each form has

equivalent measurement accuracy but with a different set of

items, have become popular. For example, uniform test forms

are necessary when a testing organization administers tests in

different time slots. To achieve this, uniform test forms are

assembled, in which all forms have equivalent qualities so that

examinees who have used different test forms can be evalu-

ated objectively using the same scale. Even if different exam-

inees with the same ability take different tests, their test scores

should be guaranteed to be equivalent.

The most important task of uniform test assembly is how

to increase the number of assembled tests to as great a

degree as possible. Test organizations allocate different test

forms to each examinee for securing the contents of the

items. Therefore, the number of test forms should be greater

than the number of examinees. For example, almost public

examinations in Japan need more than a hundred thousand

forms because more than 100 000 examinees take each of

them every year.

Many automatic uniform test assembly methods have been

proposed for the purpose. They construct test forms to satisfy

given test constraints such as the number of test items from

the respective question areas, average test scores, and ability

measurement accuracy to provide equivalent test qualities

(see, e.g., [1]–[24]).

Earlier studies assessed the formalization of a test assembly

as a combinational optimization problem. The test construc-

tion is searching for a combination of items that satisfies given

test constraints from a given item pool.

To assemble uniform tests, van der Linden [25] proposed the

big shadow test method (BST) using integer programming (IP).

This method sequentially assembles uniform test forms bymin-

imizing qualitative differences between a current assembling

test form and the remaining set of items in an item pool.

Although this method assembles uniform test forms in a practi-

cally acceptable time, it entails two crucially important difficul-

ties. First, the ability measurement accuracy decreases with the

assembled order of test forms. Second, this method does not

maximize the number of uniform test forms from the item pool.

To equilibrate the ability measurement accuracy, van der

Linden and Ameda [15], Sun et al. [18], Songmuang and

Ueno [19], Boekooi-Timminga [26], Armstrong et al. [27],

Armstrong et al. [28], Chang and Shiu [29], and Pereira and

Vila [30] formulated an assembly of uniform tests as a large-

scale IP that directly minimizes the differences of the ability

measurement accuracies among tests. However, these optimi-

zations have extremely large computational costs.

Sun et al. [18] proposed the use of a genetic algorithm for

uniform test assembly that simultaneously assembles uniform

test forms as minimizing differences among the qualities of

Manuscript received November 19, 2020; revised March 16, 2022; accepted
March 22, 2022. Date of publication March 30, 2022; date of current version
June 20, 2022. This work was supported by the Japan Society for the Promotion of
Science Grants-in-Aid for Scientific Research under Grant JP19H05663 and Grant
JP19K21751. Parts of this research were reported previously in an earlier confer-
ence paper published in DOI: 10.1007/978-3-319-61425-0_9. (Corresponding
author: Kazuma Fuchimoto.)

Kazuma Fuchimoto and Maomi Ueno are with the University of Electro-
Communications, Tokyo 182-8585, Japan (e-mail: fuchimoto@ai.lab.uec.ac.
jp; ueno@ai.is.uec.ac.jp).

Takatoshi Ishii is with the Sundai Institute of AI for Education, SATT
Company Ltd., Tokyo 101-0061, Japan (e-mail: t_ishii@satt.jp).

Digital Object Identifier 10.1109/TLT.2022.3163360

252 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 15, NO. 2, APRIL 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2941-826X
https://orcid.org/0000-0003-2941-826X
https://orcid.org/0000-0003-2941-826X
https://orcid.org/0000-0003-2941-826X
https://orcid.org/0000-0003-2941-826X
https://orcid.org/0000-0003-1019-7161
https://orcid.org/0000-0003-1019-7161
https://orcid.org/0000-0003-1019-7161
https://orcid.org/0000-0003-1019-7161
https://orcid.org/0000-0003-1019-7161
https://orcid.org/0000-0003-3598-8867
https://orcid.org/0000-0003-3598-8867
https://orcid.org/0000-0003-3598-8867
https://orcid.org/0000-0003-3598-8867
https://orcid.org/0000-0003-3598-8867
mailto:
mailto:
mailto:
mailto:


assembled test forms and user-determined values. Songmuang

and Ueno [19] applied the Bees algorithm to uniform test

form assembly and thereby improved the performance of the

method reported by Sun et al. [18].

Chang and Shiu [29] reformulated optimization as a bin-

packing problem and proposed an approximate algorithm

based on variable neighborhood search heuristic.

Although these methods demonstrated effective perfor-

mance for minimizing qualitative differences among the

assembled test forms, they are not guaranteed to maximize the

number of uniform test forms from the item pool.

To maximize the number of test forms, Belov and Arm-

strong [31] proposed a uniform test assembly method based

on maximum set-packing problems. This method divides the

item pool into the maximum number of item sets (as tests)

that match given test constraints. Nevertheless, this

method [31] cannot assemble uniform test forms with overlap-

ping items, where overlapping items mean common items

among multiple test forms. In the nonoverlapping conditions,

each item is used only once for assembled test forms. There-

fore, the nonoverlapping condition strongly restricts the num-

ber of assembled test forms.

To resolve this difficulty, Ishii et al. [20], [21] formalized

the uniform test assembly with overlapping conditions as a

maximum clique problem (MCP), which is a combinational

optimization in the graph theory. The method constructs a

graph in which the vertices and the edges represent tests satis-

fying the test constraint and the satisfaction of overlapping

constraints, hereinafter called the graph for uniform test

assembly as “corresponding graph.” The method also extracts

the maximum clique as uniform test forms from the corre-

sponding graph. However, the number of possible constructed

test forms (the graph size) superexponentially increases as the

number of overlapping items increases. Furthermore, this

method superexponentially increases the computational time

with increasing item pool size because the MCP is NP-com-

plete. Therefore, it is difficult to extract the maximum clique

from the graph for a large item pool with overlapping con-

straints because the corresponding graph size becomes too

large to store in memory.

To relax these difficulties, they proposed an approximation

using a random search approach (random maximum clique

problem (RndMCP) algorithm[20], [21]). This method repeat-

edly constructs graphs by sequentially and randomly assem-

bling as many tests (as vertices) as possible. The method also

extracts the maximum clique from those graphs. In other

words, this method repeatedly samples a random subgraph

from the global corresponding graph and extracts a maximum

clique from the subgraph. This approximation allows the

RndMCP, which is to assemble 10–1000 times the number of

uniform tests than traditional methods do.

However, the RndMCP still has high computational costs. It

cannot assemble a sufficient number of tests for large-scale

testing. Actually, the RndMCP employs a maximum clique

algorithm (MCA). The time complexity of MCAs has been

improved up to Oð20:19171jV jÞ using state-of-the-art meth-

ods [32], where V represents the vertices of the subgraph.

Nevertheless, the salient difficulty is their space complexity

OðjV 2jÞ. It costs only polynomial order but disables the

searching of cliques with more than a hundred thousand verti-

ces because of computer memory limitations. Therefore, it

limits the number of assembled uniform tests to a hundred

thousand.

For this article, to reduce the high time complexity of the

RndMCP, we propose a new algorithm, i.e., random integer pro-

gramming maximum clique problem (RIPMCP), which seeks a

vertex connected with all vertices of the current clique using IP.

This method has lower space complexity OðjV jÞ than the

RndMCP’s space complexity OðjV j2Þ. However, it has higher

time complexity OðjV j � 2nÞ (where n represents the item pool

size) than RndMCP’s time complexity of 20:19171jV j. The advan-

tage of space complexity increases the number of assembled

uniform tests for limited memory. However, the improvement of

the RIPMCP is expected to be limited because of the high time

complexityOðjV j � 2nÞ.
To relax the high time complexity of the RIPMCP, we pro-

pose a new two-step parallel algorithm: hybrid maximum cli-

que algorithm with parallel integer programming

(HMCAPIP). The first step seeks a maximum clique that is as

large as possible up to the computer memory limit using the

RndMCP with low constant time, but with high space com-

plexity. The second step repeatedly seeks a vertex connected

with all vertices of the current clique from the remaining verti-

ces using IP with low space complexity but with high time

complexity. However, the second step using IP has higher

time complexity than the first step has. To relax the difficulty,

our method parallelizes the second step. Specifically, to paral-

lelize the second step efficiently, the main idea is to repeat the

parallel search of the vertices connected with all vertices of

the current clique using IP up to a determined number. Subse-

quently, the second step seeks a maximum clique from the

found vertices. The found maximum clique combines with the

current clique. Consequently, the HMCAPIP can assemble a

greater number of uniform tests than the RIPMCP can. It does

so by dividing the computational cost.

Finally, we demonstrate the performance of the proposed

method using simulated and actual data. Results show that our

method assembles a 1.5–2.7 times greater number of uniform

tests than traditional methods can.

II. ITEM RESPONSE THEORY

Most of the earlier studies of test form assembly employ item

response theory (IRT) [33], [34] to evaluate the measurement

accuracies of test forms (such as [19], [25]–[28], and [35]).

In fact, even when the examinees are using different test

forms, IRT that describes the relation between item chara-

cteristics and examinee ability can measure examinee ability

on the same scale. For IRT, uij denotes the response of item

ið¼ 1; . . . ; nÞ on examinee jð¼ 1; . . . ;mÞ as

uij ¼
1; if jth examinee answers

ith item correctly

0; otherwise

:

8><
>:
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In a two-parameter logistic model, which is a popular IRT

model, the probability of a correct answer to item i by exam-

inee j with ability uj 2 ð�1;1Þ is assumed as

piðujÞ � pðuij ¼ 1jujÞ ¼ 1

1þ expð�1:7aiðuj � biÞÞ (1)

where ai 2 ½0;1Þ is the ith item’s discrimination parameter

and bi 2 ð�1;1Þ is the ith item’s difficulty parameter.

Using this function, we can define the item reliability,

which measures how accurately the item can estimate the

examinee’s ability levels u. The ith item information function

IiðujÞ based on the two-parameter logistic model is defined as

IiðuÞ ¼ 1:72a2i piðuÞð1� piðuÞÞ. (2)

This function is designated as Fisher information.

The test information function ITestðuÞ of a test form Test is

defined as

ITestðujÞ ¼
X
i2Test

IiðujÞ. (3)

The asymptotic standard error of estimating û: SEðûÞ is the
reciprocal of square root of the item/test information function

at a given ability level û

SEiðuÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
IiðuÞ

p (4Þ

SETestðuÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
ITestðuÞ

p : (5)

Therefore, using the information function, a test administrator

can estimate how much accuracy a test form has.

The test information function is a continuous function of the

examinee ability and the item characteristic parameters. In tra-

ditional methods (see, e.g., [19], [25]–[28], and [35]), the

function is treated as discretely to simplify the calculation.

Regarded in greater detail, the test information values are

treated discretely. They have been evaluated on some points

Q ¼ fu1; . . . ; uk; . . . ; uKg on the ability level u. As described

in this article, we treat the test information function similarly.

III. TRADITIONAL METHODS OF UNIFORM TEST ASSEMBLY

This section introduces several conventional uniform test

assembly methods.

A. Big Shadow Test Method

The most well-known uniform test assembly method is the BST

using IP by van der Linden [25]. This method assembles test forms

sequentially by minimizing the difference of test information func-

tions between a current assembled test and a set of items remaining

in the item pool. The set of remaining items is called the shadow

test. Thismethod solves the following optimization problem.

variables

y � 0

xi ¼
1; if the ith item is selected

into test form

0; otherwise

8><
>:

zi ¼
1; if the i-th item is selected

into shadow test form

0; otherwise

8><
>:

minimize

y
subject to

XK
k¼1
j
Xn
i¼1

IiðukÞxi � TðukÞj � My, (6Þ

XK
k¼1
j
Xn
i¼1

IiðukÞzi � TSTðukÞj � MSTy, (7Þ

Xn
i¼1

xi ¼ M, (8Þ

Xn
i¼1

zi ¼ MST (9Þ

xi þ zi � 1

ði ¼ 1; . . . ;nÞ (10)

where

TSTðukÞ ¼MST

M
TðukÞ: (11)

M and MST are the number of items in the assembling test

and the shadow test, respectively. T ðukÞ denotes a target value
of the information function at the ability level uk for the

assembling test. TSTðukÞ denotes a target value of the informa-

tion function at the ability level uk for the shadow test. The

test quality constraints without the information function (ex:

test time limits) can be included in the constraints of the IP.

Actually, variable y represents the minimum difference

between the information function of the assembling test and

the target value TðukÞ and the difference between information

functions of the shadow test and the target value TSTðukÞ
simultaneously.

Solving the IP assembles a test form one by one to assemble

uniform tests. This greedy algorithm reduces computational

costs, but it decreases the ability measurement accuracy (test

information) as the number of assembled test forms increases.

Although the proposed method in this article also uses the

IP, it is formulated to maximize the number of test forms to

satisfy test constraints. Therefore, the proposed method can

guarantee the uniformity of the ability measurement accura-

cies for all the test forms.

B. MCA for Assembling Uniform Tests

As described previously, the MCA [20], [21] based method

is known to assemble the greatest number of uniform tests

254 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 15, NO. 2, APRIL 2022



with the highest measurement accuracy. The clique problem is

a combinational optimization problem in graph theory.

Letting V be a finite set of vertices and letting E represent a

set of edges, the graph is represented as a pair G ¼ fV;Eg.
TheMCP searches the cliquewith themaximumnumber of ver-

tices in the given graph. LettingG ¼ fV;Eg be a finite graph and
lettingC � V be a clique, theMCP is formally defined as follows:

maximize jCj
subject to

8v 8w 2 C; fv;wg 2 E

(clique constraint).

(12)

Ishii et al. [20], [21] employ the MCP to search the maximum

number of uniform test forms. In general, uniform test forms are

defined as a set of test forms that has the following specifications.

1) Any test in uniform tests satisfies all test constraints.

2) Any two tests in uniform tests comprise a different set

of items (i.e., any two test forms have fewer overlap-

ping items than the allowed number in the overlapping

constraint).

Accordingly, the maximum number of uniform test form

assembly can be described as the maximum clique extraction

from a graph as shown in the following:

V ¼

s : s 2 S; feasible test form s

satisfies all test constraints

except the overlapping

constraint from a given

item pool

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

E ¼
fs;0 s00g: the pair of s0 and s00

satisfies the

overlapping constraint

8><
>:

9>=
>;:

This graph G ¼ fV;Eg is designated as the corresponding

graph. The test constraints include a constraint for the number

of items and a test information function. Letting Luk be a

lower bound and letting Uuk be an upper bound for the test

information function on ITestðukÞ, a constraint for the test infor-
mation function is written as follows:

Luk � ITestðukÞ � Uuk : (13)

Letting OC be the allowed number in the overlapping con-

straint and realizing that both s and s0 are tests, which are the

sets of items, the overlapping constraint is defined as follows:

8s; 8s0 2 V (14Þ
js \ s0j � OC: (15)

This MCP seeks the maximum set of feasible test forms, in

which any two test forms satisfy the overlapping constraint.

Therefore, this optimization problem theoretically maximizes

the number of uniform test forms.

Fig. 1 presents an example of the uniform test assembly

using the MCP. The graph has six vertices (feasible tests)

T1–T6 and nine edges (equivalent and satisfaction of overlap-

ping constraint). In this graph, the maximum clique (the maxi-

mum uniform test) is Cmax ¼ fT1;T2;T3;T4g.
This method is applied as follows. An exact method based

on maximum clique. problem (ExMCP) consists of the follow-

ing three steps:

Step 1— (Assembling feasible test forms): Step 1 assembles

all feasible test forms. They use the branch and bound

technique (see, e.g., [36]) to assemble the feasible test

forms using test constraints except for the overlapping

constraint. Specifically, it prunes edges that exceed the

test length constraint or the upper bound of the test

information constraints. Finally, Step 1 stores the feasi-

ble test forms in system memory.

Step 2— (Generating corresponding graph): Step 2 gener-

ates the corresponding graph by counting overlapping

items among each pair of the feasible test forms con-

structed by Step 1. The feasible test forms are repre-

sented as vertices. Thereby, only if a pair of test forms

has fewer common items than the overlapping con-

straint can one connect the pair.

Step 3— (Extracting the maximum clique from the graph):

Step 3 extracts the maximum clique from the corre-

sponding graph generated in Step 2. Step 3 returns the

result maximum clique as the maximum number of uni-

form test forms.

The ExMCP guarantees the extraction of the maximum

number of uniform test forms with overlapping conditions

from all the combinations of feasible test forms from an item

pool. However, even when we employ state-of-the-art MCAs

(see, e.g., [32] and [37]), the computational time and space

costs of the ExMCP are Oð2F Þ and OðjF j2Þ, respectively,
where F represents the number of feasible test forms. More-

over, the number of feasible test forms F combinatorially

increases concomitantly with increasing item pool size. From

the explanation represented above, the ExMCP can be under-

stood to require superexponential computational costs. Conse-

quently, the ExMCP is not available for large item pools. In

addition, most recently, state-of-the-art MCAs [38], [39] have

been proposed. They are efficient only when a graph structure

is sparse. However, unfortunately, uniform test assembly

problems address dense graphs [20], [21].

Fig. 1. MCA for uniform test assembly.
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Unfortunately, this difficulty for assembling uniform

tests cannot ensure a maximum number of assembled uni-

form tests because the ExMCP has high computational

complexity. To resolve this difficulty, an approximate algo-

rithm called RndMCP was proposed in an earlier study [20],

[21].

This method has three parameters for computational costs.
L1L1 is the number of feasible tests assembled in Step 1.

L2L2 is the time limit of Step 3.

CTCT is the total calculation time limit of the uniform test assem-

bly.

The RndMCP algorithm is shown as Algorithm 1.

Actually, the RndMCP repeatedly extracts the maximum

number of uniform tests from a subgraph of the correspond-

ing global graph. For the case in which L1 is larger than the

size of the maximum clique in the corresponding global

graph, the RndMCP asymptotically extracts the maximum

clique as the maximum number of uniform tests from the

corresponding global graph when the number of subgraphs

becomes large [21].

The algorithm has a calculation time limit CT and space

complexity OðL2
1Þ. Therefore, it can extract uniform tests in a

limited computing environment by controlling time complex-

ity and space complexity.

However, when the algorithm assembles jCj uniform tests,

its computational cost is at least OðjCj2Þ. Therefore, when the

number of assembled uniform tests becomes too large, the

space complexity disables the test assembly because of com-

puter memory limitations. Actually, it is difficult for the algo-

rithm to assemble more than a hundred thousand uniform

tests. Consequently, the RndMCP algorithm has a space com-

plexity problem.

IV. UNIFORM TEST ASSEMBLY USING THE MCP AND

INTEGER PROGRAMMING

Currently, the RndMCP is known to assemble the greatest

number of uniform tests. Nevertheless, the RndMCP is limited

to a maximum of 100 000 assembled uniform tests because of

the high space complexity OðjV j2Þ. To reduce the RndMCP

space complexity, we propose a new algorithm: RIPMCP. The

main idea is that this method seeks a vertex connected with all

vertices of the current clique using the IP. This method repeats

the search to expand the maximum clique. The IP problem for

assembling uniform tests is shown below. In fact, the IP with

no overlapping condition is equivalent to that of Belov’s algo-

rithm (2008) [41].

where

xi ¼
1; if the ith item is selected in the feasible test

0; otherwise

�

maximize

Xn
i¼1

�ixi (16)

subject to

Xn
i¼1

xi ¼ M (test length) (17Þ

Luk �
Xn
i¼1

IiðukÞxi � Uuk(test information) (18Þ

ðk ¼ 1; . . .; KÞ
Xn
i¼1

Xi;rxi �OC (overlapping constraint)

ðr ¼ 1; . . .; jCjÞ (19)

Xi;r ¼
1; if the ith item is selected in the rth test

in the current clique C;

0; otherwise:

8><
>:

Therein, �1; �2; . . . ; �n, respectively, denote random varia-

bles distributed uniformly on [0,1]. Here, f�igð0 � i � nÞ are
resampled after each problem is solved.

The IP seeks the random tests that are connected to all verti-

ces in a set of already constructed vertices C. The left-hand

side of (17) denotes the number of items in assembling test

form. Therefore, (17) restricts the total number of items in the

assembling test. The term of
Pn

i¼1 IiðukÞxi in (18) describes

the test information function of the assembling test on the

point of uk. Consequently, (18) restricts the test information

function by setting the upper bound Uuk and the lower bound

Luk . The term
Pn

i¼1 Xi;rxi calculates the number of overlap-

ping items between the assembling test xi and the rth test in

C. Consequently, (19) limits the number of overlapping items

between any two tests in C. As a result, those constraints

(17)–(19) guarantee that an assembling vertex (test) is con-

nected to all vertices (tests) in C.

Algorithm 1: RndMCP.

procedure RndMCPðL1; L2; CT Þ
C  ;; Cmax  ;
ST  current time
while ðcurrent time� ST Þ < CT do

/* Step1 */

V  Assemble feasible L1 tests randomly.

/* Step2 */

G ðV;EÞ Generate a graph that corresponds to a set of fea-

sible tests with overlapping items.

/* Step3 */

C  MCAðG;L2Þ
" MCA(G;L2) extracts the maximum clique from the graph G

within calculation time L2 using Nakanishi and Tomita’s maximum

clique algorithm [40].

if jCmaxj < jCj then
Cmax  C

end if

end while

Output Cmax

end procedure

256 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 15, NO. 2, APRIL 2022



This method generates graph structures for the MCP by

solving the IP. From this graph generation, this method can

assemble uniform tests with lower space complexity OðjV jÞ
than RndMCP’s space complexity OðjV j2Þ. However, this

method unfortunately has high time complexity OðjV j � 2nÞ.
The RIPMCP has the following parameters.

L1L1 is the limit of number of vertices using IP.

L2L2 is the time limit of the maximum clique extraction of

RIPMCP.

CTCT is the total calculation time limit of the test assembly.

The RIPMCP algorithm is shown in Algorithm 2.

V. EXPERIMENTS TO ASSESS RIPMCP

In this section, to demonstrate the advantages of the

RIPMCP, we compare the number of assembled uniform tests

of our method with those of traditional methods (BST [41] in

Section III-A and RndMCP [21] in Section III-B) using simu-

lated and actual item pools. Items in the simulated item pools

have discrimination parameters and difficulty parameters of

IRT. We generated discrimination parameters as log 2a �
Nð0; 12Þ and generated difficulty parameters as b � Nð0; 12Þ.
Table I presents the details of the actual item pool. This actual

item pool is used in the synthetic personality inventory exami-

nation, which is a widely used aptitude test in Japan [42].

We set the test constraints as follows.

1) The test includes 25 items.

2) The allowed maximum number of overlapping items is

changed from zero to ten by one.

The test information constraints are described by the lower

and upper bounds of the test information function IðukÞ. They
are shown in Table II. We determined these constraints

according to the actual test setting [42].

We used 24 h as a time limitation for all methods. For the

RndMCP and the RIPMCP, we found the computational cost

constraints L1 as 100 000, L2 as 3 h, and CT as 24 h. We

determined the parameter values L1; L2, and CT according

to an explanation by Ishii et al. [21]. We employed the same

parameter values as those presented by Ishii et al. [21]. The

RndMCP and the RIPMCP were implemented in Java (the

source code is available1). For the BST, we determine the tar-

get value of the information function T ðukÞ as follows:

T ðukÞ ¼ ðlower bounds of the information functionÞf
þðupper bounds of the information functionÞg2:

Here, we conduct experiments on a machine with an Intel

(R) Core i9-9900X 3.50-GHz CPU, and 128-GB main mem-

ory running a Linux (64-bit Ubuntu) operating system. This

article will propose a parallel computing algorithm for uni-

form test assembly in the next section. This machine specifica-

tion allows parallel computing (ten processor cores). Note that

parameter L1 depends on the main memory capacity. There-

fore, we determined the same main memory capacity as that

of Ishii et al. [21]. For the BST [25] and the RIPMCP, we

apply CPLEX [43] for the IP problem.

Table III shows the quantities of assembled uniform tests

using our method and using the traditional methods by chang-

ing the item pool sizes and the overlapping constraints. It is

noteworthy that the “HMCAPIP” will be proposed in the next

section. We discuss the HMCAPIP results later.

In traditional methods, for all cases except OC = 0, the

RndMCP assembles a greater number of tests than the BST

does because the aim of the BST is not to maximize the num-

ber of assembled tests. When OC = 0, the BST assembles a

Algorithm 2: RIPMCP.

procedure RIPMCPðL1; L2; CT Þ
C  ;; Cmax  ;
global ST  current time
while ðcurrent time� ST Þ < CT do

V  ;
while jV j < L1 do

v SolveIPðCÞ
" Seek a vertex connected with all vertices of the current clique

C using the IP.

if v 6¼ ; then
V  V [ v

else

break

end if

end while

if V 6¼ ; then
G ðV;EÞ
" Generate a graph that corresponds to a set V with over-

lapping items.

C  C [MCAðG;L2Þ
" MCA(G;L2) extracts the maximum clique from the graph G

within calculation time L2 using Nakanishi and Tomita’s maximum

clique algorithm [40].

if jCmaxj < jCj then
Cmax  C

end if

else

C  ;
end if

end while

Output Cmax

end procedure

TABLE I
DETAILS OF THE ACTUAL ITEM POOL

TABLE II
CONSTRAINTS FOR TEST ASSEMBLY

1 http://www.ai.lab.uec.ac.jp/software-e/.
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greater number of tests than the RndMCP does because the

random subgraph is too small for this test assembly setting.

Actually, the RIPMCP assembles a greater number of tests than

the traditional methods do. The reason is that the RIPMCP has

lower space complexity than the RndMCP has. However, the dif-

ference of the numbers of tests between the RIPMCP and the

RndMCP becomes slight as the number of tests becomes large

because the RIPMCP performance is limited as a result of its high

time complexity. In the next section, we address this limitation.

VI. HYBRID MAXIMUM CLIQUE ALGORITHM WITH

PARALLEL INTEGER PROGRAMMING

The RIPMCP has lower space complexity OðjV jÞ than that

of RndMCP. This advantage is expected to increase the

number of assembled uniform tests for limited memory. Nev-

ertheless, the effect of RIPMCP compared to RndMCP

remains limited because of the high time complexity

OðjV j � 2nÞ. Therefore, to relax the high time complexity, we

propose a new two-step parallel algorithm: HMCAPIP. The

first step seeks a maximum clique that is as large as possible

up to the limitations imposed by computer memory using

RndMCP with low time complexity, but with high space com-

plexity. The second step is a repeated search for a vertex that

is connected with all vertices of the current clique from the

remaining vertices using IP with low space complexity but

with high time complexity.

The first step seeks a maximum clique that is as large as

possible up to the limitations of computer memory using the

RndMCP with the low calculation time limit CT , but with
high space complexity OðjV j2Þ. It costs only polynomial order

but disables search cliques with more than a hundred thousand

vertices because of computer memory limitations. Therefore,

the algorithm switches from the RndMCP to the IP method,

which has low space complexity OðjV jÞ.
The second step repeatedly seeks a vertex connected with

all vertices of the current clique from the remaining vertices

using IP with low space complexity OðjV jÞ, but with high

time complexity OðjV j � 2nÞ. The number of additionally

assembled uniform tests using the IP is limited because of its

high time complexity. To relax this difficulty, our method par-

allelizes the second step. Sequentially, finding a vertex using

IP is difficult to parallelize efficiently. Therefore, our method

seeks vertices, as shown in Fig. 2.

In step (a), using multiple processors, the second step seeks P
vertices connected with all vertices of the current clique using IP

in parallel, where P represents the number of parallelizations for

seeking a vertex using the IP. Here, the optimal value of the objec-

tive function differs for each search because �i is resampled.

Then, the found vertices are added to a set S (where S represents

a set of vertex connected with all vertices of the current clique).

This procedure is repeated untilSUB � jSj (whereSUB represents

the limit of the number of vertices using IP). Moreover, the solu-

tion of IP is used as the initial lower bound LB in the next search

for the branch and bound algorithm. Subsequently, in step (b), the

second step seeks a maximum cliqueMC from the found vertices

in S. In step (c), the found maximum clique combines with the

current clique. Results show that, by dividing the computational

cost, the HMCAPIP can assemble a greater number of uniform

tests than the RIPMCP can. If the IP has no solution, then the

search might fall into a local solution. In such a case, to avoid the

local solution, the algorithm removesD1 vertices randomly from

the current clique.

The following seven parameters are used for the HMCAPIP.
L1L1 is the number of feasible tests of the RndMCP stored in

computer memory.

L2L2 is the time limit of the maximum clique extraction of the

RndMCP.

CT 0CT 0 is the total calculation time limit of the RndMCP.

SUBSUB is the limit of the number of vertices using IP.

D1D1 is the number of removed vertices from the current clique

when the IP has no solution.

TABLE III
NUMBER OF ASSEMBLED UNIFORM TESTS FOR EACH METHOD IN

LARGE-SCALE ITEM POOLS

The bold numbers in the table signify the best performances.
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PP is the number of parallelizations for seeking a vertex by

IP.

CTCT is the total calculation time limit of the test assembly.

The HMCAPIP algorithm is shown in Algorithm 3.

VII. EXPERIMENTS USED TO ASSESS HMCAPIP

As described in this section, we estimate the individual

parameters for the HMCAPIP, which has some tradeoff

among the values of parameters.

Therefore, we evaluate the tradeoff by changing the values

of parameters to ascertain optimal values to maximize the

number of assembled uniform tests. Subsequently, we com-

pare the performance of the proposed method with earlier

reported methods and the RIPMCP using simulated and actual

item pools.

We set the test constraints as follows.

1) The test includes 25 items.

2) Allowed maximum numbers of overlapping items are

changed from zero to ten by increments of one.

The test information constraints are presented in Table II.

The HMCAPIP was implemented in Java (the source code

is available2).

A. Optimization of Parameter SUB

Our method has a tradeoff by the value of SUB between the

search time to seek a maximum clique from the vertices in S
and the search time to seek a vertex connected with all vertices

of the current clique using IP. Therefore, we evaluate the

tradeoff by changing the value of SUB to infer the optimal

value to maximize the number of assembled uniform tests.

We compare the performances of the values of SUB using the

simulated item pool with 1000 items. Items in the simulated

item pools have discrimination parameters and difficulty

parameters of IRT. We generated discrimination parameters as

log 2a � Nð0; 12Þ and difficulty parameters as b � Nð0; 12Þ.
We have 24 h as a time limitation for uniform test assembly.

For our method, we set the computational cost constraints L1

as 100 000, L2 as 3 h, CT 0 as 3 h, D1 as 100, and CT as 24 h.

We determined the parameter values L1; L2; D1;
CT , and CT 0 according to an explanation by Ishii et al. [21],

[44]. We employed the same parameter values as those pre-

sented by Ishii et al. [21], [44]. The experiments compare the

number of tests for SUB 2 f10; 100; 1000g.
Table IV presents the quantities of assembled uniform tests by

changing the value of SUB. In the table, the following information

is presented. No. tests denotes the quantities of assembled uniform

tests. Avg. search time (MCA) [s] denotes the average search time

of the maximum clique in S. Avg. search time (IP) [s] represents

the average of the search time of IP for uniform test assembly.

When OC � 3, our method entails a tradeoff between Avg.

search time (MCA) and Avg. search time (IP). Specifically,

when the SUB value becomes large, Avg. search time (MCA)

increases but Avg. search time (IP) decreases. However, when

OC > 3, the magnitude of the tradeoff becomes small

because Avg. search time (MCA) and Avg. search time (IP)

do not change greatly for the SUB values. In most cases,

SUB ¼ 100 assembles the greatest number of tests. Therefore,

in this article, the SUB value is determined as 100.

B. Effectiveness of the Lower Bound

In the proposed method, the IP solution is used as the initial

lower bound LB for the next search. In this section, we evalu-

ate the effectiveness of the lower bound LB using the same

simulated item pool as that used in Section VII-A.

Fig. 2. Outline of the second step.

2 http://www.ai.lab.uec.ac.jp/software-e/.
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We have 24 h as a time limitation for uniform test

assembly. In addition, we set the computational cost con-

straints L1 as 100 000, L2 as 3 h, CT 0 as 3 h, SUB as 100,

D1 as 100, and CT as 24 h. Using these conditions, we

compare the quantities of test configurations with LB and

those without LB.

Table V presents the quantities of assembled uniform tests

with and without a lower bound. The following are presented

in the table. No. tests represents the quantities of assembled

uniform tests, Avg. search nodes denotes the quantities of

search nodes in IP, and Avg. search time [s] stands for the

average of search time of IP for the uniform test assembly.

IP with LB assembles a greater number of tests than that

without LB does because LB reduces the search space of IP.

In fact, both Avg. search nodes and Avg. search time of with

LB are lower than those without LB.

C. Optimization of the Number of Parallelizations

To relax the high time complexity of IP in the RIPMCP,

our method repeats the parallel search of the vertices con-

nected with all vertices of the current clique using IP. The

efficiency of the parallel search depends on the number of

tests and the value of P , where P represents the number of

parallelizations for seeking a vertex by the IP. In this sec-

tion, we evaluate the number of assembled tests by chang-

ing the value of P using the same simulated item pool used

in Section VII-A.

We have 24 h as a time limitation for uniform test assembly.

In addition, we set the computational cost constraints L1 as

100 000, L2 as 3 h, CT 0 as 3 h, SUB as 100, D1 as 100, and

CT as 24 h. The experiments compare the quantities of tests

by P ¼ 1; 2; 5; and 10.
Table VI presents the numbers of assembled uniform tests

by changing P . No. tests denotes the quantities of assembled

uniform tests. In addition, Avg. search time [s] represents the

average of search time to find one vertex using IP in the sec-

ond step.

Actually, when OC becomes small, all the values of P
assemble almost identically to the number of tests. The num-

bers converge to the maximum quantities of assembled uni-

form tests because the extract maximum quantities of

uniform tests are not large as a result of the tight OC. How-

ever, when OC becomes large, P ¼ 10 tends to assemble the

greatest number of tests. That result indicates that the effi-

ciency of parallelization increases as the number of tests

increases. Therefore, the value of P is determined as 10 in

these analyses.

In the next section, we discuss comparison of our method

with the traditional methods by increasing a time limitation.

D. Performances for Large-Scale Item Pool

To demonstrate the benefits of the HMCAPIP, we compare

the number of assembled uniform tests of the HMCAPIP with

those of traditional methods (BST [41] in Section III-A and

RndMCP [21] in Section III-B) and the RIPMCP using simu-

lated and actual item pools. Items in the simulated item pools

have discrimination parameters and difficulty parameters of

IRT. We generated discrimination parameters as log 2a �
Nð0; 12Þ and difficulty parameters as b � Nð0; 12Þ. Details of
the actual item pool are listed in Table I.

We used 24 h as a time limitation for all methods. For the

HMCAPIP, we set the computational cost constraints L1 as

100 000, L2 as 3 h, CT 0 as 3 h, SUB as 100, D1 as 100, P as

10, and CT as 24 h. The values of parameters were ascertained

Algorithm 3: HMCAPIP.

procedure HMCAPIPðL1; L2; CT
0; SUB;D1; P; CT Þ

global ST  current time
C  Step1(L1; L2; CT

0)
Cmax  Step2(C; SUB;D1; P; CT )
Output Cmax

end procedure

function Step1ðL1; L2; CT
0Þ

return RndMCP(L1; L2; CT
0) " Algorithm 1

end function

function Step2ðC; SUB;D1; P; CT Þ
Cmax  C
while ðcurrent time� ST Þ < CT do

S  ;
repeat

Sol ;
parallel for p 1 . . . P do

" Seek P vertices in parallel

Solp  SearchVertexC; S
" Seek a vertex with all vertices of C connected

end parallel for

if Sol 6¼ ; then "IP has solutions

S  S [ Sol
else

C  Remove(C;D1) " RemoveD1 vertices from C
break
end if

until SUB � jSj
if S 6¼ ; then
G ðS;EÞ
" Generate a graph that corresponds to a set S with over-

lapping items.

MC  MCA ðG;L2Þ
" MCA(G;L2) extracts the maximum clique from the graph G
within calculation time L2 using Nakanishi and Tomita’s maximum

clique algorithm [40].

C  C [MC
" CombineMC with the current clique

if jCmaxj < jCj then Cmax  C end if

end if

end while

return Cmax

end function

function SearchVertex C; S
LB max {

Pn
i¼1 �ixi : x 2 S}

" Objective function eq:16

return SolveIP C;LB
" Solve IP with initial lower bound LB

end function
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by comparing the numbers of assembled tests in Sections VII-

A– VII-C. For RndMCP, RIPMCP, and BST, we set the same

computational cost constraints used in Section V.

We present the results in Table III. When OC = 0 and 1, the

HMCAPIP assembles almost identical numbers of uniform

tests as the RIPMCP does. The numbers converge to the maxi-

mum number of assembled uniform tests because the exact

maximum number of uniform tests is not large as a result of

the tight OC.

The table shows that the HMCAPIP relaxes the high time

complexity problem of the RIPMCP by IP in parallel. There-

fore, the difference of the quantities of uniform tests between

the RndMCP and the HMCAPIP is still large even when the

number of assembled tests becomes greater than 100 000. The

TABLE IV
SEARCH PERFORMANCES BY CHANGING THE PARAMETER SUB

The bold numbers in the table signify the best performances.

TABLE V
EFFECTIVENESS OF THE LOWER BOUND

The bold numbers in the table signify the best performances.

TABLE VI
PERFORMANCE OF PARALLEL SOLUTION OF IP

The bold numbers in the table signify the best performances.
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main reason is that the HMCAPIP divides the computational

cost of the second step by parallel search using IP. Conse-

quently, the results demonstrated the effectiveness of the pro-

posed method.

E. Performance of Extended Calculation Time

The RIPMCP and the HMCAPIP have lower space com-

plexity than the RndMCP has. This advantage increases the

number of assembled uniform tests for a limited amount of

memory. However, the improvement of the RIPMCP remains

limited because of its high time complexity. The HMCAPIP

divides computational costs into multiple processors. There-

fore, the difference of the quantities of tests between the

RIPMCP and the HMCAPIP might increase if the calculation

time increases. To confirm this point, we compare the quanti-

ties of assembled uniform tests using RndMCP, RIPMCP, and

HMCAPIP by extending the time limit to 168 h (seven days).

We use the simulation item pool with 2000 items, which gen-

erates the greatest number of tests in the simulation item pools

and actual item pool with 978 items.

Table VII presents the numbers of assembled uniform tests

given the time limitation of 168 h for RndMCP, RIPMCP, and

HMCAPIP. Results show that the proposed methods can

assemble a greater number of tests than the RndMCP can

because the proposed methods have lower space complexity

than the RndMCP has. Because of the space complexity limi-

tation, the number of tests by the RndMCP does not increase

as the calculation time increases. As a result, the HMCAPIP

assembles 1.5–2.7 times greater numbers of uniform tests than

the RndCMP does, except for the case of OC = 0. When

OC = 0, the quantities of assembled uniform tests of the pro-

posed methods are equal because they converge to a maximal

number of uniform tests. When OC becomes large, the differ-

ences of the numbers of tests between the RIPMCP and the

HMCAPIP become large because the HMCAPIP divides the

high time complexity of IP.

Fig. 3 shows the quantities of assembled uniform tests of the

HMCAPIP and the RIPMCP with OC = 10 for (a) simulated

item pool size 2000 and for (b) actual item pool size 978,

which assembled the greatest numbers of tests in Table VII.

The results demonstrate that the difference of the numbers of

assembled uniform tests between the HMCAPIP and the

RIPMCP becomes large as the calculation time increases.

Results suggest that the proposed method assembles a greater

number of uniform tests given a longer calculation time.

VIII. CONCLUSION

In this article, we proposed a new algorithm for assembling

uniform tests. The proposed method assembled a 1.5–2.7 times

greater number of uniform tests than traditional methods did.

To achieve this result, we applied IP to the MCP for improving

results obtained by Ishii et al. [20], [21]. Ishii et al. [20], [21]

described a need for storing a huge graph structure for assem-

bling a greater number of uniform tests. The computational

environment limits the number of assembled uniform tests.

Specifically, the proposed method can assemble a greater num-

ber of tests by repeatedly searching a vertex connected with all

vertices of the current clique using IP. By storing only con-

nected vertices with the current clique, the proposed method

improves the efficiency of space complexity usage and the

number of assembled uniform tests. Moreover, to relax the

computational complexity, we proposed a new two-step paral-

lel algorithm: HMCAPIP. The first step seeks a maximum cli-

que using the RndMCP with low constant time but high space

complexity. The second step repeats the parallel search of the

vertices connected with all vertices of the current clique using

IP with low space complexity but with high time complexity.

To demonstrate the performance of the proposed method,

we conducted three experiments using simulated and actual

data. Results indicate that the proposed method assembled a

greater number of uniform test forms than the traditional

methods did. Moreover, results suggest that the drastically

Fig. 3. Numbers of assembled uniform tests in 168 h. (a) Simulated item pools. (b) Actual item pools.

TABLE VII
NUMBERS OF ASSEMBLED UNIFORM TESTS IN 168 H

The bold numbers in the table signify the best performances.
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different numbers of assembled uniform tests between the pro-

posal and the traditional methods would increase by extending

the calculation time.

However, the IP of the proposed methods still includes high

time complexity. Therefore, the improvement of the proposed

method might be limited. In fact, the HMCAPIP requires one

week or more to assemble 300 000 tests. Moreover, the perfor-

mance of the HMCAPIP depends on the number of processors

in a computer. Therefore, when the number of processors

becomes small, the effectiveness of the HMCPIP also

becomes small. In addition, the proposed method has room for

the improvement of parameter optimization to maximize the

number of assembled uniform tests because this article used

the parameter values presented by Ishii et al. [21], [44].

Furthermore, this article focuses on uniform tests assembly

only with constraints respect to test length and test informa-

tion. However, in practice, actual examinations require other

constraints. For example, the proposed methods do not control

how many times each item has been used in the assembled

uniform test forms. Therefore, the distribution of the item use

counts does not become uniform, which is called an item

exposure bias problem [45]. This difficulty is known to

decrease the reliability of items and tests [45]. Ideally, the

item exposure distribution would be uniform. For this purpose,

Ishii and Ueno [46] proposed a clique algorithm, which is a

test assembly method, by searching the clique with minimum

item exposure using IP. An important future task is to resolve

the item exposure bias problem using our methods in the same

way as in [46].
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