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Abstract—Massive Open Online Courses (MOOCs) are becoming an increasingly popular choice for education but, to reach their full

extent, they require the resolution of new issues like assessing students at scale. A feasible approach to tackle this problem is peer

assessment, in which students also play the role of assessor for assignments submitted by others. Unfortunately, students are

unreliable graders so peer assessment often does not deliver accurate results. In order to mitigate this issue, we propose a new model

for ordinal peer assessment based on the principles of fuzzy group decision making. In our approach, each student is asked to rank a

few random submissions from the best to the worst and to specify, with a set of intuitive labels, at what extent each submission is better

than the following one in the ranking. Students’ provided rankings are then transformed in fuzzy preference relations, expanded to

estimate missing values and aggregated through OWA operators. The aggregated relation is then used to generate a global ranking

between the submissions and to estimate their absolute grades. Experimental results are presented and show better performances

with respect to other existing ordinal and cardinal peer assessment techniques both in the reconstruction of the correct ranking and on

the estimation of students’ grades.

Index Terms—Fuzzy set theory, group decision making, massive open online courses, peer assessment
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1 INTRODUCTION

SINCE their introduction, Massive Open Online Courses
(MOOCs) have become increasingly popular with mil-

lions of students enrolled, thousands of courses offered and
hundreds of educational institutions involved. Today’s
MOOCs are provided by several organisations around the
world. While at the beginning they were taken only by stu-
dents willing to broaden their education or simply to learn
new things, through the so called credential programs they
are currently interesting also people that want to achieve
credits toward a degree or earn credentials to show to pro-
spective employers.

Differently from usual e-learning courses, MOOCs are
intended for thousands of simultaneous participants, with
some courses offered by Coursera and Udacity (just to mention
some of the most popular providers) exceeding 100,000 regis-
trants. Due to their scale, MOOCs introduce new technical and
pedagogical challenges that require overcoming the traditional
e-learningmodel based on tutor assistance tomaintain a cheap
and unrestricted access to high quality resources. Because of
the high numbers of students enrolled and the relatively small
number of tutors, in fact, tutor involvement during delivery
stages has to be limited to themost critical tasks [1].

This requirement especially impacts on assessment tasks
aimed at verifying students’ proficiency in developed compe-
tencies. Given the impossibility for human tutors to follow up
with every student and review and grade assignments indi-
vidually, the use of automated approaches is increasingly
required. A typical approach is to use close type questions in
exams and assignments so that grading can be done automati-
cally. Unfortunately, automated assessmentmay result highly
unsatisfactory when applied to complex tasks like writing
reports, proving mathematical statements, expressing critical
thinking, etc. [2]. For these tasks, an approach that is gaining a
growing consensus is peer assessment.

In Peer Assessment students are required to grade a small
number of their peers’ assignments as part of their own
assignment. The final grade of each student is so obtained by
combining information provided by peers [3]. Peer assess-
ment has the capability of easily scaling to any size: the num-
ber of assessors in fact naturally grows with the number of
students. Conversely, the main issue of this approach, is that
it relies on grades assigned by unreliable graders (the stu-
dents themselves) lacking the needed expertise, both didacti-
cal and on the specific subject to be assessed [4].

Several approaches (summarized in Section 2) have been
proposed so far to improve the reliability of peer assess-
ment. In this paper we discuss FOPA (Fuzzy Ordinal Peer
Assessment): a new peer assessment model based on Fuzzy
Sets Theory and on the application of Group Decision Making
(GDM) techniques. In FOPA each student is asked to rank
(rather than to grade) few submissions coming from other
students and to express preferences (using a set of intuitive
labels) between couples of subsequent elements in the rank-
ing. Such preferences are then aggregated among all stu-
dents and expanded to estimate missing values (i.e.,
preferences that are not explicitly stated by any student but
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that can be inferred by looking at the whole picture).
Expanded preferences are then used to generate a global
ranking between all the submissions and to estimate their
absolute grades.

The paper is organized as follows. The next section
presents related work on peer assessment as well as some
existing fuzzy-based approach proposed by recent litera-
ture. Section 3 defines the ordinal peer assessment problem
in formal terms while Section 4 defines background con-
cepts related to fuzzy-based GDM. The FOPA model is
exhaustively described in Section 5 while Section 6 evalu-
ates the model with synthetic data and compares obtained
results with results coming from other existing approaches.
Finally, Section 7 summarizes conclusions and outlines on-
going work.

2 RELATED WORK

Although peer assessment has been studied for several
years, it has recently had an increasing interest from the sci-
entific community due to the diffusion of MOOCs. Even if
some studies suggest a fair good correlation between the
results coming from peer assessment and the grades coming
from experienced instructors (at least in conventional class-
rooms and for specific, high structured, domains), there is
still a general concern on the use of peer assessment as a
reliable and accurate strategy to approximate instructor
grades [5]. For this reason, several approaches, at various
stages of development, have been proposed so far to
improve its reliability.

The Calibrated Peer Review (CPR) proposes a calibration
step to be performed by students before starting to assess
other students’ assignments [6]. During the calibration, each
student rates a set of assignments that have been already
rated by the instructor. The discrepancy between grades
provided by a student and the instructor measures
student’s accuracy in assessment and it is then used to
weight subsequent assessments provided by that student.
The more accurate is an assessor, the more weight is given
to her judgment on a peer assessment.

Some probabilistic models for tuning grades obtained in
peer assessment are presented in [7]. Such models estimate
the reliability of each grader as well as her bias (i.e., the
grader’s tendency to inflate or deflate the provided assess-
ment) based on the analysis of grading performances on
special ground truth submissions that have been evaluated
either by the instructor or by a big number of peers. Reliabil-
ity and bias are then used to tune the grades assigned by
each student. Similar approaches have been proposed in [8],
where a Bayesian model has been adopted to estimate
graders’ reliability on each item of an assessment rubric
and, more recently, in [9] where a hierarchical Bayes model
has been used.

In [4] and [10], the ability of an assessor student to correctly
rate peer students is assumed to be dependant on the grade
obtained by the same student. In other words, final grades to
be assigned to students are obtained by weighting the grades
proposed by their assessors on the basis of the grades received
by the assessors themselves. Given that students’ grades
recursively depend on other students’ grades, an iterative
algorithm inspired by Google PageRank is proposed for their

calculation. The advantage of this approach, compared to the
previous ones, is that it does not require any instructor’s inter-
vention given that there is no need of a ground truth of profes-
sionally graded assignments.

In [11] a different approach, aimed at making the assess-
ment process as simple as possible, has been proposed.
Authors have shown how ordinal feedback (e.g., “the report x
is better than the report y”) is easier to provide and more reli-
able than cardinal one (e.g., “the grade of report x is a B”). Bas-
ing on that assumption, the authors defined several
probabilistic models for obtaining student grades starting
from partial rankings provided by the peers. An experiment,
with data collected from a real course, have demonstrated
that the performance of such methods is at least competitive
with cardinal methods for grade estimation, even though
they require strictly less information from the graders.

In [2], the authors have shown that ordinal peer assess-
ment is a highly effective and scalable solution for student
evaluation. They have defined a model for distributing the
assignments among peers so that the collected individual
rankings can be merged into a global one that is as close as
possible to the real ranking. They have theoretically demon-
strated that, given k students, if each correctly ranks the
received assignments, the defined aggregation method is
able to recover a fraction 1�Oð1=kÞ of the true ranking
(with O representing the limiting behaviour). They have
also demonstrated that the same ordinal peer assessment
method is quite robust even when students have imperfect
capabilities as graders.

According to the latter works cited, ordinal peer assess-
ment methods seem to be more promising with respect to
cardinal ones. In particular, they overcome the problem that
students may be grading on different scales: by letting stu-
dents propose ordinal statements rather than cardinal
grades, there is no need to develop a scale from each stu-
dent onto the peer grading algorithm. For these reasons, we
have chosen this approach as a basis for our fuzzy model
and we have compared our results both with ordinal meth-
ods presented in [2] and [11] that with standard average-
based cardinal methods.

With respect to the application of Fuzzy Set Theory to peer
assessment, some experiment has been already performed
so far. In [12], the students of a class have been asked to
express a grade, in terms of a fuzzy value in ½0; 1�, for each
assignment coming from the other students in the same
class. The final grade of each assignment is then obtained
by averaging the proposed grades, weighted with respect to
expertise levels assigned by the teacher.

In [13] the authors have proposed a framework aimed at
enhancing the effectiveness of peer assessment by letting
students expressing grades as fuzzy membership functions
with respect to a set of assessment criteria. The proposed
grades are then adapted basing on assessors’ learning styles
(through defined heuristics) and differences among peers
are reconciled through agent negotiation based on fuzzy
constraints.

Amore recent work [14] have proposed another approach:
each student of a class evaluates the assignments coming
from peers in terms of linguistic labels mapped to interval
Type-2 fuzzy sets. The final grade of each assignment is then
obtained by aggregating the grades proposed by peers,
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weighted with respect to expertise levels assigned by teach-
ers. Obtained results are then re-mapped on the linguistic
labels to obtain a final literal grade.

It should be noted that the reported experiments based
on fuzzy sets, are mainly thought for small classes, to
encourage students to participate in the evaluation of their
learning, so enhancing their reflective and critical thinking,
rather than to provide reliable grades for student assign-
ments. Conversely, the main aim of our work is to improve
the reliability of peer assessment in massive contexts with
simple tools that minimize the instructor’s involvement.

3 THE ORDINAL PEER ASSESSMENT PROBLEM

In a typical peer assessment scenario an assignment is given
to n different students S ¼ fs1; . . . ; sng. Each student elabo-
rates an own solution (e.g., an essay, a set of answers to
open-ended questions, etc.) generating a submission. Each
student has then to grade m different submissions (with
m � n) coming from other students (maybe based on an
assessment rubric).

The assignment of submissions to assessor students is
performed in accordance to an assessment grid: a Boolean
n� n matrix G where Gi;j ¼ 1 if sj has to grade the submis-
sion of si while Gi;j ¼ 0 otherwise. The matrix G has the fol-
lowing properties:

1) the sum of the elements in each row and column is
equal to m (i.e., each student grades and is graded by
m other students);

2) the sum of the elements in the main diagonal is equal
to 0 (i.e., nobody evaluates himself).

The easiest way to build the assessment grid is by filling
it at random with an algorithm preserving the above prop-
erties. A feasible algorithm [4] starts with a null matrix and
initialises its elements basing on the following equation:

Gmod iþj�1;nð Þþ1;i ¼ 1 8 i 2 1; . . . ; nf g; j 2 f1; . . . ;mg: (1)

The obtained matrix is then shuffled in several iterations by
randomly selecting a couple of rows (or columns) i and j so
that Gi;j ¼ Gj;i ¼ 0 and swapping them.

Students have then to review submissions according to the
assessment grid, i.e., each student sj reviews the assignments
coming from students in Sj ¼ fsij Gi;j ¼ 1g. In ordinal peer
assessment thismeans that each student sj is required to define
a ranking�j overSj. For example, the following ranking:

si1 �j si2 �j . . .�j sijSjj (2)

means that, according to sj, the submission of si1 is better
than that of si2 etc. A ranking �j is undefined for elements
not included in Sj so it is a partial ranking over S. All defined
partial rankings can be collected in a ranking matrix R where
Ri;j is the position of si in the ranking �j if si 2 Sj, 0
otherwise.

Starting from a ranking matrix, an aggregation rule is able
to compute a complete ranking over the whole set of submis-
sions. A simple and effective aggregation rule is the classical
Borda count [15] where the partial ranking provided by each
assessor is interpreted as follows: m points are given to the
submission ranked first, m�1 points to the one ranked

second, etc. The Borda score of the submission coming from si
is calculated as follows:

BordaðsiÞ ¼
Xn
j¼1

Gi;j � m�Ri;j þ 1
� �

: (3)

The global ranking is then computed by ordering all the
submissions in decreasing order of their Borda scores.

The performances of an aggregation rule are measured in
terms of percentage of correctly recovered pairwise relationswith
respect to the ground truth. In [2] it has been demonstrated
that, in case of perfect grading (i.e., when partial rankings
defined by students are consistent to the ground truth),
Borda recovers an expected fraction of 1�Oð1=pmÞ of cor-
rect pairwise relations independently of the total number of
submissions.

In the same work, authors demonstrated that Borda out-
performs other, more complex aggregation rules like Ran-
dom Serial Dictatorship [16] and Markov chain inspired
methods [17] especially in case of imperfect grading (i.e.,
when partial rankings defined by students are not consis-
tent to the ground truth). In [11] authors have defined addi-
tional methods for ordinal peer assessment based on
models that represent probabilistic distributions over rank-
ings, obtained extending the models of Mallow [18], Bradley-
Terry [19] and Plackett-Luce [20]. Such methods obtain better
results with respect to Borda also in case of imperfect grad-
ing and are also capable of detecting meaningful cardinal
grades. For these reasons they have been chosen, together
with Borda, as the baseline against which to compare the
techniques defined in this research.

4 FUZZY GROUP DECISION MAKING

A peer assessment problem can be seen as a special case of
Group Decision Making. In a typical GDM problem, a set of
experts has to define a ranking among a finite set of alterna-
tives. Each expert expresses her own preferences about all
the alternatives in form of preference ordering (alternatives
are ordered from the best to the worst) or degree of preference
(a utility value is assigned to each alternative). Expert pref-
erences are then aggregated and a ranking over all alterna-
tives is calculated.

In particular, ordinal peer assessment can be seen as a
GDM problem with preference orderingwhere:

1) experts and alternatives belong to the same set (i.e.,
students grade the submissions made by other
students);

2) each expert only ranks a small subset of alternatives
(i.e., only few submissions are graded by each
student);

3) experts’ opinion is not fully reliable (students are far
to be perfect graders).

These properties (in particular the last two) suggest to
refer to GDM approaches that take into account the uncer-
tainty resulting from imprecisions and lack of knowledge in
experts’ evaluations like those based on the fuzzy set theory.
The next sections explain basic concepts and techniques
related to fuzzy-based GDM while the Section 5 describes
how, in this research, such techniques have been adapted
and extended for ordinal peer assessment.
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4.1 Fuzzy Preference Relations

Fuzzy setswere introduced in [21] as an extension of classical
sets. While in a classical (crisp) sets, each element can either
belong to or not belong to a set, fuzzy sets allow various
degrees of membership of an element to a set, ranging from 0
(no membership) to 1 (full membership). More formally, if X
is a collection of objects, a fuzzy set F in X is a set of ordered
pairs F ¼ fðx;mF ðxÞÞ j x 2 Xg where mF ðxÞ, called member-
ship function, mapsX to themembership space ½0; 1�.

The author has also defined the concept of fuzzy relation:
a relation where various degrees of association strength
between elements are allowed. Given two collections of
objects X and Y, a fuzzy relation R from X to Y is a fuzzy
subset of X � Y; i.e., R ¼ fððx; yÞ;mRðx; yÞÞ j ðx; yÞ 2 X � Y g.
Fuzzy relations can be used in GDM problems to let experts
define imprecise and vague preferences between pairs of
alternatives.

Given a finite set of alternatives A ¼ fa1; . . . ; ang, a Fuzzy
Preference Relation (FPR) P 	 A�A defines the degree of
preference of each alternative over another one. According
to [22], P is characterised by the following membership
function for i; j 2 f1; . . . ; ng:

mP ai; aj
� � ¼

1
x 2 ð0:5; 1Þ
0:5
y 2 ð0; 0:5Þ
0

if ai is definitely preferred to aj;
if ai is slightly preferred to aj;
if there is no preference;
if aj is slightly preferred to ai;
if aj is definitely preferred to ai:

8>>><>>>:
(4)

A FPR P can be conveniently represented as a n� n
matrix where Pi;j ¼ mP ðai; ajÞ. In addition, a FPR can have
the following properties:

1) Pii ¼ 0:5 8i 2 f1; . . . ; ng; i.e., any alternative ai is
never preferred to itself;

2) Pi;j þ Pj;i ¼ 1 8i 2 f1; . . . ; ng (additive reciprocity),
i.e., for any i and j, if ai is preferred to aj then aj is
evenly non preferred to ai.

A FPR showing both properties is said to be consistent.

4.2 Aggregation of Fuzzy Preference Relations

In GDM, each expert belonging to a group E ¼ fe1; . . . ; emg
expresses her own preferences about any couple of alterna-

tives. This results in a set of individual FPRs fP 1; . . . ; Pmg
where each Pi is defined by the expert ei. A collective FPR P
is then generated by aggregating all available individual
FPRs. To this purpose, several aggregation rules have been
proposed.

The Ordered Weighted Average (OWA) family of operators
[23] are the most widely used aggregators. An OWA opera-
tor of dimension m is a function OWA : ½0; 1�m ! ½0; 1� asso-
ciated with a set of weights W ¼ fw1; . . . ; wmg with
wi 2 ½0; 1� andPi wi ¼ 1. Let X ¼ fx1; . . . ; xmg be the list of
values to aggregate, the OWA operator is defined as:

OWA x1; . . . ; xmð Þ ¼
Xm
i¼1

wi � yi (5)

were yi is the ith largest value in X (so each element of X is
not associated with a weight; rather a weight is associated

with a position in the ordered set of values). Through
OWA, the global preference Pi;j for every pair of alterna-

tives can be obtained as: Pi;j ¼ OWAðP 1
i;j; . . . ; P

m
i;jÞ. Extend-

ing the notation to matrices we have P ¼ OWAðP 1; . . . ; PmÞ.
The behaviour of OWA strictly depends on the used

weight vector. In [24] a weight configuration has been
defined to let OWA assumes the behaviour of soft majority:
i.e., the global preference between each pair of alternatives
is defined according to the majority of experts’ opinions.

Using OWA to compute the collective FPR P does not
guarantee that Pi;j þ Pj;i ¼ 1 for any i and j (so P may be
inconsistent w.r.t the definition given in Section 4.1) [25].
For this reason other aggregators have been proposed by
other authors like in [22] where the Simple Additive
Weighting (SAW) operator is used in place of the OWA.
Nevertheless, for applications where the consistency of
the collective FPR is not a constraint, OWA can be consid-
ered a fair choice.

4.3 Ranking of Alternatives

After having aggregated all the individual FPRs, the avail-
able alternatives must be ranked from the best to the worst
by associating a degree of preference fðaiÞ to any ai 2 A.
Several measures have been proposed so far to quantify the
degree of preference of an alternative. In [24] the Quantifier
Guided Dominance Degree (QGDD) has been proposed to cal-
culate the dominance that one alternative has over all the
others in a fuzzy majority sense as follows:

fQGDD aið Þ ¼ OWAQ Pi;j; j ¼ 1; . . . ; n; j 6¼ i
� �

: (6)

In the same paper a Quantifier Guided Non-Dominance
Degree (QGNDD) has been proposed to calculate the degree
in which a given alternative is not dominated by a fuzzy
majority of the remaining ones as follows:

fQGNDD aið Þ ¼ OWAQ
1�max Pj;i � Pi;j; 0

� �
;

j ¼ 1; . . . ; n; j 6¼ i

� �
: (7)

The two measures can be used alternatively or combined.
Instead, in [22] the degree of preference of each alternative
is calculated in terms of Net Flow as follows:

fNF aið Þ ¼
Xn

j¼1;j6¼i

Pi;j �
Xn

j¼1;j6¼i

Pj;i (8)

where the first summation is the leaving flow i.e. the total
degree of preference of ai over all the other alternatives
while the last summation is the entering flow i.e. the total
degree of preference of all the other alternatives over ai. It
does not exist a measure absolutely better than the others so
the selection of the right measure to use is often based on
application dependent heuristics.

5 FUZZY ORDINAL PEER ASSESSMENT

In this section we describe FOPA (Fuzzy Ordinal Peer Assess-
ment): a new approach to peer assessment that exploits and
adapts fuzzy-based GDM techniques outlined in Section 4.
As described in Section 3, in ordinal peer assessment, each
student belonging to a set S ¼ fs1; . . . ; sng has to rank the
submissions coming from m other students according to an
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assessment grid G. To do that, each student sj defines a par-
tial ranking on the set Sj ¼ fsij Gi;j ¼ 1g. In our approach,
instead of defining a partial ranking, preferences between

the elements of Sj are expressed in terms of a FPR Pj. Indi-
vidual FPRs, coming from all the assessor students, are then
aggregated and a global ranking of submissions is
calculated.

The main advantage of FOPA is that students not only
order the submissions from the best to the worst but also
express a variable degree of preference between submis-
sions. As demonstrated in Section 6, this allows to obtain
better performances when reconstructing the global rank-
ing and, also, allows to obtain a reliable cardinal grade for
each submission. Moreover, with respect to cardinal peer
assessment (CPA), the proposed approach mitigates the
bias problem given that students provide relative rather
absolute evaluations that consider only a couple of submis-
sions at a time.

On the other hand, one drawback of this approach is that
the definition of a FPR may result too complex and time-
consuming with the risk of introducing errors and inconsis-
tencies impacting assessment performances and nullifying
the advantages described so far. To overcome this issue, stu-
dents are not asked to directly define FPRs but to specify a
simpler ranking string as explained in Section 5.1. Ranking
strings are then converted in FPRs and used for subsequent
processing.

Another issue that must be considered is that each indi-
vidual FPR defined by a student only covers the preferences
among m of the n elements of S (with m 
 n) while it is
undefined for the other ones. This prevents the straightfor-
ward application of the aggregation techniques described in
Section 4.2. To overcome this issue, a two-steps initialization
method for undefined elements has been defined and
described in Sections 5.2 and 5.4. Aggregation rules are then
described in Section 5.3 while the methods for the ranking
of submissions and the assignment of absolute grades are
explained in Section 5.5.

5.1 Ranking Strings and Fuzzy Preference Relations

A ranking string defined by a student sj is a finite sequence
Rj ¼ ðsi1 s1 si2 s2 . . . sim�1 sm�1 simÞ made of 2m – 1
terms, where the elements in odd positions represent the
students evaluated by sj i.e., so that sik 2 Sj for
k 2 f1; . . . :;mg, while the elements in even positions, i.e.,
sk for k 2 f1; . . . :;m� 1g, belong to the set of symbols
S ¼ f�; > ;�;g and define a degree of preference
between the preceding and the subsequent element accord-
ing to Table 1.

For example, let suppose that the student s1 has to evalu-
ate the subset of students S1 ¼ fs2; s4; s5; s6g. By proving the
following ranking string:

R1 ¼ ðs4 � s5  s2 > s6Þ (9)

the student states that, according to her opinion, the submis-
sion of s4 is much better than that of s5 that, in turn, is at the
same level of the submission of s2 that, in turn, is better
than the submission of s6. To ensure consistency it is needed
that each element of Sj cannot be included more then once
in the ranking string (i.e., cycles are unallowed).

Starting from a ranking string Rj, it is possible to gener-

ate a partial FPR Pj 	 S � S by associating a fuzzy prefer-
ence degree dðsÞ to each symbol s 2 S (see the last column
of Table 1 for a feasible set of values) in this way:

1) Pj
ik;ikþ1 ¼ dðskÞ for any substring ðsik sk sikþ1Þ of Rj;

2) Pj
ikþ1;ik ¼ 1� dðskÞ for any substring ðsik sk sikþ1Þ of

Rj;
3) Pii ¼ 0:5 for i 2 f1; . . . ; ng;

where the first statement transforms the degrees of prefer-
ence embedded in the ranking string Rj in values of the

membership function of Pj, while the second and third

statements are aimed at ensuring the consistency of Pj

according to the definition given in Section 4.1.
It should be noted that, after that initialisation, only a

fraction of ðnþ 2m� 2Þ=n2 elements of Pj are defined. For
example, starting from the ranking string reported by the
equation (9) and supposing that n ¼ 6 (i.e., six students has
to be assessed in total), the following partial FPR is gener-
ated according to the previous rules:

P 1 ¼

0:50 � � � � �
� 0:50 � � 0:50 0:65
� � 0:50 � � �
� � � 0:50 0:85 �
� 0:50 � 0:15 0:50 �
� 0:35 � � � 0:50

0BBBBBB@

1CCCCCCA (10)

where the symbol – indicates an undefined cell.
Nevertheless, in real contexts, hundreds of students

(thousands in MOOCs) has to be evaluated in total (so n
becomes very large) while each student can be requested to
evaluate only a small number of other submissions (so m
remains small). This means that every Pj becomes a sparse
matrix with only few elements defined. A feasible expan-
sion technique enabling to obtain missing values is so
needed as described in the next section.

5.2 Expansion of Individual Preferences

In GDM each expert should express a preference between
each pair of alternatives. When this is not possible, as in the
peer assessment case, a method enabling the estimation of
missing valuesmust be adopted. In [26] amethod to estimate
the missing preferences of each expert is described basing on
the information available in the individual FPR of the same
expert. A different approach is defined in [27] wheremissing
preferences of each expert are estimated using information
coming from other experts. We propose a two-step approach
relying on both sources of information.

TABLE 1
Meaning and Preference Degrees of Ranking String Symbols

Symbol Meaning Preference
degree

� The previous is much better than the next 0.85
> The previous is better than the next 0.65
� The previous is a little better than the next 0.58
 The previous and the next are at the same

level
0.50
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In a first expansion step, performed soon after having col-
lected an individual FPR Pj, some of the missing values of

Pj are estimated in a way they are consistent to those
declared by the same student. The expanded individual
FPR (that is still incomplete) is then aggregated with other
FPRs as described in Section 5.3. In a second expansion step
(described in Section 5.4) the collective FPR is expanded
again to obtain last missing values. It is worth noting that,
while the first step uses the information provided by each
student to expand her own preferences, the second step
uses information coming from all the students to expand
the collective FPR.

With respect to the first expansion step, to detect missing
values in an individual FPR, it is needed that the new values
do not contradict the values stated by the student, according
to a given property. In [28], the additive transitivity is demon-
strated to be the most suitable property for this purpose. A
preference relation P has additive transitivity if its elements
satisfy [29]:

Pi;j þ Pj;k þ Pk;i ¼ 1:5 8i; j; k 2 1; . . . ; nf g: (11)

Intuitively, the additive transitivity can be seen as an
extension, to three alternatives, of the additive reciprocity
defined in Section 4.1. A FPR that respects the additive tran-
sitivity property is said to be additive consistent.

If we combine the definitions of additive reciprocity and
additive transitivity we obtain that, when P is additive con-
sistent, an unknown element can be obtained by combining
other known elements of P. Unfortunately, user defined
FPRs are not always additive consistent. Even in this case
we can use the additive transitivity property to identify
missing values that are as consistent as possible with the
existing (maybe partially inconsistent) FPR values. This is
done through a set of estimators for each unknown value.
In particular, given an unknown value Pi;j, we can define
the following estimators:

ek;1ðPi;jÞ ¼ Pi;k þ Pk;j � 0:5 8 k : Pi;k and Pk;j are defined

(12)

ek;2ðPi;jÞ ¼ Pk;j � Pk;i þ 0:5 8 k : Pk;i and Pk;j are defined

(13)

ek;3ðPi;jÞ ¼ Pi;k � Pj;k þ 0:5 8 k : Pi;k and Pj;k are defined

(14)

A missing value Pi;j can be so estimated by averaging the
values obtained by all available estimators as follows:

eðPijÞ ¼
Pn

k¼1 MikMkjek;1ðPijÞ þMkjMkiek;2ðPijÞ þMikMjkek;3ðPijÞ
� �Pn

k¼1 MikMkj þMkjMki þMikMjk

� �
(15)

where M is a mask matrix so that Mi;j ¼ 1 if Pi;j is defined
while Mi;j ¼ 0 otherwise. It is possible that no estimators
are available at all for some Pi;j. In such cases the eðPi;jÞ
returns the indefinite form 0/0 so it remains undefined.

The generation of missing values is done in several itera-
tions. In each, all possible new values are generated relying
on defined ones. If in a given iteration no new values are
generated, then the process stops. For example, by applying

the equations (12), (13), (14), (15) to the sample FPR reported
in (10), we obtain the following expanded version of P 1:

P 1 ¼

0:50 � � � � �
� 0:50 � 0:15 0:50 0:65
� � 0:50 � � �
� 0:85 � 0:50 0:85 1:00
� 0:50 � 0:15 0:50 0:65
� 0:35 � 0:00 0:35 0:50

0BBBBBB@

1CCCCCCA: (16)

Given n students and m assignments per student, this
expansion step defines a fraction of ðm2 �mþ nÞ=n2 ele-

ments ofPj for any student sj:

5.3 Aggregation of Preference Relations

After all individual FPRs have been collected and partially
expanded, an aggregation step is needed to build the collec-
tive FPR. As reported in Section 4.2 OWA is a widely used
aggregator for FPRs, provided that a feasible weight vector
is selected. To assign a specific behaviour to OWA, in [24] it
has been proposed to initialize the weight vector starting
from a non-decreasing proportional fuzzy quantifier.

Fuzzy quantifiers are defined in [30] as imprecise repre-
sentations of the amount of items satisfying a given predi-
cate. A proportional fuzzy quantifier Q is as fuzzy subset of the
unit interval [0, 1] where, for any x 2 ½0; 1�, mQðxÞ represents
the degree to which the proportion x is compatible with the
meaning of the quantifier it represents. A non-decreasing pro-
portional fuzzy quantifier satisfies the additional property that
mQðx1Þ � mQðx2Þ for every x1 and x2 so that x1 > x2. Exam-

ples of non-decreasing proportional fuzzy quantifier are
much, at least half,most and as many as possible (see Fig. 1).

The membership function of a non-decreasing proportional
fuzzy quantifier can be represented through the following
equation:

mQ xð Þ ¼
0 if x < a;

x�a
b�a if a � x � b;
1 if x > b:

8<: (17)

Fig. 1. Example of proportional fuzzy quantifiers.
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with a; b; x 2 ½0; 1� e.g., the parameters ða; bÞ of the quanti-
fiers shown in Fig. 1 are: (0, 1), (0.5, 1), (0.3, 0.8) and (0.5, 1)
respectively. Starting from the selected quantifier, the
weights of an OWA operator of dimension n can be initial-
ized according to the following expression [23]:

wk ¼ mQ

k

n

� �
� mQ

k� 1

n

� �
; k 2 1; . . . ; nf g: (18)

After having selected a non-decreasing proportional fuzzy
quantifier Q and calculated the weight vector according to
equations (17), (18), given a set of individual FPRs

fP 1; . . . ; Png, the global preference Pi;j between every pair of

alternatives can be obtained as Pi;j ¼ OWAQðP 1
i;j; . . . ; P

n
i;jÞ,

where OWAQ indicates the OWA operator initialised with
theweights coming from the quantifierQ.

When dealing with incomplete FPRs, as in our case, it is
needed to exclude undefined elements from the computa-
tion by slightly reviewing the summation in equation (5)
and combining it with equation (18) so obtaining elements
of the collective FPR as follows:

Pi;j ¼
Xdef Pi;jð Þj j

k¼1

mQ

k

def Pi;j

� ��� ��
 !

� mQ

k� 1

def Pi;j

� ��� ��
 ! !

� yk def Pi;j

� �� �
;

(19)

for i; j 2 f1; . . . ; ng, where defðPi;jÞ indicates the subset of

defined elements in fP 1
i;j; . . . ; P

n
i;jg while ykðdefðPi;jÞÞ is the

k-th largest defined value in the same set.
For example, let P 2 and P 3 be individual FPRs generated

and expanded, respectively, from the ranking strings
R2 ¼ ðs1 � s6  s5 � s3Þ and R3 ¼ ðs4 > s1 � s5 > s6Þ:

P 2 ¼

0:50 � 0:65 � 0:58 0:58

� 0:50 � � � �
0:35 � 0:50 � 0:43 0:43

� � � 0:50 � �
0:43 � 0:58 � 0:50 0:50

0:43 � 0:58 � 0:50 0:50

0BBBBBBB@

1CCCCCCCA

P 3 ¼

0:50 � � 0:35 0:58 0:73

� 0:50 � � � �
� � 0:50 � � �

0:65 � � 0:50 0:73 0:88

0:43 � � 0:28 0:50 0:65

0:28 � � 0:13 0:35 0:50

0BBBBBBB@

1CCCCCCCA

(20)

the collective FPR P obtained by aggregating P 1 (shown in

equation (16)) with P 2 and P 3, through OWA initialised
with the quantifier most (see Fig. 1), is shown below:

P ¼

0:50 � 0:65 0:35 0:58 0:64
� 0:50 � 0:15 0:50 0:65

0:35 � 0:50 � 0:43 0:43
0:65 0:85 � 0:50 0:78 0:93
0:43 0:50 0:58 0:20 0:50 0:61
0:34 0:35 0:58 0:05 0:36 0:50

0BBBBBB@

1CCCCCCA: (21)

5.4 Expansion of Collective Preferences

After having aggregated individual preferences as
described in Section 5.3, it could happen that some values of

the collective FPR P still remain undefined. In fact when
none of the assessor students has expressed a preference for
a given couple of submissions i and j, then the correspond-
ing values Pi;j and Pj;i of the collective FPR can’t be calcu-
lated. In most cases it does suffice to execute the expansion
algorithm described in Section 5.2 again on the collective
FPR to obtain a fully defined FPR.

Nevertheless, in some cases, especially for n � m and
when some student provides a partial ranking string (or
some student does not provide preferences at all), some ele-
ments of P can’t be calculated even after the additional
expansion step described so far. It is the case when for some
couple of values i; j 2 f1; . . . ; ng it does not exist a
k 2 f1; . . . ; ng so that at least one of the couples ðPi;k; Pk;jÞ,
ðPk;i; Pk;j) or ðPi;k; Pj;kÞ is fully defined. In [31] authors refer
to this case as an ignorance situation and suggest an approxi-
mate technique to estimate missing values.

The technique uses some seed values to initialize the esti-
mation process that is based, again, on the additive consis-
tency property. In accordance with this approach, we first
assume indifference for any undefined value by setting
Pi;j ¼ 0:5 8 i; j j Mi;j ¼ 0, where Mi;j has the same meaning
as in equation (15). Then, we apply again the estimators
defined by equations (12), (13), (14), and (15) to define con-
sistent values for them. In particular, given that in this case
all elements of P result as defined (with actual or seed val-
ues), the equation (15) can be simplified as follows for each
i; j j Mi;j ¼ 0:

eðPi;jÞ ¼
Pn

k¼1 ek;1ðPi;jÞ þ ek;2ðPi;jÞ þ ek;3ðPi;jÞ
� �

3n
: (22)

For example, by applying the expansion steps defined in
this section to the collective FPR defined in (21), the follow-
ing complete version of P is obtained:

P ¼

0:50 0:59 0:65 0:35 0:58 0:64
0:41 0:50 0:65 0:15 0:50 0:65
0:35 0:35 0:50 0:11 0:43 0:43
0:65 0:85 0:89 0:50 0:78 0:93
0:43 0:50 0:58 0:20 0:50 0:61
0:34 0:35 0:58 0:05 0:36 0:50

0BBBBBB@

1CCCCCCA: (23)

5.5 Global Ranking and Absolute Grades
Calculation

Once the collective FPR has been obtained, it is possible to
calculate an absolute degree of preference fðsiÞ for each
submission si 2 S according to one of the measures defined
in Section 4.3. For example, by applying the equation (8) to
the sample collective FPR shown in (23), we obtain the fol-
lowing preference degree vector:

fNF ðSÞT ¼ ð0:63; �0:28; �1:68; 3:23; �0:33; �1:58Þ; (24)

The global ranking between the alternatives is then com-
puted by ordering all the submission in decreasing order of
their preference degree. In the case of equation (24), the final
ranking over S is:

s4 � s1 � s2 � s5 � s6 � s3 (25)
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Starting from the obtained preference degrees it is
also possible to calculate the absolute grade of each sub-
mission, provided that an ordinal assessment is made by
a reliable expert (e.g., the teacher) to the best and the
worst submissions (i.e., the first and the last in the final
ranking). Let be emin and emax the grades assigned to the
best and the worst submission, the estimated grade ~eðsiÞ
for every student si 2 S can be obtained through normal-
ization as follows:

~e sið Þ ¼ f sið Þ � fminð Þ � emax � eminð Þ
fmax � fminð Þ þ emin (26)

where fmin and fmax are the minimum and the maximum
preference degrees in fðSÞ. By applying the equation (25)
on the sample data in (24) with emin ¼ 2 and emax ¼ 9, we
obtain the following grades vector:

~eðSÞT ¼ 5:3; 4:0; 2:0; 9:0; 3:9; 2:2ð Þ (27)

that assigns an absolute grade to each submission.

6 EXPERIMENTS

To demonstrate the effectiveness of FOPA and to compare it
with different approaches, we have performed several
experiments with synthetic data. In all the experiments, 100
students are supposed to have submitted a solution to a
given assignment. The submission of each student si has a
true grade eðsiÞ belonging to [0, 10] assigned according to a
normal distribution: eðsiÞ � N ð6; 2Þ so centred in 6 with a
standard deviation of 2.

Each student has then to evaluate the submissions of m
peers (with m constant or variable according to the specific
experiment) matching an assessment grid G defined as
specified in equation (1). Students are imperfect graders so,
according to [7], we have modelled such imperfection with
two parameters:

� a bias term b � 0 that reflects a tendency of an asses-
sor student to either inflate or deflate her assessment
(i.e., high biases describe lenient assessors while low
biases describe stringent ones);

� an unreliability term u � 0 that reflects how far, on
average, a grader’s assessment tends to land with
respect to the corresponding true grade (i.e., a low
unreliability describes a proper attitude to distin-
guish between good and bad submissions).

Basing on these two parameters, the perceived grade ~ejðsiÞ
of the student si from the assessor student sj, is defined
according to the following probability distributions:

~ej sið Þ � N e sið Þ þ bj; u
� �

so that bj � N 0; bð Þ: (28)

Each student sj is supposed to define a ranking �j over Sj

(the set of peers to be evaluated) by ordering peers decreas-
ingly on their perceived grades. Such ranking is changed in
a ranking string Rj ¼ ðsi1 s1 si2 s2 . . . sim�1 sm�1 simÞ add-
ing ranking symbols according to the difference between
the perceived grades of two subsequent submissions. To do
that we have used the following empirical rule:

sk ¼

�
>
�

if ~ej sikð Þ � ~ej sikþ1ð Þ < 0:5;
if 0:5 � ~ej sikð Þ � ~ej sikþ1ð Þ < 1;
if 1 � ~ej sikð Þ � ~ej sikþ1ð Þ < 2;
if eej sikð Þ � ~ej sikþ1ð Þ � 2:

8>><>>: (29)

We have observed that FOPA is quite insensitive to the
exact values adopted as thresholds for symbols selection,
provided that an adequate distance is left between subse-
quent values. For this reason, we have chosen thresholds
that can be easily understood by assessor students.

It is worth noting that, while the first three symbols are
applied in fairly narrow ranges, � is applied to a virtually
larger range (2,10]. However, since each student grades sev-
eral submissions, the application range of � is, in practice,
much narrower. For this reason, and also thanks to the FPR
aggregation step, the selection of the application range for�
does not cause any flattening of the grades to themean.

Starting from synthetic data generated in this way, the
global ranking and the absolute grades have been estimated
according to the methodology defined in Section 5 and com-
pared to true grades (and related rankings). This has
allowed us to determine the performances of FOPA in
revealing the ground truth also in presence of noisy data
(taking into account different values for bias and reliability)
and in comparisons to other methods (described in Section
3) as well as to cardinal peer grading. The details and the
results of the performed experiments are discussed in the
next sections.

6.1 Experiment 1: Optimal Parameters Setting

This experiment is aimed at discovering the best settings for
the parameters used by FOPA. This is done by measuring
the performances obtained with respect to global ranking
both in case of perfect grading (i.e., when students make no
errors when assessing other students) that in the more real-
istic case of imperfect one. The results obtained with differ-
ent settings are then compared to discover the most
promising settings to be used in next experiments.

According to Sections 5.5 and 4.3, the global ranking
among submissions can be obtained using several meas-
ures, namely the Quantifier Guided Dominance Degree, the
Quantifier Guided Non-Dominance Degree and the Net Flow
(NF). Given that, a first parameter to set is the ranking mea-
sure to adopt, i.e., the one that offers the best performances
for the specific problem. Moreover, according to Section 5.3,
the aggregation of alternatives based on OWA can be done
starting from several fuzzy quantifiers like much, at least
half, most and as many as possible. Another parameter to set is
so the quantifier to apply.

To identify which setting offers the best performances,
we have executed the experiment described so far with
100 students and four assignments to be evaluated by
each (so m ¼ 4). When generating perceived grades, we
have set b ¼ 0 and u ranging from 0 (perfect grading) to
3 (average difference of 3 between the true grades and
the perceived ones). For each value assigned to u we
have repeated the experiment 1,000 times and mediated
the obtained results in terms of Percentage of Correctly
Recovered Pairwise Relations (PCRPR) according to the fol-
lowing equation:
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PCRPR ¼ 2 � si; sj
� � j si; sj 2 S; i 6¼ j; si � sj; si e�sj
� ��� ��

n � n� 1ð Þ
(30)

where � and e� are, respectively, the real and the estimated
rankings among the students belonging to S and n is the
number of students, i.e., the cardinality of S. Then, we have
repeated the process by setting u ¼ 0 and b ranging from 0
(no bias at all) to 3 (average bias of 3).

The Fig. 2 plots the results in terms of PCRPR, obtained
by FOPA, changing the applied ranking measure among
QGDD, QGNDD and NF, against the unreliability rate u (on
the left) and the bias rate (on the right). The plots show that,
among the available measures, two obtain the best perform-
ances with any value of u and b: QGDD and NF. In case of
perfect grading (i.e., when u ¼ b ¼ 0), they show a PCRPR
of 95.7 percent, that is far beyond the 84.5 percent obtained
by the Borda count. Both measures demonstrate a fair
robustness to unreliability but, the improvement with
respect to the Borda count, decreases when u increases.
Moreover, it should be noted that all the methods are very
robust with respect to the bias with average variations of
less than 1 percent in terms of PCRPC for each increase of 1
grade in bias. Nevertheless, this is a common advantage of
ordinal grading methods.

On the other hand, FOPA results to be insensitive with
respect to the selection of the OWA quantifier for the aggre-
gation step: the same results are in fact obtained regardless
of the adopted one. The same level of insensitivity has been
also detected by changing the fuzzy quantifier adopted
within the QGDD and QGNDD measures. For this reason,
the results obtained changing the quantifier are not plotted.

6.2 Experiment 2: Comparison with Other Ordinal
Peer Assessment Methods

This experiment is aimed at measuring the performances of
FOPA with respect to the other methods for ordinal peer
assessment described in Section 3 in case of perfect and
imperfect grading. To do that, we have executed the

experiment described in 6 with 100 students and four
assignments to be evaluated by each. When generating per-
ceived grades, we have set b ¼ 0 and u ranging from 0 to 3.
For each value assigned to u we have repeated the experi-
ment 1,000 times and mediated the obtained results in terms
of PCRPR, calculated according to equation (30).

Then, for each iteration and experimented method, the
obtained scores have been transformed in grades through
the equation (26), setting emin and emax equal, respectively, to
the minimum and the maximum true grade. Then the Root
Mean Square Error (RMSE) between the grades estimated
through each experimented method and the true grades
have been calculated according to the following equation
andmediated over the 1,000 iterations for each value of u:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 e sið Þ � ~e sið Þð Þ2
n

s
(31)

where eðsiÞ and ~eðsiÞ are, respectively, the real and the esti-
mated grades assigned to a student si 2 S and n ¼ jSj.

The Fig. 3 (on the left) plots the results in terms of
PCRPR, obtained by FOPA (adopting the Net Flow aggrega-
tion measure) compared with the models of Mallow (MAL),
Bradley-Terry (BT), Plackett-Luce (PL) and Borda. An addi-
tional model named Score-Weighted Mallows (MALS) defined
in [11] as an improved version of the Mallow model has
been also tested. The same figure (on the right) plots the
results in terms of RMSE of the same models after having
transformed the scores in grades as described so far. To
experiment the methods described in [11] we have used the
PeerGrader software1 made publicly available by the
authors. Differently from Borda, these methods also deal
with the case in which an assessor expresses indifference
between submissions. According to equation (29) we have
declared indifference between si and sj when j~ejðsiÞ � ~ej
ðsjÞj < 0:5:

Fig. 2. Performances of the QGDD, QGNDD, and NF ranking measures compared with the Borda count in terms of PCRPR (higher is better).

1. www.peergrading.org
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Among the introduced methods, MALS, BT and PL show
similar PCRPR values while PL performs a little better than
the other two in terms of RMSE, at least with u < 1:5. The
performance of MAL are worst and comparable with those
of Borda in terms of PCRPR while, with respect to RMSE,
MAL reaches a higher error rate even with small unreliabil-
ity rates. Nevertheless, it should be noted that, as explained
in [11], MAL (as Borda) are not conceived for obtaining car-
dinal grades and this is the reason why the authors have
improved MAL defining MALS.

The plots show that FOPA outperforms the other meth-
ods both in terms of PCRPS that in terms of RMSE. When
considering PCRPC, FOPA gains about 4 percent against
MALS, BT and PL in case of perfect grading (from 92.4 to
95.7 percent) but the improvement decreases when u
increases until about 2 percent for u ¼ 3 (from 73.2 to 74.6
percent). When considering RMSE, FOPA is able to lower
the mean error of about 0.2 grades in case of perfect grading
(from 0.82 of PL to 0.65 of FOPA) while this difference tends
to nullify when increasing the unreliability until u ¼ 3.

6.3 Experiment 3: Comparison with Cardinal Peer
Assessment

This experiment is aimed at measuring the performances of
FOPA (and some other ordinal approaches) in comparison
to Cardinal Peer Assessment. In CPA, any assessor student sj
directly proposes, for any assessee si 2 Sj, a cardinal grade
equal to the perceived grade ~ejðsiÞ defined by equation (28).
The final estimated grade ~eðsiÞ for each si is then obtained
by averaging all grades proposed by the peers with the fol-
lowing equation:

~e sið Þ ¼ 1

m

X
j: si2Sj

~ej sið Þ: (32)

To compare FOPA and CPA we have executed the exper-
iment described in 6 with 100 students and four assign-
ments to be evaluated by each. When generating perceived
grades, we have considered both b and u ranging from 0 to

3. For each values setting, we have repeated the experiment
1,000 times and mediated the obtained results in terms of
RMSE, calculated according to equation (31).

The Fig. 4 plots the results in terms of RMSE, obtained by
FOPA (with Net Flow), by the Plackett-Luce method (PL), by
Borda and by CPA while ranging the bias rate from 0 to 3.
The plot on the left considers the case when assessor stu-
dents are perfectly reliable (u ¼ 0) while the plot on the
right considers a moderate level of unreliability (u ¼ 1). As
it can be seen, CPA is very sensitive to the bias rate com-
pared with ordinal approaches. In both cases CPA introdu-
ces a lower error with respect to FOPA until the bias rate
reaches a given threshold, variable according to the unreli-
ability rate (about 1.4 for u ¼ 0, about 1.7 for u ¼ 1). After
the threshold, the gap in term of RMSE between CPA and
FOPA increases until a difference of about 0.60 grades for
u ¼ 0 and b ¼ 3 and about 0.43 grades for u ¼ 1 and b ¼ 3. It
is worth noting that, in all cases, FOPA outperforms the
other ordinal methods.

To provide a comprehensive view of the behaviour of
FOPA and CPA, the Fig. 5 plots the 3d surfaces of the RMSE
curves obtained ranging u and b from 0 to 3. Clearly the
error level in FOPA mainly depends on the unreliability
rate, while the error in CPA quite evenly depends on the
unreliability and the bias rates. With medium-low bias and
medium-high unreliability rates, CPA is a little better than
FOPA. Conversely, with medium-high bias and medium-
low unreliability, FOPA is quite better than CPA.

It is worth noting that CPA requires, by each assessor stu-
dent, an amount of information significantly higher with
respect to ordinal approaches. Given this complexity, as
shown in Section 1, in real contexts cardinal feedback is less
reliable with respect to the ordinal one, even when assessors
are at the same level of knowledge and experience. In light of
this, the performed experiment ultimately benefits CPA
because it assumes, for each iteration, the same level of bias
and unreliability between cardinal and ordinal feedback.
Nevertheless, the performances obtained by FOPA are com-
parable and in some cases better than those obtained byCPA.

Fig. 3. Performances of FOPA against MAL, MALS, BT, and PL in terms of PCRPR (higher is better) and RMSE (lower is better).
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6.4 Experiment 4: Selection of the Number of
Assessors

The number m of submissions that each student has to eval-
uate is one of the main parameters that must be defined to
setup a peer assessment session. On one hand, this number
should be kept as small as possible to avoid overloading the
students, with the risk that they do not respond adequately
to the exercise providing rough, partial or void estimations.
On the other hand, according to the definition of assessment
grid provided in 3, this number corresponds to the number
of assessors for each submission. In this respect, m should
be kept as big as possible to have sufficient information to
estimate the final ranking and grades.

To determine how the selection of m impacts on the per-
formance of FOPA, we have executed the same experiment
described so far with 20 and 200 students and a number of
assignments to be evaluated by each student variable from
2 to 20. When generating perceived grades, we have set
b ¼ 0 (the previous experiments have shown that FOPA is
insensitive to the bias) and u variable from 0 (perfect grad-
ing) to 3. For each setting we have repeated the experiment
1,000 times and mediated the obtained results in terms of
RMSE, calculated according to equation (31).

The Fig. 6 (left) plots the results obtained by FOPA (with
Net Flow) with 20 students and m ranging from 2 to 20. A
first thing to observe is that, while for high unreliability
rates (u � 2) an increase of m always determines a decrease
of the whole error level, for low unreliability rates (u < 2)
an increase of m determines a decrease of the RMSE only
until a given threshold. After the threshold, adding more
assessors, results in an increase in the RMSE. This can be
explained by the fact that, while using ranking strings for
assessing the submissions, a noise is introduced in the
model (in fact, ranking strings can be seen as approximated
FPRs). Such noise increases when the strings length
increases (so when m increases) but it is balanced by the
additional information obtained with more assessors.

In the (unrealistic) case of perfect grading (when u ¼ 0),
all assessors have exactly the same perception of the student

grades so, after a given threshold, adding more assessors
does not increase the quantity of available information until
the extreme case of m ¼ n, when all the assessor students
provide exactly the same ranking string. So in these cases
the noise introduced by ranking string approximation
remains unbalanced and the error increases. This is evenly
true in settings with low unreliability rates (u < 2) and
with more students to evaluate (Fig. 6, right) even if the
threshold becomes higher and higher.

With respect to the selection of m, it should be noted that,
apart the unrealistic case where u ¼ 0, the curves plotted on
the left and on the right side of Fig. 6 have a similar trend.
Regardless of the number of students and of the unreliabil-
ity rate u, we notice a steep decrease of the RMSE while
moving from two to three assessors and a smoother
decrease for subsequent values of m. By looking at the right
part of the plots we see that, when u ¼ 1, the RMSE start to
increase for m > 16 while, even for u > 1, the decrease in
RMSE obtained adding a new assessor is less then 0.02
grades. Such reflections suggest to select a numberm of sub-
missions to be assessed per student so that 3 � m � 16

Fig. 4. Performances of FOPA, PL, and Borda against cardinal peer assessment in terms of RMSE (lower is better) when u¼ 0 (left) and u¼ 1 (right).

Fig. 5. Performances of FOPA and cardinal peer assessment in terms of
RMSE (lower is better) ranging both the bias and unreliability rates.
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regardless of the total number of students involved and on
the expected degree of unreliability and bias.

7 FINAL REMARKS

In this paper a model for ordinal peer assessment has been
defined as a special case of a GDM problem and solved by
adopting a fuzzy-based approach. The defined model has
been compared with other existing ordinal and cardinal
peer assessment models and has shown better performances
(both in the reconstruction of the real ranking that in the
estimation of students’ real grades) in several experiments
with synthetic data generated from realistic probability
distributions.

In order to hide the complexity of the model based of
FPRs, students are asked to specify simple ranking strings
that order submissions from the best to the worst and spec-
ify, with a set of intuitive symbols, at what extent each sub-
mission is better than the following one in the ranking. A
natural extension of this approach is to use linguistic labels
(mapped on fuzzy numbers) rather then symbols (mapped
on fuzzy values) to specify the preferences between two
subsequent submissions in the partial ranking provided by
each student. This would complicate the model a bit but
may enable a better representation of the vagueness inher-
ent in the assessments made by students. Specific
approaches to fuzzy GDM based on linguistic assessment,
like in [32], could be adapted to deal with this case.

Another feasible extension to the proposed model is to
integrate techniques coming from cardinal peer assessment,
like those described in [4], [7], [8] and [10] to detect the reli-
ability of each grader and use this data to weight the effect
of the feedback provided by that student in the aggregation
step. To this purpose, additive weighting aggregators (like
SAW) should be preferred to OWA.

Further extensions can be conceived by seeing the
problem not just as a GDM problem but as a Consensus
Process: a negotiation process developed iteratively and

composed by several rounds, where the experts (in this
case the assessor students) accept to change their prefer-
ences following the advice provided by the model.
According to the approach described in [33], consensus
measures can be calculated on FPRs to identify the level
of agreement between the different opinions on every
alternative (submission). If such measures are over a
given threshold, then FPRs are aggregated and alterna-
tives are ranked as seen in Section 4. Otherwise, a set of
suggestions are generated for the experts (assessor stu-
dents) to solicit the modification of some preferences in
order to improve the overall consensus.

The application of a consensus process for ordinal peer
grading requires an additional step for advise generation
but is capable of improving the overall results of the evalua-
tion by forcing students to reflect on proposed rankings if
they strongly disagree with the preferences expressed by a
fuzzy majority of peers. On the other hand, it makes the
peer grading process slower because additional “refining”
steps are needed to improve provided rankings. So, the suit-
ability of such technique, especially in massive contexts,
should be carefully evaluated.

Finally, it is worth noting that, despite that it has been
conceived for peer assessment in MOOCs, FOPA can be eas-
ily adapted in other contexts where alternatives must be
evaluated taking into account the opinion of several asses-
sors but each assessor has only a partial view of the whole
picture. For example, in a Conference Review Process many
submissions must be ranked (to chose the best ones to invite
for presentation and/or to be awarded) basing on a set of
(possibly unreliable) experts, each of them reviewing just a
relatively small number of submissions of the whole set.
Other examples are the Employee Reward and Recognition Sys-
tems set up by companies to motivate their best employees.
Here employee performances must be ranked according to
suggestions coming from managers, each of them evaluat-
ing just the subset of employees involved in projects he
manages.

Fig. 6. Performances of FOPA in terms of RMSE (lower is better) with different values for u, ranging m from 2 to 20, with n ¼ 20 (left) and n ¼ 200
(right).
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