
Creating Engaging Online Learning Material
with the JSAV JavaScript Algorithm

Visualization Library
Ville Karavirta and Clifford A. Shaffer

Abstract—Data Structures and Algorithms are a central part of Computer Science. Due to their abstract and dynamic nature, they are

a difficult topic to learn for many students. To alleviate these learning difficulties, instructors have turned to algorithm visualizations (AV)

and AV systems. Research has shown that especially engaging AVs can have an impact on student learning of DSA topics. Until

recently, most AV systems were Java-based systems. But, the popularity of Java has declined and is being supplanted by HTML5 and

JavaScript content online. In this paper, we present JSAV: the JavaScript AV development library. JSAV goes beyond traditional AV

library support for displaying standard data structures components, to provide functionality to simplify creation of AVs on many

engagement levels including interactive exercises. We describe the growing body of content created with JSAV and summarize our

three years of experience and research results from using JSAV to build content that supports CS education.

Index Terms—Data structure and algorithm visualizations, algorithm animation, interactive courseware, HTML5, active electronic textbooks,

hypertextbook, JSAV

Ç

1 INTRODUCTION

COMPUTER Science instructors have a long tradition of
using Algorithm Visualization (AV) [1], [2], [3] to con-

vey dynamic aspects of algorithmic process. Hundreds of
AVs have been created over the years [2]. There is also a his-
tory of meaningful interactive exercises for data structures
and algorithms (DSA) topics, in the form of algorithm simu-
lation or algorithm proficiency exercises as pioneered by the
TRAKLA2 system [4]. But until recently, putting AVs, inter-
active exercises, and content together on a large scale such
as in the form of a complete semester eTextbook has not
been feasible due to technological limitations. Prior to the
advent of Java in the mid 1990s, AV systems were highly
fragile, each able to run on only a limited range of com-
puters. Java permitted an explosion of AVs and AV sys-
tems [2]. But Java applets never really meshed well with
content in their containing HTML pages, nor have different
browsers presented a consistent environment for Java
implementations. Java applets are increasingly difficult to
present on web pages due to security concerns. As an alter-
native, Adobe Flash was often used to provide advertise-
ments and streaming media. However, few AVs have been
developed in Flash.

Modern web browsers with their relatively consistent
support for HTML, many JavaScript APIs, and advanced
CSS styling make it easier than ever before to develop
interactive content for the web. Thus, HTML5 (as the

combination of modern HTML, JavaScript, and CSS is often
called) has become an Internet standard. Developers now
expect content to run on any user’s computer. HTML5 even
runs on most tablets and many mobile devices. Modern
web technologies include all necessary computational,
graphical, and interface support to create sophisticated vis-
ualizations. For the first time, there is enough consistency
between browsers and a maturity of tools to make it practi-
cal to combine AVs, automatically assessed exercises, and
tutorial content together at meaningful scale.

In this paper we present JSAV: The JavaScript Algorithm
Visualization Library. JSAV is written in JavaScript, and is
meant to support development of engaging AVs for online
learning material. A reader knowledgeable with the history
of AVs might question the need for yet another AV support
system, given that so many already exist. The two primary
motivations for JSAV are:

1) With the inevitable decline of Java, an HTML5-based
solution is needed. There is little existing support for
AV development in JavaScript. At this time there are
few other major AV development efforts in HTML5/
JavaScript, all of which are missing some key fea-
tures needed by effective AVs.

2) JSAV incorporates features designed to support
development of AV-based exercises that involve
active learning techniques, and visual content that
can be easily integrated into online tutorials. In par-
ticular, the JSAV API supports special features for
creating visual algorithm simulation exercises, as
well as support for embedding AVs within a tutorial.

JSAV reflects the collective experience of three major AV
development groups: Aalto University (the developers of
TRAKLA2 [4]), Virginia Tech, and the JHAV�E commu-
nity [5]. Each group has written many widely used AVs,

� V. Karavirta is with the Department of Information Technology, Univer-
sity of Turku, Helsinki, Finland. E-mail: ville@villekaravirta.com.

� C.A. Shaffer is with the Department of Computer Science, Virginia Tech,
Blacksburg, VA 24061. E-mail: shaffer@vt.edu.

Manuscript received 10 Mar. 2015; revised 3 Oct. 2015; accepted 7 Oct. 2015.
Date of publication 14 Oct. 2015; date of current version 22 June 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TLT.2015.2490673

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 9, NO. 2, APRIL-JUNE 2016 171

1939-1382� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

and the developers’ differing perspectives have ensured
that JSAV is able to support the needs of a broad community
within a development environment (HTML5) that will
prove significant to the future of online education. Key
features of JSAV include automated layout for a number of
traditional data structures, support for presentation slide-
shows, and support for TRAKLA2-style proficiency exer-
cises that require the student to demonstrate proficiency
with an algorithm by simulating its key steps. JSAV is the
development library for the OpenDSA project [6], [7], [8],
[9], which seeks to provide a complete open-source resource
for teaching Data Structures and Algorithms courses.

An earlier version of this paper appeared as [10]. Since
that article, JSAV has evolved, and has been used to develop
a wide variety of visualizations and interactive exercises. As
of this writing, the resulting materials are being used by
hundreds of students every semester at about a dozen insti-
tutions, with total views of visualizations and interactive
exercises numbering in the hundreds of thousands.

The rest of this paper is organized as follows. Section 2
presents some background, introduces requirements for AV
systems, and evaluates existing AV systems. Section 3
presents JSAV in detail. Section 4 summarizes three years of
experience with using JSAV. Section 5 discusses our contri-
butions and Section 6 presents our conclusions.

2 RELATED WORK

Since there is more previous research on AVs than can fit
into the pages of this article, we will focus here on the
research themes of recent years, the general requirements
for an AV system, and an evaluation of existing systems.
Overviews for the history and current state of AV research
can be found in [2], [3], [11].

We should note, as does [11], the difference between
algorithm visualization and program visualization (PV).
Algorithm visualization is the visual presentation for the
behavior of an algorithm (perhaps expressed in a particular
programming language). As such, it is tutorial in nature.
Typically AVs require good quality support for precise con-
trol of the presentation, as detailed later in this section. Pro-
gram visualization in contrast is the automated generation
of visual feedback for a program, in particular with minimal
intervention by the programmer. Its goal is to provide
insight into the behavior of the program, including for such
tasks as debugging. By its nature (that is, minimal interven-
tion by the programmer, and thus automatic generation of
the visual feedback), detailed control of the visual elements
is not a requirement of the tool. Rather, PV tools must focus
on aspects such as parsing and interpreting the program
code, which is not at all a concern of an AV system. Two
popular PV tools used for educational purposes are
jGrasp [12] and Python Tutor [13], neither of which support
features required by AV systems.

2.1 Algorithm Visualization Research Trends

One trend in AV research has been integrating interactive
visualization components with hypertext tutorial content.
Early work on this topic was done by Ross and Grinder [14].
They defined the term hypertextbook to mean more than
hyperlinked documents. They saw that it should include

visualizations and active learning objects. An ITiCSE work-
ing group in 2006 provided guidelines on how to integrate
visualizations into hypertext and course management sys-
tems [15], coining for such systems the term Visualization-
based Computer Science Hypertextbook (VizCoSH). Another
working group in 2013 used the term icseBook to refer to inter-
active computer science electronic books [16]. Their report
includes discussion and guidelines for both pedagogical and
technical issues in authoring and using such eBooks.

One attempt to merge visualization with tutorial content
integrates the ANIMAL visualization system with hypertext
as a Moodle module [17]. In that project, visualizations
were launched from the hypertext using Java Web Start.
Another proposed solution is JSXaal, a visualization system
implemented in HTML5 and JavaScript [18]. Currently, the
largest such project is OpenDSA [6], [7], [8], [9]. OpenDSA
uses the term active eBook to refer to a merging of content,
AVs, and exercises with automated assessment.

Increasing evidence confirms the hypothesis that student
engagement is the key to educational effectiveness of
AVs [1], [19], [20]. The different types of engagement
encountered in AVs have been categorized in the Engage-
ment Taxonomy [1]. The taxonomy defines five levels of
interaction between a student and an AV:

� Viewing: Student passively views an AV, perhaps
with the ability to control the animation speed or
move step-by-step backward and forward.

� Responding: Student responds to questions about the
content while viewing an AV. These are most often
pop-up questions where the student is required to
select or type the correct answer.

� Changing: Student changes the AV by, for example,
providing input data to the algorithm.

� Constructing: Student constructs an AV. A variation
on this approach gives a data structure and an algo-
rithm, and expects the student to simulate the algo-
rithm. That is, they need to imitate the steps of an
algorithm by manipulating the interface to control
the progress of the AV.

� Presenting: Student presents an AV to others.
The hypothesis of the taxonomy is that the higher the

level of engagement, the more educationally effective the
AV is. Therefore, the possibility for creating engaging mate-
rial can be considered the most important feature require-
ment of an AV system.

2.2 Requirements for an AV System

There have been attempts to define requirements for an AV
system. The majority of this work has been done by R€oßling
and Naps [21], [22] with further requirements introduced
by others [15], [23], [24]. We have summarized these
requirements in Table 1. However, since most of these
efforts are over a decade old and predate HTML5, we have
redefined them to better reflect the current state of AV sys-
tems. This updates a similar list introduced by the first
author [18]. We can map engagement taxonomy levels to
the requirements. Requirements R2, R3, and R5 can increase
the control of viewing. Level responding matches R7, and
changing matches R9. Level constructing is part of require-
ment R11.

172 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 9, NO. 2, APRIL-JUNE 2016

Next we evaluate existing AV systems against these
requirements. We focus on HTML5-based systems, as
those are in our opinion the technological future of the field.
However, we include several of the best-known Java-based
AV systems, as these have heavily influenced the design
of JSAV.

2.3 Existing Algorithm Visualization Systems

A necessary requirement for any AV system aspiring to
wide-spread use is that it should support as wide a target
audience as possible. Since the mid-1990s, this has meant
implementing the system in Java, which led to Java being
the most common implementation technology for AVs until
recently [2]. Since the widespread adoption of HTML5
beginning around 2010, combined with recent security con-
cerns and reduced support for Java within browsers, the
importance of Java on the web is continually diminishing.
In contrast, HTML5 and JavaScript are rapidly gaining in
popularity. Thus, in the past few years, HTML5-based AV
systems have been developed. Here, we briefly introduce
several systems that we are familiar with, and evaluate
them based on the requirements presented in Table 1.

ANIMAL [25] provides several different ways to create
AVs. It has a graphical editor, a scripting language, and cus-
tomizable content generators for many algorithms. It sup-
ports both graphical primitives and data structures. AVs
can include popup-questions about the content, as well as
allow custom input from users.

JAWAA [26] is a language for writing animations as well
as a system for visualizing those animations. Animations
can include graphical primitives, as well as some data
structures.

JHAV�E [5] provides support for multiple visualizers for
different animation languages. AVs are mainly built using
data structures, and can include popup-questions.

TRAKLA2 [4] is a learning environment that includes
algorithm simulation exercises. The exercises require stu-
dents to construct an AV by simulating the steps for an algo-
rithm. The system supports multiple data structures, has
several exercises included, automatically assesses student
solutions, and gives visual feedback.

JSXaal [18] was the first JavaScript-based AV system we
are aware of. It is a visualizer for AVs written in the XAAL

algorithm animation language. While there are several tools
available for creating such animations, the viewer has never
seen significant use.

Galles has created a comprehensive collection of AVs in
JavaScript.1 It includes AVs where students can provide
their own input and see an animation on how the data struc-
ture is updated. Some data structures can be manipulated
interactively by the user, such as through buttons for opera-
tions such as “Remove Smallest” for a minimum heap. The
sorting AVs allow a student to run the algorithm on a ran-
dom set of data.

While a system for visualizing algorithms and data struc-
tures, Vamonos has features more common in PV systems,
such as breakpoints and watch points. The online collection2

includes sorting and graph algorithms. Currently supported
data structures are array and graph.

The Algomation website3 has an extensive collection of
ready-made visualizations on a range of topics. The system
includes visualizers for arrays, trees, heaps, and graphs.

VisuAlgo [27] is an online collection of AVs. Users can
learn algorithms by seeing their execution (in case of, for
example, sorting algorithms) as a slideshow, or by exploring
operations on a data structure (for example, a binary heap).

TABLE 1
Requirements for an AV System, Expanded from [18]

Req Description of the Requirement

R1 The system’s platform should allow the widest possible target audience.
R2 System should support visualization rewinding so that users can return to the place where they lost track of the content.
R3 Learners should be able to adapt the display to their current environment. This includes the choice of display background

color to account for lighting situations, transition speed, display magnification.
R4 System should be general-purpose instead of topic-specific, allowing for greater reuse and integration into a given course.

General-purpose systems allow a common interface to a large number of animations.
R5 User should be offered the choice between smooth animation transitions and discrete steps.
R6 Visualizations should include accompanying prose. Examples include static material explaining the concept, dynamic

explanations aware of the algorithm’s state, and pedagogically dynamic explanations that are aware of learner knowledge.
R7 Asking questions about the algorithm’s behavior in following states should be supported. Questions should incorporate

feedback.
R8 System should support communication with a database for course management facilities. The database can then be used

for example to store the points received by answering questions.
R9 System should allow users to provide custom input to the algorithm.
R10 Visualizations should give structural view of an algorithm’s main parts, that can be used to jump to associated visualiza-

tion steps.
R11 System should support visualization construction exercises with automated feedback.
R12 System should include reusable visualization modules, thus aiding in the authoring of future AVs.
R13 It should be possible to easily merge the visualizations with hypertext.
R14 Visualizations should be localizable in two ways: 1) match the written language of the surrounding hypertext and 2) match

the programming language of the surrounding hypertext.
R15 System should be able to import/export visualizations in different formats.
R16 Learners should be able to see previous steps of the visualization simultaneously with the current step.

1. http://www.cs.usfca.edu/galles/visualization
2. http://rosulek.github.io/vamonos/demos/index.html
3. http://www.algomation.com/

KARAVIRTA AND SHAFFER: CREATING ENGAGING ONLINE LEARNING MATERIALWITH THE JSAV JAVASCRIPTALGORITHM... 173

http://www.cs.usfca.edu/galles/visualization
http://rosulek.github.io/vamonos/demos/index.html
http://www.algomation.com/

An interesting feature of the site is the online quiz system,
which generates questions about the content for the learner
to answer. In many of the questions, the answer is provided
by direct interaction with a data structure. The data struc-
tures supported include arrays, trees, graphs, and lists.

An evaluation of these systems against the requirements
of Table 1 is summarized in Table 2. We have included an
evaluation for JSAV. The evaluation has three possible val-
ues: supported (marked with x), partially supported (x in
parentheses), and not supported (-). “Partially supported”
is used for systems that fulfill only some aspects of the
requirement. While space restrictions make it impossible to
go through the evaluations in detail, we give some exam-
ples. Requirement R13 is easy merging with hypertext.
Although this is possible with the Java-based systems, the
merging is superficial at best compared to the possibilities
of JavaScript-based systems. Similarly, while Java used to
be the widest possible platform (R1), it is not supported by
most mobile devices and no longer comes with all major
desktop operating systems. Thus, we evaluate Java-based
systems as partially supporting R1. For R6, all systems lack
dynamic explanations that adapt to the learner’s knowledge
level. For R3, systems with (x) in their evaluation are miss-
ing some of the display adaptation features listed in the
requirement. For R14, most systems lack support for localiz-
ing (or changing) the programming language used in the
visualization. Finally, for R15, systems with partial support
have limited ability to import or export anything beyond
their native format.

We do not imply that a system fulfilling more require-
ments is better than one with less requirements fulfilled.
Some requirements are clearly more valuable than others,
and different systems have different goals and primary use
cases. So the table first provides an overview of the features
supported by representative systems, from which we might
derive further analysis. We note that few systems include
support for interactive exercises, even though AV research
on engagement implies that this feature is particularly
important. On the other hand, few systems support R10 or
R16, which probably indicates that most developers do not
consider these of importance. We see that learner control

(requirements R2 and R5) is typically present in the systems,
as is dynamic documentation (R6). Naturally, HTML5-
based systems support the widest possible platform (R1)
and are easily merged with HTML learning material (R13).

3 JSAV

In this section we introduce the JSAV library. We start by
explaining the origins of the project, and then present
JSAV’s main features.

3.1 JSAV Design Origins

The JSAV design was initially driven by several aspects:

� Desire to support HTML5-based AVs.
� Existing knowledge and experiences of the authors

and immediate collaborators from using and devel-
oping previous AV systems.

� Careful examination of an extensive catalogue of
AV systems and AVs maintained by one of the
authors [2], [28].

� Desire to support interactive proficiency exercises
such as those in the TRAKLA2 system [4].

From this starting point, the first versions of the APIs
were developed during Summer and Fall 2011. The first
items created were a Shellsort visualization and a Shell-
sort proficiency exercise now available in OpenDSA. The
first refactoring of material occurred when we realized
that the best approach to presenting an initial tutorial on
an algorithm (as opposed to a summary AV) involved a
static example presented through a series of slideshows
interspersed with textual description. This lead to our
first full-fledged tutorial module in the OpenDSA system
for Shellsort, that included a presentation of the algorithm
(including a series of small slideshows), a full AV for the
algorithm (allowing either random input or user-specified
input to drive the visualization), and a proficiency exer-
cise. This defined a number of major features for the
JSAV system, including integration of JavaScript-based
visualizations with HTML, and fundamental support for
proficiency exercises.

TABLE 2
Evaluation of Existing AV Systems (x Feature Supported, (x) Partially Supported, and—not Supported)

Req Animal JAWAA Jhav�e TRAKLA2 Vamonos Galles Algomation JSXaal VisuAlgo JSAV

R1 (x) (x) (x) (x) x x x x x x
R2 x (x) x x x x x x x x
R3 x - (x) - - x (x) - (x) (x)
R4 x x - - - x x x - x
R5 x - - - (x) x x x (x) x
R6 (x) - (x) (x) - (x) (x) (x) (x) (x)
R7 x - x - x - - x (x) x
R8 x - x x - - - x x x
R9 x - x - x x - x x (x)
R10 x - - - - - - (x) - -
R11 - - - x - - - - - x
R12 x x x x x x x - x x
R13 (x) (x) (x) (x) x x x x x x
R14 (x) - - (x) - - - (x) (x) x
R15 x (x) (x) - - - - x - (x)
R16 - - - - - - - x - -

174 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 9, NO. 2, APRIL-JUNE 2016

The demands of a wide range of new AVs for the Open-
DSA project had a major impact on further developments
for the JSAV APIs and features. This iterative design and
implementation process has ensured that not only does
JSAV fulfill the requirements based on literature, it also
really works for a wide group of AV developers.

3.2 Main Features of JSAV

JSAV has adopted what we consider to be the best fea-
tures from the large number of existing AV systems that
we are familiar with. What makes it different from other
libraries for building AVs is the ease with which it can be
integrated into hypertext and its support for creating
engaging exercises that can report outcomes to an exter-
nal system such as a learning management system. In the
following, we present what we believe to be JSAV’s most
innovative features.

Levels of engagement. JSAV supports different types of
AVs on multiple engagement levels. The simplest are static
images of data structures. JSAV allows easy generation of
figures under programmatic control for use in illustrating
learning material. The main advantage of such images com-
pared to image formats like PNG is the ease in changing
visual appearance and the data presented. Since the images
are generated programmatically (often representing state of
an algorithm run to a particular point), it is easy to adjust
the algorithm or associated input to generate a new image
at another specified point in the algorithmic process.

Slideshows show a series of steps to animate the behavior
of an algorithm. The student is merely viewing the AV. Stu-
dents can control the slideshow by moving a step backward
or forward, to the beginning, or to the end (AV system
requirement R2). They can change the speed of transition
animations (R3). Setting the speed to the fastest available
causes the animation to switch from smooth transitions to
discrete steps (R5).

While important as visual aides to accompany tutorial
presentations, both static images and slideshows represent
only the lowest level (viewing) of the engagement taxon-
omy. They do not represent the most effective use of AVs. A
simple way to increase engagement is to allow students to
enter the input data for the algorithm (requirement R9), or
to have the example be generated at random (such as ran-
dom values in an array to be sorted). Both can be created
with JSAV.

A more significant interaction is to require students to
answer questions. JSAV supports pop-up questions in slide-
shows (requirement R7). These require the student to

respond during the AV. JSAV supports questions that can be
either true/false, multiple-choice, or multiple-select ques-
tions. A question is shown as a pop-up to the student.
When a question is answered, the correctness of the answer
is given. If the answer was incorrect, the student is allowed
to try again. Another alternative is to combine JSAV with a
library designed to support question types. We have suc-
cessfully integrated JSAV displays with the Khan Academy
(KA) exercise infrastructure,4 thereby gaining access to the
ability to create a wide range of interactive exercises that
can allow students to directly manipulate a data structure
as part of specifying the answer.

Finally, JSAV supports algorithm simulation exercises
on the engagement level known as constructing. We refer
to these as proficiency exercises, since the student has to
show his/her proficiency with the algorithm by simulat-
ing the steps taken by the actual algorithm. Simulation of
the algorithm is done by clicking directly on the visual
representation of a data structure or on user interface but-
tons. This type of interaction is aided by JSAV’s support
for binding developer-defined click handlers to JSAV
data structures (arrays, trees, etc.). JSAV supports versa-
tile user feedback modes for proficiency exercises, as will
be explained later.

Visual components. On all levels of engagement, AVs can
be composed from the same selection of objects. The build-
ing blocks used in creating JSAV visualizations are similar
to those of many existing AV systems. There are essentially
three types of objects: data structures, graphical primitives,
and code constructs. The graphical primitives make JSAV a
general system (requirement R4), whereas the data struc-
tures simplify the visual presentation of algorithm-specific
content.

The data structures supported are array, (2D) matrix,
linked list, (general) tree, binary tree, and graphs. Examples
are shown in Fig. 1. “Supported” means that the developer
declares an object of the given type, perhaps specifies its
placement and some visual characteristics, and JSAV will
then handle layout of the object. The structures support
operations that one would expect, like set/get values of
array elements, add/remove/get children of a node in a
tree, set/get the next node in a linked list, or add/remove
nodes and edges in a graph. There are methods to change
the visual appearance for parts of a structure. Calls to opera-
tions that change the state or visual appearance of an object
are recorded and can be undone and redone by the user in

Fig. 1. Default visualizations of JSAV data structures: array and bar layout for an array, 2D matrix, linked list, tree, and graphs (directed and
undirected).

4. https://github.com/Khan/khan-exercises

KARAVIRTA AND SHAFFER: CREATING ENGAGING ONLINE LEARNING MATERIALWITH THE JSAV JAVASCRIPTALGORITHM... 175

https://github.com/Khan/khan-exercises

any slideshow. Default appearance for all visual elements is
specified using CSS, and so can be overridden by the devel-
oper. We have also built a number of derived data struc-
tures from the JSAV basic collection, which help to
demonstrate their power. These include the heap (which
slaves together an array view and a tree view for the data)
and the “array node” tree used to support structures with
more complex node types, like the 2-3 tree and the B-tree.

The graphical primitives supported are text, line,
circle, ellipse, rectangle, polygon, polyline, and general
path. The general path allows drawing arbitrary shapes
made of lines and curves.5 Multiple graphical primitives
can be combined into a set. The visual appearance can be
changed through method calls on the objects, or their
default appearance can be specified using CSS. Objects
can be scaled, rotated, and moved. Again, all changes are
recorded to the animation.

To tie a visualization to code for the corresponding algo-
rithm, JSAV supports visualizing pseudocode, variables,
and pointers. The pseudocode element can be given a piece
of code as a string, or it can read the code from a file, and
display it as shown in Fig. 2. The code object has methods
for highlighting specified lines, and can indicate the previ-
ously highlighted line when the currently highlighted line
is changed. Lines of code can be assigned tags, with
highlighting targeted to those tags. This makes it possible to
have code in different programming languages and have
the same JSAV visualization work for all of them (part of
requirement R14). Variable objects can be used to track and
visualize variable values in an algorithm. Finally, pointers
can be used to represent variables that point to a part of a
data structure. The pointer is visualized with the variable
name and an arrow pointing to the target structure (see the
head, curr, and tail pointers in Fig. 2). For example, a tree
traversal algorithm could use a pointer to mark the current
node in the algorithm.

For all visual components, positioning can be defined in
three ways. First, elements can be added to the HTML docu-
ment tree before or after certain elements. This leaves the
exact positioning to the browser’s layout engine. Second,
objects can be positioned using absolute pixels relative to
the left, right, top, and bottom of the AV canvas. Finally,
components can be positioned relative to other components.

Proficiency exercises. One of JSAV’s most innovative
aspects is its support for proficiency exercises, requiring

the student to simulate the workings of an algorithm by, for
example, clicking on array indices or tree nodes to swap
the items. The student is essentially constructing their own
AV, within constraints that the exercise developer has pro-
vided to allow student control. This student AV can be
automatically assessed by comparing it to a model solution.
The model solution is also available for the student to view
as a JSAV slideshow. Fig. 3 shows an example of the Heap-
sort exercise.

JSAV proficiency exercises provide three modes for pro-
viding feedback to students. They are:

� Limited feedback: In this mode, the student is given
only the number of steps correct so far in the student
solution, and only when the student requests it.

� Continuous feedback with incorrect steps undone: The
student gets feedback after an incorrect step. If a step
is incorrect (that is, it does not match the correspond-
ing step in the model answer), then it is undone and
the student can try that step again.

� Continuous feedback with incorrect steps fixed:Again,
feedback is given after each operation that the stu-
dent does. If the step is incorrect, however, the state
of the solution is automatically corrected to the one
in the model solution. The student does not get a
chance to redo that step, and does not get a point for
that step.

Developing proficiency exercises requires the AV
author’s implementation to first generate random input
data for the exercise and initialize the data structures
used. The exercise must also generate the model solution,
similarly to how JSAV slideshows are written. The model
solution is annotated to mark the steps which are to be
graded. Finally, the author needs to add the student inter-
action interface, that is, attach the needed event handlers
to the data structures so that changes are made when
the student interacts with them. The step-fixing mode
requires the author to supply a function that will take a
state of the model solution and fix the student solution to
match that state.

Localization. An AV system should support internation-
alization (R14). Currently, JSAV’s user interface is avail-
able in English, Finnish, Swedish, and French. A URL

Fig. 2. A visualization with a pseudocode component and pointer objects.

Fig. 3. A proficiency exercise for Heapsort. Important components
include instructions, scoring feedback, and the interactive heap object
as user interface.

5. JSAV can draw anything that is possible with the SVG path
element (http://www.w3.org/TR/SVG/paths.html#PathData).

176 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 9, NO. 2, APRIL-JUNE 2016

http://www.w3.org/TR/SVG/paths.html#PathData

parameter to the AV determines the language to be used
at run time. To support another language based on a
western-style alphabet requires only that the proper set of
strings be supplied for the system to integrate into the
user interface at run time. JSAV also supports localizing
AVs by providing an interpreter function. The interpreter
works like localization packages typically do: the content
uses keys to access localized strings, which are provided
by translation files.

Another form of “localization” allows developers to con-
figure a JSAV AV or proficiency exercise to switch the pro-
gramming language used at runtime. The code to be
displayed is typically read from a file, and specific lines can
be highlighted at various points in the visualization. To
switch the programming language displayed requires only
that the filename from which the code is read be changed,
and that logical tags be assigned for the code lines to be
highlighted.

In OpenDSA, written language localization is con-
trolled by means of a JSON file that contains the dis-
played strings to be used for each written language for
which a translation of that specific AV is available. Like-
wise, a section of the JSON file defines for each program-
ming language to be supported the file containing the
program display code, and the binding of logical tags to
line numbers in the displayed code.

3.3 Technology

JSAV’s user interface is HTML with the functionality imple-
mented in JavaScript and the appearance specified with
CSS. Thus, the platform is the one that today has the widest
target audience (requirement R1). JSAV also takes advan-
tage of some existing, high quality JavaScript libraries. It
uses jQuery to help in resolving differences in browsers and
working with the DOM. jQueryUI6 implements animation
effects and element positioning. Rapha€el7 eases using
SVG to display and animate changes to the graphical
primitives. MathJax8 is used to render mathematics speci-
fied in LaTeX format.

Officially, JSAV supports all modern versions of
Chrome, Firefox, and Safari browsers. For each of these,
JSAV has been extensively tested and used by students.
Furthermore, JSAV should work in modern IEs and
Opera as well as Mobile Safari on iOS and the Chrome
browser on Android 4 and above. JSAV is open source
and released under the MIT license. Source code is avail-
able from GitHub.9

3.4 Integrating with Tutorial/Explanatory Content

Content created with JSAV can be standalone and does not
need to be embedded into any other material. This is aided
by the fact that each AV can have static learning material as
well as explanations on each step in the AV (requirement
R6). However, JSAV-based content can be embedded into
electronic courseware such as an eTextbook. The underlying
web technologies make integrating JSAV AVs within hyper-
text simple and flexible. This fulfills requirement R13. AVs
can be directly included into an HTML page using HTML
div elements, with specific class names for placement and
including JavaScript and CSS files to define the AV. Alterna-
tively, AVs and proficiency exercises can be embedded from
standalone HTML pages using the HTML iframe element.
In this case, the containing page (such as an eTextbook con-
taining a JSAV exercise) can pass parameters to the exercises
(through the URL) to control features such as which written
language to use, which coding language to use for code
snippets, which grading option to use (see Section 3.2), or
which version of the exercise to show (such as whether to
require a user to make a single or double rotation in an AVL
tree rotation exercises).

3.5 Extending and Customizing

HTML5 technology makes customizing JSAV easy and
flexible. By changing CSS styles, the AV’s visual appear-
ance can be changed. JSAV aids CSS styling by using hier-
archic HTML class attributes to style objects. For
example, all nodes in lists, trees, and graphs have CSS
class jsavnode. They also have more specific classes.
Binary tree nodes have additional classes jsavtreenode
and jsavbinarynode. All JSAV visual elements support
adding or removing developer-defined CSS classes. This
makes it easy to define logical roles and separately define
their physical appearance. For example, a developer can
assign a given tree node or array cell the “processed”
role, and define in CSS the physical representation (e.g.,
node color, border thickness) for “processed” objects.
When many JSAV visualizations are used together in a
document or project, they should all use a common style-
sheet to allow changing the appearance of all the AVs
simultaneously. Fig. 4 shows an example of such customi-
zation in the Huffman coding tree slideshow.

Customizing and extending behavior is made easy by
the dynamic nature of JavaScript. As JSAV exposes the
types used for its visual components, adding or changing
functionality is straightforward. For example, a visualiza-
tion of the BST insert operation could add a function
for the BST insert to the core JSAV binary tree object defi-
nition without changing JSAV’s source code. Thus core

Fig. 4. Example of node appearance customization in the Huffman cod-
ing tree slideshow. Leaf nodes have been assigned one style, internal
nodes another, and the roots of the first two trees have been temporarily
colored to signify that the algorithm is currently acting on them.

6. https://jqueryui.com/
7. http://raphaeljs.com/
8. https://www.mathjax.org/ 9. http://github.com/vkaravir/JSAV/

KARAVIRTA AND SHAFFER: CREATING ENGAGING ONLINE LEARNING MATERIALWITH THE JSAV JAVASCRIPTALGORITHM... 177

https://jqueryui.com/
http://raphaeljs.com/
https://www.mathjax.org/
http://github.com/vkaravir/JSAV/

functionality can be added outside of JSAV. The heap
data structure (see Fig. 3) and the Huffman coding tree
(Fig. 4) are examples of new data structures, with new
APIs, created in this way. Both of these APIs are built
from base JSAV functionality, but separate from the JSAV
library itself. To the AV developer, there is no difference
between using a “core” JSAV data structure and using an
add-on data structure. In fact, most of the functionality in
JSAV itself is implemented using the extension mecha-
nism to add new functionality in independent modules.
This makes it possible to build smaller versions of JSAV
with only the features needed by a specific AV or eText-
book. Thus JSAV fulfills requirement R12: reusable visual-
ization modules.

JavaScript events can be used to change or control JSAV
functionality. JSAV triggers events whenever a user inter-
acts with content, and these events can be reported to the
containing environment. For example, both successfully
and unsuccessfully completing steps in a proficiency exer-
cise exposes scoring events. OpenDSA uses these events to
change displayed student progress in HTML surrounding
the AV. Likewise, all user interaction events can be reported
to the containing environment, for example to generate
detailed user interaction logs. This is also how the learning
management system integrations described in Section 4.2
track student progress. JSAV also listens to some events on
its container. These events can be used, for example, to
move backward or forward in the animation, enabling
building of different kinds of student controls in addition to
the default ones provided by JSAV. An example of custom-
izing the UI is shown in Fig. 5. Here, the events have been
used to add AV controls and a progress bar to the bottom of
the iPad view.

3.6 Documentation

JSAV documentation can be found at http://jsav.io/. The
documentation presents most of the APIs in detail. Further-
more, it includes many live examples with JavaScript code
and CSS styles for the example. This, combined with the
tutorials on getting started and creating exercises provides
a good starting point for learning JSAV.

4 JSAV CONTENT AND USE

Since 2011, JSAV has been used to create a wide variety of
content, integrated into different eLearning environments,
and used in many courses and institutions.

4.1 Existing Content

JSAV was the first infrastructure component in the Open-
DSA project. OpenDSA’s goal is to build a complete open-
source, online eTextbook for DSA courses, that integrates
textbook quality text with algorithm visualizations and a
rich collection of interactive exercises. All exercises are
assessed automatically. As a result, students gain far more
practice by working on OpenDSA exercises than is possible
with normal paper textbooks.

OpenDSA provided motivation to create a significant set
of AVs with JSAV. OpenDSA currently has over 200 AVs
and over 100 exercises that use JSAV. The topics cover a
wide range, with chapters on algorithm analysis, linear
structures, binary trees, sorting, and hashing considered to
be “complete” and polished. In addition, many more mod-
ules have been prototyped and used in at least one course,
including basic graph algorithms, memory management,
two-three trees, the Union/Find algorithm, tree serializa-
tion, buffer pools, string matching algorithms, dynamic pro-
gramming, NP-Completeness, and a detailed introductory
tutorial on recursion. Materials for a programming lan-
guages course are in development. The widely used JFLAP
project,10 consisting of a large body of finite state automata
simulations, is being re-implemented in JSAV.

While OpenDSA includes most “typical” AV content for
arrays, trees, linked lists, and graph algorithms, OpenDSA
includes many AVs not commonly available. This include
visualizations for analysis of algorithms and NP-complete-
ness. Figs. 6 and 7 show examples of such visualizations.

As explained in Section 3.5, JSAV supports extensions to
the data structure implementations provided in the core
library. As part of OpenDSA, several such extensions have
been developed. These include the AVL tree, red black tree,
2-3 tree, binary heap, and Huffman coding tree. Of particu-
lar note is the array tree, where JSAV tree nodes are defined
using a JSAV array. The structure is useful for visualizing
the 2-3 tree, B tree, and B+ tree. Fig. 8 shows an example
illustrating 2-3 Tree insertion.

Fig. 5. A JSAV visualization on an iPad with a customized UI using
graphical primitives and Google Maps.

Fig. 6. A visual explanation for the running time analysis of Bubble sort.

10. http://www.jflap.org/

178 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 9, NO. 2, APRIL-JUNE 2016

http://jsav.io/
http://www.jflap.org/

Beyond OpenDSA, materials for introductory CS courses
at the University of Turku have been developed with JSAV.
Use of JSAV in this and other courses is described in more
detail below. The courses at Turku include topics such as
the basics of artificial intelligence and the different levels of
abstraction from high-level programming language to
machine code execution. JSAV-based content has been cre-
ated for many topics. For example, the course used a JSAV
exercise where the student needs to play Tic-Tac-Toe
according to the rules for the AI algorithm. So, the student
simulates the computer player.

As an another example, Fig. 9 shows a slideshow of exe-
cuting a program written in a simplified assembly language.
Execution of each step is visualized and explained. The
same approach was used to create simulation exercises
where the student has to click the instructions in assembly
code in the order that they would be executed. Other topics
with visual content include variable swap exercises, parse
tree generation, and more traditional AVs.

4.2 System Integrations

Many instructors use a Learning Management System
(LMS) such as Moodle or Sakai to maintain class score infor-
mation. Such an instructor who also wishes to use JSAV-
based visualizations would find it convenient if JSAV exer-
cises could report scores directly to their LMS. Thus far, we
have integrated JSAV into the LMSs used at the institutions
where JSAV has been used.

The original infrastructure for OpenDSA implemented
its own scoring support. However, the OpenDSA project is
currently in the advanced stages of replacing its communi-
cations layer to use the LTI standard,11 including support
for scoring all JSAV-based exercises, and reporting comple-
tion for all JSAV-based visualizations. Once completed, all
JSAV proficiency exercises that load the OpenDSA client-
side communications library will be able to report scores to
a range of LMSs that support the LTI standard, such as Can-
vas and Moodle. At Aalto University, JSAV was integrated
with the TRAKLA2 learning environment [4] in 2012. In
2013, it was integrated into the A+ environment [29] and, in
2014, with the OpenEdX learning management system. At

the University of Turku, JSAV was integrated with the
ViLLE learning environment [30], [31] in 2014. All these
integrations include JSAV-based exercises into the system
in a way that makes it seem like native content for the sys-
tem. In all these cases, student grades from JSAV exercises
are submitted and stored within the associated LMS. In
some cases (such as the ViLLE integration), a detailed enu-
meration of the steps used by the student to generate their
solution is stored and can be viewed by the course teacher
or researchers interested in the data. Technically, all the
LMS integrations use JSAV events (explained in Section 3.5)
to capture student scores, and then submit them to the LMS
in a suitable format.

Another type of integration is to use JSAV as a building
block in learning tools needing data structures and AVs. An
example is the JSAV integration into the Khan Academy
exercise framework [8] in order to provide KA-compatible
exercises using data structure visualizations and interac-
tions with the visualizations. JSAV has also been used in a
program visualization system by Mornar et al. [32]. Their
system interprets pseudocode or python programs. It iden-
tifies “interesting” events from the execution, and visualizes
the data structures manipulated by the visualized program.
An iPad application prototype for learning spatial data
structures and algorithms uses JSAV to visualize the struc-
tures [33]. This app is shown in Fig. 5.

To support reuse of existing algorithm visualizations
developed over the years (Requirement R15), there is a
proof-of-concept implementation of importing and visu-
alizing AnimalScript [34] animations with JSAV.12

4.3 Experiences and Research Results

JSAV has been used in multiple institutions in different
countries. Here, we briefly introduce the different uses and
some of the research findings made thus far.

4.3.1 JSAV and OpenDSA

As previously described, OpenDSA relies on JSAV as the
foundation for all AVs and interactive exercises. Since Fall
2013, OpenDSA has already been used in over a dozen insti-
tutions around the world outside of its home collaborators
at Virginia Tech, Aalto University, and University of Wis-
consin-Oshkosh. New institutions adopt OpenDSA materi-
als each semester. Primary use so far has been for the DSA

Fig. 7. AVexplaining the vertex cover problem.

Fig. 8. Two-three Tree slideshow illustrating the array tree.

11. http://www.imsglobal.org/toolsinteroperability2.cfm 12. https://github.com/vkaravir/jsav-asu-import

KARAVIRTA AND SHAFFER: CREATING ENGAGING ONLINE LEARNING MATERIALWITH THE JSAV JAVASCRIPTALGORITHM... 179

http://www.imsglobal.org/toolsinteroperability2.cfm
https://github.com/vkaravir/jsav-asu-import

content for CS2 courses, and as the semester “textbook” for
DSA courses following CS2 (we will refer to these as
“CS3”). We have collected extensive survey information
from students regarding OpenDSA use, along with a small
number of student interviews, feedback from instructors,
and interaction log data from student use. Details of result-
ing analysis of these data sources can be found in [6], [9],
[35]. We present here a brief overview of these findings.

Since Fall 2012, we have collected literally millions of
individual user interactions with the OpenDSA content. We
have done a number of analyses that reveal information
about student behavior with eTextbook material. Knowing
about these behaviors are important, as they can help us to
prioritize a redesign of the relevant system components and
user interactions. Briefly, we have determined the following
(see [9], [35] for details). First, we have learned that many
students engage in a number of behaviors that we term
“credit seeking” in contrast to more positive behavior that
we term “learning behavior”. This includes:

� Students tend to skip tutorial content to move
directly to exercises that are required for a home-
work grade. They only look at the tutorial content as
necessary to solve the exercises.

� When slideshows are given a small amount of credit,
students will either click through them quickly or
skip to the end, whichever will give them participa-
tion credit.

� Students will often skip tutorial content related to
the analysis of an algorithm entirely. This content
historically has not included a visual component.

We have also made other observations based on log data
and feedback from students that can be viewed more
positively.

� Students appreciate and take advantage of
“gamification” aspects, such as giving checkmarks
for completing slideshows, and “module complete”
messages for doing all activities.

� Students will react to a gradesheet or table of con-
tents that highlights in green “completed” exercises
or modules.

� Students do use OpenDSA exercises as study aides.
We have learned [9] both from interaction log data and

from surveys that students show little interest in using
smartphones or tablets to view OpenDSA materials, far pre-
ferring to use a laptop or desktop computer.

From Fall 2012 through Fall 2014, approximately 200 stu-
dents have been surveyed regarding their experience with
OpenDSA. Both in the surveys and in numerous unsolicited
comments, students have voiced overwhelming support
and appreciation for OpenDSA as a learning tool. Students
credit it with improving their understanding of the algo-
rithms covered in courses.

We note that while subjective student reaction to Open-
DSA is strongly positive, there is only weak evidence as of
yet that OpenDSA positively affects learning outcomes. In
Fall 2012 [6] a study was done comparing student perfor-
mance on a midterm between students using OpenDSA
materials for the topics of Sorting and Hashing, versus a
control group in another section of the course that did not
use OpenDSA. While students in the OpenDSA section had
a mean score about one half of a standard deviation higher
than those in the control section, the results were just short
of being statistically significant. Other evidence for positive
learning outcome comes in a correlation between level of
use by students using OpenDSA as a study aid (specifically,
doing additional exercise instance correctly) and doing bet-
ter on the associated exams. However, we do not know at
the present time if there is a causal relationship.

OpenDSA at present is far stronger on its presentation of
descriptive material (the AVs themselves) than it is on either
exercises or presentation of analytical material. While there
is no doubt that the students believe AVs to be improving
their understanding, we hypothesize that the true improve-
ments to learning come from working exercises, and study-
ing material that they otherwise historically ignore. As both
of those aspects improve, we hope to be able to detect
stronger evidence of learning gain. This is in line with the
literature on “No Significant Difference” [36]. The AVs
themselves are not providing a new learning experience
(just possibly one whose content is easier to grasp). In con-
trast, bulk interactive practice exercises are something
previously not practical. Likewise, while more visual pre-
sentation of analytical material might itself not be signifi-
cantly better than textual presentation, we have evidence
that the use of slideshows and careful engineering of the cir-
cumstances of presentation will require the students to
engage the analytical material [9]. We know from our inter-
action log data that many students completely ignore the
analytical content, so a design that requires students to
study the content should improve learning outcomes as
compared to when they do not study that content at all.

4.3.2 JSAV Use at Aalto University

Some of the first proficiency exercises created with JSAV
were on the topic of binary heaps (see Fig. 3), and were
used at Aalto University in the Spring of 2012. The exercises
replaced one round of TRAKLA2 [4] exercises in a data
structures and algorithms course. Student interaction with

Fig. 9. Example of a step-by-step visualization of execution of a simpli-
fied assembly language.

180 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 9, NO. 2, APRIL-JUNE 2016

the exercises was collected and analyzed [37]. From the col-
lected log data, the misconceptions that students had could
also be analyzed. The analysis showed that students had
the same misconceptions of the algorithms in JSAV exer-
cises as they had with the original TRAKLA2 system. Thus,
JSAV exercises were at least no worse than the correspond-
ing TRAKLA2 exercises in terms of performance and mis-
conceptions. More importantly, the study included analysis
to identify the steps in the algorithm that were difficult for
students. This shows the power of data logging in JSAV,
which provides new information that can lead to improve-
ments in the future that otherwise might not be possible. An
example of such an improvement already implemented is
enhanced heap exercises used in Spring 2013 to ensure that
the input for the algorithm is such that a student getting full
points on the exercise does not have any of the identified
misconceptions.

The heap exercises also collected data onwhether students
interacted with the tree or the array in the heap exercises. The
distribution of interaction (mouse click) with tree and array
are shown in Table 3. As can be seen, a majority of the interac-
tion is done on the tree visualization. This is natural, since the
tree better shows the relationship of the data items in the
heap. However, it is interesting how much the distributions
differ between exercises. This is another example of the kind
of insight thatwe can get fromdetailed log data.

In Fall 2014, the old TRAKLA2 exercises were replaced
with JSAV counterparts, many developed at Aalto Univer-
sity. Some students solved the exercises through the Open-
EdX environment, while others had the choice of solving
them embedded in OpenDSA material or through the A+
environment. The score achieved by the student was stored
in A+ whichever way the student accessed them.

4.3.3 JSAV Use at University of Turku

At the University of Turku, JSAV-based content has been
used since Fall 2014 (see [31] for details). It was first used in
an introductory CS course for data structures content. Profi-
ciency exercises on swapping the values of variables and
indexes on arrays and matrices were included. Results of a
student questionnaire on JSAV exercises are shown in
Fig. 10. The claims were as follows: 1) The exercises helped
my learning, 2) The exercises were easy to use, 3) The feed-
back of the exercise helped my learning, and 4) The exer-
cises should be used in the future. Students found the JSAV
exercises both easy to use and helpful for their learning.

JSAV exercises were also used in an introductory CS
course that covered a wide range of topics such as logical
gates, machine code, assembly code, code parsing and com-
piling, and artificial intelligence. JSAV was used to visualize
machine and assembly code, parser tree generation, and AI

algorithms. The JSAV content provided an important part
of the course, and could not have been implemented with
other tools used for the course.

In these courses, the JSAV exercises were embedded
within learning material (locally called tutorials) similar to
the OpenDSA approach to presenting material. In addition,
some stand-alone homework assignments used JSAV-based
exercises. Finally, a collection of JSAV exercises were
used in a Data Structures and Algorithms course as home-
work assignments. These were mainly exercises created by
the OpenDSA project, which were adapted to work in the
ViLLE environment.

5 DISCUSSION

JSAV has evolved concurrently with it being used to create
material on an ever widening variety of topics. At this point,
the library has been used by dozens of developers to create
hundreds of visualizations and exercises on diverse topics
ranging from visualizations on algorithms that manipulate
arrays, trees, and graphs, to proofs of NP-completeness, dis-
plays of Finite State Automata, basic programming techni-
ques, and parsing. Key to this is the proven ability of
developers to extend base JSAV capabilities beyond the
scope originally envisioned, without being forced to make
changes to the library itself.

There is a learning curve that must be climbed to develop
content with JSAV. It requires knowledge of JavaScript and
HTML, with CSS and web developer tool skills also being
important. While not all student and faculty members are
skilled in these areas, it is getting more common with the
growing role of web technologies. Developing JSAV-based
content has served as a good motivation and introduction to
web technologies for a number of students. Over 30 under-
graduate students and a dozen graduate students at Virginia
Tech, University of Wisconsin-Oshkosh, Duke University,
Link€oping University, and Aalto University have already
participated in developing AVs and exercises. Their motiva-
tions include getting course credit to learn a useful technical
skill (JavaScript/HTML/CSS web development), but also a
sense of “giving back” to the OpenDSA project that they
credit with helping them learn DSA content.

The technical learning curve is not a major hurdle, with
students able to begin developing useful content once they
have mastered basic JavaScript programming. It helps to
speed the learning that there now exists a large body of con-
tent to be used as examples, as well as complete API docu-
mentation for the library. A typical starting place is to
create a static image, which can be done in a few minutes
when working from an example. Implementing a simple
tutorial slideshow using JSAV feels much like writing

TABLE 3
Percentages of Student Interaction with Tree and Array

Visualizations in Binary Heap Exercises

Exercise Tree Clicks Array Clicks

Heapsort 94.8% 5.2%
Heap Insert 68.9% 31.1%
Buildheap 87.7% 12.3%
Heap Delete 92.3% 7.7%

Fig. 10. JSAV student feedback at university of turku.

KARAVIRTA AND SHAFFER: CREATING ENGAGING ONLINE LEARNING MATERIALWITH THE JSAV JAVASCRIPTALGORITHM... 181

a presentation using a script-based slideshow package such
as Beamer.13 The next stage in a developer’s progress is to
move from a procedural style of “put this element here” to
instrumenting a working algorithm. Programmatic control
of the visualization (through library calls to JSAV) makes
for powerful integration of visualization with the algorithm
being visualized. The hardest thing to learn is not how to
use the library to do what you want. The hardest skill is
developing good judgment for what level of detail should
be presented about the working of an algorithm.

A library like JSAV can never be complete. As more and
more material is being created with it, new requirements
and old bugs emerge. It is, however, complete enough for
us to call the current version 1.0. When looking back at the
requirements for an AV system introduced in Section 2,
there are still some features missing. It is not possible for
the user to change the background color (part of require-
ment R3). That said, it could be added by the AV developer
to any given AV through the flexible “settings” mechanism
provided by JSAV. A standard feature of most of the AVs is
a user-configurable settings panel, which a developer could
easily extend to include simple color changes to the UI
and similar user controls. Furthermore, like the existing
HTML5-based AV systems, there is no support for explana-
tions which adapt to the knowledge of learner as well as the
state of the algorithm (part of R6). The feedback in pop-up
question support is limited to correct/incorrect (R7). How-
ever, the primary reason why there is only limited support
for questions within JSAV itself is the fact that we have
found it relatively easy to integrate JSAV with other systems
(such as the Khan Academy Exercise Framework) that
directly support a rich set of question types. In the long run,
it is probably a better design approach to allow integration
with other tools, than to create a monolithic system that sup-
ports all potential features. Features lacking completely are
a table-of-contents-like structural view of the algorithm
(R10) and viewing of the previous step in the algorithm
simultaneously to the current step (R16). Our experiences
suggest that the need for a structural overview depends on
the way the AV content is designed. The first AV developed
with JSAV was a Shellsort slideshow going through the
complete algorithm. However, we quickly realized that this
was not the best approach to explain the algorithm, and
ended up breaking the slideshow into a series of smaller sli-
deshows, each focusing on the different phases of the algo-
rithm. These slideshows were then embeded within the
tutorial material. That said, for standalone (comprehensive)
AVs, a structural view would be beneficial. Overall, while
not all requirements are met or are only partially fulfilled,
JSAV does support more requirements than the any of the
existing HTML5-based systems, or even any of the previous
Java-based systems. This, however, does not mean that
JSAV is better than the other systems for every use case.

JSAV has been heavily inspired by previous work, and it
includes many of the features found necessary in prior sys-
tems. Thus, most features have been previously introduced
in some system. However, when compared to the existing
AV systems evaluated in Section 2.3, JSAV is the only system

supporting viewing, responding, and constructing levels of
engagement. This makes it suited for more use cases than
any single existing system. Furthermore, it has more
advanced support for proficiency exercises. JSAV supports
multiple feedback options, and is the only system that sup-
ports fix mode to put students back on track after a mistake
during an exercise. JSAV’s model answer feedback can con-
tain any explanations and visualizations, including smooth
animation. This more versatile feedback is what sets JSAV
apart fromTRAKLA2,which has had support for proficiency
exercises for years. JSAV’s use of HTML5 and JavaScript
make it more customizable and it can reach a broader audi-
ence than Java-based systems. JSAV is the only AV system
that we know of that supports ‘localization’ for both natural
language and programming language. Finally, the ability to
integrate JSAV with LMS backends enables rich logging and
analysis of many aspects of the use of the content.

There is yet a long list of issues in JSAV’s GitHub reposi-
tory,14 and there are bigger future goals for the project as
well. One such goal is to add built-in support for identifying
misconceptions as well as generation of data to expose stu-
dent misconceptions. Previous efforts in misconception-
aware input generationwas implemented by the first author,
andwas only specific to the binary heap algorithms. Another
bigger issue to tackle is the security and trustworthiness of
the grading. Currently, the grading is done on the client side
and is thus vulnerable to cheating by anyone skilled enough
with JavaScript and browser web developer tools. Setting up
a way to do server-side regrading of the submissions would
provide another level of trustworthiness to the results. A
solution to this has been prototyped at Aalto University, but
has not seen wider use. Finally, since the pop-up question
support is somewhat limited in its features, we will explore
options to integrate some more comprehensive question
library instead of evolving our own implementation.

6 CONCLUSIONS

We have introduced the JavaScript Algorithm Visualization
library. JSAV is the first HTML5-based AV library support-
ing multiple levels of engagement, including algorithm sim-
ulation exercises. There now exists a vast body of content
created with JSAV, by a considerable number of developers,
and spanning a wide range of topics and purposes. JSAV
has been integrated into multiple learning environments
and educational systems. We discussed our experiences
and research done on JSAV use. Student response to the
resulting visualizations has been strongly positive.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation (NSF) grants DUE-1139861, IIS-1258571, and
DUE-1432008.

REFERENCES

[1] T. Naps, G. R€ossling, and nine more authors, “Exploring the role
of visualization and engagement in computer science education,”
in Proc. Working Group Rep. ITiCSE Innovation Technol. Comput. Sci.
Edu., 2002, pp. 131–152.

13. https://www.ctan.org/pkg/beamer?lang=en 14. https://github.com/vkaravir/JSAV/issues

182 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 9, NO. 2, APRIL-JUNE 2016

https://www.ctan.org/pkg/beamer?lang=en
https://github.com/vkaravir/JSAV/issues

[2] C. Shaffer, M. Cooper, A. Alon, M. Akbar, M. Stewart, S. Ponce,
and S. Edwards, “Algorithm visualization: The state of the field,”
ACM Trans. Comput. Edu., vol. 10, pp. 1–22, Aug. 2010.

[3] E. Fouh, M. Akbar, and C. Shaffer, “The role of visualization in
computer science education,” Comput. Schools, vol. 29, pp. 95–117,
2012.

[4] L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Sepp€al€a, and
P. Silvasti, “Visual algorithm simulation exercise system with
automatic assessment: TRAKLA2,” Informat. Edu., vol. 3, no. 2,
pp. 267–288, Sep. 2004.

[5] T. Naps, “Jhav�e: Supporting algorithm visualization,” IEEE Com-
put. Graph. Appl., vol. 25, no. 5, pp. 49–55, Sep./Oct. 2005.

[6] S. Hall, E. Fouh, D. Breakiron, M. Elshehaly, and C. Shaffer,
“Evaluating online tutorials for data structures and algorithms
courses,” presented at the ASEE Annu. Conf., Atlanta, GA, USA,
Jun. 2013, Paper #5951.

[7] C. Shaffer, V. Karavirta, A. Korhonen, and T. Naps, “OpenDSA:
Beginning a community Active-eBook project,” in Proc. 11th Koli
Calling Int. Conf. Comput. Edu. Res., Koli National Park, Finland,
Nov. 2011, pp. 112–117.

[8] E. Fouh, V. Karavirta, D. Breakiron, S. Hamouda, S. Hall, T. Naps,
and C. Shaffer, “Design and architecture of an interactive Etext-
book – the OpenDSA system,” Sci. Comput. Program., vol. 88, no. 1,
pp. 22–40, Aug. 2014.

[9] E. Fouh, D. Breakiron, S. Hamouda, M. Farghally, and C. Shaffer,
“Exploring students learning behavior with an interactive etext-
book in computer science courses,” Comput. Human Behavior,
pp. 478–485, Dec. 2014.

[10] V. Karavirta and C. Shaffer, “JSAV: The javascript algorithm visu-
alization library,” in Proc. 18th Annu. Conf. Innovation Technol.
Comput. Sci. Edu., Canterbury, U.K., Jul. 2013, pp. 159–164.

[11] S. Diehl, Software Visualization, no. 2269. New York, NY, USA:
Springer, 2002.

[12] T. Hendrix, J. Cross, and L. Barowski, “An extensible framework
for providing dynamic data structure visualizations in a light-
weight IDE,” in Proc. 35th Techn. Symp. Comput. Sci. Edu., 2004,
pp. 387–391.

[13] P. J. Guo, “Online python tutor: Embeddable Web-based program
visualization for CS education,” in Proc. 44th SIGCSE Techn. Symp.
Comput. Sci. Edu., 2013, pp. 579–584.

[14] R. Ross and M. Grinder, “Hypertextbooks: Animated, active
learning, comprehensive teaching and learning resources for the
web,” in Proc. Int. Seminar Dagstuhl Castle Software Visualization,
2002, no. 2269, pp. 269–284.

[15] G. R€oßling, T. Naps, M. Hall, V. Karavirta, A. Kerren, C. Leska, A.
Moreno, R. Oechsle, S. Rodger, J. Urquiza-Fuentes, and J. Vel�az-
quez-Iturbide, “Merging interactive visualizations with hypertext-
books and course management,” in Proc. ITiCSE-WGR Working
Group Rep. ITiCSE Innovation Technol. Comput. Sci. Edu., 2006,
pp. 166–181.

[16] A. Korhonen, T. Naps, C. Boisvert, P. Crescenzi, V. Karavirta, L.
Mannila, B. Miller, B. Morrison, S. H. Rodger, R. Ross, and C. A.
Shaffer, “Requirements and design strategies for open source
interactive computer science eBooks,” in Proc. ITiCSE Working
Group Rep. Conf. Innovation Technol. Comput. Sci. Edu.-Working
Group Rep., 2013, pp. 53–72.

[17] G. R€oßling and T. Vellaramkalayil, “First steps towards a Visuali-
zation-based computer science hypertextbook as a moodle mod-
ule,” in Proc. 5th Program Vis. Workshop, 2009, pp. 47–56.

[18] V. Karavirta, “Seamless merging of hypertext and algorithm ani-
mation,” ACM Trans. Comput. Edu., vol. 9, no. 2, pp. 1–18, 2009.

[19] C. Hundhausen, S. Douglas, and J. Stasko, “A meta-study of algo-
rithm visualization effectiveness,” J. Vis. Languages Comput.,
vol. 13, pp. 259–290, Jun. 2002.

[20] J. Urquiza-Fuentes and J. A. Vel�azquez-Iturbide, “A survey of suc-
cessful evaluations of program visualization and algorithm ani-
mation systems,” Trans. Comput. Edu., vol. 9, pp. 9:1–9:21, Jun.
2009.

[21] G. R€oßling and T. Naps, “A testbed for pedagogical requirements
in algorithm visualizations,” in Proc. 7th Annu. Conf. Innovation
Technol. Comput. Sci. Edu., 2002, pp. 96–100.

[22] G. R€oßling and T. Naps, “Towards intelligent tutoring in algo-
rithm visualization,” in Proc. 2nd Int. Program Vis. Workshop. 2002,
pp. 125–130.

[23] S. Diehl, Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software. New York, NY, USA: Springer, 2007.

[24] J. Morris, “Algorithm animation: Using algorithm code to drive an
animation,” in Proc. 7th Australasian Conf. Comput. Edu., 2005,
pp. 15–20.

[25] G. R€oßling and B. Freisleben, “ANIMAL: A system for supporting
multiple roles in algorithm animation,” J. Vis. Languages Comput.,
vol. 13, no. 3, pp. 341–354, 2002.

[26] A. Akingbade, T. Finley, D. Jackson, P. Patel, and S. H. Rodger,
“JAWAA: Easy web-based animation from CS 0 to advanced CS
courses,” in Proc. 34th SIGCSE Techn. Symp. Comput. Sci. Edu.,
2003, pp. 162–166.

[27] S. Halim, Z. C. Koh, V. B. H. Loh, and F. Halim, “Learning algo-
rithms with unified and interactive web-based visualization,”
Olympiads Informat., vol. 6, pp. 53–68, 2012.

[28] AlgoViz.org. (2011). The AlgoViz portal [Online]. Available:
http://algoviz.org

[29] V. Karavirta, P. Ihantola, and T. Koskinen, “Service-oriented
approach to improve interoperability of E-learning systems,” in
Proc. 13th IEEE Int. Conf. Adv. Learn. Technol., 2013, pp. 341–345.

[30] T. Rajala, M.-J. Laakso, E. Kaila, and T. Salakoski, “Effectiveness of
program visualization: A case study with the ViLLE tool,” J. Inf.
Technol. Edu.: Innovations Practice, vol. 7, pp. 15–32, 2008.

[31] V. Karavirta, R. Haavisto, E. Kaila, M.-J. Laakso, T. Rajala, and T.
Salakoski, “Interactive learning content for introductory computer
science course using the ville learning environment,” in Proc.
Learn. Teaching Comput. Eng., Apr. 2015, pp. 9–16.

[32] J. Mornar, A. Grani�c, and S. Mladenovi�c, “System for automatic
generation of algorithm visualizations based on pseudocode inter-
pretation,” in Proc. Conf. Innovation Technol. Comput. Sci. Edu.,
2014, pp. 27–32.

[33] V. Karavirta, “Location-aware mobile learning of spatial algo-
rithms,” in Proc. IADIS Int. Conf. Mobile Learn., Lisbon, Portugal,
Mar. 2013, pp. 158–162.

[34] G. R€oßling and B. Freisleben, “AnimalScript: An extensible script-
ing language for algorithm animation,” in Proc. 33nd SIGCSE
Techn. Symp. Comput. Sci. Edu., 2001, pp. 70–74.

[35] D. A. Breakiron, “Evaluating the integration of online, interactive
tutorials into a data structures and algorithms course,” Master’s
thesis, Virginia Tech, Blacksburg, VA, USA, 2013.

[36] T. Russell, The No Significant Difference Phenomenon: A Comparative
Research Annotated Bibliography on Technology for Distance Educa-
tion, 5th ed. Chicago, IL, USA: IDECC, 2001.

[37] V. Karavirta, A. Korhonen, and O. Sepp€al€a, “Misconceptions in
visual algorithm simulation revisited: On UI’s effect on student
performance, attitudes, and misconceptions,” in Proc. Learn. Teach-
ing Comput. Engineering, Macau, China, 2013, pp. 62–69.

Ville Karavirta received the PhD degree from
Helsinki University of Technology. He is a senior
research fellow in the Department of Informa-
tion Technology, University of Turku. His current
research interests include mobile learning,
eTextbooks, program and algorithm visualiza-
tion, and automated assessment of program-
ming assignments. His web address is http://
www.villekaravirta.com/.

Clifford A. Shaffer received the PhD degree
from the University of Maryland. He is a professor
in the Department of Computer Science, Virginia
Tech. His current research interests include digi-
tal education, eTextbooks, bioinformatics, visuali-
zation, algorithm design and analysis, and data
structures. His web address is http://www.cs.vt.
edu/shaffer.

KARAVIRTA AND SHAFFER: CREATING ENGAGING ONLINE LEARNING MATERIALWITH THE JSAV JAVASCRIPTALGORITHM... 183

http://www.villekaravirta.com/
http://www.villekaravirta.com/
http://www.cs.vt.edu/shaffer
http://www.cs.vt.edu/shaffer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

