
EJS, JIL Server, and LabVIEW: An Architecture
for Rapid Development of Remote Labs
Jes�us Chac�on, Hector Vargas, Gonzalo Farias, Jos�e S�anchez, and Sebasti�an Dormido

Abstract—Designing and developing web-enabled remote laboratories for pedagogical purposes is not an easy task. Often,

developers (generally, educators who know the subjects they teach but lack of the technical and programming skills required to build

Internet-based educational applications) end up discarding the idea of exploring these new teaching and learning experiences mainly

due to the technical issues that must be mastered. To tackle this problem, authors present a novel technique that allows developers to

create remote labs in a quick, didactical, and straightforward way. This framework is based on the use of two well-known software tools

in the scope of engineering education, Easy Java Simulations and LabVIEW. The development exploits a new feature of Easy Java

Simulations known as EJS-elements that enables Java developers to create and integrate their own authoring libraries (elements) into

EJS, thus increasing its application possibilities. Particularly, the EJS element here presented allows to LabVIEW programs be

controlled from EJS applications through a communication network. This paper presents the element creation details and how this can

be used to create web-enabled experimentation environments for educational purposes. A step by step example of development of a

remote lab for automatic control education is described.

Index Terms—Remote labs, virtual labs, control education, LabVIEW, EJS

Ç

1 INTRODUCTION

THE integration of new pedagogical methodologies to
engineering education is, nowadays, practically manda-

tory in most universities around the world. This statement
is grounded by the number of papers published about these
subjects and where the current technological advances have
shown the way to follow in this field [1], [2]. For instance, in
the European case, this has been addressed by introducing
the educative community to the European Space for Higher
Education (Bologna process), in which Internet plays a key
role in university studies [3].

Regarding the aforementioned, hands-on laboratory was
one of the first places where the integration of such techno-
logical advances was visible. Many engineering faculties
expanded the use of these laboratories by offering students
opportunities of experimentation with real systems (pro-
cesses) not only by live classroom training but also remotely
through the Internet. These Internet-based educational tools
are currently known as web-based laboratories. Web-based
laboratories are divided into two categories, according to
the system’s nature to mvirtual and remote. A virtual labora-
tory simulates a mathematical model of a physical process,
whereas a remote laboratory provides access to a real physical
process located in a remote site on the Internet [4].

Although simulation is an appropriate way of comple-
menting engineering education, it generally can’t replace

experimentation with real processes. For this reason, a full
web-based laboratory should offer both training modali-
ties. However, creating the remote version of a web-based
lab is still attainable only for educators and research teams
who are expert on these matters, mainly due to the amount
of technical and programming issues that must be mas-
tered [5].

In the literature, several different approaches oriented
to developing remote laboratories can be found. In [6],
authors present a remote laboratory exclusively created by
using the LabVIEW platform [7]. Although LabVIEW VIs1

can be easily made ready for Internet delivery, a LabVIEW
Runtime Engine must be installed on the client side. This
last step is not recommended when creating remote labs
since installing software plugins sometimes can become
hard for final users. For this reason, LabVIEW platform is
commonly used only for creating the server side of a
remote lab (other software options for the server side can
be Matlab [8], Simulink [9], C++ [10], Scicos [11], etc.)

On the other hand, Java applets and Flash applications
have been the most popular web technologies for develop-
ing the client interface for remote labs. In [12], a virtual labo-
ratory for the analysis and study of the human respiratory
system was created. In this example, an applet was devel-
oped by using Easy Java Simulations (EJS) [13], a tool specif-
ically created for designing and developing interactive
virtual labs. Two other interesting examples of remote labs
for pedagogical purposes were presented in [14], [15]. In
these articles authors present a set of web-based laboratories
for teaching automatic control concepts where Java applets
to access remotely the training services were used as well.

� J. Chac�on, J. S�anchez, and S. Dormido are with the Department of Inform�a-
tica and Autom�atica, Universidad Nacional de Educaci�on a Distancia,
28040 Madrid, Spain.
E-mail: jchacon@bec.uned.es, {jsanchez, sdormido}@dia.uned.es.

� H. Vargas and G. Farias are with the Pontificia Universidad Cat�olica de
Valpara�ıso, Chile. E-mail: {hector.vargas, gonzalo.farias}@ucv.cl.

Manuscript received 24 Apr. 2014; revised 8 Oct. 2014; accepted 21 Dec.
2014. Date of publication 8 Jan. 2015; date of current version 11 Dec. 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TLT.2015.2389245

1. ”LabVIEW programs are called virtual instruments, or VIs,
because their appearance and operation imitate physical instruments,
such as oscilloscopes and multimeters”, National Instruments (http://
www.ni.com/white-paper/7001/en).

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 8, NO. 4, OCTOBER-DECEMBER 2015 393

1939-1382� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Similarly, Flash applications have found some applications
in virtual and remote laboratories design [16], [17]. Unlike
Java, Flash has been less used by developers for designing
web-based labs mainly for license payment issues. Another
example can be found in [27], where a remote control labo-
ratory is built using EJS applets and twincat programmable
logic controllers.

Despite all these efforts, simple approaches to assist
beginner’s developers in creating remote labs are not easy
to find. In this context, next lines describe the authors pro-
posal in order to contribute in this scope.

At Spanish National Distance Education University
UNED, distance education courses on automatic control for
as many as 300 students each year are offered. Until few
years ago, these students had to travel from all over the
country to attend two-week long laboratories to complete
the prescribed hands-on experiments in system identifica-
tion and control courses. Fortunately, the development of
Internet technologies highlighted the importance of web-
based teaching and learning in many research fields, includ-
ing automatic control. Since more than 10 years, we there-
fore decided to use web-based labs in our instruction so that
students could minimize their need to physically attend lab-
oratories. The acquired experience for our research team
during all this time can be summarized in the following
selection of papers [18], [19], [20], [21], [22].

Based on the experience above described, we present our
approach to create remote labs. This framework, which is
an update of the work presented in [19], uses the software
tools EJS and LabVIEW. The development exploits the new
feature of Easy Java Simulations known as EJS-elements that
enables Java developers to create and integrate their own
authoring libraries (elements) into EJS, thus increasing its
application possibilities. Particularly, the EJS element here
presented allows to LabVIEW programs be controlled from
EJS applications through a communication network simply
by linking LabVIEW and EJS variables by means of a config-
uration wizard. The approach hides the low-level communi-
cation issues always necessary when creating remote labs,
thus simplifying its creation process.

The main contribution of this paper is a methodology to
build new remote laboratories, with a set of software com-
ponents developed to support the proposed approach.
The main advantage of the proposed approach are the sim-
plicity: a new remote laboratory can be composed rapidly
by combining several components which have been
assessed in many applications, and the flexibility: any com-
ponent may be replaced to adapt to new systems or soft-
ware tools.

The developed software components are the EJS Lab-
VIEW Connector Element,2 to simplify the interoperability
between EJS and LabVIEW, and a new feature of JiL Server3

to handle XML-RPC, an standard remote procedure calling
protocol (RPC). Because of the layered design, the use of
standard protocols and well-defined interfaces, the architec-
ture can be adapted to many systems with few extra devel-
opment effort. In addition, a remote laboratory with a
Quadruple Tank system is provided as an example to

illustrate the simplicity of development with this new soft-
ware components.

The paper is organized as follows: Section 2 provides a
brief background about the design and development of web
enabled control laboratories. Section 3 describes how the
communication between the client and the server side is
done and how to integrate the EJS Element into a simula-
tion. Section 4 shows an example of a remote labs used for
the teaching of event-based and multivariable control con-
cepts. Finally, some conclusions about the present work and
future possibilities are given in Section 5.

2 THE REMOTE LAB ARCHITECTURE

The basic layout of a remote lab is as follows: on the one
hand, the plant, whose sensors and actuators allow to inter-
act with it, is connected to the host PC via an acquisition
card (DAQ). On the other hand, the graphical user interface
(GUI) that allows students the interaction with the plant,
and which is an application that runs in the student PC.
This solution is usually known as client/server architecture.

An improvement to this approach, adopted in this
work, is the use of a three-tier architecture (see Fig. 1). In
this solution, a middle-tier is introduced between the cli-
ent and the server, acting as an intermediary that allows
to eliminate or reduce the dependency of the design and
implementation of both sides. Thus, the client can focus,
for example, on the interface with the user, and the server
on the control of the plant, while the middle-tier copes
with the data exchanging issues.

Fig. 1. Architecture of the remote lab built with EJS, JiL Server and
LabVIEW.

2. https://github.com/UNEDLabs/jil-element
3. https://github.com/UNEDLabs/jil-server

394 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 8, NO. 4, OCTOBER-DECEMBER 2015

Though there are different alternatives to set up the
server and client PCs, what we are looking for is a solution
that ideally could be applied to any case.

The National Instrument LabVIEW platform has been cho-
sen to setup the server PC. It is a graphical programming
tool, widely spread both in industry and academics, which
allows for the rapid development of applications. One of
the main advantages of LabVIEW is its great hardware sup-
port, providing drivers and libraries to access DAQ systems,
communication protocols, etc.

The middle-tier contains the JiL Server, a LabVIEW appli-
cation developed by authors [21], [24] that provides interop-
erability between LabVIEW and EJS, i.e. the possibility to
remotely control the execution of the laboratory top level
LabVIEW VI and the publication of its controls and indica-
tors to be accessed from the client.

The idea behind this approach is somewhat similar to
the smart device paradigm [29]. This paradigm aims at
enhancing the software while keeping the same hard-
ware. Smarts devices provide an API that exposes serv-
ices to the client, at a minimal state measurement and
state control, should understand various protocols on top
of websockets like JSON or XML, and being capable of
handling user requests. In the same way, JiL Server
extends the capabilities of the server by implementing an
API that allows measurement and control of an existing
LabVIEW VI. The use of XML has been introduced as a
new feature in the newest version, as well as the handling
of HTTP and XML-RPC requests.

Finally, the client tier is the most visible part, because it
provides the GUI. The Easy Java Simulations software tool is
a good option because it has been designed to simplify the
development of interactive simulations and graphical inter-
faces. Another advantage of using EJS is its easy integration
with Moodle [28], a widespread Learning Management Sys-
tem (LMS). LMSs have become widespread in distance edu-
cation in the last decade, supporting the administration,
documentation, tracking, and reporting of training pro-
grams, classroom and online events.

EJS provides us with a mechanism to extend its capa-
bilities, the elements of the model, that encapsulates Java
libraries in a way that can be incorporated easily into a
simulation.

Here is where the LabVIEW Connector Element fits, hiding
the low-level details of the communication with the Lab-
VIEW VIs via the JiL Server. The framework is explained in
[21], [24] and can be consulted for further details. In the rest
of this work, we focus on the client side, i.e. on the Java and
EJS implementation.

Also, a current trend is to propose client in Javascript
for compatibility with tablets, smartphones and similar
devices. The newest version of EJS has been updated to
EjsS, a new feature that introduces the use of Javascript.
Though the discussion in this section considers Java lan-
guage, the integration with a Javascript application is
really simple, since XML-RPC is a well-known protocol
and there are libraries that can handle with it. Moreover,
a new feature of JiL Server which is being worked on is
the implementation of JSON-RPC, which uses Javascript
Object Notation (JSON) so it is even easier to process
within Javascript.

3 JAVA AND LABVIEW COMMUNICATION

The JiL Server software encapsulates the connection with
LabVIEW by handling the client requests through TCP
connections, and providing us with a protocol that
allows, on the one hand, to control the execution of a Lab-
VIEW VI and, on the other hand, to read the indicators
and update the controls of the LabVIEW VI. This means
that it does not enforce the use of a specific language at
the client side. Therefore, though this section presents the
implementation in Java, most of the ideas can be directly
translated into other languages.

The software framework presented hereafter allows the
communication of a Java applet or application with the
JiL Server with two different levels of abstraction: a low-
level protocol and a high-level protocol. Therefore, it is
divided into:

� the LabVIEW Connector, that provides all the low-
level functionalities, and

� the LabVIEW Connector Element, which provides the
high level protocol to communicate with the JiL
Server hiding the details to the user. It is a wrapper
that allows the integration of a library into EJS.

The structure of the LabVIEW Connector library is repre-
sented in Fig. 2. Note that, though the element requires EJS
to run, the Labview Connector core does not have these bind-
ings, so it can be used by any Java application. In general,
the high-level protocol is the recommended method because
it is easier for the user. However it does not allow a direct
control of the data exchange between the client and the

Fig. 2. Class diagram representing the structure of the LabVIEW
Connector library for Java and EJS. The the low-level primitives are
encapsulated into the class LabviewConnector. The class LabviewEle-
ment implements the interface to incorporate the library into EJS
simulations.

CHAC�ON ET AL.: EJS, JIL SERVER, AND LABVIEW: AN ARCHITECTURE FOR RAPID DEVELOPMENT OF REMOTE LABS 395

server. Instead of that, all the variables are synchronized
within each call to the step() method. Therefore, depending
on the number of variables and the communication restric-
tions, the performance might not be optimal. Both protocols
(and components) are explained in the next two sections.

3.1 Low-Level Communication Protocol

The use of the low-level protocol interface is not recom-
mended unless a strict control of the communication is
needed, because it can be error prone. The use of the low-
level protocol is summarized in the following steps:

1) Configure the LabviewConnector class to know the url
of the JiL Server: setServerAddress(url).

2) Connect to the server: connect().
3) Open the remote LabVIEW VI specified by path:

openVI(path).
4) Run the remote LabVIEW VI: runVI().
5) Repeat until stop:

a) Update the values of the LabVIEW VI controls
with the get{type}(name)methods.

b) Read the values of the LabVIEW VI indicators
with the setValue(name, value)methods.

6) Stop the remote LabVIEW VI: stopVI().
7) Close the remote LabVIEW VI: closeVI().
8) Disconnect from the server: disconnect().
The methods that provide the low-level communication

functionalities are provided by the LabviewConnector class,
which is explored in the following paragraphs.

3.1.1 The LabviewConnector Class

The LabviewConnector class provides an interface with the
methods needed to set up the communication with the JiL
Server. The interaction with the server is summarized in the
state diagram of Fig. 3 and the methods to do it are shown
in Listing 1.

Listing 1. Class LabviewConnector

1: public class LabviewConnector {

2: public void LabviewConnector(String url)

3: public void setServerAddress(String url)

4: public void connect() {...}

5: public void openVI(String pathToVI)

6: public void runVI()

7: public void stopVI()

8: public void closeVI()

9: public void getMetadata()

10: public void disconnect()

11:

12: public void setValue(String name, boolean value

13: public void setValue(String name, int value)

14: public void setValue(String name, float value)

15: public void setValue(String name, double value)

16: public void setValue(String name, String value)

17:

18: public void getBoolean(String name)

19: public void getInt(String name)

20: public void getFloat(String name)

21: public void getDouble(String name)

22: public void getString(String name)

23: }

First, the url of the JiL Server should be provided either
in the constructor or in the method setServerAddress().
After that, the connection is done with the method connect
(). The other methods to control the execution are openVI
(String pathToVI), used to open a LabVIEW VI that must be
accessible in the server, runVI() which is used to initiate
the execution of the previously opened LabVIEW VI,
stopVI() to pause the execution of a running LabVIEW VI,
and closeVI() to dismiss an opened LabVIEW VI. Finally,
the method disconnect() closes the connection with the
server and frees the resources.

The methods that controls the actual data communica-
tion between Java and the JiL Server are: setValues(String
name; . . .), which sends a new value to update a control in
the LabVIEW VI, and getDouble(String name); . . . ; getString
(String name), that obtain the value of an indicator of the Lab-
VIEW VI. The method setValues(. . .) must be invoked with
two parameters: a String containing the name of the control
that must be updated, and the value itself. On the other
hand, the methods get{type}(. . .) receive only one parameter,
a String with the name of the LabVIEW VI indicator to be
read, and return its value. The exact choice of the method
will depend on the type of the indicator to obtain.

3.2 High-Level Communication Protocol

The high-level communication protocol allows the user to
be unaware of the internals of the communication between
the Java application or EJS simulation with the JiL Server
and LabVIEW VI. This is done by means of the UserLab-
viewConnector class, which is automatically generated with
the user-supplied information, i.e. the address of the JiL
Server, the name of the remote LabVIEW VI and the links
between the EJS variables and the LabVIEW VI controls
and indicators. The configuration is done within the GUI
provided by the element (Fig. 8). From a high level point
of view, the functionalities that must be provided to the
user to allow the interaction with a LabVIEW VI are sum-
marized in the following points:

� Open and run a remote LabVIEW VI: connect().
� Synchronize the EJS variables with the LabVIEW VI

controls and indicators: step().
� Stop and/or close the remote LabVIEW VI: disconnect

().

Fig. 3. The state diagram represent the possible states of the connection
with the JiL Server.

396 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 8, NO. 4, OCTOBER-DECEMBER 2015

The UserLabviewConnector class contains the high-level
methods that define a particular connection with a Lab-
VIEW VI (Listing 2). Note that these functions are applica-
tion specific. For example, each LabVIEW VI has its own
controls and indicators.

Listing 2. Class UserLabviewConnector

1: public class UserLabviewConnector

extends LabviewConnector {

2: public void connect();

3: public void step();

4: public void getValues();

5: public void setValues();

6: public void disconnect();

7: }

Finally, the LabviewConnectorElement class provides two
functionalities: the implementation of the ModelElement
interface, which defines the contract required by EJS (List-
ing 3) to incorporate the library into the software tool as an
element, and the code generator to automatize the definition
of the UserLabviewConnector class.

Listing 3. InterfaceModelElement

1: public interface ModelElement {

2: public javax.swing.ImageIcon getImageIcon();

3: public String getGenericName();

4: public String getConstructorName();

5: public String getInitializationCode(String

_name);

6: public String getDestructionCode(String _name);

7: public String getImportStatements();

8: public String getResourcesRequired();

9: public String getPackageList();

10: public String getDisplayInfo();

11: public String savetoXML();

12: public void readfromXML(String _inputXML);

13: public String getTooltip();

14: public void clear();

15: public void setFont(java.awt.Font font);

16: public void showHelp(java.awt.Component

parentComponent);

17: public void showEditor(String _name, java.awt.

Component parentComponent,

ModelElementsCollection list);

18: public void refreshEditor(String _name);

19: public java.util.List< ModelElementSearch>

search (String info, String searchString,

int mode, String elementName,

ModelElementsCollection collection);

20: }

3.2.1 The LabviewConnectorElement Class

The EJS element is implemented by the class LabviewConnec-
torElement. The functionalities provided by this class are
listed in the following points:

� Implement the interface ModelElement, allowing the
class to be recognized as an element and loaded by
EJS.

� With the configuration provided by the user, it gen-
erates an specialized subclass of LabviewConnector
which implement the high level protocol to commu-
nicate with the JiL Server and LabVIEW.

Thus, the synchronization of the values of the linked EJS
variables and LabVIEW controls and indicators is simply
done with a call to the method step() inside an Evolution
page, a mechanism of EJS which allows for the introduction
of Java code to be executed periodically.

The configuration of the element require only three steps:

1) Add the LabVIEW Element to the current simulation
by dragging and dropping to the Model Elements
page.

2) Open the LabVIEW Element properties dialog, and
introduce the url of the server and the path of the
LabVIEW VI to be loaded.

3) Link the LabVIEW controls and indicators of the
LabVIEW VI with the variables of the EJS simulation.

As mentioned before, it is encouraged to do the commu-
nication with the high-level protocol unless there is a good
reason to use the low-level method.

Regardless of the chosen approach, in most of the appli-
cations, the variables can be grouped into two classes,
namely,

� synchronous, which are the variables that correspond
to controls and indicators that must be updated with
a constant period, because they have a value that
changes frequently. Examples of this kind of varia-
bles are the control input to the actuators or the
measures read from the sensors correspond to this
class.

� asynchronous, which are variables that have the same
value the most of the time, only changing sporadi-
cally, and they usually correspond to configuration
parameters or user commands to interact with the
plant.

4 EXAMPLE: BUILDING A REMOTE LAB

To design a new remote laboratory with the proposed archi-
tecture, there are several common activities that must be
faced:

� Experiments design. Obviously, the starting point is to
design the activities or experiments that should be
possible to carry out with the lab. These activities
will usually depend on the hardware availability
and the teaching purposes.

� LabVIEW VI implementation. Once the activities have
been decided and the hardware is ready, the next
logical step is to implement the LabVIEW applica-
tion that allows to interact locally with the plant. The
functionalities implemented in the server may
depend on the system, but basic needs are: i) data
acquisition to interface with the hardware, ii) safety
measures to protect the plant, and, iii) data logging to
register experiments data. JiL Server is in charge of
all these functionalities.

� EJS user interface. Finally, an user interface must be
provided to students in order to carry out the activi-
ties designed in the first stage.

CHAC�ON ET AL.: EJS, JIL SERVER, AND LABVIEW: AN ARCHITECTURE FOR RAPID DEVELOPMENT OF REMOTE LABS 397

To illustrate the process, a real example of a remote labora-
tory is presented in this section.

4.1 The Experimental Setup

4.1.1 The Controller

The controller is a PID controller with a level crossing sam-
pling strategy where, depending on the sampler location,
either the sensor sends information to the controller only
when the observed signal crosses certain predefined lev-
els, or the controller sends the new values of the control
action to the actuator when there is a significative change
with respect to the previous value. The level crossing is
considered to be the event that triggers the capture and
the sending of a new sample. Thus, the controller can be
divided into two parts, the continuous transfer function
which corresponds to the non-interacting form of the PID
controller, i.e. CðsÞ ¼ kp þ ki

s þ kds, where ðkp; ki; kdÞ are the
controller gains, and the SOD sampler which generates the
discrete events.

4.1.2 The SOD Sampler

The SOD sampler is a block which has a continuous signal
vðtÞ as input and generates a sampled signal vnlðtÞ as output,
which is a piecewise constant signal with vnlðtÞ ¼ vðtkÞ,
8t 2 tk; tkþ1½ Þ. Each tk is denoted as event time, and it holds
tkþ1 ¼ infft j t > tk ^ vðtÞ � vðtkÞj j � dg, except for t0, which
is assumed to be the time instant when the block is initial-
ized as vnlðt0Þ ¼ vðt0Þ. Depending on the initial value, the
non-linearity introduced could have an offset with respect
to the origin, a ¼ vðt0Þ � id, where i ¼ bvðt0Þ=dc.

4.1.3 The Plant

The platform to obtain the experimental data is a remote
laboratory compounds of two identical CoupledTank plants
by Quanser [26]. Each plant consists of two tanks and a
water pump. One of the tanks is placed at the bottom, and
the other at the top. The top tank has a valve whose output
goes to the first tank. Thus, the system admits configura-
tions of different complexities.

4.1.4 The Remote Lab

The platform has been developed with the software tools
Easy Java Simulations [23], [25], JiL Server [24], and Lab-
VIEW, that are combined to allow the interaction with the
plant over the network. The controller is entirely in the cli-
ent side, thus the event-based schemes are adequate
because they allow the reduction of the data transmission,
thus using more efficiently the network resources.

The remote lab is based on the three-tier architecture pre-
sented in Section 4 (Fig. 4). In the server side, there is a PC
connected to the plant through a Data Acquisition Card
(DAQ). This PC runs a LabVIEW Virtual Instrument (Lab-
VIEW VI) which implements monitoring functions and acts
as an interface with the plant, i.e. it allows to obtain the read-
ings from the sensors and sends the control action to the
pumps. Also, there is a webcam to transmit a real-time video
and audio streaming of the plant, to allow students to feel
more like if they were in a real lab, even if they are remotely
connected. Two view elements (or plugins) provided by EJS

make it able to handle the streaming, one of them copes with
the image, and is able to reproduce eitherMotion-JPEG (each
frame is codified as a JPEG image) or MPEG-4 (an standard
video format) transmitted over HTTP, and the other one
plays the audio. The middle-layer is the JiL Server, which
publishes the variables (controls and indicators) of the Lab-
VIEW VI to make them available over a network connection.
Further, the third layer is the EJS application in the client
side, which is not only the graphical interface to configure
the control system and/or monitor the plant, but it also con-
tains the controller implementation itself.

With regard to the communications, from an abstract
point of view each node is composed of two components: a
signal-generator and an event-generator. For example, for a
sensor node the signal generator can be a zero-order hold
that builds the signal from the periodic sensor readings,
and the event-generator is the sampling scheme that decides
when to communicate the data to another nodes. Note that
since the event generator can also be configured to emulate
a periodic sampling, this approach is also valid to represent
a discrete control system.

From the point of view of the control system, the two
control loops, depicted in Fig. 5, are considered. In the
first configuration, the sampler is placed at the output of
the controller, and in the second one it is situated after
the process output.

The student interface (Fig. 6) has been implemented in
EJS based on the use of elements, which allows to facilitate
the building of the lab and to assure its reliability.

Fig. 4. The three-tier architecture of the Remote Lab. The server is the
LabVIEW Virtual Instrument running in the PC connected to the plant,
the client is the student interface in Easy Java Simulations, and the mid-
dle-tier is the JiL Server, which acts as an interface between the client
and the server.

398 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 8, NO. 4, OCTOBER-DECEMBER 2015

In addition to the above described LabVIEW Connector
Element, which encapsulates the connection with the JiL
Server, the Process Control Library has been used to imple-
ment the control system. This library provides the user with
the implementation of the most frequently used systems,
such as systems described by state-space expressions, PID
controllers, or non-linear systems. Therefore, the user can
create a model interconnecting different blocks. This
approach has several advantages, as it is intuitive and facili-
tates a robust and modular design. With this framework, a
wide range of dynamic process control simulations can be
easily built.

The library defines four kinds of blocks:

� Continuous systems, with dynamics described by dif-
ferential equations, which are integrated numerically
by the solver to obtain the evolution.

� Discrete systems, which do not have a continuous
flow, but they change their state with a constant sam-
pling period.

� Event-based systems, which do not have a continuous
flow, but they change their state only when some
condition changes.

� Hybrid systems, which do have a continuous flow as
continuous systems, but which can also change their
state and/or their dynamics when some condition
changes.

These four categories have their associated interface that
defines the methods that a block must implement to be inte-
grated with the EJS ODE solver and/or the Event Detector.

The functionality of the Process Control Library is exposed
to EJS through a set of elements (see Fig. 7) associated to the
blocks.

4.2 Step 1: Adding the Elements

Once the control loops have been designed, the first step
towards the final implementation is to add the Elements to
the simulation (Fig. 7). This must be done in order to have
them available for the model. Each element can be instanti-
ated one or more times, if it is needed to connect with differ-
ent servers, but usually only one instance is necessary. The
name assigned to the element in this step is used to access
the element in the code.

4.3 Step 2: Setting up the Connection

The LabVIEW Connector Element must be configured prior to
use it in the code. The basic configuration required is the url
where the server can be located, the relative path of the Lab-
VIEW VI and the variables that will be exchanged with the
server. This can be done with the configuration dialog pro-
vided by the element (Fig. 8), which allow to create links
between the EJS model variables and the LabVIEW VI controls
and indicators.

As mentioned before, with the configuration data pro-
vided by the user, the Labview Element generates a class
implementing the high level protocol.

4.4 Step 3: Initialization Code

The method labview.connect() must be invoked to open the
connection with the server. Usually this is done either into
an Initialization, to start the connection automatically, or
triggered by a button of the user interface.

4.5 Step 4: Evolution Code

At this step, the communication with the server is usually
done periodically, to obtain the new values from the sensors

Fig. 5. Two control loops with different location of the send-on-delta sam-
pler. (a) The error signal at the input of the controller is sampled, and (b)
the controller output is sampled.

Fig. 6. The interface of the Remote Lab has been implemented in EJS.
The state of the plant is shown by means of the plots at the right, and the
image obtained from the webcam with augmented reality at the top-left
part of the window. At the bottom-left, the student can configure the con-
trol system.

Fig. 7. At the right of theModel Elements Page, the elements available in
the libraries appear as an icon with the name of the element. The list at
the left of the window show the instance of the elements incorporated
into the simulation, with their instance names and description strings.
New instances of the elements are created by dragging and dropping
the element icons.

CHAC�ON ET AL.: EJS, JIL SERVER, AND LABVIEW: AN ARCHITECTURE FOR RAPID DEVELOPMENT OF REMOTE LABS 399

readings, and to send the updates in the control action or
other parameters. These two things can be done with a call
to the method labview.step() in an Evolution Page. Note that
this approach can be rather unefficient as the amount of
exchanged variables grows. Frequently, the values of the
LabVIEW VI controls corresponds to configuration parame-
ters that only changes due to the user interaction. Thus, it
can be a better option to invoke only the method labview.get-
Values() periodically, and to call asynchronously the method
labview.setValues()when needed.

4.6 Step 5: User Interface

The user interface is shown in Fig. 6. The main window
contains two plots which show the process and the control-
ler outputs. Depending on the configuration, the sampler
output is plotted either with the process output (when sam-
pling the process variable) or with the controller output (if
the control variable is sampled). From this window it is pos-
sible to control the execution of the simulation. In addition,
there are three additional windows, one with the configura-
tion of the PID controller, another with the configuration of
the sampler, and the third one to configure the process.

5 CONCLUSION

The main contribution of this work is an architecture for
rapid development of remote labs. The architecture is based
on the use of LabVIEW, the JiL Server, and EJS, and allows
educators who are not expert programmers to address the
development of a remote lab with a minimized learning
curve, due to the intuitivity of the graphical tools in the
framework.

A significant effort has been dedicated to improve the
ease of use, encapsulating all the low-level issues presented
at the client side into the EJS Model Element mechanism. An
Element is a wrapper that allows us to easily incorporate
Java libraries into EJS simulations, providing with a graphi-
cal user interface to help the developer with the configura-
tion and use of the library.

The LabVIEW Connector Element allows to configure a
connection with a LabVIEW VI, to link EJS variables with
the controls and indicators of the LabVIEW VI, and to con-
trol the execution of the LabVIEW VI. An important feature
of the element is that reduces the possibility of introducing
errors in the code, thus reducing the time and effort needed
for the development phase.

ACKNOWLEDGMENTS

This work has been funded by the National Plan Projects
DPI2011-27818-C02-02 and DPI2012-31303 of the Spanish
Ministry of Science and Innovation and FEDER funds.
The authors would like to thank the Chilean National
Commission for Research, Science and Technology
(CONICYT), for the financial support through Fondecyt
Initiation Project Ref. 11121437. Jes�us Chac�on is the
corresponding author.

REFERENCES

[1] D. Gillet, A. V. Nguyen, and Y. Rekik, “Collaborative web-based
experimentation in flexible engineering education,” IEEE Trans.
Educ., vol. 48, no. 4, pp. 696–704, Nov. 2005.

[2] M. Casini, D. Prattichizzo, and A. Vicino, “The automatic control
telelab: A user-friendly interface for distance learning,” IEEE
Trans. Educ., vol. 46, no. 2, pp. 252–257, May 2003.

[3] A. Lareki, J. Mart�ınez, and N. Amenabar, “Towards an efficient
training of university faculty on ICTs,” Comput. Educ., vol. 54,
no. 2, pp. 491–497, 2010.

[4] N. Duro, R. Dormido, H. Vargas, S. Dormido-Canto, J. S�anchez, G.
Farias, and S. Dormido, “An integrated virtual and remote control
lab: The three-tank system as a case study,” Comput. Sci. Eng.,
vol. 10, no. 4, pp. 50–59, 2008.

[5] L. Gomes and S. Bogosyan, “Current trends in remote labo-
ratories,” IEEE Trans. Ind. Electron., vol. 56, no. 12, pp. 4744–4756,
Dec. 2009.

[6] M. Stefanovic, V. Cvijetkovic, M. Matijevic, and V. Simic, “A Lab-
VIEW-based remote laboratory experiments for control engineer-
ing education,” Comput. Appl. Eng. Educ., vol. 19, no. 3, pp. 538-
549, 2011.

[7] LabVIEW home page. (2013) [Online]. Available: http://www.ni.
com/labview

[8] G. Farias, R. De Keyser, S. Dormido, and F. Esquembre,
“Developing networked control labs: A Matlab and easy java sim-
ulations approach,” IEEE Trans. Ind. Electron., vol. 57, no. 10,
pp. 3266–3275, Oct. 2010.

[9] E. Fabregas, G. Farias, S. Dormido-Canto, S. Dormido, and F.
Esquembre, “Developing a remote laboratory for engineering
education,” Comput. Educ., vol. 57, pp. 1686–1697, 2011.

[10] R. Costa, M. Valles, L. M. Jimenez, L. Diaz-Guerra, A. Valera, and
R. Puerto, “Integraci�on de dispositivos f�ısicos de un laboratorio
remoto de control mediante diferentes plataformas: LabVIEW,
Matlab y C/C++,” Revista Iberoamericana de Automtica e Informtica
Ind. RIAI, vol. 7, no. 1, pp. 23–34, 2010.

[11] Z. Magyar and K. Zakova, “SciLab based remote control of
experiments,” Adv. Control Educ., vol. 9, no. 1, pp. 206–211, 2012.

[12] A. M. Hernandez, M. A. Maanas, and R. Costa-Castello, “Learning
respiratory system function in BME studies by means of a virtual
laboratory: RespiLab,” IEEE Trans. Educ., vol. 51, no. 1, pp. 24–34,
Feb. 2008.

[13] EJS home page. (2013) [Online]. Available: http://www.um.es/
fem/EjsWiki

Fig. 8. The configuration window of the LabVIEW Connector Element
helps the user to configure the connection parameters, i.e. the server
address, the path of the LabVIEW VI file, and the linkages between the
EJS variables and the controls and indicators of the LabVIEW VI.

400 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 8, NO. 4, OCTOBER-DECEMBER 2015

[14] J. S�anchez, S. Dormido, R. Pastor, and F. Morilla, “A Java/Matlab-
based environment for remote control system laboratories: Illus-
trated with an inverted pendulum,” IEEE Trans. Educ., vol. 47,
no. 3, pp. 321–329, Aug. 2004.

[15] J. S�anchez, F. Morilla, S. Dormido, J. Aranda, and P. Ruip�erez,
”Virtual and remote control labs using java: A qualitative
approach,” IEEE Control Syst. Mag., vol. 22, no. 2, pp. 8–20, Apr.
2002.

[16] R. Barrett, J. Cona, P. Hyde, B. Ketcham, B. Kinney, and J. Schakel-
man. (2003). Virtual Microscope. Univ. Delaware [Online]. Avail-
able: http://www.udel.edu/biology/ketcham/microscope/

[17] J. Goffart, “Design of a web-based remote lab for a brewery proc-
ess,” Master thesis, HAMK Univ. Appl. Sci., H€ameenlinna, Fin-
land, 2007.

[18] H. Vargas, J. S�anchez, C. A. Jara, F. A. Candelas, F. Torres, and S.
Dormido, “A network of automatic control web-based labo-
ratories,” IEEE Trans. Learn. Technol., vol. 4, no. 3, pp. 197–208,
Jul.–Sep. 2011.

[19] H. Vargas, J. S�anchez, Ch. Salzmann, F. Esquembre, D. Gillet, and
S. Dormido, “Web-enabled remote scientific environments,” Com-
put. Sci. Eng., vol. 11, no. 3, pp. 34–46, 2009.

[20] H. Vargas, Ch. Salzmann, D. Gillet, and S. Dormido, “Remote
experimentation mashup,” presented at the 8th IFAC Symp. Adv.
Control Educ., Kumamoto, Japan, 2009.

[21] H. Vargas, J. S�anchez, N. Duro, R. Dormido, S. Dormido-Canto, G.
Farias, S.Dormido, Ch. Salzmann, and D. Gillet, “A systematic
two-layer approach to develop web-based experimentation envi-
ronments for control engineering education,” Intell. Autom. Soft
Comput., vol. 14, no. 4, pp. 505–524, 2008.

[22] R. Dormido, H. Vargas, N. Duro, J. S�anchez, S. Dormido-Canto, G.
Farias, F. Esquembre, and S. Dormido, “Development of a web-
based control laboratory for automation technicians: The three-
tank system,” IEEE Trans. Educ., vol. 51, no. 1, pp. 35–44, Feb.
2008.

[23] (2013) [Online]. Available: http://fem.um.es/Ejs
[24] H. Vargas, “An integral web-based environment for control engi-

neering education,” Ph.D. dissertation, Dptm. Inform�atica y
Autom�atica, UNED. Madrid, Spain, 2010.

[25] W. Christian and F. Esquembre, “Modeling physics with easy java
simulations,” Phys. Teacher, vol. 45, no. 8, pp. 475–480, 2007.

[26] (2013) [Online]. Available: http://www.quanser.com/english/
html/home/fs_homepage.html

[27] E. Besada-Portas, J. A. L�opez-Orozco, L. de la Torre, and J. M. de
la Cruz-Garc�ıa, “Remote control laboratory using EJS applets and
twinCAT programmable logic controllers,” IEEE Trans. Educ.,
vol. 56, no. 2, pp. 156–164, May 2013.

[28] L. de la Torre, “New generation virtual and remote laboratories:
Integration into web environments 2.0 with learning management
systems,” Ph.D. dissertation, Dptm. Informatica y Automatica,
UNED. Madrid, Spain, 2013

[29] C. Salzmann and D. Gillet, “Smart device paradigm standardiza-
tion for online labs,” in Proc. 4th IEEE Global Eng. Educ. Conf.,
Berlin, Germany, 2013, pp. 1217–1221.

Jes�us Chac�on received the degree in automa-
tion and industrial electronics engineering from
the University of C�ordoba, Spain, in 2010, and
the PhD degree in computer science from UNED,
Madrid, Spain, in 2014. Since 2010, he has been
at UNED Department of Computer Sciences and
Automatic Control as a full time researcher. His
current research interests include simulation and
control of event-based control systems, and
remote and virtual labs in control engineering.

Hector Vargas received the degree in electrical
engineering from the De la Frontera University,
Temuco, Chile, in 2001 and the PhD degree in
computer science from UNED, Madrid, Spain,
in 2010. Since 2010, he has been with the
Electrical Engineering School at Pontificia Uni-
versidad Catolica de Valparaiso. His current
research interests include simulation and con-
trol of dynamic systems, multiagent systems,
and engineering education.

Gonzalo Farias received the degree in computer
science from the De la Frontera University,
Temuco, Chile, in 2001 and the PhD degree in
computer science from UNED, Madrid, Spain, in
2010. Since 2012, he has been with the Electrical
Engineering School at Pontificia Universidad
Catolica de Valparaiso. His current research
interests include machine learning, simulation
and control of dynamic system and engineering
education.

Jos�e S�anchez received the computer sciences
degree in 1994 from Madrid Polytechnic Uni-
versity and the PhD degree in sciences from
UNED in 2001 with a thesis on the develop-
ment of virtual and remote labs for teaching
automatic control across the Internet. Since
1993, he has been at UNED Department of
Computer Sciences and Automatic Control as
an assistant professor. His main research inter-
ests for the time being: event-based control,
networked control systems, remote and virtual

laboratories in control engineering, and pattern recognition in nuclear
fusion databases.

Sebasti�an Dormido received the BS degree in
physics from Complutense University, Madrid,
Spain, in 1968 and the PhD degree in the scien-
ces from Basque Country University, Bilbao,
Spain, in 1971. He received a Doctor Honorary
degree from the Universidad de Huelva and Uni-
versidad de Almer�ıa. In 1981, he was appointed
as a professor of control engineering at UNED,
Madrid. His scientific activities include computer
control of industrial processes, model-based pre-
dictive control, hybrid control, and web-based

labs for distance education. He has authored or coauthored more than
250 technical papers in international journals and conferences and has
supervised more than 35 PhD thesis. From 2001 to 2006, he was the
president of the Spanish Association of Automatic Control, CEA-IFAC.
He received the National Automatic Control prize from IFAC Spanish
Automatic Control Committee.

CHAC�ON ET AL.: EJS, JIL SERVER, AND LABVIEW: AN ARCHITECTURE FOR RAPID DEVELOPMENT OF REMOTE LABS 401

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

