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Abstract—To assist learners during problem-solving activities, an intelligent tutoring system (ITS) has to be equipped with domain

knowledge that can support appropriate tutoring services. Providing domain knowledge is usually done by adopting one of the following

paradigms: building a cognitive model, specifying constraints, integrating an expert system, and using data mining algorithms to learn

domain knowledge. However, for some ill-defined domains, each single paradigm may present some advantages and limitations in

terms of the required resources for deploying it, and tutoring support that can be offered. To address this issue, we propose using a

multiparadigm approach. In this paper, we explain how we have applied this idea in CanadarmTutor, an ITS for learning to operate the

Canadarm2 robotic arm. To support tutoring services in this ill-defined domain, we have developed a multiparadigm model combining:

1) a cognitive model to cover well-defined parts of the task and spatial reasoning, 2) a data mining approach for automatically building a

task model from user solutions for ill-defined parts of the task, and 3) a 3D path-planner to cover other parts of the task for which no

user data are available. The multiparadigm version of CanadarmTutor allows providing a richer set of tutoring services than what could

be offered with previous single paradigm versions of CanadarmTutor.

Index Terms—Computer-assisted instruction, intelligent tutoring systems, ill-defined domains, tutoring feedback

Ç

1 INTRODUCTION

TO assist learners during problem-solving activities, an
intelligent tutoring system (ITS) needs to be equipped

with domain knowledge that can support appropriate
tutoring services [1]. However, modeling the domain
knowledge can be quite time-consuming and difficult,
especially for ill-defined domains [2]. An ill-defined domain
can generally be viewed as a domain that poses new
challenges, i.e., where classical approaches for building
tutoring systems are not applicable or do not work well [20].
Because many domains are ill-defined, there has been
considerable research interest on building ITS for ill-defined
domains in recent years [2], [20], [47]. The notion of ill-
defined domains is partly ill-defined and various criteria
have been proposed to characterize ill-defined domains [2],
[20], [47], which will be reviewed in the next section. To
provide domain knowledge to an ITS, three paradigms have
been widely used in the ITS community. The first one is to
build a cognitive task model such as the ones used in

Cognitive Tutors [4], [5]. This is often done by observing
expert and novice users (e.g., [4], [5]) to produce effective
problem spaces or task models by hand. However, this
process can be very time-consuming [5]. Furthermore, for
ill-defined domains, it is not always possible to define a
complete or partial task model by hand. The second
paradigm is constraint-based modeling (CBM) [6], which
consists of specifying sets of constraints on a correct
behavior instead of providing a complete task description.
Though this approach was shown to be effective for some
ill-defined domains, it can be very challenging to design a
complete set of constraints for some domains. The third
paradigm consists of integrating an expert system into an
ITS (e.g., [7], [8]). However, developing an expert system
can be difficult, time-consuming, and expensive especially
for ill-defined domains, and expert systems sometimes do
not generate explanations in a form that is appropriate for
learning. Recently, a fourth paradigm [9], [10] used data
mining algorithms to automatically extract partial task
models from recorded user demonstrations of the task. The
partial task models can then be used to assist learners.
Even though this approach was proven efficient in
procedural ill-defined domains, the task models extracted
are partial and are not useful for unseen situations.

To address these limitations of each paradigm, we
assume that a good integration of these different paradigms
could help to maximize the benefits associated with each of
them, especially for ill-defined domains. To validate this
hypothesis, we have developed a multiparadigm ITS
named CanadarmTutor to train astronauts how to manip-
ulate the Canadarm2 robot in various situations. In this ITS,
we have integrated three paradigms: 1) using a cognitive
model, 2) using an expert system, and 3) using a data
mining approach. This allows providing tutoring services to
learners that are much richer than what is offered in single-
paradigm versions of CanadarmTutor.
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This paper is organized as follows: Section 2 presents
related work on ill-defined domains. Sections 3, 4, 5, and 6
introduce CanadarmTutor and the three paradigms we
have implemented into it for representing the domain
expertise. Section 7 explains how we have integrated them
to build a multiparadigm version of CanadarmTutor.
Section 8 presents a pilot study with the multiparadigm
version of CanadarmTutor. Section 9 discusses the lessons
learned and what could be generalized to other domains.
Finally, Section 10 draws conclusions.

2 RELATED WORKS ON ILL-DEFINED DOMAINS

In this section, we briefly explain what is an ill-defined
domain and the main types of solutions that have been
adopted for building ITS for ill-defined domains.

2.1 What Is an Ill-Defined Domain?

The definition of what is an ill-defined domain is still under
debate [17], [18], [19]. Generally, an ill-defined domain is
one that poses new challenges, i.e., where classical
approaches for building tutoring systems are not applicable
or do not work well [20]. Note that a complex domain is not
necessarily ill-defined. A domain is said to be ill-defined
because of its structure or content that makes it less suitable
for supporting tutoring services [20]. Examples of ill-
defined domains are ethics, argumentation, essay writing,
and the design of UML diagrams [2]. It is generally agreed
that there is no clear boundary between ill-defined and
well-defined domains. Instead, there is a continuum
ranging from well-defined to ill-defined [2], [20], [21]. For
identifying ill-defined domains, comparing domains on the
basis of their “ill-definedness,” or categorizing strategies
and approaches for supporting tutoring services in these
domains, researchers have identified characteristics of ill-
defined domains. Lynch et al. [2] have performed a
literature review and concluded that domains having one
of the following characteristics are ill-defined:

1. domains having problems with many arguable
solutions and no clear procedure for evaluating a
solution,

2. domains that do not have a clear or complete
domain theory for determining a problem’s outcome
and test its validity,

3. domains where tasks involve the design of new
artifacts or the analysis of incomplete and potentially
incorrect information about a changing environment
for taking decisions,

4. domains incorporating abstract concepts that are
partially indeterminate or do not have an absolute
definition, and

5. domains including complex problems that cannot be
divided into smaller independent subproblems that
are easier to solve.

A definition of what is an ill-defined task was proposed by
Simon [3] based on the study of human problem-solving
and artificial problem-solvers. Simon states that a problem
is ill-structured if it possesses one or more of the following
features [3]: 1) Instructions or information necessary for
solving the problem are incomplete or vague, 2) criterion

that determines whether the goal has been attained is
complex and imprecise, and 3) there are no clear strategies
for finding solutions at each step of the problem-solving
process. Recently, Le et al. [47] proposed a five-classes
progressive scale to classify problems according to their “ill-
definedness,” from well-defined (Class 1) to ill-defined
(Class 5). Class 1 are problems with a single solution. Class 2
are problems with a single problem-solving strategy but
some implementation variants. Class 3 are problems with a
known number of typical problem-solving strategies. Class 4
are problems with a great variety of strategies beyond the
anticipation of a teacher and where solution correctness can
be verified automatically. Finally, Class 5 are problems
whose solution correctness cannot be verified automatically.

2.2 How to Build an ITS for Ill-Defined Domains

To build ITS in ill-defined domains, two main types of
solutions have been adopted. The first type of solution is to
adopt a suitable teaching model that will facilitate the
conception of the ITS for the ill-defined domain. Several
teaching models have been used and have achieved great
success. For example, CATO [22], CATO-Dial [23], and
GUIDON [7] are ITS where learning is structured around
the study of cases. A second teaching model is to provide
metacognitive support to learners. That is, to help learners
being efficient during training sessions, while giving a
limited support to learners for learning domain knowledge.
An example is the ITS created by Walker et al. [24] for
teaching intercultural competence skills. A third teaching
model used in ITS for ill-defined domains is to support
inquiry-learning, a constructivist approach to learning
[1, p. 312]. An example of ITS for inquiry learning is Rashi
[25], a generic ITS applied to several domains including
forestry, history, and geology. A fourth teaching model is
to offer “interactive narratives,” where the learner is put in
a story and has to take decision that will affect the
outcomes (e.g., AEINS [26]). A fifth teaching model for ill-
defined domains is to structure learning around collabora-
tion. The goal is to make the student learn by working and
exchanging information and ideas with peers. The benefit
of this strategy for ill-defined domains is that the
collaboration can replace the need to build a domain
model, for example, Walker et al. [24] (collaboration with
humans) and Chou et al. [27] (collaboration with virtual
companions). More conventional teaching models can also
be adopted (e.g., [29]).

The second type of solution to build an ITS operating in
ill-defined domains consist of choosing an appropriate
paradigm for supporting tutoring services. As mentioned in
Section 1, there exists several paradigms for representing
expertise in ITS. Each of them has advantages and
disadvantages for ill-defined domains. We here review
them in details.

The first paradigm is to build a cognitive model
representing the various steps or solution paths to solve a
problem(s). A cognitive task model can take various forms.
For example, in Cognitive Tutors, task models are repre-
sented by rules corresponding to problem-solving steps [4],
[5]. In Example-Tracing Tutors [44], task models are
represented as state-spaces where states represent problem
states and transitions represent problem-solving operations
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[4]. The process of comparing task models with learner
solutions to detect errors is called model-tracing [1], [5].
Producing a detailed cognitive model such as the one used
in Cognitive Tutors is usually done by observing expert and
novice users performing the task [4], [5] to capture different
ways of solving problems. The advantage of this paradigm
is that reasoning processes of learners can be represented
with great details (in fact, some authors even claim to model
cognitive processes of learners), and that the models
obtained can support a wide variety of tutoring services
such as 1) generating hints and demonstrations to a learner
during problem-solving activities, 2) evaluating the lear-
ners’ knowledge in terms of applied skills, and 3) inferring
learner goals.

The second paradigm is constraint-based modeling [6]. It
consists of specifying sets of constraints on what is a correct
behavior or solution instead of providing an explicit task
model. During a task, when a learner violates a constraint, a
constraint-based tutor diagnoses that an error has been
made, and can provide hints about the violated constraint.
A limitation to this paradigm is that it does not support
tutoring services such as the generation of demonstrations
or the suggestion of next steps to perform to learners.
Moreover, for some tasks, states/solutions are sometimes
not informative enough to permit specifying a set of
relevant constraints, or a very large number of constraints
would be required, because there are too many dissimilar
solutions [28]. Another limitation is that the constraint-
based approach does not take into account the solution path
leading to a constraint violation. This can have two negative
implications. First, generated help can be inadequate,
especially when a solution path largely differs from ideal
solution(s) [1, p. 98]. Second, if the reasoning that led to a
solution is not evaluated, a constraint-based tutor may not
be able to distinguish that a learner answered a question
correctly on purpose or by mistake.

The third paradigm consists of integrating an expert
system in an ITS [7], [8], [11]. This approach is very broad,
because many forms of expert systems can be used such as
rule-based, neural networks, and case-based reasoning
systems. The advantage of this approach is that tailored
expert systems are especially well suited for some domains,
unlike previous paradigms that are general approaches.
There are two main and complimentary ways of using an
expert system in an ITS. First, an expert system can be used
to generate expert solutions. The ITS then compare these
solutions with learner solutions, use them as demonstra-
tions or for suggesting next problem-solving steps to
learners (e.g., Guidon [7]). The second main way of using
an expert system in an ITS is for comparing ideal
solution(s) with learner solutions (e.g., AutoTutor [7],
Mycin [8], and DesignFirst-ITS [29]). In several cases, the
expert systems approach allows providing rich tutoring
services that would be hard to offer with the previous
paradigms. However, limitations of the expert system
approach are that 1) developing or adapting an expert
system can be costly and difficult, especially for ill-defined
domains, and that 2) some expert systems cannot justify
their inferences, or cannot provide explanations that are
appropriate for learning.

The fourth paradigm is to apply data mining or machine
learning techniques for automatically learning partial task
models from user solutions [9], [10]. The rationale of this
approach is that a partial task model can be a satisfying
substitute to an exhaustive task model for domains where a
task model is hard to define. The approach of learning
partial task models is appropriate for problem-solving tasks
where the initial state and the goal state are clear, there are a
large number of possibilities, no clear strategy for finding
the best solution, and solution paths can be expressed as
sequences of actions. A benefit of the approach is that it
does not require specifying any background knowledge by
a domain expert, and the system can enrich its knowledge
base with each new solution. In addition, unlike the expert
system approach, it is based on human solutions. However,
no help can be offered to learners if the solution path was
previously completely unexplored [10]. Based on the
observation that each paradigm has some limitations in
ill-defined domains, we assume that combining several
paradigms would provide better results. In the next
sections, we explain how we have implemented a multi-
paradigm version of CanadarmTutor. The hypothesis is that
a good integration of several paradigms could help to
maximize the benefits associated with each of them for ill-
defined domains. We first present CanadarmTutor and
explain why it operates in an ill-defined domain. We then
describe how we have applied three paradigms separately
and how they are now integrated.

3 THE CANADARMTUTOR TUTORING SYSTEM

CanadarmTutor [11], [12], [43] (see Fig. 1) is a simulation-
based tutoring system to train astronauts how to operate
Canadarm2 (see Fig. 2), a 7-degrees-of-freedom robotic
arm deployed on the International Space Station (ISS).
CanadarmTutor offers a 3D simulation of the arm and the
space station, which let learners to operate the arm in a safe
environment. The main learning activity in CanadarmTutor
is to move the arm from an initial configuration to a goal
configuration by operating the arm. During an exercise,
CanadarmTutor acts as a virtual coach in a manner that is
similar to human coaches at the Canadian Space Agency
[43]. CanadarmTutor offers the following tutoring services
(described in more details in the next sections):

1. assessing a learner solution to see if he is following a
correct solution path,

2. providing hints and proactive help to guide the
learner in a correct solution path,

3. generating demonstrations to show the learner how
to operate the arm,

4. assessing the skills of a learner, and
5. generating personalized problems based on the

skill assessment.

Besides the main learning activity of arm manipulation,
CanadarmTutor also offers an interactive questionnaire
named the “Space Quiz” to learn declarative knowledge
about the space station and how to operate the arm [12].

The CanadarmTutor interface (see Fig. 2) reproduces
parts of Canadarm2’s control panel (see Fig. 3). It has
three monitors. The interface buttons and scroll wheels
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(see Fig. 2) allow users to associate a camera with each
monitor and adjust the zoom, pan, and tilt of the selected
cameras. The arm is controlled with a keyboard in reverse
kinematics or joint-by-joint mode. The text fields at the
bottom part of the window display the state of the
simulator. The menus make it possible to set preferences
and request tutor feedback and demonstrations.

Operating Canadarm2 is difficult. The reason is that arm
movements are performed by astronauts inside the ISS,
with a limited view of the environment. The environment is
rendered through three monitors (see Fig. 3), each showing
the view obtained from a single camera while about
10 cameras are mounted at different locations on the ISS
and on the arm. To move the arm, the operator must select
at every moment the best cameras for viewing the scene
of operation. Moreover, an operator has to select and
perform appropriate joint rotations for moving the arm,
while avoiding collisions and dangerous configurations.
Operators also have to follow a security protocol that
comprises numerous steps because a single mistake, such as
neglecting to lock the arm into position can lead to
catastrophic and costly consequences. The task of manip-
ulating Canadarm2 can be considered ill-defined. We here
explain why by reviewing criteria from Section 2 [47]. A

first criterion is that the initial state is unclear (criteria 1 by
Simon). In CanadarmTutor, the main exercise is to move the
arm from one configuration to another by operating the
arm. The initial state is clear. It is the initial configuration of
the robotic arm.

A second criterion is that the goal state is unclear or that
there is no procedure for evaluating if the goal has been
attained. In CanadarmTutor, the goal state is clear. It is to
bring a payload attached to Canadarm2 in a colored cube,
displayed in the 3D environment. Verifying if the goal state
is met consists of checking if the payload is in the cube and
if faults have been committed such as hitting the ISS, while
moving the arm.

A third criterion is that the task requires creativity. This
is not the case of CanadarmTutor because the user is not
asked to create new artifacts.

A fourth criterion is that there is no clear strategy at each
problem-solving step to move from the initial state to
the goal state. In CanadarmTutor, there are some clear
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Fig. 2. Three-dimensional representation of Canadarm2 illustrating its
seven joints. Fig. 3. Astronaut L. Chiao operating Canadarm2 (courtesy of NASA).

Fig. 1. The CanadarmTutor interface.



metasteps that an astronaut has to follow to operate the
arm. For instance, if an astronaut adjusts the cameras, he
must always set the middle, left, and right monitors, in that
order. Another example is that the brakes must be removed
before moving the arm and be put back after. However, for
selecting the joint rotations to move the arm to the goal,
there is no clear procedure. To select an appropriate
sequence of joint rotations for moving the arm to the goal
state, one could think that the best sequence of joint
rotations is the shortest in terms of the number of rotations
or distance. However, this is generally not the case. The
main criterion to evaluate a sequence of joint rotations is
safety. But what is a safe sequence? It depends on several
criteria that are hard to formalize. First, one should consider
the familiarity of the user with the movements. Second, one
should take into account the context in terms of camera
views, the relative positions of the obstacles to the arm, and
zones/configurations that are considered desirable. Third,
one should consider the risks related to the surrounding
environment and the arm itself with respect to movements.
For instance, one should stay away from configurations
where the arm can get jammed (singularities). Fourth, the
cognitive load and effort required for performing the
movements should be assessed because it has a direct
impact on the risk of accident. For instance, sequences of
movements that require too much concentration or dexter-
ity, or are too difficult in terms of spatial skills (mental
rotations, etc.) should be avoided. For the above reasons,
the skills to operate the arm are mainly learned by practice,
and experts often disagree on what is the best sequence of
arm movements. Note that the lack of formal procedure for
selecting the joint rotations does not mean that it is
impossible to define one. However, the current state of
the knowledge in this domain is that there is none and it
would be difficult and costly to try to define one. For this
reason, we can assert that according to the current knowl-
edge, the task of operating Canadarm2 is ill-defined. More
precisely, we can say that how to select joint rotations is ill-
defined and that other parts of the task are well defined (the
metasteps previously mentioned).

A fifth criterion is that the domain includes abstract
concepts that are partially indeterminate or do not have an
absolute definition. CanadarmTutor meet this criterion.
Some concepts are abstract such as the safety, effort, and
difficulty of a sequence of joint rotations.

A sixth criterion is that problems are complex and
cannot be divided into smaller independent problems.
CanadarmTutor meet this criterion for the subtask of joint
selections. As mentioned previously, there are several
aspects that need to be considered to select an appropriate
sequence of joint rotations and one cannot consider these
aspects independently.

A seventh criterion is that there is a very large number of
possible solutions. Operating Canadarm2 meet this criterion
as there are a huge number of possibilities for solving each
problem. Although this criterion does not guarantee that a
domain is ill-defined, it poses an additional challenge,
which is that it would be impossible to specify all the
possibilities for a problem by hand.

Finally, the task of operating Canadarm2 is classified by
Le et al. [47] as a representative example of Class 4

problems in their five-classes scale. Class 4 are problems
with a great variety of problem-solving strategies beyond
the anticipation of a teacher where solution correctness can
be verified automatically. This definition agrees with the
analysis of the task that we have presented in previous
paragraphs. It is interesting to note that Class 4 is the
second most difficult class of the five-classes scale. In
Class 5, the focus moves from supporting learning domain
knowledge to mainly supporting learners at being efficient
during training sessions [47].

In the next sections, we explained how we have applied
three different paradigms to provide tutoring services in
CanadarmTutor. We then present their integration in a
multiparadigm version of CanadarmTutor.

4 INTEGRATING A PATH-PLANNER FOR AUTOMATIC

PATH GENERATION

To implement the domain expertise in CanadarmTutor, we
first applied the expert system paradigm. A custom path-
planner named FADPRM was developed and integrated
into CanadarmTutor (see [11] for full details).

FADPRM is an efficient algorithm for robot path-
planning in constrained-based environments. It lets the
user specify different zones in the environment with
arbitrary geometrical forms. A degree of desirability dd
can be assigned to each zone (a real in [0, 1]). A dd value of 1
means a highly desirable zone while a dd of 0 means a zone
that should be avoided at all cost. In CanadarmTutor, the
number, the form, and the placement of zones reflect the
disposition of cameras and zones that are considered safer.
For example, a zone that is not visible by any camera will be
considered as a nondesired zone with a dd near 0 and will
take an arbitrary polygonal shape. The FADPRM algorithm
uses a probabilistic roadmap approach to calculate a
trajectory (see Fig. 4) between any two robotic arm
configurations while avoiding obstacles and considering
constraints such as obstacles and dangerous and desirable
zones. FADPRM works as follows: Based on the probabil-
istic roadmap approach for path-planning (PRM) [45], it
builds a roadmap by choosing robot configurations prob-
abilistically, with a probability that is biased by the density
of obstacles. A path is then a sequence of collision free
edges in the roadmap, connecting the initial and goal
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configurations. Furthermore, FADPRM also integrates
characteristics of the Anytime Dynamic A* (AD*) approach
for path-planning [46], to get new paths when the
conditions defining the environment have dynamically
changed, FADPRM can quickly plan a new path by
exploiting a previous roadmap. Moreover, for efficiency
purposes, paths are computed through incremental im-
provements so that the planner can be called at anytime to
provide a collision-free path and the more time it is given,
the better the path optimizes moves through desirable
zones. Therefore, the planner is a combination of the
traditional PRM approach [45] and AD* [46] and it is
flexible in that it takes into account zones with degrees of
desirability. This explains why it is called flexible anytime
dynamic PRM (FADPRM).

Integrating FADPRM in CanadarmTutor provides the
following benefits. First, in a training session, Canadarm-
Tutor uses FADPRM to automatically produce demonstra-
tions of correct arm maneuver on the ISS by generating
safe path(s) between two arm configurations, while con-
sidering the obstacles (the ISS modules), cameras and other
constraints. Second, for a given task, CanadarmTutor
automatically generates paths and estimates the distance
with the learner solution to evaluate it.

Although the path-planner can provide useful tutoring
services, our experiments with learners show that the
generated paths are not always realistic, as they are not
based on human experience. Moreover, they do not cover
some important aspects of the task such as selecting
cameras and adjusting their parameters. Furthermore, given
that the path-planner has no representation of knowledge
and skills, it cannot support important tutoring services
such as estimating learners’ knowledge gaps.

5 INTEGRATING A COGNITIVE MODEL TO ASSESS

SKILLS AND SPATIAL REASONING

Facing these problems, we applied the paradigm of
building a cognitive model [12]. To understand how
astronauts operate Canadarm2, we attended two-week
training at the Canadian Space Agency and interviewed
the training staff. To encode how users operate the robotic
arm, we used a custom rule-based cognitive model [12],
which is similar to what is used in CTAT [1] and the
Cognitive Tutors [5], which are the reference cognitive
models in the field of ITS. The main difference between our
model and the one used in the Cognitive Tutors is that ours
is designed to also evaluate spatial reasoning, because it is a
key issue for manipulating Canadarm2.

5.1 Literature Review on Spatial Cognition

To take into account the spatial dimension, we performed
an extensive literature review on spatial cognition. We
found that most researchers in psychology and neuros-
ciences agree that there are two main types of spatial
knowledge [14], [15], [30]. Egocentric representations describe
the position of objects from a person’s perspective, whereas
allocentric representations represent spatial relationship(s)
between objects independently of any point of view. For
example, in the context of route navigation, egocentric
representations describe relative landmarks along a route to
follow, whereas an allocentric representation could be a

map describing the relative position of landmarks to each
other [15]. According to Tversky [15], egocentric represen-
tations are sufficient to perform tasks such as navigating
through an environment, but they are inadequate to
perform complex spatial reasoning. For reasoning that
requires inference, humans build allocentric representations
that do not preserve measurements, but instead retain the
main relationships between elements. Such representations
do not encode a single perspective, yet they make it possible
to adopt several perspectives. This allows performing
complex spatial reasoning. Strong evidences in neuros-
ciences support the distinction between allocentric ego-
centric representations. That is when the human being
performs spatial task different regions of the brain activates
between [14], [15], [30]. For example, “place cells” have
been discovered in human hippocampi [31], and head-
direction cells [32], [33], speed modulated place cells [34],
and cells with periodic place fields [35] in rats.

Because allocentric representations are crucial for com-
plex reasoning, we, therefore, wanted to assess these
representations in CanadarmTutor. The goal is to see if
the learner can not only use egocentric representation but
also build and use allocentric representations. To see how
we could represent allocentric representations in a compu-
tational model, we reviewed computational models in
spatial cognition research. We have found that most of the
models replicate a specific phenomenon of spatial cogni-
tion, such as visual perception and motion recognition [36],
navigation in 3D environments [31], [37] and mental
imagery and inference from spatial descriptions [38]. Few
models attempt to provide a more general explanation of
spatial reasoning [39]. In our case, we are interested in a
general model of reasoning to not only evaluate spatial
reasoning and representations but also other necessary
skills to operate Canadarm2, in an integrated way.
Furthermore, several existing models of spatial cognition
are neural network-based (e.g., [40]). We dismissed these
latter because knowledge has to be explicit to support
detailed feedback to the learner in ITS. We, therefore, based
our work on symbolic models of spatial cognitions [36],
[37], [38], [39]. Those latter represents allocentric represen-
tations as relations of the form “a r b,” where “a” and “b” are
symbols designating objects and “r,” a spatial relationship
between the objects [36], [37], [38]. But which cognitive
model should we use in CanadarmTutor to evaluate spatial
reasoning and reasoning in general? We had two options:
1) adapt a model of spatial cognition to be used in ITS or
2) adapt a cognitive model used in ITS to also evaluate
spatial reasoning. We chose the second option because
models of spatial cognition in cognitive science are not
designed to be used in ITS and would require major
changes to be used that way.

5.2 The Cognitive Model

We, therefore, based our work on a rule-based cognitive
model that we had developed in previous works. We here
only give the main idea of this model and how it has been
adapted. The interested reader can refer to a complete article
on this cognitive model for full details [12]. The cognitive
model is based on the ACT-R [41] and MIACE [42] cognitive
theories. It allows describing how to perform a procedural
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task by specifying goals, rules for satisfying goals and how
the declarative knowledge (facts) is manipulated by the
rules to accomplish goals. A rule represents the procedural
knowledge of how to achieve a goal. A rule has parameters
and some rules have subgoals. Several rules can be used to
solve the same goal (representing different correct or
erroneous ways of achieving the goal). This system allows
performing model-tracing like in the Cognitive Tutors to
detect procedural errors made by learners. Moreover, it also
includes an extension to the model-tracing approach to
indirectly assess the declarative knowledge that is recalled
and in particular the spatial knowledge [12].

5.3 Applying the Cognitive Model in CanadarmTutor

To model the spatial knowledge with the aforementioned
model, we discretized the 3D space into 3D subspaces that
we name elementary spaces (ESP). This allows us to
represent the continuous space as discrete symbols. In
Canadarm2 manipulation, it was determined that the most
realistic types of ESP for mental processing are ESPs
configured with an arm shape. Fig. 5 illustrates 6 of the
30 ESPs that we defined. For example, one can move the
arm from ESP 1 to ESP 2, ESP 3, and ESP 4. ESP 5 can
be reached from ESP 3, and ES6 can be reached from ES4.
Each ESP is represented by three cubes. Spatial knowledge
was then encoded as four types of relationships of the form
“a r b” such as

1. a camera can see an ESP or an ISS module,
2. an ESP contains an ISS module,
3. an ESP is next to another ESP, and
4. a camera is attached to an ISS module.

We then modeled the procedural knowledge of how to move
the arm to a goal configuration as a set of rules. These rules
perform a loop where the learner, before any arm move-
ments, must recall a set of cameras for viewing the ESPs
containing the arm, select the correct cameras, adjust their
parameters in the correct order (pan, tilt, and then zoom),
retrieve a sequence of ESPs to go from the current ESP to the
goal, and then start moving the arm to the next ESP [12]. An
example of rule is the rule of adjusting cameras in the correct
order. It is named “PAdjustCameras,” takes as parameter
the current ESP and it consists of three subgoals ordered
as follows: GAdjustCenterCamera, GAdjustLeftCamera,
and GAdjustRightCamera, which takes the current ESP
as parameter.

The task model allowed us to integrate six new tutoring
services in CanadarmTutor [12]. First, a learner can explore
the task model to learn how to operate the arm and learn
about the properties of the ISS, the cameras and Canadarm2.

Second, model-tracing capability allows the system to
evaluate the learner’s knowledge during arm manipulation
exercises. After a few exercises, CanadarmTutor automati-
cally builds a detailed learner profile that shows the
strength and weakness of the learner in terms of mastered,
missing and buggy knowledge. This is done by comparing
the task model with a learner solution to see which
knowledge (rules and declarative knowledge) is used by
the learner and which one is not.

Third, CanadarmTutor uses the declarative knowledge
linked to the task model to generate and provide the learner
with direct questions. These questions are parts of a
questionnaire named the “Space Quiz” that the learner
can take to test his declarative knowledge, or can be asked
by CanadarmTutor. Several types of questions can be
generated from the declarative knowledge. The four main
types are illustrated in Fig. 6. Fig. 6a asks where a given
camera is located. Fig. 6b asks to name an ISS module.
Fig. 6c asks which camera was used to obtain a given view.
Fig. 6d asks to name a given joint of Canadarm 2.

The fourth tutoring service is to assist the learners by
providing useful hints and demonstrations during arm
manipulation exercises. Suggesting the next step and
generating demonstrations is done thanks to the model-
tracing capability of this paradigm.

The fifth tutoring service is to generate personalized
exercises based on the student model. By using the student
model, CanadarmTutor can generate exercises that involve
knowledge not yet mastered by the learner. For example, if
a learner had not shown that he can use a given camera,
CanadarmTutor can generate an exercise that requires to
use this camera.

The sixth and last tutoring service is to offer proactive
help to the learner. For instance, if Canadarm2 is moved
without performing camera adjustment, CanadarmTutor
warns the learner to check if cameras are well adjusted.
This type of help is also implemented based on model-
tracing. It is particularly appreciated by beginners and
intermediate learners.
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However, this cognitive model has some limitations.
Although it models the main steps of the manipulation
task in detail, it does not go into detail about how to select
joint rotations for moving Canadarm2. The reason is that
for a given arm movement exercise, there does not exist a
clear and complete formal procedure to decide how to
select the best joint rotations (as discussed in Section 2).
Choosing one of the possibilities requires considering
several abstract criteria such as the safety and ease of
maneuvers (as discussed in Section 3). It is, thus, not
possible to define a complete and explicit task model for
selecting appropriate joint rotations, which makes this part
of the Canadarm2 manipulation ill-defined. Moreover,
because there are a huge number of different possibilities,
it would not be feasible to just define all the possibilities by
hand. The path-planner described in Section 4 can generate
paths to provide complementary help at the level of joint
rotations. But these paths are sometimes too complex and
difficult to be executed by users, as they are not based on
human solutions.

6 USING DATA MINING TECHNIQUES TO LEARN

PARTIAL TASK MODELS

Given the aforementioned drawbacks with other para-
digms, we applied the fourth paradigm, which is to apply
data mining techniques for automatically learning partial
task models from user solutions [10]. It consists of applying
data mining algorithms on user solutions to automatically
extract a partial task model instead of defining it by hand.
The goal is to provide tutoring services for parts of the task
of operating the arm that are ill-defined and could not be
represented easily with the cognitive model (e.g., how to
select the joint rotations to move Canadarm2). An advan-
tage of this approach over the path-planner (see Section 4) is
that the data mining approach is based on real user data.
Note that the approach that we have developed according
to this paradigm is inspired by work on learning domain
knowledge by demonstration in ITS for well-defined
domains (e.g., [9], [58], [59]). But, to our knowledge it is
the first approach to learn domain knowledge for an ill-
defined domain [10]. What makes our approach applicable
to the ill-defined domain of CanadarmTutor is that it does
not attempt to generate an exhaustive model, but rather
uses a scalable algorithm to generate a partial model by
discovering patterns in user solutions [10]. Our approach is
applied in three steps.

6.1 Recording User Solutions

The first step is to record a set of user solutions for each
exercise [10]. In CanadarmTutor, an exercise consists of
moving the robotic arm from an initial configuration to a
goal configuration. For each attempt, a sequence of actions is
created in a database. We defined 112 actions that can be
recorded including 1) applying a rotation value to one of the
seven arm joints 2) selecting a camera, and 3) performing
an increase or decrease of the pan/tilt/zoom of a camera.
An example of a partial action sequence recorded for a
user in CanadarmTutor is <(0, rotateSP{2}), (1, selectCP3),
(2, panCP2{4}), (3, zoomCP2{2})> which represents decreas-
ing the rotation value of joint SP by two units, selecting
camera CP3, increasing the pan of camera CP2 by four units
and then its zoom by two units. Furthermore, we annotated
sequences with contextual information called “dimensions.”
Table 1 shows an example of a toy database containing
six solutions annotated with five dimensions. In this Table,
letters a, b, c, and d denote actions. The dimension “Solution
state” indicates if the learner solution was successful. Values
for this dimension are assigned automatically by Cana-
darmTutor by checking if the arm has entered the goal
state. The four other dimensions represent the user profile.
Adding these dimensions is not required but it makes
the approach tailored to learner profiles. In this example,
we show four such dimensions. “Expertise” denotes
the expertise level of the learner who performed a sequence.
“Skill_1,” “Skill_2,” and “Skill_3” indicate whether any of
these three specific skills were demonstrated by the learner
when solving the problem. This example shows five
dimensions. However, any kind of contextual information
can be encoded as dimensions. In CanadarmTutor, we used
10 skills that are the most important according to our
observations at the Canadian Space Agency, and the
“solution state” and “expertise level” dimensions to
annotate sequences.

6.2 Generating a Partial-Task Model

In the second step, we apply a data mining algorithm to
extract a partial problem space from user solutions. To
perform this extraction, an appropriate method is needed
that considers many factors associated with the specific
conditions in which a tutoring system such as Canadarm-
Tutor operates. These factors include the temporal
dimension of events, actions with parameters, the user’s
profile, etc. All these factors suggest that we need a
temporal pattern mining technique. According to Han and
Kamber [49], there are four main kinds of patterns that
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can be discovered in sequential data. These are trends,
similar sequences, sequential patterns, and periodic
patterns. We chose to mine sequential patterns, as we
are interested in finding relationships between occurrences
of events in users’ solutions. To mine sequential patterns,
several efficient algorithms have been proposed. These
have been previously applied, for example, to analyze
earthquake data [50] and source code in software
engineering [51]. While traditional sequential pattern
mining algorithms (SPM) have as their only goal to
discover sequential patterns that occur frequently in
several sequences of a database [50], [51], other algorithms
have proposed numerous extensions to the problem of
sequential pattern mining such as mining patterns
respecting time-constraints [50], mining compact repre-
sentations of patterns [51], [53], [54], and incremental
mining of patterns [51]. For this work, we developed a
custom sequential pattern mining algorithm [10] that
combines several features from other algorithms such as
accepting time constraints [50], processing sequence
databases with dimensions [54], [55], mining a compact
representation of all patterns [53], [54], and that also adds
some original features such as accepting symbols with
parameter values [10]. Our algorithm’s implementation
can be downloaded freely as part of the open-source
SPMF data mining software (http://www.philippe-
fournier-viger.com/spmf/). The algorithm takes as input
a sequence database and efficiently finds all sequential
patterns. A sequential pattern is a subsequence that is
common to at least minsup sequences, where minsup is a
parameter of the algorithm. Table 2 shows some sequen-
tial patterns found from the database shown in Table 1
with minsup ¼ 2. Consider pattern P3. This pattern
represents doing action b one time unit (immediately)
after action a. P3 appears in sequences S1, S3, and S4 of
Table 1. It has, thus, a support (frequency) of three.
Moreover, the annotations for P3 tell us that this pattern
was performed by users with varied expertise level who
do not possess Skill_1 but possess Skills_2 and that P3
was found in plan(s) that failed, as well as plan(s) that
succeeded. Note that actions in a sequential pattern do not
need to appear contiguously in a sequence. For example,
the pattern <(0, a), (2, d)> would be considered as
appearing in sequence <(0, a),(1 ,b), (2, d)> even if there
is a some actions between (0, a) and (2, d). The reason for
allowing noncontiguous sequential pattern is to eliminate
“noisy” (nonfrequent) learners’ actions. In our algorithm,
we offer parameters to set the minimum and maximum
size of the gap between actions in a sequential pattern. In
CanadarmTutor, we have observed that setting the
minimum gap to 0 and the maximum gap to 2 provided
the best results. The benefits of accepting a gap of two is

that it eliminates some noisy actions, but at the same time
it does not allow larger gap sizes that could make patterns
less useful for tracking a learner’s actions.

Another important consideration is that when applying
sequential pattern mining, there can be many redundant
sequential patterns found (patterns included in other
patterns having the same support). To eliminate this
redundancy, we have adapted our algorithm to mine only
frequent closed sequential patterns based on the work of Wang
et al. [53] and Songram et al. [54]. Closed sequential patterns
are patterns that are not contained in another sequential
pattern having the same support. Mining closed sequential
patterns has the advantage of greatly reducing the number
of patterns found, without information loss (the set of
closed sequential patterns allows reconstituting the set of all
sequential patterns and their frequency) [53]. Finally, note
that our algorithm was also extended to handle actions
having parameters. This allows representing actions such as
rotating a joint of the arm by 20 degrees. The interested
reader can refer to [10] for full details about this extension.

6.3 Supporting Tutoring Services with the Partial-
Task Model

We then implemented three tutoring services in Canadarm-
Tutor that use the partial task models. The basic operation
that is used for providing assistance is to recognize a
learner’s plan. In CanadarmTutor, this is achieved by the
plan recognition algorithm presented in Fig. 7. This
algorithm named RecognizePlan is executed after each
student action. It takes as input the sequence of actions
performed by the student (Student_trace) for the current
problem and a set of sequential patterns (Patterns). When
the plan recognition algorithm is called for the first time,
the variable Patterns is initialized with the whole set of
patterns Patterns to note all the patterns that include
Student_trace. If no pattern is found, the algorithm removes
the last action performed by the learner from Student_trace
and searches again for matching patterns. This is repeated
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until the set of matching patterns is not empty or the length
of Student_trace is smaller than 2. In our tests, removing
user actions has improved the capability of the plan
recognition algorithm to track learner’s patterns consider-
ably, as it makes the algorithm more flexible. The next time
RecognizePlan is called, it will be called with the new
Student_trace sequence and the set of matching patterns
found by the last execution of RecognizePlan, or the whole
set of patterns if none matched.

After performing preliminary tests with the plan
recognition algorithm, we noticed that in general, after
more than six actions performed by a learner, it becomes
hard for RecognizePlan to tell which pattern the learner is
following. For that reason, we made improvements to how
CanadarmTutor applies the sequential pattern mining
algorithm to extract a knowledge base. Originally, it mined
frequent patterns from sequences of user actions for a whole
problem-solving exercise. We modified our approach to
add the notion of “problem states.” In the context of
CanadarmTutor, where an exercise consists of moving a
robotic arm to attain a specific arm configuration, the 3D
space was divided into 3D cubes, and the problem state at a
given moment is defined as the set of 3D cubes containing
the arm joints. An exercise is then viewed as going from a
problem state P1 to a problem state Pf . For each attempt at
solving the exercise, CanadarmTutor logs 1) the sequence of
problem states visited by the learner A ¼ P1; P2; . . .; Pn and
2) the list of actions performed by the learner to go from
each problem state to the next visited problem state
ðP1 to P2; P2 to P3; . . . ; Pn�1 to PnÞ. After many users per-
form the same exercise, CanadarmTutor extracts sequential
patterns from 1) sequences of problem states visited, and
from 2) sequences of actions performed for going from a
problem state to another. To take advantage of the added
notion of problem states, we modified RecognizePlan so that
at every moment only the patterns performed in the current
problem state are considered. To do so, every time the
problem-state changes, RecognizePlan will be called with the
set of patterns associated with the new problem state.
Moreover, at a coarser grain level tracking the problem
states visited by the learners is also achieved by calling
RecognizePlan. This allows connecting patterns for different
problem states. We describe next the main tutoring services
that a tutoring agent can provide based on the plan
recognition algorithm.

First, CanadarmTutor can assess the profile of the learner
(expertise level, skills, etc.) by looking at the applied
patterns. For example, if a learner applies patterns with
the value “intermediate” for the dimension “expertise”
80 percent of the time, then CanadarmTutor asserts that the
learner expertise level is “intermediate.” In the same way,
CanadarmTutor can diagnose mastered and missing/buggy
skills for users who demonstrated a pattern by looking at
the “skills” dimensions of the applied patterns.

The second tutoring service consists in determining the
possible actions from the set of patterns and then, if
needed, proposing one or more actions to the learner. In
CanadarmTutor, this functionality is triggered when the
learner selects “What should I do next?” in the interface
menu. CanadarmTutor then checks the matching patterns
to make a recommendation to the learner. For example, if
the learner performed a rotation of the joint SP followed by

a rotation of the joint EP and ask “What should I do
next?”, CanadarmTutor will look for pattern(s) that match
with SP, EP to suggest what next action(s) the learner
should do.

The third tutoring service is to let learners explore patterns
by themselves to find out about ways to solve problems.
CanadarmTutor provides an interface that lists the patterns
and their annotations, and provides sorting and filtering
functions (e.g., to display only patterns leading to success by
intermediate users). This tutoring service is inspired by the
idea of open-learner models used in other ITS [57].

The paradigm of learning partial task models from user
solutions has several advantages. Unlike the path-planner
(see Section 4), it allows us to provide tutoring services
based on real users’ arm manipulations (multiple user
profiles). Moreover, it allows us to assist learners about how
to choose a joint rotation—which was impossible to achieve
with the cognitive model (see Section 5). However, an
important limitation with the partial task model paradigm
is that no help can be offered to learners for unexplored
solution paths. Thus, each of the three paradigms that we
have separately tested into CanadarmTutor has its own
advantages and limitations. Based on this observation, we
decided to combine them to create a multiparadigm version
of CanadarmTutor.

7 COMBINING THE THREE PARADIGMS

The goal of the multiparadigm model is to combine the
paradigms to take advantages of each one’s strength.

7.1 Architecture of the Multiparadigm Version of
CanadarmTutor

Fig. 8 illustrates the architecture of the multiparadigm
version of CanadarmTutor. The basic idea of this new
architecture is the following. The cognitive model, path-
planner and data mining approach collaborate to support
tutoring services. The cognitive model and the data mining
approach use the same student model to provide tutoring
services and update it. The data mining approach uses
recorded user solutions to generate patterns and uses the
patterns to support tutoring services. The tutoring services
are regulated by a module called “pedagogical module,”
which determines how tutoring services interact with
learners from a pedagogical perspective (see [43] for details
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about how this module interacts with users). Finally, the
last components of the architecture are the 3D simulator
and the user interface.

7.2 The Multiparadigm Tutoring Services

We now describe how the tutoring services of the three
paradigms are integrated. Some tutoring services can be
offered by more than one paradigm while others can only
be offered by a single paradigm. To determine what to do in
case of conflicts between paradigms, we defined two
principles. Principle 1: If multiple paradigms can provide the
same tutoring service in a given situation, use the first applicable
paradigm according to this order: cognitive model, data mining
approach and path-planner. We give priority to the cognitive
model over the data mining approach because the cognitive
model is very detailed and has been built by hand based on
extensive observation of real users. It should, thus, provide
more relevant tutoring feedback than the data mining
approach, which is approximate and automatic. We give
priority to the data mining approach over the path-planner
because the data mining approach is based on human
solutions while the path-planner is not. For this reason, the
data mining approach should generally provide more
realistic feedback than the path-planner. Principle 2: If
multiple paradigms can offer complementary tutoring services
in a given situation, the information provided by the tutoring
services can be aggregated and then presented to the learner.

We now explain how the multiparadigm version oper-
ates. During arm manipulation exercises, CanadarmTutor
performs model-tracing with the cognitive model to update
the student model. The student model is a list of knowledge
units from the cognitive model. Each unit is annotated with
a probability that indicates if the knowledge is mastered by
the learner or not. Moreover, the student model is also
updated when a learner answers questions asked by
CanadarmTutor (see Section 5).

When an exercise is completed (fail or success), the
solution is added to the sequence database of user solutions
for that exercise (a database similar to the one shown in
Table 1). The solution is then annotated with the dimension
“Solution State” automatically to indicate the success or
failure. Moreover, CanadarmTutor uses the skills of the
cognitive model to annotate sequences as dimensions (if
the mastery level is higher than 0.8 in the student model, the
skill is considered mastered). Thereafter, when a minimum
of 10 sequences has been recorded for an exercise, the data
mining algorithm is applied for extracting a partial task
model for the exercise.

When CanadarmTutor detects that a learner follows a
pattern during an exercise from the corresponding partial
task model, dimensions of the pattern are used for
updating the student model. For example, if a learner
applies a pattern common to learners possessing “Skill_1,”
the mastery level of “Skill_1” in the student model will be
heightened by a small increment (we use 0.05 in
CanadarmTutor). In this way, the partial task models are
also used for updating the student model (the student
model is shared by the cognitive model and the partial task
model approach).

During a learning session, CanadarmTutor uses the
student model for generating exercises that progressively
involves new knowledge or knowledge that is judged not

yet mastered by the learner (this is done as explained in
Section 5). Either the exercises that are generated are
questions about declarative knowledge of the cognitive
model or robotic arm manipulation exercises.

During an arm manipulation exercise, when a learner
asks for help about what should be done next, the system
generates a solution using the three aforementioned
approaches (see Fig. 9). First, the cognitive model gives
the general procedure that should be followed for moving
the arm such as “You should select a camera and then
adjusts its parameter for monitor 2” (see Fig. 9A). This help
is generated by performing model-tracing with the cogni-
tive model. Then, in the same window, the patterns of the
partial task model that match the current user solution are
displayed to the learner (Principle 2). For example, three
patterns are presented in Fig. 9B. The learner can view
a pattern as an animation by using the arrow buttons.
Patterns contain the information about the joint rotations
that should be performed for moving the arm. If no pattern
matches the current learner solution (Principle 1), a
demonstration is generated by the path-planner that
demonstrates possible paths (see Fig. 9C).

Furthermore, CanadarmTutor can provide proactive help
to learners such as assisting the learners to choose the best
cameras thanks to the cognitive model (see Section 5).
CanadarmTutor can also let the learner explore patterns
from the partial task models (see Section 6) or the cognitive
model (see Section 4) to learn about different ways to
solve problems or about the general procedure for moving
the arm. The learner can also request demonstrations at any
time from the path-planner (see Section 4) or the cognitive
model (see Section 5).

8 A PILOT STUDY

We performed an evaluation with 10 users to evaluate
the multiparadigm version of CanadarmTutor. The goal of
the evaluation was mainly to observe if the new version
of CanadarmTutor provides a positive user experience.
Moreover, we wanted to observe if the tutoring services
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help the learners to learn and if, during an exercise,
CanadarmTutor’s interventions are relevant to the current
solution. Before performing the experiments, we recorded
at least 30 solutions for each robotic arm manipulation
exercise. That is, to make sure that for each exercise some
patterns are extracted by our data mining algorithm.

8.1 Experimental Procedure

The experimental procedure is as follows: We first explained
the experimental procedure to each participant. We in-
formed them about the kind of data that will be collected
and how it will be stored. Then, we asked each participant to
perform 15 procedural exercises of moving the arm from a
given position to a goal position. Sequences of exercises
were determined by CanadarmTutor based on the student
model (as explained in Section 5). Completing the exercises
took about 1 hour for each participant. During this session,
we allowed participants to use all tutoring services. We set
CanadarmTutor to record all participant solutions so that
they can be examined after the experiment. During the
experiment, we observed each participant and took notes
to evaluate 1) if the tutoring services gave relevant help
when they were used and 2) whether the learner corrected
his mistakes after using the tutoring services or if he was
more confused. Thereafter, we performed a 5-minute inter-
view with each participant to get his or her opinion on the
same two aspects, and also their general opinion about
the tutoring services and how CanadarmTutor could be
improved. Finally, after the experiment was completed, we
reviewed the data recorded by CanadarmTutor to make sure
that nothing important went unnoticed.

8.2 Experimental Results

All participants completed the 15 exercises. Most partici-
pants used all tutoring services. We found that participants
relied more on the tutoring services for the most difficult
exercises, which is what we expected. All participants
mentioned that they found the tutoring services very useful
and that the tutoring services helped them learn how to
manipulate Canadarm2. Our observation was that learners
using the tutoring services did not repeat their mistakes
after receiving feedback in most cases. Users also agreed
that the set of tutoring services would be less interesting if
some were removed, which seems to indicate that the
multiparadigm version of CanadarmTutor is superior to
previous single-paradigm versions of CanadarmTutor.
Note that we previously did pilot studies with single-
paradigm versions of CanadarmTutor (see [10], [11], [12]
for details), and the feedback for the multiparadigm
version was considerably more positive. This is what we
expected because this version is much more complete in
terms of terms of features (tutoring services). Besides, we
received comments for improvements and bug fixes. For
example, two participants said they would like that
CanadarmTutor has more elaborated pedagogical strate-
gies and also the capability of generating more complex
tutorial dialogues. This is because we used an early version
of the tutoring module, which provided a limited pedago-
gical adaptation in this experiment. Recently, we have
developed a newer version of this module (see [43] for a
description of this module).

9 LESSONS LEARNED

We have learned several important lessons from our work
on the multiparadigm version of CanadarmTutor. The first
lesson is that combining several paradigms for a procedural
and ill-defined domain can provide a better solution than
using a single paradigm. In CanadarmTutor, it allows
providing more tutoring services to learners compared to
previous single-paradigm versions of CanadarmTutor
because some tutoring services can only be offered by a
single paradigm. Based on our experience, we, therefore,
encourage ITS researchers to attempt to build multipar-
adigm ITS in other ill-defined domains.

A second lesson learned is that if two paradigms can be
applied to provide the same tutoring service in a given
situation, it is important to define a priority order to choose
which paradigms to use. In CanadarmTutor, there is a clear
priority hierarchy (see Principle 1). When possible (for well-
defined parts of the task), the cognitive model is used. For
parts of the task that the cognitive model cannot be used
(ill-defined parts of the task—joint rotations), the data
mining approach is used (as an alternative or to provide
complementary help with the cognitive model). Finally, if
the cognitive model is not applicable and there is no
patterns found by the data mining approach, the path-
planner is used as a fallback approach.

A third lesson learned is that paradigms should
preferably be integrated together because the sum of all
the paradigms can be greater than the sum of each
paradigm. For example, in CanadarmTutor, it is beneficial
to use skills from the cognitive model to automatically
annotate sequences used by the data mining approach. This
allows finding patterns by the data mining approach that
are tailored to the skills of each user. In our literature
review, we have found an instance of a multiparadigm tutor
combining a cognitive model and the constraint-based
modeling paradigms. However, the paradigms are not
integrated (one is used for providing help about domain
knowledge and the other is used for supporting the learning
process) [56].

A fourth lesson learned is that there are still several open-
challenges for building multiparadigm ITS. For instance, a
challenge is to make the best use of each paradigm when it is
more appropriate from a pedagogical perspective. Another
challenge is to build multiparadigm tutors using other
paradigms or different techniques for each paradigm.

Finally, a fifth lesson learned is that a multiparadigm
model as a whole may be hard to reuse in other domains
since it is a specific combination of several paradigms that is
tailored for a specific ill-defined domain. In the case of
CanadarmTutor, the multiparadigm model developed may
only be reusable for robot manipulation tasks. However, the
work that we have done on each single paradigm is
reusable individually. For example, the cognitive model
and the data mining approach could be reused in other
domains because their basic structure has been designed to
be domain independent as much as possible. The path-
planner could also be reused in other tasks even outside of
the domain of ITS. For example, it could be used to design
an intelligent robot that moves a robotic arm by itself. Our
suggestion is that if ITS designers want to be able to reuse
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each paradigm of a multiparadigm tutor, they should use a
good object-oriented design.

10 CONCLUSION

In this paper, we have described how we tested three
different paradigms to support tutoring services in Cana-
darmTutor. This has led us to observe that each paradigm
has its advantages and limitations for the task of operating
Canadarm2. Based on this finding, we have created a
multiparadigm version of CanadarmTutor that integrates
the three paradigms. The hypothesis underlying this work is
that combining several paradigms could help overcome each
paradigm’s limitations because different approaches may be
better suited for different parts of a same ill-defined task.

The multiparadigm version of CanadarmTutor provides
more and richer tutoring services compared to previous
versions of CanadarmTutor. We have performed a small-
scale experiment with users. We have observed that the
tutoring services were generally helpful and appreciated by
users and that, in general, users did not repeat the same
mistakes after receiving feedback. Moreover, users provided
more positive feedback on the general user experience
compared to our previous studies with single paradigm
versions of CanadarmTutor.
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