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Abstract—This article aims to study the performance of
machine learning models in forecasting gender based on the
students’ open education competency perception. Data were
collected from a convenience sample of 326 students from 26
countries using the eOpen instrument. The analysis comprises
1) a study of the students’ perceptions of knowledge, skills,
and attitudes or values related to open education and its
sub-competencies from a 30-item questionnaire using machine
learning models to forecast participants’ gender, 2) validation
of performance through cross-validation methods, 3) statistical
analysis to find significant differences between machine learning
models, and 4) an analysis from explainable machine learning
models to find relevant features to forecast gender. The results
confirm our hypothesis that the performance of machine learning
models can effectively forecast gender based on the student’s
perceptions of knowledge, skills, and attitudes or values related
to open education competency.

Index Terms—Open Education, Forecasting, Gender, Student
Perception, Explainable, Machine learning, Higher Education,
Educational Innovation.

ACRONYMS

OER Open Educational Resource
SDG Sustainable Development Goal
ML Machine Learning
DT Decision Tree
RF Random Forest
LGBM Light Gradient Boosting Machine
CNN Convolutional Neural Network
1D-CNN One-Dimensional-Convolutional Neural Net-

work

I. INTRODUCTION

The current international political agenda makes explicit
the importance of generating processes to incorporate social
justice in education, including good open education practices
for the solvency of contextual education. The United Nations
Educational, Scientific and Cultural Organization (UNESCO)
Framework for Action gives a good account of this in recog-
nition of its leading role in the Education 2030 Sustain-
able Development Agenda [1]. Sustainable Development Goal
(SDG) 4 establishes international scientific communication to
guarantee access to inclusive and equitable quality education
and promote learning opportunities for all. Additionally, it
formulates using free-access educational resources and tech-
nology without discrimination as a strategic measure. Their
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potential is recognized as part of the solution in the Strategy
for Gender Equality in and through education [2]. More
recently, UNESCO reaffirmed its commitment to these goals
and strategies by helping all member states build inclusive
knowledge societies through the Recommendation on Open
Educational Resources (OER) [3]. The need to transfer the
political orientations of international organizations as sources
of innovation is frequently demanded to develop practices to
improve the training of professionals and solve contextual
problems related to practice in educational sciences [4].

There is an essential heterogeneity of open education prac-
tices. They have mainly focused on the production, use, and
mobilization of various open educational resources [5]–[7],
the analysis of the support infrastructure for teaching [8] and
the organization and implementation of learning ecosystems
[9]. Other practices include the performances of techniques
for open learning spaces [10], innovative methodologies such
as gamification [11], and Education 4.0 tools to support
sustainable open education [12], [13]. In recent years, studies
on the dissemination of knowledge through repositories have
increased [14] and the mobilization of massive open courses
on interdisciplinary topics [15] and of educational and social
inclusion [16], [17]. For the development of good practices of
open education, an attempt has been made to determine in the
scientific literature a competency profile that allows, through
processes of social and professional transfer, selecting training
proposals that would positively impact the curricula, the stu-
dents, the academic environment and the teaching culture [18],
[19]. Open education, like other topics of educational sciences,
can be studied by applying more advanced research designs
and techniques. Consequently, gathering effective open educa-
tion practices has made it possible to identify the competencies
needed to develop them.

Artificial intelligence’s rapid progress presents many op-
portunities within the realm of education, aligning with the
strategic recommendations outlined in the Beijing Consensus
on AI and education [20]. These advancements hold signif-
icant potential for enhancing educational processes through
monitoring, evaluation, and research. In particular, machine
learning offers a diverse range of algorithms that effectively
elucidate and interpret complex data, enabling the construction
of predictive models with precise outcomes tailored to the
individual circumstances and progress of each participant in
the study [21]. The present article makes a valuable and
novel contribution to the scientific literature by examining
the performance of machine learning models in forecasting
gender, leveraging the students’ perceptions of open education
competency as a crucial factor in the analysis. By exploring
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this intersection of machine learning and gender prediction,
this research expands our understanding of how AI techniques
can be applied to uncover valuable insights and facilitate
informed decision-making in education.

In this research, we focus on studying the application of
machine learning models to forecast gender based on students’
perceptions of open education competency. We delve into these
main contributions of this research. 1) The study gathered data
from 326 students in 26 countries using the eOpen instrument,
which provided a diverse sample, allowing for more generaliz-
able findings and insights into variations in gender perceptions
and open education competency across different contexts. 2)
The research utilizes explainable machine learning models
to predict gender from a 30-item questionnaire, employing
cross-validation to ensure model robustness and conducting
a comparative analysis of different models while enhancing
interpretability by identifying relevant features contributing
to gender forecasting based on open education competency
perceptions. 3) Stratified k-fold cross-validation highlighted
notable differences between RF-LBGM and RF-1D-CNN
compared to traditional k-fold methods. 4) Machine learning
models are fundamental tools for learning differences between
genders and reducing open education competency gaps.

The article is organized as follows: Section II provides the
background and outlines related studies on open education,
the application of machine learning in education, and gender
in perception studies. Section III outlines the experimental
research approach. Section IV presents the findings, while
Section V discusses the data in comparison to related works.
Finally, Section VI concludes the article by highlighting the
study’s findings, limitations, implications for research and
practice, and future work.

II. RELATED WORKS

A. Open education

Open education is democratized through facilitators that
promote the social appropriation of knowledge. According to
the literature review of [22], open education is an educational
model comprising the design, development, and evaluation
of learning opportunities freely and with open access to
improve students’ quality of learning throughout life. Dif-
ferent frameworks have been created for the development
of open education in educational institutions: the OpenEd
Quality Framework [23], the Open Educators Factory Frame-
work [24], the 6E evaluation framework [25], the Opening
Up Education: A Support Framework for Higher Education
Institutions [26], and the framework for selecting OER based
on fitness-for-purpose [27]. At the same time, instruments
have been designed for its evaluation, among which the
following stand out: the Scale of Digital Competence and Use
of Open Educational Resources (CD-REA) [28], the Scale
of Accreditation Standards of Open and Distance Education
[29], and the Scale of Perspectives and Opinions on OER
and other online educational resources [30]. The connection
between the institutional framework for academic research and
those who transfer it to practice supposes an added value of
the scientific communities who contribute to societal cultural

and social development. As a transfer exercise of UNESCO’s
Recommendation on Open Educational Resources, the authors
of [31] propose the following competency indicators:

Furthermore, it has become increasingly evident that foster-
ing changes to advance the development of open education
practices is crucial, as highlighted by the perceptions of
students and education professionals regarding various socio-
demographic characteristics, including gender [32]. Traditional
research approaches in education have already shed light on
the advancements and limitations of open education practices
when examined through a gender lens. Notably, in a critical
analysis conducted in [17], the texts of open education re-
sources were scrutinized from a gender perspective, revealing
the imperative to incorporate a more equitable and inclusive
vision. Gender has also been a significant factor in analyzing
participation rates in open education programs, motivations
for engagement, time allocation to training, and students’ use
of computers and the internet [33]. Through these studies, a
deeper understanding of the intersection between gender and
open education practices has emerged, emphasizing the need
for continued examination and action to foster more significant
equity and inclusion in education.

B. Machine learning in education
Machine Learning (ML) is substantially changing the con-

ventional research methods in education. ML is a subfield of
Artificial Intelligence focused on developing models to enable
computers to learn and make predictions without being ex-
plicitly programmed [34]. Leading international organizations
such as UNESCO and Organization for Economic Cooperation
and Development (OECD) have recommended the integration
of artificial intelligence in educational research to improve the
quality of educational systems [20], [35]. Machine learning
sets itself apart from traditional linear regression through its
ability to offer robust non-parametric components that enable
greater adaptability and versatility in its practical applications
as a predictive model [36]. These techniques allow researchers
and educational experts to design more personalized curricula
tailored to the needs of specific groups, optimizing teaching
strategies and learning progress to improve academic perfor-
mance.

Machine Learning has found diverse applications in the field
of education. It has facilitated problem-solving in reasoning,
knowledge representation, prediction, learning, and perception
[37]. Also, these models have been used to identify patterns in
massive educational data and develop predictive models [38].
This represents an advance in educational research method-
ology through understanding more complex phenomena than
traditional approaches focused on quantitative and qualitative
research methodologies that are more limited [39]. In [40], the
authors point out that the benefits of machine learning include
providing more accurate information about what happens in
learning contexts and better knowledge of the characteristics
of educational agents that make it possible to offer learning
experiences. More individualized training helps teachers make
better design decisions based on the needs of students.

In [41], authors point out that studies based on the appli-
cation of ML in education have focused mainly on predicting
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TABLE I: OER Recommendation objectives and indicators.

OER Recommendation objectives Competency indicators according to [31].

1. Capacity building
1.1. Creation, reuse, adaptation and redistribution of OER.
1.2 Open licenses and copyright.
1.3 Digital literacy.

2. Development of supportive policies 2.1 Policies to promote open education.
2.2 Policies for privacy and data protection.

3. Effective, inclusive and equitable access to quality OER
3.1 Open access sharing programmes or technology platforms.
3.2 Development of inclusive OER.
3.3 ICT and broadband infrastructure.

4. Promoting the development of sustainability models
4.1 Sustainability models.
4.2 Funding sources and sustainability.
4.3 Linguistic translation of open licenses.

5. Promotion and facilitation of international cooperation.
5.1 Projects with international cooperation.
5.2 International funding mechanisms.
5.3 Peer networks (local, regional and global).

learning performance and school dropout rates and on online
and blended learning environments of college students in
Computer Science or Science, Technology, Engineering, and
Mathematics (STEM). However, ML has also allowed the
study of students’ perceptions in the educational field. Salas-
Rueda’s research has made notable contributions in the areas
of student’s perceptions of the flipped classroom methodology,
blended learning, and the use of social networks [42], [43],
[43]. Additional related works have explored the application
of machine learning in perception like self-regulated learning
[44], the challenges and potentials of artificial intelligence
in the educational process [45], the perception of emotional
competence in job performance [46], and the assessment of
academic quality [47]. The application of machine learning
in various aspects of education, including predicting learning
performance, exploring different teaching methodologies, and
studying perception, has demonstrated its potential to improve
educational systems and enhance students’ learning experi-
ences.

C. Gender in education

Understanding existing gender differences in skill devel-
opment is becoming increasingly important to gain valuable
information on how to close the gender gap. The analysis of
specific sociodemographic characteristics in machine learning
studies in education is still in its infancy [48], [49]. Gender
prediction using machine learning models mainly focused
on gender prediction of educational leadership [50]; female
models and reinforcement in STEM [51]; exploring gen-
der differences in learning computational thinking [52]; the
intersection of the academic gender gap [53]; and gender
stereotyping in academic dropout [54]. These studies shed
light on the potential of machine learning to provide valuable
insights and guide efforts toward closing the gender gap in
education.

Studying students’ perceptions, gender, and the integration
of machine learning is essential to gaining valuable insights
into educational practices and developing more inclusive and
effective learning environments. Authors from [55] focused
on studying students’ perceptions of self-directed learning
and performance in open education processes and found no
significant differences in terms of gender. However, significant
differences were found in choosing massive and open courses:

women tended to participate in practical ICT courses and had
anxiety before exams; they participated less in entrepreneur-
ship courses [56]. Including sociodemographic variables, such
as gender, in research designs provides valuable insights for
developing teacher-training processes that positively impact
open education practices.

Open education competency has predominantly been ex-
plored using conventional education research methods, with
limited attention given to studying students’ perceptions in
the context of machine learning and gender. Thus, studying
the perception of open education competency through machine
learning models while considering sociodemographic variables
like gender represents a novel and valuable contribution of
machine learning to education. Advancing techniques for
analyzing open education competency, particularly consid-
ering gender as a significant sociodemographic variable, is
imperative to drive improvements in educational quality, foster
innovation in education, broaden student choices, close gender
gaps, and enhance the educational system.

III. METHODOLOGY

In this work, we propose to study the performance of
machine learning models in forecasting gender based on the
students’ perceptions of their knowledge, skills, and attitudes
or values related to open education. We used eOpen data to
perform the experiments to forecast the participant’s gender
using four of the most widely used machine learning classi-
fication models: 1) Decision Trees (DT), 2) Light Gradient
Boosting Machine (LGBM), 3) Random Forest (RF), and 4)
One-Dimensional-Convolutional Neural Network (1D-CNN).

A DT is a tree-like model composed of a root node,
branches, and leaf nodes. A root node represents each test of
an item response, the output from the root node is a branch,
and a leaf represents each class label [57]. LGBM are based
on Gradient Boosting Decision Trees with an optimization
method that can effectively reduce the number of features
without hurting the accuracy of split-point determination [58].
Random Forest (RF) algorithms are popular machine learning
algorithms in classification and regression tasks [59]. These
algorithms construct a series of decision trees on different sam-
ples and use majority voting to assign a class. Convolutional
Neural Network (CNN) is the most popular machine learn-
ing model for most computer vision tasks. Recently, CNNs
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have been rapidly used in many one-dimension applications,
becoming state-of-the-art [60].

In our experimentation, data pre-processing was considered
to diminish bias acquired by machine learning models in the
learning process from categories and questions with high nu-
merical contribution [61], [62]. Then, we followed two steps:
1) oversampling the class with lower occurrences to level
its size to the class with major occurrences using duplicate
instances and 2) normalization, which was applied as the
standard procedure over all items in eOpen data. We performed
initial experimentation by dividing data into training and
testing phases to evaluate the models’ behavior with the most
widely used metric: accuracy. Then, we performed two cross-
validation methods to validate the initial performance of the
machine learning models using the average cross-validated
accuracy and statistical hypothesis test to observe differences
between the machine learning models.

In machine learning, two distinct approaches influence the
interpretability of models: explainable and non-explainable
machine learning [63]. Explainable machine learning refers
to algorithms and techniques that allow humans to compre-
hend the rationale behind model predictions. This approach
emphasizes transparency and aims to provide explanations for
the decision-making process [64]. On the other hand, non-
explainable machine learning is considered a black-box model,
which focuses on achieving high predictive accuracy without
prioritizing interpretability [65]. These models often rely on
complex architectures, such as deep neural networks, which
can be challenging to interpret due to their intricate inner
workings.

Three machine learning models are explainable from our
experimentation due to their decision tree structure (DT, RF,
and LGBM). With this understanding, we thoroughly analyzed
the decision rules employed by these models. The main
objective was to find the most relevant features influencing
the models’ ability to forecast gender accurately.

A. Cross-Validation

Cross-validation is a statistical method for evaluating and
validating machine learning models using different parts of the
data to train and validate the model in several operations [66].
Typically, the cross-validation process resides in subsequent
stages of training and validation sets so that each instance in
data has an opportunity to be validated. The most common
cross-validation method is k-fold cross-validation, where data
is separated into k approximately equally folds. Then, a cycle
of k iterations is executed to train and validate the model using
a different data fold for validation and k−1 folds for training.
Therefore, the algorithm’s behavior is observed at each fold
by calculating a performance metric such as accuracy. At the
end of k iterations, different methods, such as averaging or
statistical tests. Figure 1 demonstrates an example of the most
common k-fold cross-validation in machine learning with k =
10. The blue-section data is used for training, while the red
sections are used for validation.

Fig. 1: Visual representation of Kfold strategy.

Nonetheless, different variations of k-fold cross-validation
exist that necessitate repeated rounds of k-fold cross-validation
or stratified folds; the repeated rounds ensure that each data
fold has the same proportion of instances within a given
label (See Figure 2). In article [67], the author recommended
stratified 10-fold cross-validation as the best model selection
method from a study of several approaches, where he included
different cross-validation methods (regular cross-validation,
leave-one-out cross-validation, and stratified cross-validation)
and bootstrap to estimate the accuracy. Stratified 10-fold cross-
validation yielded less tendency performance estimation.

Fig. 2: Visual representation of Stratified kfold strategy.

B. Participants

Fig. 3: Count of participants for each country. Color shows
details about gender.

The data collected in [68] were from a convenience sample
of m = 326 students, of which 226 were females and 100
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were males from 26 countries. The students belonged to three
different academic degrees: 1) Doctoral degree, 2) Master’s
degree, and 3) Bachelor’s degree and below. Figure 3 illus-
trates the geographic distribution of students, whereas Table
II presents a detailed breakdown of the participants by gender
and academic degree. The data collection process involved a
voluntary self-assessment questionnaire administered through
Google Forms with the approval of the ethics committees at the
participating institutions, and informed consent was obtained
from all individual participants.

TABLE II: Statistics from the participants by gender.

Academic degree Female Male
Doctoral degree 57 28
Master’s degree 93 35

Bachelor’s degree and below 76 37
Dataset 226 100

C. Instrument

The eOpen instrument is intended to be of value to aca-
demic, scientific, and social communities interested in open
education, educational innovation, research evaluation, and
complex environments. The instrument designed in [68] mea-
sures students’ perceptions of knowledge, skills, and attitudes
or values related to open education and its sub-competencies
from a 30-item questionnaire:

1) Capacity building (items 1, 2, 3, 4, 5, 6, 7, 8);
2) Development of support policies (items 9, 10, 11, 12, 13,

14, 15);
3) Promotion of effective, inclusive, and equitable access

(items 16, 17, 18, 19, 20, 21);
4) Creation of sustainability models (items 22, 23, 24, 25);
5) Promotion of international cooperation (items 26, 27, 28,

29, 30);
The eOpen instrument uses a four-point Likert scale (1:

Strongly disagree, 2: Disagree, 3: Agree, 4: Strongly agree) to
measure the students’ level of self-assessment.

D. Dataset description

The eOpen dataset comprises 326 instances, encompassing
33 attributes, which include three socio-demographic variables
(gender, academic degree, and country of residence), along
with responses to the 30-item questionnaire. In our analysis,
we utilize descriptive analysis to illustrate the participants’
responses to the eOpen questionnaire. Firstly, we employ
box plots to comprehensively represent the data distribution
for each questionnaire item. These plots reveal key statistics
such as the median (highlighted within the gray box), the
interquartile range (represented by the colored box), and the
presence of outliers (displayed as scattered points). This visual
representation is shown in Figure 4.

We extended the data analysis beyond the scope of ques-
tionnaire responses by presenting box plots for each open
education sub-competencies, as depicted in Figure 5. These
box plots were constructed by averaging the responses to each
sub-competency across all participants, illustrating the distinct
behavioral patterns associated with each sub-competency.

Lastly, we conducted a gender-based analysis of the
eOpen dataset, employing fundamental descriptive statistics
for each open education sub-competency. This analysis in-
volved computing both the mean and standard deviation for
each sub-competency. Table III presents the variations in sub-
competency scores between genders. Notably, we observed
more significant variance in scores among females than males
despite the nearly identical mean values.

TABLE III: Descriptive statistics from eOpen data by sub-
competency.

Gender Capacity Development Promotion Creation Intl. Cooperation

Female Mean 2.93 2.90 2.97 2.68 2.70
Std. 0.49 0.49 0.46 0.62 0.54

Male Mean 2.97 2.98 3.01 2.71 2.78
Std. 0.62 0.60 0.61 0.71 0.65

IV. RESULTS

Table IV shows the dataset through the pre-processing pro-
cedure (data normalization and oversampling) and data split.
Firstly, we used the standard data normalization and randomly
oversampled the minority class (male class) to level the classes
in the dataset by adding random duplicated instances from this
class. The data ended with 220 samples in each class, as shown
in Table IV. Then, we split the data to produce the training and
testing datasets for the classification algorithms. The training
and testing columns show the instances for each class in each
dataset, approximately 90% and 10%, respectively.

TABLE IV: Dataset configuration.

Gender Original Balanced data Training Testing
Female 226 226 209 17
Male 100 226 197 29

For the machine learning models’ implementation, we use
scikit-learn v0.21.2 for DT and RF, lightgbm v3.3.5 for
LGBM, and keras v2.3.1 for a custom-made 1D-CNN. Table
V shows the layer configuration for 1D-CNN. Therefore, we
enlisted next the empirical hyperparameters’ tune for training
each model:

• DT: default setting with Gini impurity criterion for the
Shannon information gain.

• LGBM: number of estimators=100.
• RF: number of trees in the forest=1000, maximum depth

of the tree=15.
• 1D-CNN: loss function=sparse categorical crossentropy,

optimizer=Adamax, metric=sparse categorical accuracy,
batchsize=5, epochs=20.

TABLE V: 1D-CNN layers’ configuration.

1D-CNN layers
input (25×1)

1D-Convolutional layer of 64 filters, and kernel size = 5
Maxpooling layer of pool size = 5

Fully Connected layer of 1000 neurons
Fully Connected layer of 2 neurons

soft-max layer

Table VI shows the corresponding computed accuracy for
each model at each training and testing stage with the eOpen
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Fig. 4: Box Plots from the 30-Item eOpen Questionnaire. Median values are shown in the gray box.

Fig. 5: Box Plots from the average of each sub-competency
from eOpen Questionnaire. Median values are shown in the
gray box.

data. In this Table, We observed almost similar behavior
among all the machine learning models in the training phase;
they scored around 95% accuracy. In the testing stage, the
performance of all classifiers behaved differently. The most
accurate model was RF, with 86.96% correct gender predic-
tions. Then, DT attained 84.78% accuracy, 1D-CNN attained
71.73%, and LGBM attained 65.22%.

Our results showed differences in two optimized alternatives
to DT, which obtained contrasting outcomes. On the one hand,
RF’s architecture improved accuracy by 2% creating a set of
DTs to enable a voting decision about the participants’ gender.
On the other hand, the optimization made by LGBM, which
reduced the number of features of split-point determination,
decreased accuracy by approximately 19%. Differently, 1D-
CNN was below the mean accuracy of all the test results
(77.17%).

TABLE VI: Results from computing the rate of correct pre-
dictions (accuracy) of all models in the training and testing
stages.

Algorithm Training accuracy Testing Accuracy
DT 97.78% 84.78%

LGBM 94.58% 65.22%
RF 97.78% 86.96%

1D-CNN 95.32% 71.73%

Then, we performed traditional and stratified k-fold cross-
validation methods to estimate the performance of the machine
learning models using the available data to indicate general-
izability. This refers to the model’s ability to adapt perfectly
to new data that has not been previously used in the learning
and testing stages with the same distribution as the data used
to build the model. Table VII shows the computed accuracy
in each round of the traditional k-fold cross-validation with
k = 10. The last two columns exhibit the mean and standard
deviation from the ten training and validation scores rounds.

Our results demonstrated a change between the first results
and the application of the traditional k-fold cross-validation
method. First, LGBM and DT abruptly change their respective
scores. The LGBM’s mean accuracy was approximately 11%
superior to its first record from Table VI. DT performance
was below 6% from its first result to the mean accuracy.
Differently, the RF and 1D-CNN mean accuracies remained
almost equal to their first score, only with a shift below 3.56%.
In terms of standard deviation, models presented different
behaviors. DT and 1D-CNN obtained the highest variances in
the cross-validation method with approximately 13%, meaning
such models have less generalizable performance. RF exhib-
ited the lowest variance between the models with 8.6%, and
LGBM attained 9.8%.

TABLE VII: Results from computing the rate of correct predic-
tions (accuracy) of all models in each phase of the traditional
k-fold cross-validation. The last columns denote the mean
accuracy and standard deviation from the experimentation
data.

Fold 1 2 3 4 5 6 7 8 9 10 Mean Std.

DT 84.78 63.04 71.11 71.11 71.11 68.89 66.67 93.33 97.78 100 78.80 13.10
LGBM 71.74 73.91 68.89 75.56 71.11 68.89 64.44 84.44 95.56 91.11 76.60 9.80
RF 78.26 76.09 80.00 82.22 75.56 75.56 80.00 88.89 97.78 100 83.40 8.60
1D-CNN 67.39 54.34 80.00 68.89 68.89 57.77 84.44 77.77 95.55 93.33 74.80 13.20

Afterward, we experimented using a stratified k-fold cross-
validation method with k = 10. Table 2 shows the computed
scores in each round of the cross-validation method. The last
two columns exhibit the mean and standard deviation from the
ten training and validation scores rounds. These results display
to traditional k-fold cross-validation. However, all machine
learning models showed different behavior regarding standard
deviation.

All models presented a stable performance with this cross-
validation method, obtaining approximately 5.4% of their
performance variance. Therefore, mean accuracy will reveal a
better understanding of the behavior of the machine learning
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models. DT, LGBM, and 1D-CNN attained 74.8-78.1% com-
pared to Rf, which presented 83.9% mean accuracy. RF exhib-
ited a stable performance in both cross-validation methods and
did not change highly from the first experimentation illustrated
in Table VI. The rest of the models presented significant
changes from 4.6% up to 9.6% from the first experimentation.

TABLE VIII: Results from computing the rate of correct
predictions (accuracy) of all models in each phase of the
stratified k-fold cross-validation. The last columns denote the
mean accuracy and standard deviation from the experimenta-
tion data.

Fold 1 2 3 4 5 6 7 8 9 10 Mean Std.

DT 69.57 71.74 73.33 77.77 80.00 82.22 82.22 86.66 75.56 82.22 78.10 5.20
LGBM 67.39 65.22 75.56 73.33 73.33 75.56 75.56 84.44 75.56 82.22 74.80 5.50
RF 73.91 76.09 82.22 84.44 82.22 84.44 86.66 88.89 88.89 91.11 83.90 5.30
1D-CNN 65.22 76.08 68.88 73.33 82.22 77.77 77.77 80.00 80.00 82.22 76.40 5.40

Using the cross-validation methods to find significant dif-
ferences between all the machine learning models, we first
performed a statistical test to verify the data homogeneity
assumption using Levene’s test. We obtained for the traditional
k-fold cross-validation method: F(3,36) = 1.704, p = 0.183.
For the stratified k-fold cross-validation method, the outcome
was: F(3,36) = 0.043, p = 0.980. Homogeneity of variances
was admitted in the two methods, which allowed the ANOVA
test to be applied. Table IX shows the results after performing
the ANOVA test in both cross-validation methods data. Data
were obtained for the stratified k-fold cross-validation method;
a p-value was below 0.05, indicating significant differences
between the machine learning models using such a method.
The traditional k-fold method showed a p-value above 0.05,
which denoted no significant differences between the models.

TABLE IX: Results after applying the ANOVA test. Mean
and Std. denotes the mean and standard deviation. F denotes a
value on the F distribution. Df presents the degrees of freedom.
p is used to quantify the statistical significance of a result.

Cross-validation method ML Model Mean Std. F df p

Traditional k-fold

DT .78 .138 .97 3 .418
LGBM .76 .103
RF .83 .090
1D-CNN .74 .138

Stratified k-fold

DT .78 .054 4.97 3 .005
LGBM .74 .057
RF .83 .056
1D-CNN .76 .056

As the stratified k-fold cross-validation method data pre-
sented significant differences between machine learning mod-
els, the Bonferroni post hoc test was applied to identify the
pairs of means in which statistical significance was achieved.
Table X presents the Bonferroni post hoc test results. We
observed that LGBM-RF and RF-1D-CNN were significantly
different between each pair of group means.

TABLE X: Results after applying the Bonferroni post hoc test.
The mean difference denote the subtraction from each pair of
group means. p is used to quantify the statistical significance
of a result.

Comparison Mean difference p

DT
LGBM .033 1.000
RF .057 .168
1D-CNN .017 1.000

LGBM RF .090 .005
1D-CNN .015 1.000

RF 1D-CNN .075 .029

Next, we will present the analysis results using explainable
machine learning models to identify the relevant characteristics
for forecasting gender based on open education competencies.
We will discuss the top features derived from the three decision
tree models, and for the complete decision trees, please refer
to the Appendix section. Figure 6 presents the DT model’s
top features that contribute the most to gender prediction
based on the student’s open education competencies. The
most critical component in the model’s decision rule is X [28],
corresponding to question 29 regarding the promotion of
international cooperation subcompetency. In the second level
in the hierarchy, we found questions 25 and 4, which refer
to creation of sustainability models and capacity of building
sub-competencies.

Figure 7 illustrates the top features from the decision
rules of the LGBM model. The most important feature for
this model to predict gender was Column 28 that represents
question 29 relating to the promotion of international cooper-
ation subcompetency. Furthermore, the hierarchical structure
analysis revealed additional relevant features, including ques-
tions 6 and 1, which correspond to the capacity of building
subcompetency.

Fig. 7: Top features from tree model generated from Light
Gradient Boosting Machine model.

Figure 8 exhibits the top-level RF decision rules, high-
lighting the most pertinent features according to this model.
The decision rule’s most critical feature is X [27], representing
question 28 associated with the promotion of international
cooperation subcompetency. Continuing the analysis in the
hierarchical structure, we discovered questions 17 and 3, which
align with the sub-competencies of promotion of effective,
inclusive, and equitable access and capacity of building,
respectively.

V. DISCUSSION

The study of open education competency data through
machine learning models expands data analysis capabilities
to extract characteristics from participants’ perceptions to
predict gender. In Table VI, we observed that machine learn-
ing models could predict the participants’ gender from the
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Fig. 6: Top features from tree model generated from Decision Tree model.

Fig. 8: Top features from a tree model generated from Random Forest model.

student’s perception of knowledge, skills, and attitudes or
values related to open education using the eOpen instrument.
This finding agrees with [69], which employed a discriminant
characteristic to predict student performance using machine
learning algorithms. Thus, machine learning models enhanced
data analysis from survey researchers by extracting features
from students’ perceptions about open education to forecast
the participants’ gender.

Cross-validation methods presented more accurate perfor-
mance estimation for the machine learning algorithms and
revealed which algorithms were more likely to generalize the
models. In Tables VII and VIII, we observed that both methods
provide a better understanding of the models’ behavior than
the initial experimentation. The mean and standard devia-
tion demonstrated which methods have a stable performance.
Authors from [66] recommended cross-validation methods
to measure the generalizability of machine learning models.
Cross-validation techniques improve the model selection for
predicting gender using open education competency data.

Stratified k-fold cross-validation was demonstrated to reveal
significant differences between RF-LBGM and RF-1D-CNN
with the multiple comparisons of group means using statistical
tests compared to traditional k-fold cross-validation. Table
IX shows significant differences for stratified k-fold cross-
validation. This argument supports the research article from
[67], which recommended stratified 10-fold cross-validation as
the best model selection method in a study of several validation
approaches.

Statistical analysis found significant differences between the
performances of machine learning models. In Table X, we
demonstrated the discovery of significant differences between
RF-LGBM and RF-1D-CNN through statistical tests. Authors
such as [70], [71] also proposed using k-fold cross-validation
followed by an appropriate hypothesis test rather than directly
comparing the average accuracy to compare different machine
learning models. Therefore, the comparison between machine
learning models using cross-validation methods can be com-
plemented using proper statistical tests instead of directly
comparing the average accuracy.

Explainable machine learning models like DT, RF, and
LGBM employ decision rules to determine the most impor-

tant features to predict the student’s gender based on their
perception of open education competency. The most relevant
features used by these models are visually presented in Figures
6-8, providing a comprehensive overview of the explainable
machine learning models’ findings. It is noteworthy that all
of these models converge on the promotion of international
cooperation subcompetency as a crucial factor in gender pre-
diction. This convergence highlights the consistent importance
of this particular subcompetency across the various models
and underscores its significant influence on gender prediction.
Understanding these significant features can provide valuable
insights into students’ perceptions, enabling the development
of improved educational policies and strategies. Compared
to a non-explainable machine learning model like 1D-CNN,
Random Forest (RF) demonstrates superior accuracy in gender
prediction, making it a reliable tool for understanding students’
open education competency perceptions and their connection
to gender.

VI. CONCLUSION

Over the past few years, an increasing focus has been on
open education to make learning accessible to all and foster
equality among learners. Effective measuring and evaluating
open education competencies remains challenging despite its
potential benefits. This article aims to study the performance
of machine learning models in forecasting gender based on the
students’ open education competency perception. Our findings
indicate that machine learning models can effectively predict
participants’ gender from students’ perceptions of knowledge,
skills, and attitudes or values related to open education and its
sub-competencies. This discovery holds great significance as
it demonstrates the potential of machine learning to offer valu-
able insights into learners’ competencies perceptions, thereby
informing educational practices.

In this study, we considered the following data analyses:
1) study the students’ perceptions of knowledge, skills, and
attitudes or values related to open education and its sub-
competencies with a 30-item questionnaire, using machine
learning models to forecast participants’ gender, 2) validation
performance through cross-validation methods, 3) statistical

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2023.3336541

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

analysis to find significant differences between machine learn-
ing models, and 4) an analysis from decision trees to find
relevant features to forecast gender. Machine learning demon-
strated the capability to build models that can predict the
gender of unknown participants’ perceptions of open education
with up to 84% mean accuracy. Therefore, the mathematical
models built with machine learning extracted features from
eOpen data and found differences in the perceptions by
gender. Additionally, the higher accuracy exhibited by RF
in gender prediction highlighted its reliability as a valuable
tool for understanding students’ open education competency
perceptions and their relationship to gender. Using explainable
machine learning models, such as DT, RF, and LGBM, allowed
to identify significant features in predicting students’ gender
based on their perceptions of open education competency,
providing valuable insights for educational strategies. Addi-
tionally, we could contrast functionalities and performance
between explainable and non-explainable models.

While this study effectively showcases the potential of
machine learning models in analyzing perception data and
predicting competency levels, it is essential to acknowledge
the study’s limitations. Even though the study involved a
series of cross-validation methods in verifying the machine
learning models’ performance, it is crucial to recognize that
further research is needed to establish the generalizability
of the findings with larger populations. Another limitation
is that decision trees only provide insights into the features
selected by the model for constructing decision rules, which
necessitates interpretation and explanation by researchers.

This work has practical and research implications, demon-
strating the utility of machine learning models in predicting
participants’ gender based on students’ perceptions of their
knowledge, skills, and attitudes/values related to open educa-
tion. This has practical value for educators, enabling them to
identify areas where students may require additional support
or resources. The study also emphasizes the significance of
utilizing perception data and machine learning techniques’
efficiency in accurately analyzing this data. Our contributions
expand the body of literature on machine learning applications
in education. Our findings indicate that machine learning
models can effectively analyze perception data to make ac-
curate predictions regarding gender. Additionally, the study
underscores the importance of comprehending the decision-
making process of explainable machine learning models. This
work establishes a foundation for future research endeavors
exploring the utilization of machine learning in education
perception data and emphasizes its potential for advancing our
understanding of students’ competencies.
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[13] L. González-Pérez, M. Ramı́rez-Montoya, and F. Garcı́a-Peñalvo, “Tech-
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