
1734 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 17, 2024

Teaching Compilers: Automatic Question Generation
and Intelligent Assessment of Grammars’ Parsing

Ricardo Conejo Muñoz , Beatriz Barros Blanco , José del Campo-Ávila , and José L. Triviño Rodriguez

Abstract—Automatic question generation and the assessment of
procedural knowledge is still a challenging research topic. This
article focuses on the case of it, the techniques of parsing grammars
for compiler construction. There are two well-known techniques for
parsing: top-down parsing with LL(1) and bottom-up with LR(1).
Learning these techniques and learning to design grammars that
can be parsed with these techniques requires practice. This article
describes an application that covers all the tasks needed to automa-
tize the learning and assessment process: 1) automatically generate
context-free languages and grammars of different complexity; 2)
pose different types of questions to the student with an appropriate
response interface; 3) automatically correct the student answer,
including grammar design for a given language; and 4) provide
feedback on errors. The application has been implemented as a
plug-in of the SIETTE assessment system that, in addition, can
provide adaptive behavior for question selection. It has been suc-
cessfully used by more than a thousand students for formative and
summative assessment.

Index Terms—Adaptive feedback, automatic assessment, com-
piler construction, educational technology, procedural knowledge,
question generation, top-down parsing.

I. INTRODUCTION

COMPILER construction is a compulsory subject in almost
all computer science degrees. Here, the students learn

different algorithms, tools, and methods necessary to understand
how a compiler for a programming language is constructed [1].
A core part of compiler construction is the design of the language
grammar and the construction of an efficient parser without the
need of backtracking. There are two well-known techniques for
parsing: 1) the LL(1) technique allows us to construct efficient
top-down parsers based on theoretical grounds, but it requires
some conditions to be met for the grammar design and 2) the
family of LR(1) techniques for bottom-up parsing. One of them
is the SLR(1) technique, a simplification of LR(1) technique.
Let us introduce some concepts and notation that are used in
this article.

A context-free grammar (CFG) is defined as G(N,T, P, S),
where N is a set of nonterminal symbols, T is a set of terminal
symbols, P is a set of production rules (of the form A → γ,

Manuscript received 8 February 2024; revised 16 April 2024; accepted 20 May
2024. Date of publication 28 May 2024; date of current version 7 June 2024.
This work was supported in part by the Universidad de Málaga / Consortium
of University Libraries of Andalusia (CBUA). (Corresponding author: José L.
Triviño Rodriguez.)

The authors are with the Department of Computer Science and Pro-
gramming Languages, University of Málaga, 29071 Málaga, Spain (e-mail:
conejo@uma.es; bbarros@uma.es; jcampo@uma.es; jltrivino@uma.es).

Digital Object Identifier 10.1109/TLT.2024.3405565

where A is called the antecedent and γ ∈ (N ∪ T)∗ is called
the consequent), and S is the axiom. The languages that can be
generated by a CFG are called context-free languages (CFLs).
Two CFGs are equivalent if they generate the same CFL.

A left derivation⇒ of a stringαAβ ∈ (N ∪ T)+ is defined as
a substitution of the left-most nonterminal symbol of A by any
right-hand side of a production rule A → γ, that is, if the rule
A → γ ∈ P , then αAβ ⇒ αγβ. Multiple applications of the
left derivation are denoted as ⇒k (applying k left derivation) or
⇒∗ if zero, one or more left derivations are applied.

A sentential form is defined as a string α ∈ (N ∪ T)∗ so that
S ⇒∗ α, which is a generalization of the concept of a sentence
of the language, which is defined in the same way but with all
symbols of α ∈ T ∗

LL(1) grammars are a subset of CFG that accomplish the
LL(1) condition. There is a well-known algorithm to efficiently
determine if a CFG is LL(1) and construct its parsing table.
It is based on the construction of the functions FIRST and
FOLLOW and the directive symbols of each production rule
DS [1]. LL(1) languages are those CFLs that can be generated
by LL(1) grammars. LL(1) languages are a proper subset of CFL.

SLR(1) grammars are also a proper subset of CFG although
they are less restricted than LL(1) grammars. This technique
requires the definition of the concept of LR(0) item, which is
a triple (A,α, β), where A → αβ ∈ P . Let call J the set of
all possible items for a given grammar. Sets of LR(0) items,
I ∈ P(J), are called states. A special set of states, called the
LR(0) collection C, is obtained by applying two functions: the
CLOSURE and DELTA functions [1]. Given the LR(0) col-
lectionC, the SLR(1) technique generates a table that can be used
to guide bottom-up parsing. If the table has no duplicate entries,
then parsing can be done without backtracking, and it is said that
the grammar accomplishes the SLR(1) condition and then the
language is called an SLR(1) language. SLR(1) languages are a
proper subset of CFL and a proper superset of LL(1) languages.

There are many tools that, given a CFG, can automatically
construct the LL(1) and SLR(1) tables (see Section II). As far as
we know, these systems are not designed for assessment, nor to
generate the grammar given a target language, but only to check
whether a given grammar accomplishes the LL(1) or SLR(1)
conditions and generates the corresponding tables.

One of the main problems that students face is the design
of the grammar given the target language. In the general case,
designing a grammar that generates a given CFL cannot be
done automatically. Neither can be decided if a given CFG
has an equivalent grammar that accomplishes SLR(1) or LL(1)

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0810-4608
https://orcid.org/0000-0001-6546-3688
https://orcid.org/0000-0001-8171-6198
https://orcid.org/0000-0002-8147-1765
mailto:conejo@uma.es
mailto:bbarros@uma.es
mailto:jcampo@uma.es
mailto:jltrivino@uma.es

MUÑOZ et al.: TEACHING COMPILERS: AUTOMATIC QUESTION GENERATION AND INTELLIGENT ASSESSMENT OF GRAMMARS’ PARSING 1735

Fig. 1. Comparative table of SIETTE features with other tools that address similar educational tasks published along last decade: LISA [2], SESHAT [3],
PROLETOOL [4], PAMOJA [5], and COMVIS [6].

conditions. However, in practice, for most syntactic structures
of programming languages, the equivalent LL(1) or SLR(1)
grammars can be obtained using some heuristic rules. It requires
a little art and a lot of practice from the designer. The aim of this
work is to promote this practice for students by means of auto-
matically generation of cases where a solution is known to exist.

This article describes the implementation of a computer-based
assessment application, constructed as a plug-in of the SIETTE
assessment system (see Section III) that is able to automatically
generate a random CFG, determine if it is suitable for LL(1)
and/or SLR(1) parsing, construct the parsing tables step by
step, and evaluate the student answers to the following types
of questions.

For the LL(1) technique:
Q1) Given a string α ∈ (N ∪ T)∗, find the set FIRST (α).
Q2) Given a nonterminal A ∈ N , find the set

FOLLOW (A).
Q3) Given a production rule A → α ∈ P , find the set

DS(A → α).
Q4) Given a CFG, find the LL(1) parsing table.
Q5) Given a sentence α ∈ T ∗, find left derivations so that

S ⇒∗ α.
Q6) Given a CFL L, find an LL(1) grammar G so that

L(G) = L.
For the SLR(1) technique:
Q7) Given a set of LR(0) items I ∈ P(J), find the set

CLOSURE(I).
Q8) Given a set of LR(0) items I ∈ P(J) and a symbol

X ∈ (N ∪ T), find the set DELTA(I,X)
Q9) Given a CFG, find the LR(0) collection C.

Q10) Given a CFG, find the SLR(1) parsing tables.
The application has been used for seven academic years at

the University of Málaga and has been used by more than a
thousand students for formative and summative assessment (see
Section V). Finally, some conclusions and future evolution lines
are proposed (see Section VI). A preliminary version of this
article covering just LL(1) techniques was presented in [7].

II. RELATED WORK

There are several systems for teaching and training the cre-
ation of compilers in computer science, many of them discussed

in the review by Stamenković et al. [8] considering only the
simulation tools, but there are other systems that take into
account other aspects, such as gamification [9], training [7], [10],
and assessment of students’ knowledge [4], [7], [11], [12].

Fig. 1 shows a set of systems (all written in Java with graphical
output and, although they have a relatively long history, with
an updated publication in the last decade) with an educational
objective similar to that of the system presented here. In the
table, we consider: 1) how the tool is used for teaching compiler
knowledge: teaching and presenting algorithms with simulations
(Simulation), training these algorithms (Training), and
assessing the student’s knowledge (Assessment); 2) how the
tasks or examples used by the tool are defined: defined by
a teacher (Teacher-authored) or a student (Student-
authored) in some kind of form or automatically generated by
the system (Auto-Generated); 3) whether the tool performs
an automatic assessment of the student: Yes or No; and 4)
whether the system operates as a Desktop program [stand-
alone program or within an integrated development environment
(IDE)] or is a Web-based platform.

The first difference is that these systems have been developed
with the sole purpose of supporting the teaching of compilers,
whereas SIETTE is a general-purpose evaluation framework
for training and automatic assessment that includes a specific
module covering the subject of compilers. This is why the other
systems have a simulation module, whereas SIETTE focuses
specifically on the completion of tasks and the assessment of
the student’s knowledge throughout the course.

To our knowledge, none of the systems consulted in the
bibliography use generative tasks based on the characteristics of
each type of grammar, as SIETTE does. This most remarkable
differentiating element, together with its intelligent assessment
module for training and evaluating students, represents a break-
through in the development of systems for teaching compilers.
It goes a step further than other systems because it automatically
generates problems to be solved, recognizes students’ answers,
and provides customized feedback on their errors in context.

Most of the automated question generation systems are asso-
ciated with texts that often require the use of natural language
analysis techniques [13], [14], [15]. Our approach focuses on the
evaluation of procedural knowledge [16], specifically related to
complex algorithmic problem solving; what is asked and what is

1736 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 17, 2024

evaluated are programs that a student solves as part of a practical
task. In this sense, we are referring to automated task generation.

III. SYSTEM ARCHITECTURE

In order to assess the student knowledge and skills needed to
design and implement LL(1) and SLR(1) parsers for a given
language, we have implemented a plug-in extension of the
SIETTE assessment environment. Using this plug-in and some
of the standard features of SIETTE, we are able to automatically
generate different types of questions.

A. SIETTE Assessment System

SIETTE [17] is a general-purpose automatic assessment en-
vironment that supports the generation of different questions
based on JSP templates, different types of questions, and stu-
dent answer interfaces; automated recognition of students’ open
answers based on regular expression patterns; and a flexible
support of any other assessment requirement based on the
construction of a plug-in extension. SIETTE implements the
classical test theory [18], item response theory (IRT) [19],
and computerized adaptive testing [20], and it provides built-in
statistical and psychometric tools to analyze students, tests, and
questions’ results.

SIETTE includes an authoring tool for teachers to create
questions and define assessment criteria, and a user interface
for students to take the assessment (see Fig. 2).

Teachers can create different JSP templates using the classes
included in the plug-in application programming interface
(API). Templates’ performance can be tested and previewed in
the authoring tool and will be instantiated to questions when the
students take the assessment (see Fig. 3).

Some of the questions listed in Section I can be answered by
the student using a simple HTML text-area field. Other questions
(those that require a table) require a form that is composed in
JavaScript and transformed into a structured text that is sent to
SIETTE.

The student answer is given to SIETTE in a plain or struc-
tured text format. SIETTE recognizes whether the answer is
correct using a pattern matching process. Patterns are provided
by the teacher, and the matcher algorithm is implemented as
a plug-in. There are some default matcher plug-ins that are
already implemented in SIETTE. One of them is the SIETTE
regular expression whose behavior is described in the SIETTE
manual [21]. It extends regular expression to recognize small
sets of strings and is used to recognize the answer of simpler
questions. However, to recognize grammars (i.e., question types
Q6 and Q9), a new plug-in is needed to compare the grammar
proposed by the teacher with the one provided by the student
answer.

B. SIETTE CFG Plug-In

The main features of the CFG plug-in are as follows: 1) auto-
matic generation of context-free SLR(1) and LL(1) grammars;
2) automatic construction of SLR(1) and LL(1) parsers; and 3)
checking grammar equivalence.

1) Automatic Generation of CFGs: One of the first chal-
lenges of this project is to define a way to generate small CFLs
that can be used to pose questions to students. The alphabet
of these languages (terminal symbols) is restricted to lowercase
letter in order to be easy to write it in text format.

Small CFGs can be generated just by setting the antecedent
and a random length string that combines terminal and nonter-
minal symbols. This strategy requires validating the generated
grammar and repeating the process until a correct grammar is ob-
tained. On the other hand, a well-defined CFG can be generated
based on the composition of “building block” grammars. The
building blocks are tiny CFGs with just two or three production
rules. Some of them are listed as follows:

A → Aa
A → a

(1)

A → aAb
A → ab.

(2)

The plug-in defines some building block grammars, but they
can be easily extended as needed. Using these building blocks,
we apply a composition rule just by replacing a terminal sym-
bol with a nonterminal symbol of another building block. For
instance, combining block (1) and block (2) in this order will
generate the following grammar:

A → AB
A → B
B → aBb
B → ab.

On the other hand, combining block (2) and block (1) grammars
can give one of these four grammars

A → BAb
A → Bb
B → Ba
B → a

A → BAb
A → Bb
B → Bb
B → b

A → aAB
A → aB
B → Ba
B → a

A → aAB
A → aB
B → Bb
B → b.

Note that there are four possible ways to combine block
(2) and block (1) grammars, because we have two alternative
options: 1) in block (2), there are two terminal symbols, so we
have two options to replace a terminal with a nonterminal of the
second grammar and 2) we have to choose if the terminal sym-
bols of the resulting grammar are the same or not. Nevertheless,
without loss of generality, we can always assume that terminals
are different, and at the end of the generation process, two or
more symbols can be merged as a single terminal. That is, in the
last example, options 2 and 4 can be obtained from options 1
and 3 just by considering that terminal a and terminal b are the
same. This process is delayed until we finish the combination
process.

Thus, a CFG can be randomly generated by selecting the
building blocks to combine the number of combinations to apply

MUÑOZ et al.: TEACHING COMPILERS: AUTOMATIC QUESTION GENERATION AND INTELLIGENT ASSESSMENT OF GRAMMARS’ PARSING 1737

Fig. 2. Screenshot of the SIETTE authoring tool, editing a question that requires the design of an LL(1) CFG.

Fig. 3. Workflow of the SIETTE CFG plug-in.

1738 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 17, 2024

Fig. 4. Question about FIRST and FOLLOW sets.

(or alternatively the number of production rules in the final
grammar) and the final number of terminal symbols (which
will randomly merge two symbols until the desired number of
terminal symbols is met).

Finally, a validation and refinement process is triggered to
eliminate unused rules or symbols, and/or duplicate rules, to
guarantee that the CFG is correct.

2) Automatic Construction of LL(1) Parsers: This is the easi-
est phase. Given a CFG, it is always possible to compute FIRST
and FOLLOW functions and obtain the directive symbols of
each production rule [1]. The result of these functions are a
set of symbols. Determining if a CFG accomplishes the LL(1)
condition depends on these sets.

The first type of the system questions (Q1, Q2, and Q3) is
related to the construction of these sets. Students should be
able to obtain these sets by mentally applying the algorithm for
small CFGs. Student answers can be checked against the correct
answer using standard SIETTE regular expressions patterns. The
student response can shuffle the order of nonterminal symbols in
the set, but the pattern will recognize the answer anyway. Fig. 4
presents a composed question where a common grammar has

Fig. 5. Example of the LL(1) table response layout. On the left is the response
of the student, and on the right is the correction given by the system.

been generated, and some questions about FIRST and FOLLOW
sets are posed. Each question is evaluated independently.

Question types Q4 and Q5 require the implementation of the
LL(1) parsing algorithm, which is based on a bidimensional
table, that is given by function LL(1)table : N × T −→ (N ∪
T)∗. This table is asked by question type Q4 and requires its own
answer interface. The application of this algorithm to an input
string is based on a stack whose content is asked in question type
Q5. Fig. 5 presents the answer layout filled with the response
of a student and the correction given by the system. The item
is corrected by each row, with partial credit if the answer is
partially correct.

3) Automatic Generation of an Equivalent LL(1) Grammar:
In general, it is undecidable if there exists an LL(1) grammar that
generates a given CFL, or to find an equivalent LL(1) grammar
of a given CFG [22]. This does not mean that it is impossible to
do it, or that there is no way to construct LL(1) grammar for a
given language. It does imply that it will not be possible to do it
for ANY language.

There are two interesting cases where a non-LL(1) grammar
can be heuristically transformed into an equivalent grammar that

MUÑOZ et al.: TEACHING COMPILERS: AUTOMATIC QUESTION GENERATION AND INTELLIGENT ASSESSMENT OF GRAMMARS’ PARSING 1739

Fig. 6. Example of different answers to the same question (one correct and
three incorrect) and different feedback generated by the system according to the
answer.

might be LL(1): 1) factorization and 2) left recursive elimina-
tion [1]. For instance, the grammar

S → A$
A → Aba
A → a

can be transformed by eliminating the left recursion to its
equivalent

S → A$
A → aA′

A′ → baA′

A′ → ε.

Both grammars generate the same language (they are equiv-
alent). The first one is not LL(1), but the second one is. This
heuristic transformation does not guarantee that the resulting
grammar will always accomplish the LL(1) condition in the
general case, even if we apply the heuristic transformation
repeatedly over the resulting grammar.

However, we do not need to worry about the general case;
there are plenty of cases in which the heuristic construction
works, and those are the ones that we will use for assessment.
Using this strategy, we can generate the type of questions shown
in Fig. 6, that is, given an automatic generated CFG that is not
LL(1), find an equivalent LL(1) grammar.

4) Checking Grammar Equivalence: Nevertheless, we have
to face another undecidable problem if we want to recognize the
student response. Given two CFGs, it is undecidable if they are

equivalent [23]. Nevertheless, this result does not discourage us
to try to solve the problem using brute force algorithms for the
small cases that are used for assessment.

Given a CFG G(N,T, P, S), Ln(G) is defined as the set of
sentences of length≤ n;Lk(G) is defined as the set of sentences
that can be obtained with a maximum of k left derivations; and
Ln
k (G) is defined as the set of sentences of length ≤ n that can

be obtained with a maximum of k left derivations. Of course,
Ln
k (G) ⊆ Ln(G) and Ln

k (G) ⊆ Lk(G).
In order to check if two grammarsG andG′ are equivalent, we

check that Ln
k1
(G) ⊆ Ln

k2
(G′) and Ln

k1
(G′) ⊆ Ln

k2
(G), where

k1
 k2, that is, we check that all sentences of length n that
can be obtained with k1 left derivations using grammar G can
also be obtained using k2 left derivations using grammar G′ and
vice versa. These conditions are necessary (but not sufficient) to
guarantee that G and G′ are equivalent.1

However, grammars used for student exercises are relatively
small. They commonly have no more than four or five nontermi-
nal symbols and no more than ten production rules. Production
rule consequents are composed of no more than three or four
symbols. In this case, the number of possible sentential forms
that can be obtained from the grammar axiom is limited by
the upper bound lk, where k is the depth of the tree and l
the maximum length of a production rule consequent. The
maximum length of a sentential form can be upper bound by
l × n. On average, rule consequents’ lengths are about 2, so on
average, the number of sentential forms is around 2n, which is a
number that can be computed for values of k < 20 2. To sum up,
in practical sets, using n ≤ 10, k1 = 10, and k2 = 20, all cases
have been successfully solved in less than a few seconds.3

In addition, to determine the equivalence of the grammar pro-
vided by the student and that proposed by the teacher, the plug-in
check if the grammar given as an answer is ambiguous and if
it accomplishes the LL(1) condition. This checking speeds up
the assessment process in case of incorrect answer and provides
detailed feedback to the student.

The grammar proposed by the teacher can be manually writ-
ten or automatically generated, as described in Section III-B1.
In the last case, the system randomly generates grammars by
composition and guarantee that they can be transformed into
LL(1) grammars using heuristic transformations.

The plug-in defines different response patterns that are given
to the system using the SIETTE authoring tool. These patterns
are compared to the student answer to determine which one
corresponds to the answer. For instance, the patterns given for
the exercise in Fig. 2 are labeled “@SyntaxError,” “@Incorrect,”
“@Equiv <G>,” and “@ LL1Equivalent<G>,” plus the “Not
recognized” default pattern, where <G> stands for a grammar
that generates the language. SIETTE tries to match each pattern

1The computation of Ln(G) might be more complex or incomplete if the
grammar has empty rules. On the other hand, the computation of Lk(G) might
involve too many sentential forms. Limiting both makes the problem affordable.

2The computation of Ln
k (G) can be improved by pruning those branches

where there are more than n terminal symbols in the sentential forms.
3It is beyond the scope of this article to prove the minimum conditions that

guarantee this assertion, nor to measure computational efficiency. These upper-
bound limits have been obtained empirically according to the limitation of the
system and the user interaction.

1740 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 17, 2024

one by one. First, it checks the syntax of the answer and the
validity of the student grammar. If none of this matches, the
student answer is a correct CFG. The remaining patterns check
if the grammar is equivalent to the given grammar and it accom-
plishes the LL(1) condition. This cascade of checking allows the
system to provide the appropriate feedback to the student. Fig. 6
shows four different answers to the same question and different
feedback generated by the system according to the answer.

On the left, Fig. 6 shows the stem and the right answer. On
the upper right, it shows a invalid grammar; in the middle right,
it shows a grammar that does not generate the same language
(including an counterexample string); in the lower right, it shows
an equivalent grammar that does not satisfy LL(1) condition. The
teacher can select to also show the correct solution.

5) Practical Issues: There is no specific limitation on the
number of rules that the grammar can contain, although since
it is an application with didactic objectives, it does not make
sense to use too many rules. In practice, all the grammars used
either manually or automatically generated have less than ten
production rules, less than seven terminal symbols, and less
than seven nonterminal symbols. In the case of LL(1) tables,
the limit would be in tables with a 7 × 7 dimension, which
encompasses most of the practical teaching cases. In the case
of SLR(1) tables, an exact number of N states can be imposed
when defining the problem. In this case, the system generates
grammars and calculates the tables until obtaining a problem
that results in a table with N states. The teacher can also specify
a range of the number of states of the SLR tables. In all the
cases used, the number of states varies between 10 and 15, to
be accomplished by the students in less than 30–45 min. The
processing time of each exercise is variable. When configuring
the exercise, the teacher has the possibility of testing it and
adjusting the parameters using the SIETTE authoring tool so
that the system response occurs in a reasonable time (of the
order of a few seconds at most). During the use of the plug-in
in evaluation sessions, usability tests were conducted with 150
students during an hour-long exam with acceptable performance.
However, this limitation can be easily overcome by adding new
SIETTE system servers that is designed to run on a cluster.

IV. METHODOLOGY

The plug-in was developed in 2016 and has been exten-
sively used for formative and summative assessment for seven
academic years for the Compiler Construction course at the
Schools of Computer Engineering at the University of Málaga.
Three types of exercises have been created. The first of them
encompasses questions Q1, Q2, and Q3 (FIRST&FOLLOW);
the second type contains questions Q4, Q5, and Q6 [LL(1)];
and the third type of exercise is dedicated to questions Q7–Q10
[SLR(1)]. For each type of exercise, a test created by the teacher
and one automatically generated have been created in SIETTE.
In the authored by the teacher test, questions have been manually
introduced and are fixed (always the same grammar). In the
autogenerated test, the SIETTE plug-in creates a new grammar
each time the student accesses the test. For each type of exercise,
students have initially received a series of theory classes where

concepts, problem types, and their solving methods have been
explained. Subsequently, students have attended a practical class
where they were instructed on the usage of the SIETTE tool
and the functioning of each of the described exercises. Upon
completion of this explanation, students have had access to
the corresponding exercise in SIETTE for that session. From
that moment on, access to these exercises in SIETTE has been
available to the students even outside the classrooms. Once all
theory classes and practical sessions have been conducted, the
students take a summative test in which they use the SIETTE
tool to solve exercises chosen from these three types.

All assessments conducted by the students (both formative
and summative) are recorded by the SIETTE tool. From these
data, a series of indicators has been selected to address the
hypothesis posed in this section. The selected indicators are as
follows: interval between assessments calculated from the date
and time of each assessment recorded by SIETTE; assessment
duration; and grade obtained in each assessment.

Sessions with a duration shorter than necessary to properly
understand all questions and perform the necessary calculations
to answer them have been discarded.4 Sessions with a duration
longer than 3 h have also been discarded as they are assumed to
be abandoned by the students.

With this study, we aim to conduct a comparative statistical
analysis of the usage and results obtained from both types of
tests by students. The null hypothesis we intend to test is that
there is no significant difference in the usage or results between
autogenerated tests and teacher-authored tests. In other words,
we posit that students do not exhibit a preference for one type
of test over the other, and that both are equally effective in
assessing learning. The comparison of the different collected
indicators has been conducted using a Wilcoxon signed-rank
test and calculating the Spearman correlation coefficient.

In order to compare the effectiveness and performance of au-
tomatically generated exercises versus nongenerated exercises,
a series of analyses have been carried out on different indicators
of the two types of exercises. The information from the sessions
carried out by the students on these exercises has also been
cross-referenced with the grades obtained on the corresponding
topic of the subject’s midterm exam.

V. RESULTS

Table I shows the number of students and the number of
sessions performed for each test from 2016 to 2022.

A first analysis of the evolution of the grade obtained in
each session and the time used shows how, as students devote
more sessions, the time needed to complete them decreases and
the achieved grade increases. This behavior is similar for both
automatically generated and teacher-authored exercises. Fig. 7
shows the evolution for each of the exercises.

Some interesting results can be observed considering the
information in Fig. 7.

1) The number of students that keep making attempts de-
creases with the number of attempts (possibly because

4Students sometimes simply connect to the system to retrieve the questions
and do not try to complete the task.

MUÑOZ et al.: TEACHING COMPILERS: AUTOMATIC QUESTION GENERATION AND INTELLIGENT ASSESSMENT OF GRAMMARS’ PARSING 1741

Fig. 7. Description of results achieved by students at the different attempts they made for every task: average grade (triangle line, scale on the right) and average
assessment duration (dotted line, scale on the left). The first line corresponds to the FIRST&FOLLOW exercises, the second to the exercises on LL(1) grammars,
and the third to the exercises on SLR(1) grammars.

TABLE I
TOTAL NUMBER OF STUDENTS AND SESSIONS POSED FROM THE ACADEMIC

YEARS 2016–2022

they estimate that they have learned and do not need more
training).

2) Grades increase with the number of attempts (because
students increase expertise about the tool, the types of
questions, and the subject itself).

3) The duration of attempts decreases with the number of
attempts (as above, because students increase expertise
about the tool, the types of questions, and the subject
itself).

Regarding result 1), it has been interesting to observe how
students do not aim to obtain a perfect result when completing
exercises. The number of attempts for each exercise is not
limited. Therefore, theoretically, a student could keep repeating
an exercise until obtaining a perfect result. In the case of the

1742 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 17, 2024

TABLE II
AVERAGE OF THE BEST GRADE OBTAINED BY EACH STUDENT IN EACH TYPE OF EXERCISE AND NUMBER OF ATTEMPTS

self-generated exercises, this would imply a complete mastery
of the evaluated knowledge. In the case of exercises created by
the teacher, this would be even easier. In this type of exercise,
the student would not need to master all the required knowledge
correctly. Since the grammar does not change from one attempt
to another, by using a trial-and-error method, the student could
correctly solve the exercise.

However, it has been observed that, in practice, this does not
happen. Instead, the student repeats the exercise until they obtain
a grade they consider adequate. In Table II, the average of the best
grade obtained by each student for each type of exercise can be
seen. It can be observed that the grade obtained is slightly better
in the case of exercises created by the teacher. Actually, this
difference is only statistically significant in the case of LL(1)
exercises where a Wilcoxon signed-rank test with a p-value of
8.78e-09 shows evidence that students achieve higher scores in
teacher-authored tests than in autogenerated ones. In contrast,
the FIRST&FOLLOW and SLR(1) tests, with p-values of 0.64
and 0.30, respectively (greater than 0.01), there is no statistically
significant evidence that the scores differ.

In Table II, it can also be observed that the number of attempts
is slightly lower for teacher-authored tests than for autogenerated
ones. This difference is statistically significant in all cases with
p-values of 2.35e-05, 8.58e-05, and 1.03e-05, respectively, using
a Wilcoxon signed-rank test (all less than 0.01). This informa-
tion agrees with the fact that exercises created by the teacher
maintain the same grammar from one attempt to another and,
therefore, can be solved by trial and error in fewer attempts. This
indicates that the behavior of students in both types of exercises
is similar, and they stop trying to improve the exercise’s result
after reaching a certain grade.

Regarding results 2) and 3), it can be observed that, in the
case of teacher-authored exercises, both the grade obtained
and the duration are monotonically increasing and decreasing,
respectively. This is easily explained since, being always the
same grammar in each attempt, the student uses the information
from the previous attempt to improve the new attempt without
having to fully master the evaluated knowledge.

On the other hand, in the case of autogenerated exercises, the
average grade obtained by students in a number of attempts may
be lower than for the previous number of attempts. Similarly, the
average duration may increase for the next number of attempts.
This can be explained by considering that the grammars are
different for each student in each attempt. Thus, the increase
in the obtained grade depends only on learning. In addition, as
explained earlier, since students who reach a certain level in the
grade stop making new attempts, the students who continue to

perform the exercise beyond a certain number of attempts are
those who have not yet acquired the necessary knowledge and,
therefore, decrease the average grade obtained for that number
of attempts.

This can be considered an advantage of autogenerated ex-
ercises over teacher-authored exercises. Autogenerated exer-
cises require a better mastery of the evaluated knowledge to
progress in the exercise. They also do not allow for trial and
error resolution. For this reason, the student cannot think that
they completely dominate the exercise without having learned
the necessary knowledge. Another added advantage is that it
encourages more work on the part of the student and eliminates
the tedium of repeating the same grammar over and over again
by presenting new challenges in each attempt.

It has also been observed that the pace at which students
engage in sessions, that is, the time between one session and
another, decreases as the student uses the tool. In this way,
initially, the student returns to using the tool within a short
period of time after the previous session. As they go through
new sessions, that period increases. In this regard, a high cor-
relation has been found between the number of sessions and
the elapsed time between each session. A Spearman correlation
coefficient of 0.69 has been calculated between the number
of previous sessions and the interval between automatically
generated sessions. Moreover, this coefficient has a statistical
significance of 0.001. Similarly, the Spearman correlation coef-
ficient between the number of previous sessions and the interval
between sessions in teacher-authored sessions is also 0.69, with
a statistical significance of 0.001. Therefore, it is not surprising
that the Spearman correlation coefficient between the interval of
automatically generated sessions and teacher-authored sessions
is 0.62, with a significance of 0.001. This indicates that the pace
at which students use this tool is similar between automatically
generated tests and teacher-authored tests.

On the other hand, the relationship between the grades ob-
tained in the practice tests (formative evaluation) and the grade
obtained in the evaluation test (summative evaluation) of the
same subject has also been analyzed. These tests has been, in
some cases, teacher-authored and, in other cases, automatically
generated. Although a statistically significant positive correla-
tion (0.001) is observed between the results of the practice tests
and the evaluation tests, this correlation is not very high, with a
Pearson coefficient around 0.29.

Furthermore, using a Wilcoxon signed-rank test, it has been
found that the results of the formative tests are statistically
significantly higher than those obtained in the evaluation test
for the FIRST&FOLLOW and SLR(1) tests. These tests have

MUÑOZ et al.: TEACHING COMPILERS: AUTOMATIC QUESTION GENERATION AND INTELLIGENT ASSESSMENT OF GRAMMARS’ PARSING 1743

shown a statistically significant difference with p-values of
3.92e-07 and 7.02e-15 for the generated and teacher-authored
FIRST&FOLLOW tests, respectively, and 1.38e-08 and 0.0005
for SLR(1). However, for the LL(1) tests, the results of the
automatically generated formative tests are lower than those ob-
tained in the evaluation test with a p-value of 1.50e-17, while for
the teacher-authored tests, no statistically significant differences
have been found. In the case of the FIRST&FOLLOW tests, this
result is expected given that these exercises are easier than the
LL(1) and SLR(1) exercises that are part of the evaluation test.
As for the SLR(1) tests, the result may be due to the time limit
imposed in the evaluation test.

In summary, using the Wilcoxon signed-rank statistical test
and the Spearman correlation coefficient, it has been found that
the use of self-generated tests by students is not different from
the use of teacher-authored tests. The comparison of the scores
obtained and the number of sessions has shown that students
repeat the tests until they achieve a similar score in both types
of tests. It has also been observed that there is a reasonable
relationship between the scores in the formative tests and the
summative assessments.

VI. CONCLUSION

The application described in this article provides a way for
the student to enhance the practice of design of the LL(1) and
SLR(1) CFGs. The automatic question generation based on a
combination of building block grammar ensures an unlimited
number of problems to be posed. Although the generation of an
LL(1) grammar and the recognition of grammar equivalence are
unsolvable issues in the general case, a heuristic approach can
provide a practical solution for assessment purposes.

The application has been designed and used for formative and
summative assessment. It includes the automatic recognition of
student answers and personalized feedback. We do not claim
that the system itself is responsible for the increase in the student
scores, but the data show that it helps students to practice and
be aware of their progress.

The complexity and difficulty of the automatically generated
questions is similar to that of the questions manually proposed
by the teacher. The former also have the advantage of always
being different, which is why they require in-depth learning of
the domain concepts from the student and not simple recall of a
specific case.

According to our experience, this tool is especially suitable
for stand-alone formative assessment. Once the techniques have
been presented and some examples have been completed in
the classroom, this tool is ideal for students to practice freely
at home. The order of presentation of the exercises that can
be constructed using this plug-in coincides with the order of
presentation of the course, and it is listed at the end of Section I.
This is a complementary tool to others that offer simulation of
the construction of LL(1) and SLR(1) analysis tables. In case of
using both tools, the simulation tool could be used previously
for training, or afterward to obtain a step-by-step explanation
about a specific case. A possible line of future work would be

the integration of an assessment tool that provides feedback in
a graphical and more detailed way.

The tool has also been used in exams (summative evaluation).
In this case, it is advisable that students should have used the tool
previously to avoid any cognitive overload in the construction
of their answers. It is also advisable to fix the total number of
rules, the number of terminals and nonterminals, and/or the size
of the tables, so that the difficulty of the questions generated
would be the same.

The application is embedded in the SIETTE system, which
can provide additional features that can be used, such us adaptive
question selection, scoring procedure selection, access control,
etc. Question difficulty can be controlled by means of the num-
ber of building block grammar combinations, but it can also
be obtained empirically through SIETTE question calibration
and learning analytic tools. As future work, we plan to fit the
parameters of the IRT characteristic curves of the questions and
test whether SIETTE’s adaptive mechanisms improve students’
learning results. On the other hand, although the system is
limited to SLR(1) tables, we are planning, as future work, to
extend its functionality to LR(1) and LALR(1) tables.

APPENDIX

LINKS TO ONLINE ASSESSMENTS (ANONYMOUS LOGIN)

FIRST and FOLLOW: https://www.siette.org/siette?idtest=
631978&anon

LL(1) grammar analysis: https://www.siette.org/siette?
idtest=633742&anon

LL(1) table construction: https:///www.siette.org/siette?idtest
=525382&anon

LL(1)grammar design: https:///www.siette.org/siette?idtest
=633700&anon

SLR(1) closure function: https://www.siette.org/siette?idtest
=775618&anon

SLR(1) goto function: https://www.siette.org/siette?idtest=
775660&anon

SLR(1) grammar analysis: https://www.siette.org/siette?
idtest=815098&anon

SLR(1) tables construction: https://www.siette.org/siette?
idtest=775702&anon

REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, Principles, Techniques,
and Tools. Boston, MA, USA: Addison-Wesley, 1986.

[2] M. Mernik and V. Zumer, “An educational tool for teaching compiler
construction,” IEEE Trans. Educ., vol. 46, no. 1, pp. 61–68, Feb. 2003.

[3] Á. Arnaiz-González, J.-F. Díez-Pastor, I. Ramos-Pérez, and C. García-
Osorio, “Seshat—A web-based educational resource for teaching the
most common algorithms of lexical analysis,” Comput. Appl. Eng. Educ.,
vol. 26, no. 6, pp. 2255–2265, Jul. 2018.

[4] J. Castro-Schez, C. Glez-Morcillo, J. Albusac, and D. Vallejo, “An in-
telligent tutoring system for supporting active learning: A case study on
predictive parsing learning,” Inf. Sci., vol. 544, pp. 446–468, 2021.

[5] J. Ssanyu, E. Bainomugisha, and B. Kanagwa, “Teaching language pro-
cessing with the PAMOJA framework,” Sci. Comput. Program., vol. 229,
2023, Art. no. 102959.

[6] S. Stamenković and N. Jovanović, “A web-based educational system for
teaching compilers,” IEEE Trans. Learn. Technol., vol. 17, pp. 143–156,
2024, doi: 10.1109/TLT.2023.3297626.

https://www.siette.org/siette{?}idtest=631978&anon
https://www.siette.org/siette{?}idtest=631978&anon
https://www.siette.org/siette{?}penalty -@M idtest=633742&anon
https://www.siette.org/siette{?}penalty -@M idtest=633742&anon
https:///www.siette.org/siette{?}idtestpenalty -@M =525382&anon
https:///www.siette.org/siette{?}idtestpenalty -@M =525382&anon
https:///www.siette.org/siette{?}idtestpenalty -@M =633700&anon
https:///www.siette.org/siette{?}idtestpenalty -@M =633700&anon
https://www.siette.org/siette{?}idtestpenalty -@M =775618&anon
https://www.siette.org/siette{?}idtestpenalty -@M =775618&anon
https://www.siette.org/siette{?}idtest=775660&anon
https://www.siette.org/siette{?}idtest=775660&anon
https://www.siette.org/siette{?}penalty -@M idtest=815098&anon
https://www.siette.org/siette{?}penalty -@M idtest=815098&anon
https://www.siette.org/siette{?}penalty -@M idtest=775702&anon
https://www.siette.org/siette{?}penalty -@M idtest=775702&anon
https://dx.doi.org/10.1109/TLT.2023.3297626

1744 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 17, 2024

[7] R. Conejo, J. del Campo-Ávila, and B. Barros, “First steps towards
automatic question generation and assessment of LL (1) grammars,” in
Proc. Int. Conf. Artif. Intell. Educ., 2022, pp. 271–275.

[8] S. Stamenković, N. Jovanović, and P. Chakraborty, “Evaluation of simula-
tion systems suitable for teaching compiler construction courses,” Comput.
Appl. Eng. Educ., vol. 28, no. 3, pp. 606–625, Mar. 2020.

[9] D. Rodriguez-Cerezo, M. Gomez-Albarran, and J.-L. Sierra, “From collec-
tions of exercises to educational games: A process model and a case study,”
in Proc. IEEE 11th Int. Conf. Adv. Learn. Technol., 2011, pp. 282–284.

[10] R. Jabri, “A generic tool for teaching compilers,” Comput. Inf. Sci., vol. 6,
no. 2, pp. 134–150, Apr. 2013, doi: 10.5539/cis.v6n2p134.

[11] R. Cedazo, C. E. Garcia Cena, and B. M. Al-Hadithi, “A friendly online
C compiler to improve programming skills based on student self assess-
ment,” Comput. Appl. Eng. Educ., vol. 23, no. 6, pp. 887–896, May 2015,
doi: 10.1002/cae.21660.

[12] J. D. Velasquez, “Automatic assessment of programming projects in a
compiler construction course,” IEEE Latin Amer. Trans., vol. 16, no. 12,
pp. 2904–2909, Dec. 2018.

[13] L. Rüdian and N. Pinkwart, “Towards an automatic Q&A generation for
online courses—A pipeline based approach,” in Proc. Int. Conf. Artif.
Intell. Educ., 2019, pp. 237–241.

[14] G. Kurdi, J. Leo, B. Parsia, U. Sattler, and S. Al-Emari, “A systematic
review of automatic question generation for educational purposes,” Int. J.
Artif. Intell. Educ., vol. 30, no. 1, pp. 121–204, Nov. 2019.

[15] B. Das, M. Majumder, S. Phadikar, and A. A. Sekh, “Automatic ques-
tion generation and answer assessment: A survey,” Res. Pract. Technol.
Enhanced Learn., vol. 16, no. 1, Mar. 2021, Art. no. 5.

[16] M. Hernando, E. Guzmán, and R. Conejo, Measuring Procedural Knowl-
edge in Problem Solving Environments With Item Response Theory. Berlin,
Germany: Springer, 2013, pp. 653–656.

[17] R. Conejo, E. Guzmán, and M. Trella, “The SIETTE automatic assessment
environment,” Int. J. Artif. Intell. Educ., vol. 26, no. 1, pp. 270–292, 2016.

[18] Z. Wang and S. J. Osterlind, Classical Test Theory. Rotterdam, The
Netherlands: Sense Publishers, 2013, pp. 31–44.

[19] W. Van der Linden, Handbook of Item Response Theory, Models (ser.
Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences),
vol. 1. London, U.K.: Chapman & Hall/CRC Press, 2017.

[20] W. Linden and C. Glas, “Computerized adaptive testing: Theory and
practice.” Accessed: Mar. 2020. [Online]. Available: http://lst-iiep.iiep-
unesco.org/cgi-bin/wwwi32.exe/[in=epidoc1.in]/?t2000=012104/(100)

[21] R. Conejo, “Siette manual: SIETTE regular expression pattern,” 2023.
[Online]. Available: https://wiki.siette.org/doku.php?id=es:manual:items:
patron:siette

[22] D. J. Rosenkrantz and R. E. Stearns, “Properties of deterministic top down
grammars,” in Proc. 1st Annu. ACM Symp. Theory Comput., New York,
NY, USA: 1969, pp. 165–180.

[23] M. Sipser, Introduction to the Theory of Computation, 3rd ed. Boston,
MA, USA: Course Technology, 2013.

Ricardo Conejo Muñoz was born in Archidona,
Málaga, Spain, in 1960. He received the M.S. and
Ph.D. degrees in Ingeniero de Caminos, Canales y
Puertos (Civil engineer) from the Technical Univer-
sity of Madrid, Madrid, Spain, in 1983 and 1995,
respectively.

He was the Director of the Artificial Intelligence
Research Group, University of Málaga, Málaga, and
the Director and Main Developer of the SIETTE
system. Since 1986, he has been with the Department
of Computer Science and Programming Languages,

University of Málaga, where he is currently a Full Professor. He has taught
compilers and programming for more than 30 years. His research interests
include adaptive testing, student knowledge diagnosis, and intelligent tutoring
systems, as well as fuzzy logic, model-based diagnosis, multiagent systems, and
artificial intelligence applied to civil engineering.

Dr. Conejo Muñoz was an Associate Editor for IEEE TRANSACTIONS ON

LEARNING TECHNOLOGIES. He is a Regular Member of program committees of
international conferences, such as ACM Conference on User Modeling Adap-
tation, and Personalization, International Conference on Intelligent Tutoring
Systems, and International Conference on Artificial Intelligence in Education.

Beatriz Barros Blanco received the Ph.D. degree
in computer science (artificial intelligence) from the
Polytechnic University of Madrid, Madrid, Spain, in
1999.

Since 2017, she has been a Full Professor with the
University of Málaga, Málaga, Spain. Her research
interests include the design of adaptive and inter-
active learning environments, collaborative learning
systems, and the development of efficient solutions
for data analysis.

José del Campo-Ávila received the Ph.D. degree in
software engineering and artificial intelligence from
the University of Málaga, Málaga, Spain, in 2007.

He is currently an Associate Professor with the
Department of Computer Science and Programming
Languages, University of Málaga, where he is also
a Member of the Artificial Intelligence Research
Group. His research interests include incremental
learning, data stream mining for classification, and
multiple classifier systems.

Dr. del Campo-Ávila is an Associate Editor for the
International Journal of Data Science and Analytics.

José L. Triviño Rodriguez was born in Málaga,
Spain, in April 1972. He received the Diploma in
computer science (with a specialization in cybernetics
and theoretical computer science), and the M.S. and
Ph.D. degrees in computer engineering from the Uni-
versity of Málaga, Málaga, in 1993, 1995, and 2002,
respectively.

Since 2009, he has been an Associate Professor of
languages and computer systems with the University
of Málaga. His research interests include artificial
intelligence, machine learning, and data analysis and

knowledge discovery through artificial intelligence.
Dr. Triviño Rodriguez is also a Member of the Spanish Association for

Artificial Intelligence.

https://dx.doi.org/10.5539/cis.v6n2p134
https://dx.doi.org/10.1002/cae.21660
http://lst-iiep.iiep-unesco.org/cgi-bin/wwwi32.exe/[in=epidoc1.in]/{?}t2000=012104/(100)
http://lst-iiep.iiep-unesco.org/cgi-bin/wwwi32.exe/[in=epidoc1.in]/{?}t2000=012104/(100)
https://wiki.siette.org/doku.php{?}id=es:manual:items:patron:siette
https://wiki.siette.org/doku.php{?}id=es:manual:items:patron:siette

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

