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Hybrid Models for Knowledge Tracing: A Systematic
Literature Review
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Abstract—Knowledge tracing is a well-known problem in AI for
education, consisting of monitoring how the knowledge state of
students changes during the learning process and accurately pre-
dicting their performance in future exercises. In recent years, many
advances have been made thanks to various machine learning and
deep learning techniques. Despite their satisfactory performances,
they have some pitfalls, e.g., modeling one skill at a time, ignoring
the relationships between different skills, or inconsistency for the
predictions, i.e., sudden spikes and falls across time steps. For
this reason, hybrid machine-learning techniques have also been
explored. With this systematic literature review, we aim to illustrate
the state of the art in this field. Specifically, we want to identify the
potential and the frontiers in integrating prior knowledge sources
in the traditional machine learning pipeline as a supplement to
the normally considered data. We applied a qualitative analysis to
distill a taxonomy with the following three dimensions: knowledge
source, knowledge representation, and knowledge integration. Ex-
ploiting this taxonomy, we also conducted a quantitative analysis
to detect the most common approaches.

Index Terms—Educational data mining, hybrid models,
informed machine learning (IML), knowledge tracing (KT),
systematic review.

I. INTRODUCTION

L EARNER modeling—also called student modeling—is a
widely studied problem due to its relevance in various

technologies to enhance learning, including intelligent tutoring
systems (ITS) [1] and adaptive educational hypermedia systems
(AEHS) [2]. The problem’s relevance has its roots in the theories
for individualized learning, studied since the 1980s by Cohen
et al. [3] and Bloom [4], which prove its effectiveness compared
to traditional classroom learning. This motivated the search for
technological support and strategies for learner modeling, which
could promote individualized learning.

A learner model (LM) is an abstract representation of the
learner that considers cognitive and noncognitive characteristics.
According to Vagale and Niedrite [5], the LM includes all infor-
mation available for the system on the user and keeps active user
accounts within the system, i.e., it keeps both static and dynamic
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information about the learner. Specifically, static information is
data that are independent from the student’ interactions with the
system, e.g., personal data or pedagogical and preference data
collected once and which stay unchanged during the system
utilization. On the other hand, dynamic information is data
collected while the students are interacting with the system
and they are involved in their learning process. It can refer to
the student’s performance, i.e., student achievements during the
course session, and the actual state of the student’s knowledge
concepts and skills. The dynamic data component in the LM
determines a continuous flow of collecting and updating data
about the learner.

As for the methodological approaches to tackle the learner
modeling problem, there are two main families [6]. The first
set of approaches relies on psychometric methods, e.g., item
response theory [7] and cognitive diagnostic models [8], which
are mostly based on static data. However, in the last decades,
technological advances opened the possibility of collecting dy-
namic data while the student interacts with a learning system.
This attracted the interest of computer scientists in knowledge
tracing (KT) [9], which can be described as tracking how stu-
dents’ knowledge states change while they are learning and
forecasting their performance in future exercises.

However, there are two main challenges connected to the
KT problem. The first one concerns its complexity due to its
interdisciplinarity nature. According to Abyaa et al. [10], learner
modeling is challenging since it is based on intertwining edu-
cation science, psychology, and information technology. This
led them to suggest that an ideal learner model can be built
through the following three steps: the identification and selection
of the learner’s attributes that impact on their learning; then,
considering the learner’s psychological states during their learn-
ing process, and finally choose the most suitable technologies,
which enable to accurately model each selected attribute. This
challenge is inherited by KT as a subclass of learner modeling.

The second challenge is spread out by the limitations that
emerge from the implementation of ML techniques in KT.
Although purely data-driven techniques for KT achieve satis-
factory performance, they have some pitfalls regarding their
applicability, reliability, or interpretability that we do not find
in psychometric models [11]. They mainly differ from purely
data-driven approaches because they are grounded in a theoret-
ical framework. In item response theory, for instance, each item
is associated with an a priori difficulty coefficient. Moreover,
there is the assumption that learning does not occur during
testing. Both these assumptions are used in designing the model.
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This theoretical advantage in psychometric models led us to
suggest a possible methodological framework for addressing the
pitfalls emerging by purely data-driven techniques, referring to
informed machine learning (IML), introduced by von Rueden
et al. [12]. In a nutshell, IML aims to overcome a purely data-
driven approach favoring hybrid ML models, which integrate
alternative knowledge sources to data in the ML pipeline.

In this article, we want to contribute to the two challenges
just presented, by conducting a systematic literature review.
Specifically, we aim to highlight if and how the prior knowledge
due to the interdisciplinary and complex nature of KT can
be used to overcome the limitations, which emerge by using
standard ML methods. For this purpose, we want to verify if
the paradigm proposed with the IML is effective and productive
for KT, i.e., whether it can be applied fruitfully to develop KT
models. Therefore, we want to find references in the literature
that explicitly consider forms of prior knowledge injection to
address the KT problem. On the one hand, we can outline the
state of the art in deploying hybrid ML approaches for KT. On the
other hand, we aim to point out the current gaps in the literature
and suggest new avenues for research

The rest of this article is organized as follows. In Section II, we
introduce the background. We describe the main ML techniques
used for KT with their critical issues. Then, we outline the
main features of the IML paradigm. Section III describes the
methodology. We display and motivate the RQs tackled through
our systematic literature review. We describe both the literature
survey procedure and the classification process. In Section IV,
we present the results of our analysis. First, we describe the
taxonomy we distilled from the surveying of the papers. It is an
adaptation of the one proposed by von Rueden [12] due to our
focus on the educational field. Second, we show the classification
results of the selected papers gained by applying our IML
adapted taxonomy. Section V discusses key insights into the
results concerning the RQs. Finally, Section VI concludes this
article.

II. BACKGROUND AND CHALLENGES

A. Knowledge Tracing

Formally, the KT problem can be described as follows.
Let us consider a learner’s history exercise sequence X =
{(q1, r1); (q2, r2); . . .; (qt−1, rt−1)}, where {qi} is the id for the
question answered by the learner at the ith-time step, and ri = 1
if the student provided the correct response to the question qi,
0 otherwise. The goal of KT is to predict the probability of
correctly answering the question qt at time step t, i.e., com-
puting Pt(rt = 1|qt, X). Hence, given the unknown function
f : X −→ {0, 1}, which associate each learner’s history exercise
sequence (X, qt) to 1 (qt correctly answered) or 0 (otherwise),
the KT goal is to determine a function g : X −→ [0, 1], which is
a good approximation of f . The prediction is based on hidden
variables, whose values are updated at each time step and which
model the student’s knowledge state.

There are three main classes of ML techniques widely ex-
ploited in the literature and well described by Minn [11]: hidden
Markov models, factor analysis models, and deep learning-based

models. The main exponent of the first class is Bayesian knowl-
edge tracing (BKT) [9]. In this model, the learner’s knowledge
state is represented through a set of binary variables for each skill
or knowledge component (KC), which assumes the true value if
the student is in the learned state. The observed data is the student
performance, the latent variables are the student knowledge state
for each skill. The truth value of the latent variable corresponding
to the skill or KC k depends on four factors:

1) the initial learning factor p(Lk
0), which is the prior proba-

bility that a student already masters k;
2) the acquisition factor P (T k), which is the probability for

the student to pass from the unlearned state to the learned
state after the next practice opportunity;

3) the guess factor P (Gk), i.e., the probability the student
guessed the correct answer despite being in the unlearned
state;

4) the slip factor P (Sk), which models the probability that
the student makes a mistake despite being in the learned
state.

The estimate of student mastery of k, i.e., the student knowl-
edge state for k, is continually updated every time a student
responds to an item [9]. In a nutshell, the student knowledge
state for k after thenth action of the student, indicated byP (Lk

n),
is computed considering both the posterior probability that the
student was already in the learning state given the evidence
(whether or not the nth action is correct), and the probability
that he will make the transition to the learned state if it is not
already there. Then, the current student’s knowledge state for
k is exploited to compute the probability to perform a correct
action taking into account the mitigation effect of the slip factor
P (Sk) and the positive effect of the guess factor P (Gk).

Although BKT has been used successfully in many systems,
it has some limitations, well summarized by Tato and Nkam-
bou [13]. First, BKT relies on Bayesian networks (BNs) [14], for
which often the student interactions with relevant concepts need
manual labeling, and a priori probabilities have to be defined
by domain experts. Moreover, BKT handles binary response
data to track changes in the student knowledge state, forcing the
system to deal only with exercises that can be easily modeled
in a Boolean way. Furthermore, BKT is designed to model one
skill or KC at a time, ignoring the interactions between skills
and KCs and affecting a single performance.

As for the second class, it worths mentioning performance
factor analysis (PFA) [15], which is a logistic regression model
to predict accuracy considering the student’s number of prior
failures and successes on that skill. It is an extension of learning
factor analysis [16], designed to model multiple skills simul-
taneously, i.e., the prediction of the student performance relies
on the conjunction or compensation of the skills needed in the
performance by summing their contributions. PFA is compet-
itive and outperforms BKT models [11]. However, PFA does
not consider important behavioral factors, such as the order of
answers and the probability of students guessing or slipping.
This may affect the reliability of the models prediction.

The third class of techniques is deep learning-based models,
which have recently been widely used for KT, as in many
other domains. There are two main approaches in this class:



ZANELLATI et al.: HYBRID MODELS FOR KNOWLEDGE TRACING: A SYSTEMATIC LITERATURE REVIEW 1023

deep knowledge tracing (DKT) models [17], which is based
on recurrent neural networks; and dynamic key-value mem-
ory networks (DKVMN) [18], which is a memory-augmented
neural network based on two memory matrices to exploit the
relationships between underlying concepts and directly output a
student’s mastery level of each concept. As for the disadvantages
of DKT, Yeung and Yeung [19] highlight two main points.
First, the model fails to reconstruct the observed input, i.e.,
the model predicts a failure for a student in a certain skill,
despite the observation that a student on the same skill in the
input data is a success, and vice versa. Second, the predicted
performance for skills across time steps is inconsistent, i.e.,
there are sudden spikes and falls across time steps. Intuitively,
this is both unfavorable and illogical, since students’ knowl-
edge state is likely to change gradually over time, rather than
fluctuating between mastered and not-yet-mastered. Moreover,
neural networks have a high computational cost and are prone
to overfitting. Sun et al. [20] pointed out some limitations also
for DKVMN models. They ignore both the students’ behavior
features collected by their interaction with the learning system
and the student’s learning abilities, which affect the students’
knowledge state.

In his review, Minn [11] compares item response theory (IRT),
BKT, PFA, and DKT on three dynamic public datasets (ASSSIT-
ments 2009–2010 and ASSISTments 2014–2015, derived from
the homonymous learning system, and Algebra 2005–2006,
released in KDD Cup 2010 competition). He obtained the best
performance with the IRT psychometric model, followed by
the DKT model. The fact that the IRT model performs better
than ML models is surprising in the first instance. However,
an explanation for this outcome can be find in a main design
difference between IRT and other student models, among which
also DKT: IRT explicitly relies on the item difficulty factor.
This result supports our idea that there is contextual learning
information, distinct from the data directly collected on the
student and their performance that can provide insights for
enhancing expected predictions.

B. Informed Machine Learning

In Section I, we introduce two challenges. First, the problem
of KT lies at the intersection of several disciplines, including
pedagogy, psychology, cognitive science, and information tech-
nology. Second, as supported by the previous section, standard
ML models for KT show performance pitfalls that we do not find
in psychometric models, which integrate a theory-ladenness.

We can expand the first issue by affirming that learning cannot
be described only with information gathered directly from the
learner or about the learner. Learning is influenced by the context
in which it takes place, understood as a physical, relational,
emotional, and disciplinary space [21]. The relevance of the con-
text on learning has been considered since the first research on
ITSs, which are based on domain models, pedagogical models,
and tutor–learner interface models, together with the LM [22].
However, these components are usually modeled independently,
i.e., as 4 separate parts in the system. Little attention is paid to
modeling how one can influence the others. Simplifying with

an example, on the one hand, the domain model can be seen
as an organizational model of the repository for the system’s
educational resources. On the other hand, it can be understood
as an epistemological model of an area of knowledge that may
affect how the student learns, hence affecting also the LM [23].

As for the second point, several contributions in the literature
affirm the need to overcome purely data-driven approaches in
machine learning [24], [25], especially in those contexts where
the phenomenon is very complex, it is difficult to obtain suf-
ficiently large and representative datasets. A priori or a poste-
riori forms of knowledge, acquired over years of research, are
available [26]. All these factors exist for KT: its complexity
has been motivated in the previous point; the challenge of
quantity and quality of data [27] is quite common in the form
of class imbalance [28] (e.g., correct answers on skills difficult
to master), and a priori and a posteriori knowledge are usually
available and are already used in ITSs and AEHSs. In these
cases, it may be worthy to test hybrid learning techniques [29],
which can be recognized as a strategy of IML.

von Rueden et al. [12, p.616] defined IML as “learning from a
hybrid information source that consists of data and prior knowl-
edge. The prior knowledge comes from an independent source,
is given by formal representations, and is explicitly integrated
into the machine learning pipeline.” Here, the term knowledge
is assumed in a computer science perspective, meaning verified
information regarding the connections between entities within
specific contexts. Moreover, they introduced a taxonomy for
IML, outlining a scheme consisting of three types of knowledge
sources, eight possible knowledge representations, and four
forms of integration, as shown in Table I. However, their paper
did not refer to educational case studies. Hence, whether their
taxonomy fits with the specificity of KT remains to be explored.
We suggest referring directly to their paper for a full description
of the terms they introduced in the taxonomy. In Section IV, we
display the terms that we have distilled for our taxonomy, which
is an adaptation of their proposal as a result of our analysis.

III. METHODOLOGY

A. Research Questions

To sum up, we are assuming that the complex nature of KT can
be addressed by explicitly taking into account the information
sources due to the different disciplines that deal with learning
and the situation in which it takes place. This means finding a
way to integrate these forms of prior knowledge in data-driven
machine learning models. Therefore, we took as a reference the
taxonomy proposed by von Rueden et al. [12] for IML, trying
to apply it to the specificity of our topic. As already mentioned,
in their framework, the authors introduce the following three
dimensions: knowledge source, knowledge representation, and
knowledge integration (see Table I). They also associate each
dimension with an analysis question. Here, we assume them as
our research questions, focusing the field of study on the KT
problem.

RQ1 Which source of knowledge can be integrated into
machine learning models for KT?
RQ2 How is the knowledge represented in those models?
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TABLE I
IML TAXONOMY INTRODUCED IN [12]

RQ3 Where is the knowledge integrated into the machine
learning pipeline?

We opted for a systematic literature review to highlight, which
avenues have already been explored, which trends are more
common to design hybrid models for KT, and to identify new
research methodological trajectories.

B. Literature Surveying Procedure

To perform our systematic literature review, we followed the
PRISMA statement [30]. We included four main databases,
which contain relevant literature in the field: ACM Digital
Library, IEEE Xplore, Scopus, and Web of Science. They are au-
thoritative databases for the research sector in learning analytics
and artificial intelligence in education, for which it is possible
to carry out searches with articulated queries and by restricting
the search field to some parts of the paper (e.g., abstracts and
titles).

The query used to retrieve results in these databases is
the following: (“skill development” OR“skill acquisition”
OR“skill assessment” OR“knowledge tracking” OR“knowledge
tracing” OR“knowledge assessment”) AND(“machine learn-
ing” OR“artificial intelligence” ORcomputing OR“deep learn-
ing” OR“learning analytics” OR“data mining”) AND(education
OReducational). The search was limited to the titles, abstracts,
and keywords of the documents in the databases to select only
papers with the main focus on the topic of our interest. The
query consists of the conjunction of the following three parts:
the first is for keywords about the learning object under study;
the second aims to bind the research methodology reference to
machine learning and other related fields; the last one is used
to disambiguate the terms knowledge and learning, collocating
them into the educational sciences. There is a fourth aspect
characterizing our research questions regarding the use and
integration of sources of prior knowledge. However, it is not
easy to identify related keywords, which are sufficiently general
for an automatic filtering process taking this aspect into account.
In a sense, one of this research’s objectives is identifying, which
sources are most used as prior knowledge and which lexicon is
used to refer to them. Therefore, the focus on prior knowledge
was not considered in the first phase of the PRISMA checklist
and was integrated later, as we will describe.

The query was run on August 5, 2022, collecting 1267 doc-
uments. Fig. 1 shows the main steps of the systematic review
process according to the PRISMA flow. In the top-left box of the
diagram, we summarized the numbers of retrieved documents
with the query search, divided among the selected databases.
After removing duplicates and documents in the form of full

books or conference proceedings, the list of potential candidate
papers was reduced to 957.

On this set of papers, we carried out a manual screening
of titles and abstracts to assess the relevance of our study.
Specifically, we considered the following inclusion criteria:

1) the paper has a methodological focus on KT, i.e., aims to
describe a technique, an algorithm, or a method to deal
with KT problems rather than presenting a digital tech
application (serious games, virtual reality systems, web
platforms, etc.);

2) the main methodological approach refers to the field of
machine learning, computational intelligence, or data sci-
ence;

3) the data used to build the LM are collected from the
student’s interaction with learning management system
(LMS);

4) the paper refers to human learning.
The first two criteria were chosen to pursue the methodolog-

ical focus of the RQs. The third and fourth criteria were chosen
to explicit a sufficiently broad but defined application target for
KT. Specifically, the third criterion narrows the interest of this
study to school, academic, and training contexts that use LMS as
a teaching support tool. The fourth criterion disambiguates the
word “learning,” which can be used in AI concerning machine
or robot learning. In addition, we considered four exclusion
criteria:

1) the full text of the paper is not available in English;
2) the paper presents preliminary results, i.e., it is a position

papers or the authors declare that they are describing an
exploratory study;

3) the paper has as its main objective a literature review;
4) there are later more updated or complete versions of the

paper by the same authors and on the same research
project.

The application of these criteria led to the selection of 221
papers considered eligible. This set of papers has gone through
a new screening phase on the full text, aimed at selecting only
documents with a focus on using and integrating prior knowl-
edge sources in ML tools. Specifically, it was decided to consider
the following inclusion criteria:

1) the authors explicitly consider the need to integrate a priori
forms of knowledge with methods traditionally used to
deal with KT;

2) the paper includes a clear description of the methods, i.e.,
which prior knowledge is taken into consideration and how
this is integrated into the ML pipeline.

To check the first criterion, we seek evidence in the text,
particularly in the introduction and conclusion sections, where
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Fig. 1. PRISMA 2020 flow diagram for the screening process. After the identification of the potential candidates, there are two screening steps. The first one 1)
consists of applying 4 inclusion and 4 exclusion criteria considering only papers’ titles and abstracts. The second 2) has been conducted with two inclusion criteria
to focus on the prior knowledge injection problem, considering the papers’ full texts. The selection criteria are described in Section III.

authors usually state their main contributions. For the second
criterion, the methodology section of each paper was examined.

As a final result, we identified the 53 papers included in this
review. All selected papers present case studies in which a close
match occurs between the “informed” models and authoritative
datasets exploited for KT (e.g., ASSISTment, KDD cup 2010,
or data collected with commonly used LMS). The experiments
described in the selected papers perform comparably to or
better than the purely data-driven models, taken as a reference
benchmark. This motivates our interest in exploring potentials
and gaps of prior knowledge source integration into the ML
pipeline.

C. Classification Process

To classify the 53 papers considered eligible for the review, we
tested and refined the IML taxonomy by von Ruedend et al. [12],
which we have already introduced in Section II.

We felt comfortable using their notation about knowledge in-
tegration, which refers to the main steps in any ML pipeline [31].
As for the knowledge representation forms, we relied on the
existing taxonomy, although it remains to distill, which forms
are actually used in the ML models for KT, and the possibility
of expanding the initial list if other forms emerge. On the
other hand, we immediately perceived the adaptation of the

taxonomy for knowledge sources to our context as more delicate.
von Rueden et al. [12] proposed three main sources: scientific
knowledge, world knowledge, and expert knowledge. Accord-
ing to their definitions, scientific knowledge mainly refers to
science, technology, engineering, and mathematics, and it is
validated through formal reasoning or scientific experiments.
World knowledge alludes to facts from everyday life, which can
be validated implicitly by human reasoning based on intuition;
they also subsume linguistics as world knowledge, e.g., syntax
and semantics of a language. Expert knowledge is common
knowledge within a specific experts’ community and is mainly
validated through a group of experienced specialists.

Following these definitions, scientific knowledge does not
apply to KT, while the other two forms fit with the educational
context. However, it is sometimes difficult in our selected papers
to distinguish whether a knowledge source is the result of general
knowledge or is based on an expert-domain learning theory. Fur-
thermore, the classification in the world and expert knowledge
is extensive and does not capture some specificity of the sector,
which a finer granularity of the taxonomy might capture. This
refinement process was inspired by another taxonomy source
borrowed from ITS and AEHS. These systems have four major
components [32]: domain model, pedagogical model, LM, and
tutor–learner interface model. The latter is mainly a model on a
technical level: it determines the admissible inputs (e.g., click,
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TABLE II
REFERENCES CLASSIFIED BY KNOWLEDGE REPRESENTATION AND KNOWLEDGE SOURCE

typing, speech) and produces output in different formats (e.g.,
text, diagrams, animations, agents); it shapes the architecture
through which data are collected; it mediates the interaction
between the learner and the contents. On the other hand, the
other three components are models for integrating information
on different aspects that influence learning into ITS and AEHS.
Hence, they are eligible as possible sources of knowledge spe-
cific to our topic.

Operationally, a first screening of the paper was made to build
a set of labels suitable for classifying each of the three IML
dimensions, taking into account the previous considerations.
The most appropriate categories were gradually detected as the
papers were analyzed. Once we derived the labels, we homog-
enized and reorganized them to arrive at a stable classification
taxonomy. We conducted a second screening phase with this new
label set by classifying the 53 papers. During this classification
process, we identified the knowledge source enclosed in the
model and how it was represented and integrated. Even more
labels for each dimension of the taxonomy can be applied to
a single paper if there are more types of knowledge sources
or if the authors exploit different representation or integration
strategies.

In the following session, we introduce the classification tax-
onomy obtained from the first qualitative analysis of the papers
and the classification results in quantitative terms. Furthermore,
we chose one of the papers included in our systematic literature
review to show how our taxonomy can be applied to describe
the prior knowledge injection flow in a real case study.

IV. RESULTS

A. Taxonomy of IML for KT

Here, we present the result of the qualitative analysis that led
to the determination of the reference taxonomy for the selected

papers’ classification. In illustrating our results, we cite only
the most recent paper among those included in the systematic
review. The full classification, according to the introduced tax-
onomy, is offered in Tables II and III. The two tables classify the
papers by knowledge representation and (path from) knowledge
source and by knowledge representation and (path to) knowledge
integration.

B. Knowledge Source

The first focus in our taxonomy concerns pointing up the
knowledge sources, which can be considered when dealing
with KT, i.e., other information retained valuable to integrate
those generally used in the standard KT models, that are, the
sequence of students’ performances. We developed a two-level
classification, which expresses different degrees of granularity,
summarized in Fig. 2. At the first level, we have three nodes
inspired by the ITS components: domain knowledge (domain
models), learning knowledge (pedagogical models), and behav-
ioral knowledge (student knowledge).

With the term domain knowledge, we indicate both the disci-
plinary space, i.e., information related in some way to the content
object of the learning, and the context where learning occurs.
There are four kinds of information included under this umbrella
term: items’ difficulty, items’ semantic similarity, knowledge
structure, and class context. The first one refers to information
about the difficulty level that characterizes each item used to
track the students’ knowledge development. It can be assumed
either as an intrinsic property of the item, i.e., the level of
difficulty is the same for all the students (e.g., [42]), or as a
feature to be modeled properly for each student (e.g., [33]).
Semantic similarity indicates the benefit of the items’ texts
as a source of knowledge. The general objective is to exploit
semantic similarities between the exercises to highlight valuable
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TABLE III
REFERENCES CLASSIFIED BY KNOWLEDGE REPRESENTATION AND KNOWLEDGE INTEGRATION

Fig. 2. Taxonomy of knowledge sources for the KT Problem. There are three
main classes of knowledge sources for which we have identified some subclasses.

relationships among them, as shown in [48]. In most cases,
the integrated knowledge source concerns the knowledge struc-
ture, i.e., making explicit the relationships between knowledge
concepts, skills, and exercises. This includes both links be-
tween concepts or skills considered to be communed by experts
(e.g., [56]), and concept(s)-item or skill(s)-item links (e.g., [44]).
In this way, we are considering the epistemological structure of
a discipline to handle a typical issue in learning assessment:
it is not possible to directly measure the students’ mastery

level of a set of attributes, but it can be inferred by looking
for patterns in their items’ responses. The last option in this
family, namely class context, indicates the use of information
about the other students in the class to infer characteristics of the
context in which the learning took place, assuming that this can
influence each student’s learning. For example, Tong et al. [48]
considered which exercises are often solved in sequence to infer
hierarchical relations between the items. Wang and Beck [67] try
to create a model of the class because it can be representative of
important information that affects a student’s prior knowledge.
For example, students in the same class have the same teacher
and curriculum and have been assigned the same homework.

The second family of knowledge sources is named learning
knowledge. It refers to expert knowledge about how learning
occurs. We differentiate two types: pedagogical assumptions
and cognition theories. In the first group, we enclose theories
or hypotheses on learning from an external point of view. For
example, Lee et al. [69] cited knowledge space theory as a
reference to capture the knowledge structure. They assumed that
if students correctly solve a tough exercise on a specific topic,
they could even solve correctly other easier exercises on the same
topic. Among the cognition theories, we include references to
the individual learning process, e.g., the Ebbinghaus forgetting
curves proposed in cognitive science studies [71].

As for behavioral knowledge, we refer to information con-
cerning how students behave during the learning process in
terms of interactions with the learning materials (mainly the
items in a learning system). We see a connection with the
LM component of the ITS because this information is related
to the student. Still, it enriches the exercise-performance se-
quence traditionally considered in KT. More granularly, we
have identified three sublabels: time, scaffolding interactions,
and attempts. In [34], they used the average time of answer to
estimate items’ difficulty. Moreover, information about time is
used to estimate the learner’s skill mastery, as shown in [42].
As for scaffolding, in education, it refers to breaking up new
concepts so they can be learned more easily. Hence, taking
into account scaffolding interactions indicates the willingness
to integrate the learners’ data with information about how or
when they use scaffolding materials during their learning process
(e.g., [78]). Finally, considering the learners’ attempts means
monitoring their actions between two consecutive time steps,
i.e., determining the knowledge state in a time step also through
the attempts and wins/fails ratios that have occurred (e.g., [20]).
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C. Knowledge Representation

As categories to define the forms for the representation of
knowledge, we referred to the taxonomy introduced by von
Rueden et al. [12] (see Table I). Here, we describe only the forms
of knowledge representation found in the papers examined in the
review.

In most cases, algebraic equations are functions to express a
mathematical relationship between the variables and constants
used to model the problem. Sometimes, the term algebraic
constraints are more appropriate because the knowledge is repre-
sented through inequalities to determine a feasible set of values
(e.g., [71]).

Simulation results are used to describe the numerical outcome
of a computer simulation, intended as a way to approximate
a real-world scenario and its possible or desirable evolution.
There are two recurring forms in the analyzed papers. First,
embedding techniques (often pretraining) to obtain more in-
formative representations from the data. Second, the use of
attention mechanisms in neural networks. For example, in [44],
the domain information on the exercises is integrated through
two simulation processes: a pre-training embedding of their
texts to gain semantic knowledge and an attention mechanism
to model the relations between the items.

Knowledge graph is a common form of knowledge repre-
sentation. A graph is a pair (V,E), where V is the set of its
vertices (or nodes), which usually describe concepts, and E
is the set of its edges, i.e., the abstract relations among them.
A common knowledge graph within the KT is the Q-matrix, a
binary matrix encoding linkages between test items and concepts
or other latent or underlying attributes they deal with [80]. It can
be provided by an educational expert (e.g., [59]) or estimated
directly in the embedding layer by exploiting graph neural
networks, which are neural networks designed to handle data
represented through graphs (e.g., [55]).

Another knowledge representation type is probabilistic rela-
tion. According to von Ruedend et al. [12], the correlation of
random variables, their conditional independence or the full de-
scription of their joint probability distributions can be assumed
as a way to represent prior knowledge. This form of knowledge
representation is the milestone of BN models [14], very popular
as KT techniques.

We add a new class of knowledge representation, named other
data. There are some cases in which the integrative knowledge
source is expressed directly by the collection of additional data
to those usually considered in the KT problem (e.g., [20]).
As can be seen in Table II, this is quite common when we
aim to integrate information on the learner’s behavior during
learning.

As a final remark to the results concerning knowledge rep-
resentation, we highlight that there are four classes in the IML
taxonomy (see Table I) never used in our qualitative analysis:
differential equations, spatial invariances, logic rules, and human
feedback.

D. Knowledge Integration

As for knowledge integration, we found three of the four steps
of the ML pipeline [31] in the qualitative analysis of the papers.

Integrating prior knowledge sources in training data is
intended as acting on the information provided as input to the
model. There are several ways this can happen. First, we mention
data augmentation. Lee et al. [69], for example, defined synthetic
data based on pedagogical rationales to deal with the complexity
of knowledge acquisition. Another common integration practice
is embedding the data with a feature engineering process. This
process can be either expert-driven, e.g., in [20], the authors
define correct, and error rates as new features to model the
students’ learning ability, or data-driven, e.g., in [52], a pretrain-
ing embedding architecture is designed to model the knowledge
structure in the domain. Lastly, some papers expand the training
dataset with new kinds of data. In [27], the author leverage
knowledge in other domains, which can be transferred to the
KT’s domain (discipline) object. In other papers, the training
dataset includes behavioral data obtained while tracking the
learners’ interactions with the learning system (e.g., [71]).

The second step of the ML pipeline where prior knowledge
can be integrated is the hypothesis set. It can be defined as the
set of functions to choose to solve the initial problem. Relying
on the notation introduced in Section II, the initial problem is
estimating f : X −→ {0, 1}, and the hypothesis set H is the set
of candidate functions among which to choose g : X −→ [0, 1],
as a result of the learning algorithm. It may be, for instance,
the set of linear functions, the set of neural networks, or
the set of logistic functions. Integrating the prior knowledge in
the hypothesis set can be intended as bounding the form of the
functions included in H. For example, Liu et al. [71] managed
two explicit choices in this direction: they exploit recursive
functions in their architecture to handle the knowledge master
degree estimation according to constructive learning theories;
they define a graph convolutional network to include latent
learning ability estimation influence on the learner’s knowledge
concepts states.

The last knowledge integration type found in our literature
review is in the learning algorithm, i.e., how the model updates
the parameters, which define the functions in H during the
training. In a neural networks-based model, this integration
consists of modifying the loss function to force the model to
consider a prior knowledge source. The authors in [28], for
example, introduced a penalization term in the loss function to
handle item difficulty.

It is worth noting that we do not have any models where
knowledge integration occurs in the final hypothesis step. This
kind of knowledge integration would occur when the output
of the machine learning pipeline is validated against existing
knowledge.

The distilled taxonomy of knowledge representation and in-
tegration for KT is summarized in Fig. 3.

E. Quantitative Analysis

We applied the taxonomy described in the previous section
to the 53 eligible papers selected for our systematic literature
review. One paper can have more than one path for prior knowl-
edge integration. A path is defined by a triad “knowledge source-
knowledge representation-knowledge integration.” We counted
each path separately for the quantitative analysis, identifying
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Fig. 3. Taxonomy of knowledge representation and integration for the KT
Problem. Five main forms of knowledge representation and three integration
steps in the machine learning pipeline are distilled from our systematic literature
survey.

77 paths. For instance, Tong et al. [48] introduced 4 ways to
integrate exercises learning dependencies in their KT model.
As a knowledge source, they exploit knowledge structure from
experts, the semantic similarity between items, class context
leveraging common behaviors in the class, or class context
retrieved by studying the correlation among items answered
correctly by many students in the class. They represent the
first three knowledge sources using knowledge graphs, while
the last is tackled through probabilistic relations. In each path,
the integration occurs in the hypothesis set step. Hence, we have
4 triads and considered 4 paths in our labeling counting process.

The quantitative overview of this analysis is summarized
through the Sankey diagram in Fig. 4. This visualization format
depicts a flow from one set of nodes to another. The paths connect
the elements across the three dimensions of the taxonomy and
illustrate the approaches we found in the analyzed papers. The
height of each node is proportionate to its absolute frequency,
which is also expressed in number. The thickness of the links de-
pends on the absolute frequency with which the path connecting
two nodes has been recorded.

Let us point out three main pieces of evidence from the
Sankey diagram. First, domain knowledge sources are the most
exploited, with 40 paths out of 77 which use them. Specifically,
in 28 cases, the prior knowledge to integrate concerns the knowl-
edge structure, i.e., more than a third of the paths.

Second, the training dataset is the privileged integration path
(43 cases out of 77) for all forms of representation except for
probabilistic relations. The latter case is often connected to
the choice of the BN as inspiring architecture for the model.
Therefore, it is brought back to the hypothesis set class, i.e., the
form chosen for the objective function of the predictor.

Third, we have some cases of exclusive inbound or outbound
paths. As expected, when knowledge is represented by exploit-
ing other data, we have a unique outbound path to the training
dataset, i.e., these new data sources are used to increase the
features considered for a more rich knowledge representation.
Moreover, the knowledge integration into the learning algorithm
step occurs only with an inbound path from algebraic forms
of knowledge representation. All the papers that present this

approach introduce a regularization term in the loss function,
which is optimized during the model training phase.

In addition, the diagram suggests that some representation
and integration approaches (paths from knowledge sources to
knowledge representations and paths from knowledge represen-
tations to knowledge integrations) are more frequent than others,
i.e., some paths are more common. A measure for the relevance
of each approach is expressed by computing its conditional
probability, i.e., the probability that a path ends in a certain
node B knowing that the source node is A. In other words, we
aim to interpret the Sankey diagram in Fig. 4 as a weighted
3-partite direct graph. The weights of the links are defined
through conditional probabilities; the three sets of independent
nodes correspond to the three dimensions of the taxonomy
(knowledge sources, knowledge representations, and knowledge
integrations); the paths’ direction is from left to right.

We define the conditional probability p(B = bj |A = ai) as

p(B = bj |A = ai) =
fij
fi·

(1)

where A and B are two variables, ai and bj stand for one of the
modalities, respectively, ofA andB, fij is the absolute bivariate
frequency (i.e., how many times ai and bj occur together), and
fi· is the absolute marginal frequency (i.e., the number of total
occurrences of ai). The weights determine the relevance of the
different approaches.

For instance, we assume A as the variable for knowl-
edge sources and B as the variable for knowledge integra-
tion; A ∈ {a1, a2, . . ., a9}, where ai denotes the ith modal-
ity for knowledge source from the top in Fig. 4; similarly,
B ∈ {b1, b2, . . ., b5}, bj is the jth modality for knowledge
representation from the top in the same figure. Hence, we
have a1 = “items difficulty,” b1 = “algebraic equations.” The
co-occurencies of a1 and b1 is f11 = 9; the marginal frequency
for a1n is f1· = 12. Thus, according to definition 1, we have
p(B = b1|A = a1) = 0.75. In practice, 75% of the paths outgo-
ing from the item difficulty source are integrated into the model
through an algebraic representation.

The tables in Fig. 5 summarize the results for all the possible
combinations, which define the paths in the Sankey diagram. In
particular, we present the contingency tables for the frequencies
of each possible path and the adjacency matrices, which describe
the graph defined on the Sankey diagram. The elements of the
adjacency matrices are the conditional probabilities computed
according to definition 1 as weights for the links. More details
about the tables are provided in the description of the figure.

From the results presented, we can highlight the following
relevant approaches among the paths from knowledge sources
to knowledge representations:

1) items difficulty—algebraic equations;
2) semantic similarity—simulation results;
3) cognitive theories—algebraic equations;
4) attempts—other data.
As for the paths from knowledge representations to knowl-

edge integration, the relevant approaches are as follows:
1) probabilistic relations—hypothesis set;
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Fig. 4. Paths for integrating prior knowledge in a KT model. The nodes on the left represent the spectrum of knowledge sources distilled from our iterative
literature survey; we used three colors to distinguish the three main classes (yellow for domain knowledge, light blue for learning knowledge, and pink for behavioral
knowledge). Central nodes cover the forms of knowledge representations. The right nodes are for the types of knowledge integration. The paths among nodes
represent different approaches to integrating prior knowledge into the ML pipeline.

Fig. 5. Contingency tables and adjacency matrices of the graph for IML taxonomy for KT. (a) Contingency table for all the possible combinations among
knowledge sources and knowledge representations modalities (left paths in Fig. 4). (b) Adjacency matrix of the left fold of the graph defined on the Sankey diagram
in Fig. 4. (c) and (d) respectively, the contingency table and the adjacency matrix among knowledge representations and knowledge integrations (right fold in Fig.
4). We have bolded in the adjacency matrices the weights associated with the most relevant approaches in the prior knowledge integration pipeline according to
the criteria described in the final part of Section IV.
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Fig. 6. Architecture for DKT with prior knowledge integration. The figure is
adapted from the original paper [50]. In gray, there is the standard architecture
for DKT, and in red, the prior knowledge that is integrated. Questions are given
as input to an embedding layer. The RNN-based sequential layer is fed with
the embedding output and ai, which encodes whether the student answered the
question qi correctly. Prior knowledge is the similarity relationships between
questions. There are two integration paths. First, it is represented through a
knowledge graph given as input to the embedding layer. Thus, it is integrated
into the training data. Second, it is included in a regularization term added to
the binary cross-entry loss. Thus, there is an algebraic reshaping of the learning
algorithm.

2) other data—training dataset (already mentioned as an
exclusive outbound path);

3) semantic similarity—training dataset.
The relevant approaches have been identified by applying the

following criteria: the weight associated with the path is greater
than or equal to 60%; both the marginal frequencies and the joint
frequency are greater than 5% of the total number of paths, i.e.,
fij , fi·, f·j ≥ 4.

F. Application of IML Taxonomy for KT to a Real Case Study

Before discussing our results for our RQs, we want to show a
case of the application of our taxonomy. We aim to make clear
what it means to integrate prior knowledge sources in a KT
model, following the full path in one of the reviewed papers.
We choose the paper by Wang et al. [50] because it is the only
one that considers the most frequent category in each dimension
of our taxonomy (knowledge structure as knowledge source,
algebraic equations as representation form, and training dataset
as integration step).

They present a model based on a DKT architecture. In Fig. 6,
we present its diagram. The grey part concerns the DKT in its
purely data-driven fashion: the student past question–answer
sequence feeds an embedding layer; then passes through the
sequential layer RNN-based; finally, the feedforward layer pre-
dicts the student’s future answer to each question.

The red part encodes the prior knowledge injection flows. The
first knowledge source consists of question–question relations.
These relations are based on their skills and concepts similarity,
i.e., two questions are the more similar the more they test the
same skills and deal with the same concepts. This knowledge
source is represented through a knowledge graph with adjacency
matrix A. The adjacency matrix is a square matrix encoding
whether pairs of vertices are adjacent or not in the graph.

Its integration takes place at the level of training data: the
question–question knowledge graph is used as input for the
embedding layer of the architecture.

The second knowledge source is the intuition that if a pair of
questions requires similar skills or involves similar concepts,
students are expected to perform similarly. The knowledge
representation here occurs in the form of a regularization term
Lr, i.e., the algebraic expression pTLp, where p(i) indicates the
probability that the student can answer the ith question correctly
and L is the Laplacian matrix associated to A. The loss function
in the model is designed to capture this information, and it is
defined by two additional terms: Lp, the cross-entropy loss, and
Lr the regularization term. Thus, the integration occurs at the
level of the learning algorithm.

V. DISCUSSION

We now discuss our results, pointing out how they answer to
our RQs. We keep two main focuses. First, we highlight some
remarks on our distilled taxonomy for IML applied to KT. Given
our starting point in von Rueden et al.’s taxonomy [12], it is
worthwhile to compare them, to show both points of contact and
divergence, and assessing the effectiveness of IML for KT. In
this way, we can stress strengths and limitations in our proposal,
which can be interpreted as possible future research avenues.

Second, we draw some considerations from the quantitative
analysis. We mostly exploited the quantitative results to em-
phasize relevant and widespread IML approaches among the
results. This supports our response to the RQs. We present this
discussion in three sections, one for each RQ.

A. Knowledge Sources for KT

As for the knowledge sources, which can be integrated into
the ML pipeline to address the KT problem (RQ1), we distilled a
two-level taxonomy, which is schematized in Fig. 2. Comparing
this to the taxonomy for the IML, there is a basic difference
in the type of labels that have been searched. In our case, we
have identified a label for each type of content or information
that is integrated, e.g., under the class “domain knowledge” we
have four types of content taken as prior knowledge (i.e., item
difficulty, semantic similarity, knowledge structure, and class
context). von Rueden et al., on the other hand, defined the labels
for the knowledge sources by identifying who holds the prior
knowledge, i.e., a scientific theory, a human heritage, or the
experts in a specific field.

The strength of our choice is the higher granularity and, thus,
its descriptive power. The list of identified classes represents a
reference of valuable knowledge sources, which may integrate
student performance data in KT tools. They can be considered
factors that influence the KT, improving the models’ perfor-
mances; hence, researcher may consider them while developing
their models. Also, they can be seen as elements, which enhance
the models’ explainability and interpretability; that is, they are
factors with a high semantic load, making it easier to attribute
meaning to the weights or components of the architectures of the
designed models (explainability) or favoring the identification
of causal relationships between the input and the output of the
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models (interpretability). In our opinion, this is the first possible
line of research that has not yet been sufficiently explored.

On the other hand, the drawback of this improvement in
granularity is a loss of generality. Our taxonomy is closely linked
to the educational context, with specific reference to the KT
problem, while the one for IML applies to domains that may
be very different. Furthermore, our taxonomy for knowledge
sources is nonexhaustive because it refers to the types of prior
knowledge encountered in this literature survey. This does not
exclude that there may be other types of relevant content or
information to consider. Our result outlines a picture of what
exists in the state of the art and can be taken as a starting point
subject to updating as a result of new research.

The quantitative analysis highlights one main point: the pre-
dominance of domain knowledge as the prior source. Within
this class, some subclasses are more exploited than others:
knowledge structure is highly considered, while little attention
is paid to the class context. The high consideration of the
knowledge structure may be due to its easy availability. In
fact, in ITS and AEHS, it is often necessary to provide this
type of structure to organize the contents of the course. At the
same time, the lack of consideration of the class context is not
surprising. Most KT systems are applied to online asynchronous
learning contexts, where the class context is nonexistent or has
little influence. However, it would be interesting, also in light
of the teaching experiences that have characterized the recent
years of the COVID-19 pandemic, to investigate if and how
these systems can be integrated into mixed schooling contexts
and estimate which is in this setting the weight of the class
context.

As regards other knowledge sources, there are few attempts
to consider learning theories, perhaps also due to the difficulty
of modeling and representing this kind of knowledge. Most
papers in which this occurs refer to cognitive science models
of learning curves or forgetting, which are easily representable
through algebraic equations. However, there are many other
psychological and cognitive factors studied in the literature. For
example, a little-considered aspect is the influence of emotions
on learning, which has great relevance according to educational
experts [81]. This is a further gap to explore in IML for KT.

B. Knowledge Representations for KT

How the prior knowledge is represented (RQ2) to attain
its integration into the ML pipeline is depicted by the second
dimension of our taxonomy (see the left part in the schema of
Fig. 3). As already mentioned, we have a subset of the labels
used by von Rueden et al. (see Table I), and we add a new label,
i.e., other data. The knowledge representations forms never
met in our literature survey are differential equations, spatial
invariances, logic rules, and human feedback. The first three
forms of representation fit better to fields where mathematical
modeling of a phenomenon is among the best strategies for its
description and study. In the literature survey by von Rueden
et al., neither of them is used to represent expert knowledge
sources, which is the case for almost all of our knowledge source
labels (except semantic similarity, which they include in the class

of world or general knowledge). Hence, it is not surprising that
they are missing.

On the other hand, we expected human feedback among
the knowledge representation forms of our taxonomy. In the
IML taxonomy, human feedback “refers to technologies that
transform knowledge via direct interfaces between users and
machines. [...] Typical modalities include the keyboard, mouse,
and touchscreen, followed by speech and computer vision, e.g.,
tracking devices for motion capturing. [...] This often occurs
in areas of reinforcement learning, or interactive learning com-
bined with visual analytics” [12, p.620]. In other words, human
feedback, as knowledge representation form, occurs when the
human user intuitively and informally expresses a preference or
a relevant opinion concerning the output of the automatic model
and this is used to enhance the model’s performance.

We envision the human feedback representation as useful for
personalized learning tools, where KT is the base to suggest to
students resources based on their individual needs, thus enabling
them to delay or skip contents expected to be too hard or too easy.
For instance, camera devices can be exploited to integrate the
learner’s emotions during the learning process, i.e., the learner
facial expressions are assumed in the form of informal human
feedback [82]. Another example concerns the interactions
among peers in face-to-face lessons, which could be detected by
recording audio or asking for explicit feedback from the teacher
in the classroom. The main obstacle to this information is the
technological equipment normally available to monitor learning,
which is connected to a well-known problem of multimodal
learning analytics [83]. In other words, this representation also
relies on the hardware technology’s availability, which affects
its effective use. Both examples refer to knowledge sources we
have already stated as underconsidered in the papers selected for
this systematic literature review. This could justify why human
feedback as a knowledge representation form is unused. How-
ever, in dealing with a research question about which learning
theories may be integrated into KT models, there is an issue
on which forms of representations fit better. We believe that an
informal representation through human feedback could have an
interesting role here to be investigated.

The quantitative analysis has highlighted that the form of
representation is often linked to the type of knowledge source:

1) items difficulty and cognitive theories are often repre-
sented in algebraic form;

2) knowledge structure is almost represented through graphs;
3) the semantic aspects are represented through simulation

results (usually intended as embedding layers, see Sec-
tion IV, the section on knowledge representation).

Except for the representation form “other data,” which is used
in only 8 out of 77 paths, the other modalities are distributed
evenly. This, in our view, reinforces the need to investigate
alternative forms of representation to valorise all knowledge
sources that may be relevant to KT.

C. Knowledge Integration for KT

Dealing with RQ3, the labels in our taxonomy are a subset
of the one for general IML and are shown in the right part of
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Fig. 3. Our literature survey has no cases for integration in the
final hypothesis step. The integration in the final hypothesis step
occurs when the output of a learning pipeline is “benchmarked or
validated against existing knowledge” [12, p.620]. This sounds
like ensuring trustworthiness and reliability to the output of
the models through a comparison with an authoritative a priori
knowledge, i.e., a scientific theory or formal constraints. Such
an approach to tackle the KT problem seems unlikely.

The quantitative analysis points out that the training dataset
is the privileged step where prior knowledge is integrated into
the ML pipeline. In many cases, prior knowledge is used to find
effective representations of either the students learning or the
items with which they interact. Thus, the tailored representation
is a way to arrange differently or augment the training dataset
to fully exploit its potential. This trend is not a surprise because
it can be led to a characteristic of the phenomenon under study.
Specifically, the KT problem is strongly connected with assess-
ing students’ learning.

Referring to Højgaard [84, p.4], it is impossible measure
students learning directly. Assessment is modeled as a three-step
process: “characterizing what you are looking for; identifying
the extent to which what you are looking for is present in the
situations involved in the assessment; judging the identified.” In
other words, when dealing with the assessment of students learn-
ing, there is an intrinsic problem of identifying some indicators
that need to be interpreted in some way. Automating this process,
which is usually managed by the teacher, means integrating it
into the model. Characterization and identification precede the
judgment phase and, in some way, are the premises on which
the judgment can be formulated. KT models, according to the
definition we presented in Section II, automate the learning judg-
ment phase and use it to predict students’ performances on new
items. Therefore, studying adequate representations becomes
the way to manage the preliminary operation of characterization
and identification. It foregoes the model’s training, which is
oriented to learning how to judge, thus involving mainly the
training dataset step.

The quantitative analysis has also brought out three main
approaches to knowledge integration based on the knowledge
representation kind:

1) the probabilistic relations form is often integrated into the
hypothesis set step because probabilistic reasoning is often
handled with BNs (chosen as the form for the objective
function in the ML pipeline);

2) when the prior knowledge is represented through new
data, this is always integrated into the training dataset,
becoming an extra input source for the model;

3) simulation results as knowledge representation form is
almost integrated into the training dataset.

This last point is in line with two observations already stated in
this article: simulation results often occur as embedding layers,
thus, connected to the problem of representing the input for
the models properly; the representation problem is a necessary
pretraining phase, which enable the model to learn how to predict
future learners’ performances, thus, it is handled in the first phase
of the ML pipeline.

VI. CONCLUSION

To conclude, we summarize the main findings of our system-
atic literature review and some final remarks.

To answer the three RQs on integrating prior knowledge in KT
models, we obtained a three-dimensional taxonomy (knowledge
source, knowledge representation, knowledge integration) as
main result of a qualitative analysis (see Figs. 2 and 3). This
taxonomy has been benchmarked with the one proposed by
von Rueden et al. [12] for the IML, taking into account the
specific focus on KT. Through a quantitative analysis, some
common integration approaches were also identified, which
can be deduced interpreting the sankey diagram in Fig. 4. The
analysis displays the state of the art at the moment in which the
papers involved in the systematic literature review were selected.

Discussing our results in Section V, we have emphasized some
gaps in IML for KT, which outline future research directions.
We summarize them by posing a new set of research questions
(NRQs). They are the result either of strengths that we have
found in our taxonomy (e.g., its high granularity), of the as-
sumptions we have made to justify why some prior knowledge
injection approaches are more widespread than others, or of
some gaps with respect to the literature on learning theories
(e.g., the neglect of emotional aspects on KT). In this sense,
they represent open issues to be investigated and verified. We
formulate the following six questions.

NRQ1 How the integrated prior knowledge sources impact in
terms of explainability and interpretability of KT models?

NRQ2 Which prior knowledge sources were not considered in
the papers selected for the systematic literature review and
could expand the proposed taxonomy?

NRQ3 To what extent KT can be applied in contexts that include
face-to-face teaching?

NRQ4 Which role does the class context play as a prior knowl-
edge source in face-to-face (or mixed) teaching settings?

NRQ5 Which cognitive, psychological, or pedagogical theories
have relevance in KT (e.g., theory of emotions impact on
learning)?

NRQ6 What forms of representation can be used to integrate
these theories? (e.g., can we exploit the underconsidered
human feedback form for knowledge representation?)

Furthermore, we want to stress that despite the selected papers
present hybrid machine learning models, most approaches to KT
are still purely data-driven. However, all the papers considered
in this systematic literature review claim that their results are
comparable to or better than those of traditional ML methods.
This encourages further research in this direction. The three
RQs posed in Section III can be a trace for researchers to
identify, which prior knowledge sources should be considered,
how to represent them, and where to integrate them during
model development. Our taxonomy can be a tool to use in the
exploratory phase to determine what to consider. Moreover, the
good performances achieved by these models can be evaluated
with respect to the bias issues that characterize AI applications
in education [85]. There are different levels at which bias may
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affect the ML pipeline, e.g., in the data collection process,
the data annotation step, the learning algorithm choice, or the
performance metrics selection. Integrating prior knowledge can
be a new source of bias or, conversely, act as a mitigating effect.
This was out of the scope of this work, but future research could
investigate the bias challenges of IML for KT.

As a final remark, we point out that in this study we did
not consider the implication for practice, i.e., how the results
obtained can support teaching and learning. This was outside the
aim of the systematic literature review, whose focus was more
methodological. However, both to validate the utility of these
hybrid machine learning approaches to enhance personalized
learning and to investigate some aspects proposed in the NRQs,
i.e., models’ interpretability or the use of human feedback, it
is important to develop research focused on the implication for
practice. We explicitly mention the link with the interpretability
of the model or the use of human feedback, because these are
aspects that directly involve teachers and learners; therefore, a
global study of the benefits on teaching and learning is needed.
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