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Computational Learning Analytics to Estimate
Location-Based Self-Regulation Process

of Real-World Experiences
Masaya Okada , Koryu Nagata, Nanae Watanabe , and Masahiro Tada

Abstract—A learner can autonomously acquire knowledge by
experiencing the world, without necessarily being explicitly taught.
The contents and ways of this type of real-world learning are
grounded on his/her surroundings and are self-determined by com-
puting real-world information. However, conventional studies have
not modeled, observed, or understood a learner’s self-regulation
mechanism of real-world learning. This study developed compu-
tational learning analytics to estimate how this mechanism works.
Our analytics segmented a time series of real-world learning into
units of a cognitively closed and semantically independent function
by estimating the spatiotemporal clusters of a learner’s concen-
trated stay behavior. We found that learners’ intercluster moves
functioned to determine whether they maintained or changed their
contents and strategies of real-world learning. We also found that
the spatiotemporal sizes of the estimated clusters were correlated
with the activeness and diversity of strategy-based content exami-
nations at each location. This study forms a basis for automatically
estimating qualitative transitions of real-world learning and en-
couraging a learner to obtain a better understanding of the world.

Index Terms—Computational learning analytics, grounded
cognition, location-based context estimation, real-world learning.

I. INTRODUCTION

A. Real-World Learning

MANY effective educational practices are traditionally
performed in a classroom with textbooks [1] or electronic

materials [2]. On the other hand, it is claimed that a person can
spontaneously learn by being involved in a real-world situation,
without necessarily being explicitly taught [3]. An important
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Fig. 1. Self-directed and collaborative style of real-world learning by sharing
the state of grounded cognition in the world.

alternative to classroom learning is real-world learning by
body-based behavior to acquire knowledge from out-of-class
real-world experience [3].

In contrast to “a laboratory setting” or “a learning setting
driven by artificially preprogrammed stimuli,” our research de-
fines the term “real world” as “the world where human activities
occur in a natural setting as they really are without being artifi-
cially or strictly controlled” [4]. The reason why we focus on the
real world is that experiments in which stimuli are artificial and
response options are fixed inevitably result in findings that are
less ecologically valid in relation to real-world behavior [5].
Ecological validity is the consistency between experimental
conditions and real life [5] and is a basis of a research design
aimed toward understanding natural behavior.

An example of a real-world field-study area is a natural
environment where various phenomena spontaneously occur
in a symbiotic relationship among various living things, e.g.,
plants and animals. Our model case of real-world learning is a
self-directed and collaborative style of environmental learning
by human–world interaction involving walking and exploring
in a natural environment (see Fig. 1). Grounded cognition (i.e.,
cognition derived from and grounded on the world) [6] during the
learning is shared on site via human–human interaction among
collaborative learners.

B. Learning Analytics

Many recent studies on learning analytics have focused on
assessing the process of classroom learning [7], online learn-
ing [8], and blended learning [9], rather than real-world learning.
Various analytics scenarios were considered for learning at a
table, classroom, or school, but it is still an unsolved issue to
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create learning analytics for unconstrained collaboration in large
physical learning environments [10].

Multimodal learning analytics has been implemented us-
ing various data, such as behavior data (e.g., eye movement,
speech, and face expression), physiological data (e.g., elec-
troencephalogram), and environmental data (e.g., humidity, CO2

concentration) [11]. However, it is claimed that existing studies
on multimodal learning analytics have shown the potential to
accurately predict simple educational events/behaviors but still
struggle to capture complex learning situations (e.g., collabora-
tion quality, the state of acquiring insufficient ideas to progress)
[12], [13].

How a learner purposefully self-regulates his/her learning
processes to accomplish the learner’s own learning goals [14],
[15] is high-level assessment information hard to trace from
the outside of the learner [16]. For example, during real-world
learning, a learner should self-regulate to reconsider where,
what, and how to learn in a wide and uncontrolled field-study
area when his/her grounded cognition does not work well to
find useful information from the surroundings. However, no
learning analytics has been proposed to assess whether a learner
at a nonprospective situation can self-regulate to behave to
dramatically change the state of real-world learning.

C. Experience-Based Symbolic Computation

On the basis of the discussions by Marr’s [17], we consider
“computation” as the operational process that a system (e.g., a
human, an information system) converts the raw and primitive
input of a symbol set into an output symbol set with a higher
abstraction level of semantics. Computation inside a person is
not directly observed from the outside but can be assumed at
every information processing underlying human activities [18].
A mathematical or algorithmic representation of computation
can provide explicit testable predictions about learning and
behavior [19], although a black-box model with an unknown
mechanism can neither be proved nor disproved.

In collaborative environmental learning, each learner behaves
to perform on-site symbolic computation for experientially un-
derstanding the nature of real-world information. For example,
symbol grounding [20] is performed by observing real-world
information based on each learner’s viewpoint, verbally sharing
and cooperatively interpreting the meaning of the information,
and grounding learners’ internal understanding of phenomena
observable in the world. Furthermore, symbol emergence [21] is
realized by collaboratively inferring the structure of a real-world
issue (e.g., the reasons or causal relationship behind observed
phenomena), and generating or reorganizing the semantic net-
work structure of their internal knowledge space.

These symbolic computations are experientially accom-
plished by body-based behavior to acquire grounded cognition
in the world. We assume that a learner does not necessarily
passively receive grounded cognition from the world but his/her
internal autonomous computation self-regulates how grounded
cognition via his/her body should be acquired to better experi-
entially understand the world. However, no study has explicitly
assumed or tested a mathematical or algorithmic representation

of the mechanism to self-regulate this type of computation
derived from and grounded on the world.

D. Research Issue

Complex intelligent behavior can arise from surprisingly
straightforward interactions between an agent and its environ-
ment [22], [23]. Embodiment (i.e., the role of a body as an
enabler for cognition or thinking [24]) allows agents to dis-
cover various ways to achieve their goals through sensorimotor
shortcuts: by actively manipulating their own perceptual inputs
through motor activity [22]. A causal and constitutive relation
between one’s cognitive state and body state appears in a bidi-
rectional manner [25], which creates a semantic congruency
between body movements and cognition [26].

Here, an important question in the studies of grounded and
embodied cognition is how specific body states and movements
matter for specific forms of thinking and learning [26]. However,
little is known about 1) the mechanism by which a learner’s
internal computation is made under grounded cognition in a
field-study area, 2) the mechanism by which 1’s computation
is embodied externally as a coordinated state of sensorimotor
functions, and 3) the technique to detect sensorimotor controls
that correspond to the self-regulation state of 1’s computation.

A person’s cognition underlying his/her behavior generation
is a systematic process affected by his/her internal beliefs [27].
Thus, we develop computational learning analytics of the self-
regulation process of real-world learning, which assumes a
learner as a computation system (e.g., a Bayesian decision-
making system) to orchestrate sequential executions of algorith-
mic components under real-world situations. To be concrete, we
1) model a learner self-regulating how to compute real-world
information derived from grounded cognition, 2) assume how
the learner’s externally observable behavior is accompanied by
the self-regulation state of his/her internal computation, and 3)
develop a sensor-based technique to estimate the self-regulation
state of behavior-based computation in real-world learning (e.g.,
self-determination of where, what, and how to learn in the world
in order to break the saturated state of learning with the low
possibility of further knowledge acquisition).

II. RELATED WORKS

For designing learning analytics to trace a complex self-
regulated process of learning, it is indispensable to integrate
theoretical models and frameworks from multiple disciplines
including educational and computational sciences [16]. In this
section, we discuss how to integrate and enhance the theories of
self-regulated learning (i.e., internal autonomous computation),
grounded cognition (i.e., real-world oriented cognition), com-
putational behavior modeling (i.e., behavior-based decision-
making system), and research design (e.g., science of natural
behavior).

A. Self-Regulated Learning

Self-regulation of learning (SRL) is adaptively building and
coordinating a repertoire of strategies to accomplish one’s
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learning goals [14], [15]. Traditionally, in various educational
settings (e.g., mathematical learning [28], language acquisi-
tion [29], engineering education [30], learning from others [31],
inquiry-based classroom learning [32], mastery-based online
learning [33]), a strategy is considered as a way to solve a
problem or to achieve a particular intellectual achievement (e.g.,
way of inference, problem solving, surveying, collaboration, and
self-regulation) [4]. Recent studies on individual-level SRL and
group-level SRL (i.e., socially shared regulation of learning;
SSRL) have maintained a focus on learning in indoor settings
(e.g., classrooms, online, and museums) [15], [16], [34], rather
than real-world learning.

Since learners often have difficulties in performing self-
regulation at the SRL and SSRL levels during their learning, such
self-regulation should be promoted by educational interven-
tions [16]. However, studies on multimodal learning analytics
have not featured prescriptive analytics that provides educational
recommendations based on sensor data [12]. A general problem
is that the executions of learners’ SRL-level and SSRL-level
self-regulation are hard to capture from the outside with a com-
puter system [16]. A domain-specific problem is that little was
known about the mechanism by which a learner’s strategies are
self-regulated to make grounded cognition work better in a given
real-world situation. Based on these global and domain-specific
problems, as a basis to develop prescriptive analytics adapted
to the state of each learner’s self-regulation, we find traceable
features to estimate the mechanism by which a series of a
learner’s strategy executions is self-regulated in the world.

B. Grounded Cognition

The theory of grounded cognition [6] explains that a person
1) behaves to perceive the world with his/her multimodal sen-
sors (e.g., visionary, auditory, and tactile organs), 2) associates
his/her perceptual, motor, and introspective states during direct
experience, 3) internally creates a practical representation of the
semantics of the world, and 4) grounds the representation on
his/her direct experience in the world, not only on indirect expe-
rience (e.g., conceptual knowledge). Umwelt (i.e., the viewpoint
that a person actively gets necessary information from his/her
self-centered world) [35] and affordance (i.e., the viewpoint that
a person behaves according to the passively received informa-
tion from the environment) [36] are different perspectives of
real-world cognition. However, the theory of grounded cogni-
tion integrates these two perspectives by modeling the process
that multimodal sensorimotor information is self-organized in a
person’s brain to perform symbolic computations derived from
real-world experiences [6], [21].

Within a grounded cognition framework, where concepts’
representations involve partial replay of perception and action
experience [37], a recent study [38] suggested that word con-
cepts can be assessed by measuring semantic similarity that is
grounded in perceptual or action resemblances (i.e., the simi-
larity of sensorimotor experience). Another study [26] explored
the cognitive relevance of particular body states (e.g., directed
actions) to students’ mathematical reasoning in the area of
geometry. However, there was no basic assumption about how

internal cognition of a learner (including the SRL by orches-
trating a series of strategy executions) works and is embodied
as behavior while processing real-world-oriented information
during real-world learning. Although grounded cognition [6],
[21] is basically a model of human–world interaction, our current
study extends the discussion on how the generation state of a
learner’s behavior is computationally self-regulated to construct
an internal cognitive representation of the semantics of the world
not only by human–world interaction in the context of the real
world but also by human–human interaction to collaboratively
share learners’ states of grounded cognition.

C. Computational Behavior Modeling

Recently, computational modeling with mathematical repre-
sentations has been applied to behavioral science, in order to
implement algorithmic hypotheses that explicitly explain how
behavior is generated and also to gain a deeper understanding
of behavioral data [39]1. A typical example of this type of
computational behavior modeling is the learning of behavior
selection to maximize a human’s reward in the case where the
most rewarding choice is initially unknown (e.g., multiarmed
bandit task). Studies on computational behavior modeling have
shown that a person taking actions evaluates and learns the
value of the actions internally, and this learning process can
be modeled by using or modifying computational models im-
plemented with the sigmoid function, the softmax function, and
the reinforcement learning algorithm [40], [41], [42], [43]. This
idea has been recently applied in the field of computational
psychiatry to investigate the correlation between the generation
of prosocial behavior (i.e., actions that benefit others) and the
characteristics of the psychiatric disorder [44]. In the setting
of an online game, computational behavior modeling was used
to estimate the factor (e.g., learning progress maximization,
perceptual novelty, or random search) that drove a learner’s
exploration under the conditions of minimal task instructions
and no external rewards [45].

However, real-world learning has been outside the current
focus of computational behavior modeling, and no method has
modeled, observed, or understood the mechanism of a learner’s
internal computation to self-regulate his/her action selection that
is grounded on and adapted to the context changed by behavior in
a real-world learning environment. Thus, we propose methods
for modeling, tracing, and assessing this computation mecha-
nism to achieve better experiential understanding of the world
in a given real-world situation (e.g., computation for finding
and executing better behavior to increase the expected amount
of real-world information acquired from the surroundings).

D. Real-World-Oriented Design Methodology

We can learn many important lessons from conventional
computational modeling that investigated behavior in indoor,
online, or laboratory experiments by systematically controlling

1For readers interested in using the techniques of computational modeling,
a beginner-friendly, pragmatic, and details-oriented guideline was presented
in [39].
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or excluding parameters (e.g., explanatory variables, extraneous
variables) under ideal and artificial conditions [41], [42], [43],
[44], [45], and by repeatedly investigating how each individual
parameter affects other parameters [40]. However, we should
consider that assessing cognitive processes in narrow and arti-
ficially isolated conditions with little ecological validity would
not represent the actual functioning of cognition [46] and would
not necessarily generalize to real-world cognition [47].

To maintain ecological validity, not all parameters (e.g., pa-
rameters related to a learner or the world) can or must be strictly
controlled in an artificial manner. Thus, a wider range of possible
values should be assumed for each of the internal parameters
that drive a learner’s computation. In fact, different from labo-
ratory experiments allowing no or only a few self-determined
behaviors [40], [41], [42], [43], [44], [45], learners in a natural
and unconstrained situation in the world were able to execute
far wider ranges of strategies to generate behavior (e.g., 115
kinds of strategies in a setting of our previous experiments [4]).
Furthermore, in such a natural situation, different parameters
can co-occur inside a learner, but mutual influence among
co-occurring parameters is hard to discriminate without strict
and artificial experimental controls.

We consider that, for a practical use of computational learning
analytics under an ecological valid situation, a learner’s compu-
tation should not be modeled at the level that is too reactive to
the complexity and dynamics caused by being situated in the
real world. This current study proposes and practices a real-
world-oriented design methodology of computational learning
analytics applicable to ecologically valid situations of learning,
consisting of the policies of 1) constructing a simple and ideal
model of a learner’s internal computation of behavior generation
in the world, 2) avoiding overfitting each of detailed compu-
tational components assumed as a learner’s ideal model, 3)
abstracting essential functions of series of computations in the
ideal model, and 4) obtaining estimation results at a practically
necessary level of granularity.

III. SELF-REGULATION PROCESS UNDER THE AFFORDANCE

OF THE WORLD

A. External and Internal Controls

This section discusses how a learner self-regulates the content
of learning (i.e., what to learn by examining spatial information)
and the way of learning (i.e., how to learn by executing strate-
gies), given two types of controls: 1) external control (mainly
from the viewpoint of affordance [36]) and 2) internal control
(mainly from the viewpoint of Umwelt [35]).

1) External Control by Spatial Context: The environment
is the world of experience [48]. Observational evidence that a
real-world learner finds at various locations in the world can be
seed information for acquiring knowledge [49]. Importantly, the
value of each location in the world is not the same; for example,
the density of unique vegetation in a field-study area differs by
location [50]. At a place where interesting objects exist, a learner
makes profound inquiries. At uninteresting places, his/her active
inquiries are restricted. These facts mean that each location of

the world has different spatial characteristics for encouraging or
discouraging on-site cognition and spatial inquiries [49].

We consider that each location of the world has a “spatial
context” [51], i.e., nonlinguistic, external, and potential situation
information with which a person at a certain location is involved.
Traditionally, the semantics of a space has a passive role that
is used as reference information to identify the world where
the target of a human’s real-world action (including discourse)
should be grounded [52], [53], [54]. However, this article pro-
poses an extended idea that spatial context has an active role in
determining the range of real-world information that a learner
at a location can potentially access, cognize, and process. This
idea assumes that spatial context functions as hidden affordance
to explicitly or tacitly restrict, activate, and regulate a learner’s
cognition, strategy executions, and behavior generation in the
world.

2) Internal Control by Strategy Executions: In real-world
learning, learners collaboratively execute diverse strategies
during spatial inquiry behaviors in the world [4]. Each
learner’s strategies are sequentially executed when he/she 1)
autonomously selects a location to be investigated, 2) inputs the
surrounding seed information to the learner’s computation sys-
tem, 3) finds a question about an observable phenomenon, 4) out-
puts his/her internal understanding to be collectively examined
with other cooperative learners, and 5) updates his/her internal
cognition about the semantic structure of his/her surrounding
world. We consider that, a learner’s internal strategy functions
as the primitive and computational information to self-determine
the way that his/her grounded cognition works at a certain time
point in the given spatial context.

B. Hypothesis: Stay and Move as Learning Regulation

Although his/her surroundings give a learner contextual infor-
mation (see Section III-A1), the learner is not a slave to his/her
given situation. For example, even if a real-world situation
encourages a learner to adopt a certain behavior, he/she may
not necessarily output a behavior on which he/she places no
value.

A person’s expectancies are “beliefs about a future state of
affairs” and are derived from his/her knowledge or schemas
about the world [55]. Expectancies are subjective estimates of
the likelihood of future events ranging from merely possible to
virtually certain [55]. By considering that expectancies are used
to guide effective behavior and to regulate single and sequen-
tial behaviors [55], the current article proposes the following
hypotheses to estimate a learner’s self-regulation of real-world
learning under the external and internal controls.

1) Concentrated Stay Behavior: During concentrated stay
behavior by remaining at a location, a learner extracts cognitive
resources (e.g., the seed of a question and knowledge) embedded
in the current surroundings and continuously makes intensive
inquiries toward a solution. A learner behaves based on his/her
local cognition of what is physically possible at his/her stay
location, which encourages him/her to subjectively interpret
spatial context of each location of the world. When each learner
in a group has exhaustively examined all objects of interest at a
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location, the group reaches the saturation state, which is the state
in which new information, questions, hypotheses, discussion
topics, or strategies are not expected to be found. Continuously
staying at the same location gradually decreases the entropy of
observable information.

2) Location Switch Behavior: Moving to a high-entropy lo-
cation having different cognitive or semantic roles changes the
contextual constraints when a learner is searching for a solution.
An ecosystem has a horizontal structure into which natural living
things self-organize [50] and observation from a single location
is not enough to form a complete image of an ecosystem [56].
Location switch behavior drastically increases a learner’s expec-
tation to access a larger amount of observable information and
new questions, and to complement his/her partial understanding
of the world. Switching a learner’s stay location stirs up cognitive
dissonance between his/her previously acquired knowledge and
newly perceived information, and then triggers new strategy
executions for spatial inquires.

3) Sensing Body-Based Learning Regulation: While a
learner subjectively estimates a nonlow value of the likelihood to
encounter new information at his/her current location (in other
words, while the state of real-world learning is not saturated),
concentrated stay behavior at the same location occurs to actively
and diversely make on-site computation for mutually associating
his/her direct and indirect experiences and for constructing an
internal representation of the semantics of the world. When
a learner cannot expect further experience at his/her location,
location switch behavior to self-determine where to learn in
the world embodies learning regulation not only to break the
saturation state of on-going learning but also to make a learner’s
grounded cognition system work in a different spatial context.
By sensing the time-series occurrence of location switch behav-
ior from externally observable features of a learner’s movement
(e.g., position data), we can estimate the units into which a
learner subjectively segments the semantics of the real-world
spatial context.

IV. ESTIMATION ALGORITHM OF LEARNING REGULATION

We model a learner who subjectively estimates the value
of his/her surrounding spatial context. Fig. 2 expresses that
different cognition is made due to being situated at a different
location; this type of cognition repeatedly encourages a learner
to find a prospective content of learning at each location and to
execute strategies applicable to the content. Based on this model,
our proposal was formulated by 1) assuming the mathematical
mechanism of a learner’s hidden and sequential computations,
2) finding a key computational function in the mechanism,
and 3) developing an approximate estimation method of the
self-regulated state of real-world learning.

A. Ideal Model to Self-Evaluate Location’s Value

By using the sigmoid function, the softmax function, and the
reinforcement learning algorithm, the internal computation of a
human can be modeled as a Bayesian decision-making system
that updates his/her internal belief to generate behavior [40],
[41], [42], [43], [44], [45]. Assuming that real-world learning

Fig. 2. Location-based computation model of real-world learning.

is location-oriented computation, the present study proposes an
extended model to express that the degree of a learner’s belief
is determined by the conditional probability and conditional
expectation given by his/her stay location.

Specifically, as the ideal, this research models that learning in
a location’s spatial context provides a learner with the expected
effect E(Si|l)

E(Si|l) =
∑
j

r(si,j |l)P (Si = si,j |l) (1)

si,j ∈ Si. (2)

Here, r(si,j |l) is the effect caused by a learner i executing
a strategy si,j at a given location l. Si is the set of possible
strategies of learner i.P (Si = si,j |l) is the prior probability that
strategy si,j occurs at location l. E(Si|l) is the potential effect
achieved by learner i from executing all possible strategies Si

by staying at location l

P (D = remain) = sig
[
ΔÊ(Si|l)− θi,l

]
(3)

sig(x) =
1

1 + e−x
(4)

D ∈ {switch, remain} (5)

P (D = switch) = 1− P (D = remain). (6)

P (D) defined using the sigmoid function sig(x) is the prob-
abilistic decision about where to be situated for learning. The
variable D is defined as either “remain,” which indicates staying
at the same location, or “switch,” which means going to a
different location.
Ê(Si|l) is learner i’s internal belief about E(Si|l), con-

structed by learning at location l. ΔÊ(Si|l) is the difference
in Ê(Si|l) updated by learning at location l per unit time. θi,l is
learner i’s internal expectation of the effect acquired at location
l per unit time. θi,l represents learner i’s personal belief about a
location’s potential to give him/her new experience (e.g., finding
new seed information). θi,l is given a high value for locations
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where various objects exist, and θi,l is given a low value for
those where few objects exist.

Since a learner cannot actually execute the large number
of all possible strategies, he/she cannot know the true values of
r(si,j |l) or P (si,j |l). However, the occurrence probability of
each executed strategy can be calculated as the ratio of the
number of times the strategy was executed to the total number
of strategy executions at location l. Ê(Si|l) can be gradually
updated as learner i executes strategies at location l and makes
a step-by-step estimation of r(si,j |l). As learning proceeds
at location l, the state of the learning gradually reaches the
saturation state that learner i can hardly obtain any new effect.
Therefore, while learning at the same location, the change rate
ΔÊ(Si|l) is decreasing, and the value of Ê(Si|l) approaches
that of E(Si|l).

While the learner believes that his/her estimated ΔÊ(Si|l) is
greater than threshold θi,l, he/she remains at the same location
to learn. When he does not believe this, the learner switches to
a different location. In short, learning is self-regulated to drastic
effect by changing where to learn when a learner cannot acquire
a result that fits the amount of effort that he/she actually expends
by executing a series of strategies based on the estimated value
of those strategies.

B. Approximate Estimation of Potential Information Existence

Section IV-A presented our ideal model of learning regulation
by assessing the expected effect of executing possible strategies
at a certain location. It is possible to manually list all possible
strategies, but the number of strategies executed in real-world
learning is large (e.g., 115 kinds of strategies in the setting of
our previous experiments [4]). When trying to automatically
estimate E(Si|l) of (1), we encounter the following difficulties.
First of all, it is difficult to automatically estimate strategy exe-
cution at every time point because a strategy is part of high-level
behavior semantics that needs to be manually annotated by
experimenters from video-based observation [4]. Second, it is
hard to determine the value of r(si,j |l) given independently by
each individual strategy at a location, since a wide variety of
strategies spontaneously occur in a real-world context, and are
sometimes used in combination. As discussed in Section II-D,
for our research purpose, the effect of individual strategies
should not be investigated under artificial conditions without
a real-world context.

Instead of directly estimating each internal value computed
by a learner, in this article, we find an approximate solution
to estimate the change of state dynamics of his/her internally
self-regulated computation process. Since the amount of infor-
mation existing at a certain location is not infinite, a long stay at
the same location decreases not only the probability of obtaining
new experience but also the value of staying at the location (see
Section III-B). A learner’s internal indicator regarding whether
to continue to learn at a location is the probability that unknown
important information remains in his/her surroundings. Thus,
without directly measuring r(si,j |l) or E(Si|l), we perform
approximation by estimating the degree that a learner has fin-
ished accessing the information embedded at the location, for

Fig. 3. Estimating a spatiotemporal cluster of semantically similar real-world
learning by sensing concentrated stay behaviors for inquiring in the world.

example, by evaluating the density of his/her spatial investiga-
tion at the location.

C. Estimation of Concentrated Stay Behavior

Using a local positioning system, in our previous study, we
developed a time-series estimation method for the body state
called “stable stay” that frequently holds during a learner’s
active real-world inquiries (e.g., observation, visual inspection,
knowledge exchange, and cooperative thinking) [49]. Stable stay
was defined as the motion state that a learner stands still at
a point in space in the sense of keeping his/her rate of body
orientation changes within a certain range (Tθ[deg/s] ≤ 60) and
not moving (Tv[m/s] ≤ 0.1) for at least a specified period of
time (Tt[s] ≥ 15). Stable stay was estimated by a thresholding
technique to automatically find time series of sensor data that
simultaneously satisfied all state conditions determined by the
three parametersTθ, Tv, Tt. However, stable stay was not defined
in consideration of a natural ecosystem, where observation tar-
gets with the same or similar characteristics often gather within
a relatively small area.

By extending the estimation of stable stay, this study extracts
concentrated stay behavior, i.e., a spatiotemporally high density
of continuous stays within a certain sized location cluster (see
Fig. 3). From the viewpoint of Umwelt [35], we expect that each
spatiotemporal cluster of concentrated stay behavior is the result
of an individual learner cognitively segmenting the semantic
functions of his/her self-centered world. From the viewpoint
of affordance [36], we expect that each cluster has a different
functional role to afford location-oriented cognitive processing
(e.g., information conversion, knowledge acquisition, and strat-
egy execution).

D. Algorithm for Spatiotemporal Clustering

By sensing spatiotemporal density of time-series stay behav-
ior, we extract semantic clusters where a learner’s cognition,
strategies, and behavior complementally function as the same
or a similar role in grounded cognition in the world. Gridding a
field-study area into equally sized subspaces (e.g., 10 m×10 m
grid squares) has been shown to be useful for clarifying the
spatial characteristics that promote behavior occurrence in each
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Fig. 4. TPp: pth topic extracted from a learner’s activity map (p = 5). Modi-
fied figure of the work in [4]. Translated from the original language.

subspace [51]. However, subspaces should be clustered as vari-
ably sized areas, because the real-world areas of a learner’s
interest are not uniform in size or a particular shape.

Our first trial of kernel density estimation with position
sensing data did not obtain good clustering results, because it
estimated the probability density function of stay locations as
nonzero even at physically impractical locations (e.g., a location
in the pond). In contrast, for the current study, we propose the
following set of assumptions, which are original to this study.

1) An intracluster move corresponds to continuously exam-
ining the same or similar contents with a limited range of
strategies.

2) An intercluster move corresponds to a change of contents
and strategies of learning.

3) An intercluster move is larger than an intracluster move.
Based on these assumptions, we perform spatiotemporal

clustering of points of learners’ stays based on the density of
time-series position sensing data. As an implementation, we
use the algorithm of ST-DBSCAN [57] that groups together
high-density points with many spatiotemporal neighbors2.

ST-DBSCAN does not require an assumption on the num-
ber of clusters. It works based on the parameters of spatial
nearness (EPS1), temporal nearness (EPS2), and the minimum
number of points to construct a cluster (minPoint). Assume
that p(x, y, t) expresses a learner located at (x, y) at time t.
Given points p1(x1, y1, t1) and p2(x2, y2, t2), the parameters of
ST-DBSCAN are formulated as follows:

EPS1 =
√
(x1 − x2)2 + (y1 − y2)2 (7)

EPS2 =
√
(t1 − t2)2. (8)

When a learner visits the same location (small value of
EPS1) twice at different time points (large value of EPS2),
ST-DBSCAN estimates the possibility of assigning the visits

2For implementing ST-DBSCAN, we used open libraries of Python.
https://github.com/eren-ck/st_dbscan. https://github.com/eren-ck/st_dbscan/
blob/master/demo/demo.ipynb

to two different clusters. Height data (z) are not used in this
study, because our experimental field-study area does not have
differences in altitude. With our wearable sensor system (im-
plemented with a single-board computer “Raspberry Pi”), we
obtain each learner’s position data (5 Hz) of a global navigation
satellite system (GNSS). Conventional receivers of the global
positioning system (GPS) have meter-order errors of position
estimation [49], but the accuracy of position estimation with
the GNSS sensor is improved to centimeter order by the real-
time kinematic method. We observed how the spatiotemporal
distribution of previous learners’ stay positions was related to
the time-series occurrence of semantically similar topics and
strategies. Then, we experimentally determined the parameter
values used in ST-DBSCAN as EPS1 = 2.5 (m), EPS2 = 300
(s), and minPoint = 50 (points).

V. GROUND TRUTH DATA OF THE SEMANTICS OF TIME-SERIES

REAL-WORLD LEARNING

By extending our hybrid analysis of externally and internally
observable data [4], [49], the present study generates ground
truth data that code how grounded cognition works in human–
world and human–human interactions.

A. Heterogeneous Records

1) External Observation Data: We obtain multimodal
behavior data of each learner with our wearable sensor system,
such as head and body posture (motion sensors with 3-axis
gyroscope, 3-axis accelerometer, and 3-axis compass), utterance
(microphone), and vision (first-person view camera). We also
obtain data of third-person’s view video of learners’ behavior,
which are captured by handheld video cameras operated by
experimenters. Video and motion data are used to identify the
content and target of each learner’s behavior, collaboration, and
investigation. Since conversation protocol reflects the collective
cognition shared by people [58], we use the data of conversation
to trace the internal understanding and strategies of each learner.

2) Internal Observation Data: By encouraging each learner
to draw a network-style activity map (see Fig. 4)3 just after
finishing real-world learning (e.g., at an off-site classroom),
we can extract his/her on-site activities to find, examine, and
understand a relationship (i.e., arcs) among different real-world
oriented concepts (i.e., nodes) [49]. A learner clarifies the se-
mantic role of each real-world activity by adding the following
attribute information to each arc: 1) example of a concept,
2) general knowledge (a learner’s background knowledge), 3)
question, 4) hypothesis to explain a relation between concepts,
5) observation of a phenomenon in the world carefully watched
for a period of time, 6) verification of behavior to examine and
verify the hypothesis, and 7) discovery (new knowledge obtained
through observation, discussion, and hypothesis verification).
As introspective data, our current study makes extended use
of an activity map to know the process and result of each
learner’s grounded cognition to associate on-site experiences

3The free tool “Reflective mapper Undo-Kun” is used for drawing our activity
map. http://www2.kobe-u.ac.jp/∼inagakis/undo.html

https://github.com/eren-ck/st_dbscan
https://github.com/eren-ck/st_dbscan/blob/master/demo/demo.ipynb
https://github.com/eren-ck/st_dbscan/blob/master/demo/demo.ipynb
http://www2.kobe-u.ac.jp/~inagakis/undo.html
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Fig. 5. Scheme for coding what and how to learn in the world. Time: Step
time. The change of either an operation code or a target code means a state
change of strategy execution (e.g., t4, t7).

and his/her knowledge, to hypothesize the mechanism behind
his/her observable world, and to experientially understand the
semantics of the world.

B. Time-Series Learning Content: What to Learn

Not all experiences are genuinely or equally educative [48].
We manually represent time-series on-site activities that con-
tributed toward achieving the summative knowledge structured
in an activity map [49]. For this purpose, we first extract learning
topics from each learner’s activity map (see Fig. 4) by carefully
manually grouping semantically related contents of node(s) and
arc(s) [4]. Examples of topics are “rotten branches at the water-
side” and “difference of growth of moss at different locations”
[4]. Second, we identify and annotate the time points when each
topic was examined in the world (t1–t2, t3–t5 in Fig. 5) by an
off-site video-based manual check to find how each learner’s
contents of on-site conversation and behavior correspond to
topic components (i.e., nodes, arcs) of his/her activity map. Time
t6–t8 not corresponding to any topic was the time to examine
the content that a learner did not externalize in his/her activity
map as his/her summative result.

For the present study, a graph representation is constructed to
compute the content of learning. An activity map G is a directed
labeled graph, and is expressed as G = (N,A). N is a finite set
of k nodes, expressed as N = {n1, n2, . . . , ni, . . . , nk}, where
element ni is the ith node in the activity map. A is a finite set of l
arcs, expressed as A = {a1, a2, . . . , aj , . . . , al}, where element
aj is the jth arc in the activity map. The pth topic TPp is a
subgraph of G and consists of the finite sets Np (Np ⊆ N ) and
Ap (Ap ⊆ A), which is expressed as TPp = (Np, Ap). Specifi-
cally, TPp is expressed as a variable-length list of a fixed set of
parameters, e.g., Fig. 4 showing TP5 = ({n1, n5}, {a4, a10}).

C. Time-Series Strategy Execution: How to Learn

Using heterogeneous data sources (see Section V-A), we
code the time series of how each learner is self-directed to
execute a strategy for operating on a certain target (see Fig. 5).
A strategy execution at a certain time point is expressed as
strategy = (operation, target), i.e., a definite combination of
an operation code and a target code (see Table I). Each time
point can be annotated with several strategy codes, in order to
express multiplex strategy execution in the world [4].

TABLE I
EXPRESSION OF STRATEGY EXECUTION (operation, target)

In order to list up the target and operation codes, we origi-
nally observed approximately 250 learners’ strategies to perform
physical actions on phenomena or objects in the world, to cogni-
tively manipulate a learner’s own or other learners’ knowledge
spaces, and to self-regulate a learning process [4]. Many of the
general operation codes we designed have been widely used in
traditional learning sciences (e.g., “infer,” “explain,” “assess”
[59], [60], [61]), but our target codes were extended to express
targets of human–world and human–human interactions, e.g.,
real-world information, a learner’s individual cognition, and oth-
ers’ cognition [4]. Furthermore, the present study additionally
observed 30 learners’ behavior to update our previous code list
with supplementary codes to express grounded cognition, for
example, grounding real-world symbols (e.g., O24: ground) and
operating the strength of personal belief (e.g., O30: intensify,
O54: weaken). Combining an operation code (from 55 types)
and a target code (from 44 types) can express a wide range of
strategies even after excluding logically incompatible combina-
tions of parameters.

Rather than using the concrete name of each individual object,
a target code is defined as a compressed expression of the
conceptual category of the operated-on targets. Thus, target ex-
presses the substantial meaning of experience and computation
derived from the world. This is our technique for expressing
a strategy at the abstract level without overfitting the diverse
objects and phenomena in the world. Our strategy expression is
not overly sensitive to small changes of observation targets in
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the world, but rather traces the categorical and semantic changes
of the operated-on targets.

Based on our coding scheme, multimodal data including
discourse between the group members are used for annotating
strategies including SRL-level strategies (e.g., “O15: criticize,
T27: own behavior”; “O9: change, T18: goal of own learning”)
and SSRL-level strategies (e.g., “O44: re-propose, T16: goal
of group’s learning”). The traditional studies of SRL and SSRL
established behavior indicators and coding schemes of cognitive,
metacognitive, and behavioral operations underlying intellectual
activities in various learning settings [62], [63], [64], and our
current study uses them to identify, ascertain, and annotate how
operation and target are taking place in a field-study area.

VI. INTRACLUSTER AND INTERCLUSTER DYNAMICS

The semantics of time series of real-world learning is ex-
pressed as meta-level information about what was learned and
how the learning was made, i.e., content examinations (see
Section V-B) and strategy executions (see Section V-C). We
create two types of metrics to express the dynamics of contents
and strategies of real-world learning that changes through a
learner’s location-oriented computation.

A. Intracluster Dynamics

The following data sequences are synchronized with the time
parameter t to assess how concepts and relationships were ex-
amined by strategy executions at each estimated location cluster.

1) location(t) = {x(t), y(t), locationClusterLabel(t)}
Data of position and location cluster at time point t.
LocationClusterLabel(t) is the unique identifier of es-
timated location clusters. The number of location clusters
differs between learners.

2) topic(t) = {nodeList(t), arcList(t)}
Content data of what was learned at time point t.
NodeList(t) and arcList(t) are variable-length string
lists of the elements ofN and those ofA (see Section V-B),
respectively.

3) strategyList(t)
Content data of how learning was performed at time point
t. StrategyList(t) is a variable-length string list consist-
ing of one or more strategies. A strategy is expressed as a
pair (operation, target), as explained in Section V-C.

The number of executions of content codes (e.g., node, arc,
operation, target) at a cluster is an index of activeness of
learning at the cluster. The number of unique codes executed
at a cluster is an index of diversity of learning at the cluster.

B. Intercluster Dynamics

The semantics of real-world learning (i.e., the contents and
ways of learning) at a location is expressed by identifying time
points with a designated LocationClusterLabel, and extract-
ing the contents of nodeList, arcList, and strategyList at the
time points. For verifying the semantic independence of learning
at each allocated cluster, we define the intercluster similarity of
the contents and strategies that a learner i examined and applied

at the dth location cluster to those at the subsequent (d+ f)th
location cluster.

Given sets X and Y , the similarity of the elements of the two
sets is calculated using the Jaccard index

J(X,Y ) =
|X ∩ Y |
|X ∪ Y | (9)

0 ≤ J(X,Y ) ≤ 1. (10)

We define Ji,f as the average of Jaccard index values to
express the similarity of meaning of learner i’s activities among
all possible combinations of the dth and (d+ f)th location
clusters. For example, in the case of f = 1, Ji,f represents the
average degree of how the meaning of a learner i’s activities
at each cluster was similar to the meaning at the temporally
following cluster:

Ji,f =

∑
d

∑#(Mi,d)
j=1

∑#(Mi,d+f )
k=1 J(mi,d,j ,mi,d+f,k)

#(Mi,d) ·#(Mi,d+f )
(11)

Mi,d = {mi,d,1,mi,d,2, . . .,mi,d,j , . . .,mi,d,#(Mi,d)}. (12)

Here, Mi,d is a variable-length list expressing the mean-
ing of the activities that learner i conducted at the dth lo-
cation cluster. mi,d,j is the jth value of nodeList, arcList,
or strategyList that learner i executed at the dth location
cluster. As an example for nodes, assume that learner 5 staying
at location cluster 10 conducted an examination of not only
a topic consisting of nodes n20, n25 but also another topic
consisting of nodes n100, n101, n105. This case is expressed as
M5,10 = {m5,10,1,m5,10,2}, where m5,10,1 = {n20, n25} and
m5,10,2 = {n100, n101, n105}. Similarly, consider the cases of
arcs and strategy executions

Jf =

∑n
i Ji,f
n

. (13)

Jf (0 ≤ Jf ≤ 1) is index Ji,f averaged over all n learners.
This average index shows the similarity of the contents or
strategies of all learners’ activities among possible combination
of the dth and (d+ f)th clusters.

VII. ANALYSIS

A. Objective

No conventional method of low-level sensing (e.g., loca-
tion sensing) has been used to automatically estimate high-
abstraction-level semantics of real-world learning (e.g., seman-
tically independent units of learning regulation). The objective
of our analysis is to verify 1) whether a location cluster with
a high spatiotemporal density of stay locations can reflect the
semantic and functional unit of real-world learning, 2) whether
an intercluster move can reflect self-regulation of real-world
learning, and 3) whether quantitative features (e.g., spatial size
and temporal size) of estimated clusters can reflect the quality
of real-world learning at locations.

B. Method

We analyzed the data of 22 adult learners (from 20 to 29
years old) who voluntarily participated in our experiments on
environmental learning at a forest of Kamigamo Experimental
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Station, Field Science Education and Research Center, Kyoto
University, Japan.4 Each experiment was conducted for 1 h in
a group learning style (three learners as a group). During the
experiment, GNSS position data necessary for our estimation
method were automatically recorded with a learner’s wearable
sensor, without any learner operations. The total time amount of
the analyzed data was 79 431 s (22.1 h).

No participant was acquainted with us or other group mem-
bers before the experiments. Our pre-questionnaire showed
that learners’ prior-experience of participation in environmental
learning programs was 0.3 ± 0.8 times (mean ± SD). The level
of their prior-experience did not dramatically vary among the
learners, and our participants were novice learners who did not
have much empirical knowledge about environmental learning.
The frequency of learners’ computer use was 4.6 ± 2.4 times
per week.

1) Task: By extending the conventional jigsaw method in
classroom learning [65], we developed a learning task named
the real-world jigsaw method [66]. In our task, each real-world
learner was given different memo fragments about the academic
theories of real-world phenomena (e.g., survival strategies of
a plant and the community ecology of plants). The memo
fragments were shown on each learner’s tablet computer by
just tapping its display, similarly to the general operation of
smartphones that most of the learners’ generation use daily.
Learners with different memo content were encouraged to com-
plement each others’ understanding and to cooperatively build
and examine hypotheses about the ecosystem in their field-study
area. Just after finishing real-world learning on site, each learner
drew an activity map in a classroom.

2) Preinstructions: Based on the conventional jigsaw
method [65], our preinstructions (including Q&A) were given to
the learners so that they could understand our real-world jigsaw
method and could be accustomed to necessary operations to view
memo fragments on a tablet computer (for about 10 min). Before
the experiment, learners had sufficient time (about 20 min) to
get accustomed to moving while wearing sensors, although they
did not need to operate their sensors. After real-world learning,
learners were instructed how to draw an activity map with a
laptop computer (for about 10 min). These experimental settings
were for encouraging learners to behave naturally in the exper-
iment, without feeling much in difficulty or much experiencing
the novelty effects. In fact, 5-point scale questions (5: strongly
positive, 4: positive, 3: neutral, 2: negative, 1: strongly negative)
in our postquestionnaire after the experiment showed that the
learners could easily use memo content on a tablet computer

4The plan of our field study was reviewed and approved by Kamigamo
Experimental Station, Field Science Education and Research Center, Kyoto
University, Japan. To obtain informed consent based on the Japan Society
for the Promotion of Science (JSPS) research ethics guidelines, before the
experiment, we carefully explained not only the purpose and content of the
experiment but also the benefits, rights, disadvantages, and privacy protection
of the experimental subjects, using explanatory documents. Persons who agreed
with and signed the consent document of their own free will participated in the
experiment. From our 30 learners’ data, this study used the data of 22 learners
who did not encounter technical troubles with the single-board computer that
they wore (e.g., electronic breakdown of sensors or storage modules, due to rainy
weather in the forest environment).

TABLE II
FREQUENCIES OF SELF-DETERMINING WHERE, WHAT, AND HOW TO LEARN

DURING THE EXPERIMENTS

(4.2± 0.7) and an activity map (4.0± 1.0). The postquestion-
naire also showed that the wearable sensors on a learner’s body
did not give the learner a sense of discomfort (4.3± 0.7) and
did not restrict behavior in a natural environment (4.3± 0.9).

3) Analytical Data: GNSS data of each learner were used as
the test data of our estimation method. Multimodal data records
of learners (e.g., utterance, vision, behavior, and introspection)
were used to generate the ground truth data of the semantics of
time-series real-world learning (see Section V). Nodes and arcs
of an activity map were self-coded by each learner and were
not differently interpreted by the experimenters. Each learner’s
strategy execution was carefully hand-labeled with multimodal
records by an annotator with more than four years of specialist
education in the field of environmental learning. Following
a method to verify the reliability of the annotation [67], we
randomly selected data covering 20% of the experiment time
period so that a different person could independently annotate
learners’ strategy executions. The κ coefficient (i.e., the degree
that independent annotators could make the same judgment
without negotiation) [68] was 0.854. A κ coefficient in the
range 0.81–1.00 indicates that the similarity of interpretations
by different annotators was “almost perfect” (the highest level
of consistency of different annotators’ interpretations) [67].

C. Results

1) Overall Features: Since our real-world jigsaw method di-
versified learners’ viewpoints from which to observe the world,
various contents (336 topics consisting of 251 kinds of nodes
and 266 kinds of arcs) were examined by various strategies (196
strategies consisting of 44 operation codes and 32 target codes)
over the course of all experiments. That 80.0% (44/55) of our
operation codes and 72.3% (32/44) of target codes were used
for describing real-world learning indicates the good coverage
of our basic coding scheme.

Table II shows the frequencies at which learners self-
determined where, what, and how to learn during the experiment.
Learners switched location clusters at the low rate of 0.172
exec./min, changed topics at the middle rate of 0.315 exec./min,
and changed strategies at the high rate of 2.54 exec./min. The
frequencies of strategy changes and topic changes were 14.8
times and 1.83 times higher than the frequency of location
switches, respectively. As modeled in Fig. 2, learners first se-
lected a prospective location to learn, second extracted a concrete
topic of learning from potential learning contents there, and
third selectively executed a sequence of strategies to examine
the topic.

Table III, created by the method of Section V-C, is a typical
example of sequential strategy executions to start and end real-
world learning at an estimated location cluster. After identifying
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TABLE III
SERIES OF STRATEGY EXECUTIONS IN AN ESTIMATED CLUSTER

and sharing a learner’s learning goal (i.e., the examination of
survival strategies of a plant) (06:40–07:10), a learner group
first visually inspected the feature of the leaves of a pine tree,
and inferred their attributes (e.g., a feature, quality) from the
viewpoint of photosynthesis efficiency (07:12–07:19). When
grounding their knowledge (i.e., what they knew about a pine
tree) on the real world (i.e., observational evidence of an actual
pine tree in front of them) (07:39–08:02), the gap between their
knowledge and the reality generated a question derived from the
world (08:12–08:46). After this question triggered off a series of
a thought experiment, hypothesis constructions, and a discussion
about methods to verify their hypotheses (08:47–11:45), they
finally found the limitations of staying at their location for
giving them concrete answers to their questions and hypotheses
(11:46–11:47), and considered the possibility of forming a better
understanding at other locations (11:48–12:00), which triggered
starting new learning at the next location cluster.

Outside of the estimated location clusters, we often found
that few or no strategies were sequentially executed to focus on
a particular real-world target for pursuing a concrete learning
goal.

Fig. 6. Estimated result of focal areas where a learner concentrated stays to
form a certain meaning of learning.

TABLE IV
FEATURES OF ESTIMATED CLUSTERS

2) Intra-Cluster Features: Fig. 6 shows a randomly selected
result of clustering a learner’s location data with our method.
Black dots are position data not allocated to any location cluster.
Dots of other colors are position data allocated to a location
cluster. Our method estimated the possibility to allocate different
clusters to a revisited place (e.g., points A and B in the figure).
In terms of time, 83.8% of the data were allocated to clusters. As
shown in Table IV, a learner’s learning (for about one hour per
learner) was divided into 10.4 clusters on average. Learning at
one cluster was conducted for 4.9 min over an area of 9.3 m2 on
average. As shown in Table V, on average, learning at one cluster
examined 6.4 topics consisting of 3.5 nodes (i.e., concepts) and
2.9 arcs (i.e., relationships) of an activity map. On average, at
one cluster, learners executed 6.3 kinds of strategies consisting
of 4.1 operation codes and 4.8 target codes. Importantly, lim-
ited numbers of contents and strategies were examined at each
estimated cluster.

3) Intercluster Features: On average, a learner who had fin-
ished 4.9 min of learning at a location moved to another location
cluster (see Table IV). Jf (defined in Section VI-B) in Table VI
shows that sets of strategies (operation, target) and sets of
topics (node, arc) occurring in an estimated cluster were not
reused at subsequent clusters. Although sets of topics, nodes,
and arcs were slightly highly reused in the next cluster (f =1),5

Jf for all possible combinations of clusters was low in all cases.

5Strategies relatively commonly used among clusters include basic ones to ob-
jectively observe and collaboratively examine the world, e.g., (O10: clarify, T30:
peripheral information), (O22: explain, T6: concrete knowledge), (O22: explain,
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TABLE V
CONTENT AND WAY OF LEARNING AT ESTIMATED CLUSTERS

TABLE VI
Jf : SIMILARITY OF CONTENTS AND WAYS OF LEARNING IN fTH SUCCEEDING CLUSTER

TABLE VII
CORRELATION COEFFICIENT BETWEEN CLUSTER FEATURES AND LEARNING ACTIVITIES

At each estimated cluster, the limited range of on-site infor-
mation was selected as the targets to which the limited range
of strategies were applied (see Section VII-C2). Although we
found some intercluster similarities of learning contents and
strategies, the contents and strategies at a cluster had high se-
mantic independence from those at other clusters (see Table VI).
Our strategy expression is not overly sensitive to small changes
in the observation targets in the world but rather traces the
categorical and semantic changes of the operated-on targets (see
Section V-C). Thus, intercluster difference of target means that
the substantial meaning of real-world experience differs between
the estimated clusters.

Estimation of stable stay [49] was limited, because this esti-
mation was to find the point in space where a learner actively
made observations and had discussions while standing still. Our
proposed method extended this to estimate spatiotemporal focal
areas that elicit different grounded cognition, and explicitly or
tacitly determine the range of possible behavior and available
achievements. Each estimated cluster was the functional unit of
spatial context that afforded semantically independent experi-
ences and cognitively closed symbolic computations.

4) Correlation Between Cluster Features and Learning: We
found no statistical significance between the number of esti-
mated clusters and total achievement of learning (e.g., quanti-
tative features of learners’ activity maps). However, as shown
in Table VII, stay time at an estimated cluster was positively

T23: observation target), (O22: explain, T22: observation result), (O5: approve,
T22: observation result), (O40: propose, T28: own idea), (O40: propose, T29:
own question), (O44: re-propose, T29: own question), (O25: identify, T25:
other’s idea), (O5: approve, T25: other’s idea), (O10: clarify, T13: difference
between phenomena), and (O28: infer, T34: reason for phenomenon). Nodes

correlated with the activeness and diversity of content exami-
nations and strategy executions (0.59 ≤ r ≤ 0.69, p < 0.001).
The area size of a cluster was weakly positively correlated
with the activeness and diversity of content examinations and
strategy executions (0.35 ≤ r ≤ 0.43, p < 0.001). The reason
why correlation coefficients of area size were lower than those
of stay time is considered to be that a learner in too large an
area can see many phenomena (including potential concepts and
relationships) but cannot necessarily examine each individual
phenomenon intensively enough to organize structured knowl-
edge.

The quality of real-world learning is hard to objectively assess
from the externally observable features of a learner, and no
conventional method of low-level sensing has been used to
automatically estimate semantic features of real-world learning.
Our location-based sensing method automatically calculated
spatiotemporal features of an estimated cluster as metrics for
the activeness and diversity of intellectual operations on survey
targets.

5) Estimation of Body-Based Learning Regulation: Our im-
portant finding was that keeping and changing the location of
learning functioned as learning regulation that was embodied in
a learner’s body in the spatial context of the world. A learner’s
intercluster move was key behavior not only to update spatial
context that a learner can potentially sense but also to switch
content examination and strategy execution. For this reason,
our density estimation of concentrated stay behavior was able
to successfully extract the time point when a learner started
examining new phenomena from a different viewpoint to reveal

and arcs continuously examined among clusters include concepts, phenomena,
relationship, or findings on which a learner mainly focused.
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the nature of his/her self-centered world, without maintaining
the old contents and strategies of learning.

D. Discussion

1) Computation Model: We assumed that a learner i at loca-
tion l estimates and updates Ê(Si|l), i.e., his/her internal belief
of E(Si|l), which is the potential effect that can be achieved
from executing all possible strategies Si while staying at loca-
tion l. Given this assumption, a learner should continue to learn
at the same location while he/she can still obtain a positive effect
from learning at the location. In fact, Section VII-C4 showed that
during a long stay at the same location, a learner was able to in-
tensively and repeatedly examine the same phenomenon and find
relationships between concepts that were not previously known
to be associated with each other. This result also supports that
when a learner inappropriately gives up learning at a location
where potentially useful real-world information has so far been
overlooked (i.e., the case that Ê(Si|l) is underestimated), they
cannot sufficiently acquire the knowledge summarized as nodes
and arcs of an activity map.

Since the number of observation targets at a location is not
infinite, knowledge newly acquired by staying at one location
will gradually decrease with the passage of time. By continuing
concentrated stay behavior at a single location, Ê(Si|l), the
learner’s subjective estimate, approaches the true value E(Si|l)
of the potential of location l. When a learner finds that his/her
learning reaches the saturation state that real-world informa-
tion, strategies, and behavior are seldom updated (i.e., the state
that ΔÊ(Si|l) is small), the learner should self-regulate to
appropriately give up the old location where additional learning
effects are not expected. In our experiments, learners at the
saturated state often proposed searching and moving to locations
appropriate for finding a new learning topic or observational
evidence to verify their hypotheses. After conducting 4.9 min
of learning on average (see Table IV), as learning regulation to
break the saturation state of the information circulation system,
learners did an intercluster move to start time series of relearning
at a new location in a different spatial context.

When learners persist in studying in a situation where the
value of Ê(Si|l) is overestimated relative to the true value of
E(Si|l), too long a stay at the same single location is expected
to decrease the possibility that additional contents and strategies
can be generated from peripheral observation. Positive correla-
tion among stay time and learning effect (see Section VII-C4)
is considered to indicate that 1) learners in our experiments
succeeded in appropriately giving up on a learning location with
poor prospects, and 2) their location switch behavior allowed
them to learn in a situation where the true value of E(Si|l) was
higher than the estimated value of Ê(Si|l) (i.e., the situation
where unfound meaning of the location still remained).

In summary, our results supported our internal regulation
model of location-oriented computation in which a learner 1)
sequentially evaluates the result of a preceding behavior, 2)
predicts the expected results of a possible future behavior, and 3)
behaves to increase the possibility of encountering new obser-
vational evidence. Based on this model, we precisely estimated

an intercluster move, as a location-derived signal to start his/her
sequential execution of different strategies to reveal the nature
of the brand-new experience.

2) Estimating Semantics of Real-World Learning: For rec-
ognizing motion concepts, multimodal representation of human
actions in a household environment has been proposed based on
a probabilistic description of the kinematics of an action along
with its contextual background, namely the location and the
objects held during the action [69]. Behavior semantics (e.g.,
the reason why and the way how a human is operating on a
certain set of objects) was used to model the human cognitive
processing [70]. The multigranularity features and statistics of
word use have been used not only to find appropriate sentences
for knowledge-grounded conversation [71] but also to predict
destructive or out-of-context phases of conversation [72], [73].
Different from conventional studies, the unique feature of our
estimation method is not using the following information:

1) knowledge about the role of objects existing in the world;
2) knowledge of semantics of each location;
3) data of conversation content containing a wealth of behav-

ior semantics6.
Conventional studies [74] have investigated time-series strat-

egy executions changed by self-judging the strategies’ effects.
However, as discussed in Section I-B, learning analytics has
difficulties to automatically estimate a high-level learning situa-
tion [12], [13], such as the self-regulation state of learning [16].
In fact, conventional studies have not automatically assessed
how a learner with grounded cognition internally self-regulates
experience-based symbolic operations in the spatial context of
the world. A main difficulty in estimating the regulation state
of real-world learning is that a learner’s hidden internal compu-
tation and his/her observable sensor data are not in one-to-one
correspondence.

Our challenge is to find the features of low-level (motion-
level) behavior accompanied by strategy-based computation to
construct a high abstraction level of cognitive representation
of the world. We showed that a spatiotemporally high density
of continuous stays within a certain sized area occurs when a
learner makes spatial inquiries in the same or similar semantic
context of learning. Estimation of spatiotemporal concentrated
stays enabled us to extract the semantic units into which each
individual learner subjectively segmented the spatial context of
the world. Without knowing a learner’s self-regulated strategies
(e.g., si,j) or the actual value of his/her internal estimation of
potential effect achieved by staying at a location (e.g., E(Si|l)),
our location-based estimation method functioned as an approxi-
mate solution for extracting time points to change the regulation
state of strategic control of a learner’s internal knowledge space
under grounded cognition.

3) Internal Computation Underlying Grounded Cognition:
Our current study assumed that real-world learning is self-
controlled by a learner’s internal computation to make cognition
(i.e., a psychological system) and body (i.e., a biological system)
work as a single entity in a holistic manner. Although how

6Our study used conversation data only as the ground truth data (see Section V)
to verify the performance of our estimation method.
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sensorimotor functions work during language learning [22],
word conceptualization [38], and mathematical reasoning [26]
has been investigated, the discussion still remains open in many
domains about how to model and trace human computation
underlying coordinated systems of cognition and body. On
this point, our current study found that a state pattern of a
learner’s embodied behavior (i.e., concentrated stay behavior)
reflects his/her internal computation that controls psychological
and biological systems to well achieve grounded information
processing.

4) Sensor-Based Actuation Adapted to Learner’s Internal
Computation: Studies of multimodal learning analytics have not
featured prescriptive analytics that provides educational recom-
mendations based on sensor data [12]. Furthermore, the exe-
cutions of learners’ SRL-level and SSRL-level self-regulation
were hard to capture from the outside with a computer sys-
tem [16]. Our analytics can be a basis for a sensor-based ac-
tuation adapted to each learner’s internal computation, by 1)
automatically sensing a learner’s regulation state of real-world
learning, and 2) actuating him/her to well self-determine or self-
regulate experience-based symbolic computations. For example,
when a learner often gives up learning without enough time for
concentrated investigation, the engine can give him/her behavior
actuation to focus on the current context. When a learner overly
persists at the same location without any learning regulation,
behavior actuation can be given to promote relearning in a new
prospective context.

5) Design Methodology of Computational Learning Analyt-
ics: Different from conventional computational modeling under
ideal and artificial conditions [40], [41], [42], [43], [44], [45],
our interest was how to model, trace, and assess the invisible
and complex process of self-regulated computation by which
intelligent behavior arises from learner-world interactions. By
applying our real-world-oriented methodology to design com-
putational learning analytics, we theoretically devised detailed
formulas to express the probabilistic regulation process of real-
world behavior under grounded cognition, and made a sensing-
level approximation of essential functions of the formulas.

Our design methodology consists of the following steps:
1) mathematically assuming the ideal (true) model of a

learner’s internal computation underlying behavior gen-
eration in the complex world;

2) determining which abstraction level of estimation infor-
mation is required for the research purpose;

3) extracting the essential function(s) of the ideal computa-
tion model;

4) approximating human computation at a machine-traceable
level to be automatically estimated with sensors.

These steps are not domain-specific, and we expect that the
basic ideas of our design methodology can constitute a guideline
for practically adapting computational learning analytics to other
learning settings.

6) Extensibility of Strategy Codes: As explained, to create
ground truth data of the semantics of time-series real-world
learning, we defined strategy codes by observing approximately
280 learners. High use ratios of our operation and target codes
(80.0% and 72.3%, respectively; Section VII-C1) indicate that

our strategy codes well covered the learning activities in our task
setting. StrategyList(t), i.e., the representation of strategies at
a certain time point, is defined as a variable-length string list to
be flexibly extended. When our analytics is applied to real-world
learning with other tasks or in other fields, the strategy codes can
be supplemented, as the present study did, by making prelim-
inary experiments to observe potential strategies that learners
can execute during that new task or in that new field.

7) Limitations and Future Work:
a) Inter-personal Behavior Coordination: SRL and SSRL

constitute a co-constructive and inseparate process, because the
dynamic processes leading to productive engagement in a collab-
orative activity are regulated through a continuous individual and
social process (i.e., a combination of individual and collective
regulation of strategies) [64]. The concentrated stay behavior
effective for tracing sequential strategy executions is expected
to be under both SRL and SSRL regulation, but its behavior state
is defined in terms of parameters of an individual’s body.

On the other hand, intercorporeality (i.e., a form of reciprocity
of bodily intentionality between embodied subjects [75]) is
expected to work during learners’ collaboration in real-world
learning. This point was outside the main focus of the current
paper, but we expect that interpersonal coordination of learners’
bodies (e.g., synchrony) can reflect the group-level collective
regulation of learning (e.g., SSRL [16]). In fact, the positions and
orientations of people’s bodies are interpersonally coordinated
to create, maintain, and break a particular formation for partici-
pating in a joint transactional space and are important physical
information to identify a time series of not only each person’s
role (e.g., speaker, listener) but also their style of engagement in
social interaction [76], [77].

Assuming that positions and orientations of people’s bod-
ies are shared and coregulated during SSRL-level orchestra-
tion of real-world learning, we expect that, in addition to pa-
rameters to express a learner’s location (e.g., x, y in a 2-D
plane, x, y, z in a 3-D space) at a certain time point t, 3-axis
orientation information of his/her head and upper body (e.g.,
oh,x, oh,y, oh,z, ob,x, ob,y, ob,z) at each time point can be poten-
tially useful parameters for determining a behavior-level compu-
tation model underlying SSRL-level orchestration of real-world
learning. Extending our learning analytics with a supplemental
algorithm driven by the orientation parameters (including the
optimization of internal parameters and hyperparameters to be
used in the supplemental algorithm) will be a basis to objectively
quantify the state of learners’ intercorporeality and to find SSRL-
level collaboration problems occurring in real-world learning.

b) Transfer Learning in Sociocultural and Self-Directed
Context: Transfer learning is learning how to apply knowledge
to different tasks, problems, situations, or institutions [78], and
metacognitive skills underlying transfer learning can be obtained
by the process of sequential regulations of learning [79]. Our
estimation technique enabled automatically extracting the start
and end time points of each occurrence of learning regulation in
the world. However, this technique was not for identifying how
the series of occurrences of learning regulation are mutually
associated to achieve a higher level of knowledge, such as
transferable knowledge.
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Recently, machine learning techniques have been developed
to represent the mechanism of transfer learning by imitating
human information processing (e.g., a brain function to construct
and classify memory connection [80], an ability to describe
a new category by other related knowledge in a textual and
visual space [81]). However, transfer learning can occur not only
in sociocultural environmental contexts (e.g., cultural artifacts,
the structure of social activities) [78] but also in the context
of a learner’s agency (i.e., actor-oriented dynamic situations
for inventing and reorganizing relations of similarity between
activities) [82]. Conventional studies [80], [81] did not compu-
tationally model transfer learning achieved by self-regulating,
associating, and contextualizing a series of sociocultural behav-
iors grounded in the world. Our future study will investigate
how a learner’s physical body works to drive and self-regulate
the process of transfer learning by making his/her computation
grounded on a dynamic and socioculturally contextualized en-
vironment.

c) Prescriptive Learning Analytics: As a basis to develop
prescriptive analytics adapted to the state of each learner’s inter-
nal computation, our computational learning analytics precisely
estimated the regulation state of real-world learning with the
task of our real-world jigsaw method. Our field-study area is
a forest environment that is close to human’s living areas and
maintains a symbiotic relationship among humans and the na-
ture. In general, this type of forest environment is often used for
the purposes of nature observations, ecological surveys, nature
games, and environmental learning [4]. Since our computational
modeling represented a general and simple computation process
underlying real-world learning, we expect that our analytics
is applicable to learning settings (e.g., tasks, fields, and age
groups) in which the grounded cognition of a learner can be
similarly modeled. On this point, our future work should further
accumulate experimental results by applying our analytics to a
wider age range of learners (e.g., elementary schoolchildren, the
elderly), a wide variety of field-study areas (e.g., a virgin forest),
other tasks (e.g., learning subjects, field survey methods), or a
larger dataset.

Our future work should also assess educational effects
achieved by our new potential service, e.g., an on-site sensor-
based actuation adapted to each learner’s internal computation.
Although hardware implementation of a sensor system is not
the main focus of the current paper, improving its robustness to
work in various real-world situations (including rainy weather in
a forest environment) is also important work for our estimation
method.

VIII. CONCLUSION

An unsolved issue in learning analytics is to capture high-level
semantics of learning [12], [13]. In real-world learning, a learner
constructs an internal cognitive representation of knowledge
by not only human–world interaction in the context of the
real world but also human–human interaction to collaboratively
share learners’ states of grounded cognition. However, little was
known about how to computationally model and analyze the self-
regulation process by which real and collaborative “experience”
generates learning effects derived from the world.

For automatically tracing a complex self-regulated process of
real-world learning, we integrated interdisciplinary theories of
self-regulated learning (i.e., internal autonomous computation),
grounded cognition (i.e., real-world oriented cognition), com-
putational behavior modeling (i.e., behavior-based decision-
making system), and research design (e.g., science of natural
behavior). Then, we formulated our basic expectation that when
a learner self-directs real-world learning, he/she internally cal-
culates and updates the meaning and effect of his/her on-site
learning. Although it is difficult to automatically assess how
a learner internally estimated the potential effect achieved by
on-going experiences, we developed computational learning an-
alytics to estimate the internal regulation state of behavior-based
computation in the spatial context of the world.

The central point of our study is finding an automatically
traceable pattern of a learner’s behavior that embodies his/her
internal “control” to compute how to self-regulate a series of
intellectual states during real-world learning. In other words, our
challenge is to find the features of low-level (motion-level) be-
havior accompanied by strategy-based computation to construct
a high abstraction level of cognitive representation of the world.
Here, a novel assumption of ours is that a spatiotemporally
high density of continuous stays is accompanied by the same or
similar semantic context of real-world learning. Based on this
assumption, our sensor-based density estimation of a learner’s
concentrated stay behavior precisely extracted spatiotemporal
clusters with a cognitively closed and semantically independent
function to experientially compute location-oriented real-world
information. By sensing the repeated process by which a learner
determines where to be situated, our method estimated a time
series of occurrences of learning regulation to input and compute
new real-world information, and to vary and order the content
and strategy of real-world learning. These results support our
model that the spatial context of each location in the world
functions as hidden affordance to explicitly or tacitly restrict,
activate, and regulate a learner’s self-directing process of real-
world computation.

Learning regulation is hard for a learner to perform and
also hard for a computer system to trace and support [16].
The qualitative transitions of real-world learning are hard to
objectively assess from the externally observable features of a
learner, but spatiotemporal features of an estimated cluster could
be metrics for automatically estimating the activeness and di-
versity of time-series strategy-based content examinations. Our
computational learning analytics can be a basis of sensor-based
actuation adapted to each learner’s internal computation, such
as an engine for encouraging learners to self-determine or self-
regulate symbolic computations well by real-world experience.

We expect that basic ideas of our design methodology of
computational learning analytics can constitute a guideline prac-
tically applicable to other learning settings. While improving the
robustness of a sensor system to trace real-world learning, our
future work will further show the potential of computational
learning analytics by investigating 1) interpersonal behavior
for SSRL-level coordination, 2) behavioral features underlying
transfer learning in sociocultural and self-directed contexts, and
3) educational services driven by our computational learning
analytics.
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