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Enhancing Efficient Global Understanding Network
With CSWin Transformer for Urban

Scene Images Segmentation
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Abstract—The global context is crucial to the semantic segmenta-
tion task of remote sensing (RS) urban scene imagery since objects
have large size variations, high similarity, and mutual occlusion.
However, the existing methods for extracting global context in-
formation have limitations when directly applied to very high-
resolution RS images, mainly in high complexity of computation
and memory consumption. To alleviate this limitation, we propose
a novel Efficient Global Understanding semantic segmentation
Network (EGUNet) to extract global context information efficiently
for applicability to RS images. Specifically, EGUNet is a hybrid
U-shaped architecture of convolutional neural networks (CNNs)
and Transformer in which the encoder uses the CSWin Trans-
former to capture global semantic information, and the decoder
uses the CNNs structure to recover local detail information. Thus,
the proposed EGUNet has a powerful global extraction capability
and local position information recovery capability. In addition,
three effective modules are proposed to improve the segmentation
accuracy to make EGUNet more applicable for urban scene image
segmentation tasks. First, a feature adaptive fusion module is in-
troduced in the decoder to improve the fusion of the deep semantics
and the location detail features. Second, an adaptive atrous-spatial
pyramid pooling is designed at the skip connections to enhance
the multiscale understanding of high-level semantic context. Fi-
nally, we introduce a lightweight enhanced segmentation head to
utilize the information from each decoder stage for segmentation.
Extensive experimental results on ISPRS Vaihingen and Potsdam
datasets demonstrate the exceptional segmentation accuracy of
EGUNet, outperforming the state-of-the-art methods.

Index Terms—CSWin Transformer, global information extracti-
on, remote sensing (RS) urban scene imagery, semantic
segmentation.
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I. INTRODUCTION

S EMANTIC segmentation of remote sensing (RS) urban
scene images is a practical computer vision (CV) task

with broad applications in urban construction [1], land cover
mapping [2], environment development management [3], and
road extraction [4]. The purpose of RS urban scene image
segmentation is to categorize each pixel within an image into
a target semantic or background category. Notably, in recent
years, due to the advances in aerial technology and modern
satellite sensing technology, RS images captured by UAVs and
satellites now cover richer spatial detail information and texture
features [5], which makes RS images more complex. To cope
with the complexity, powerful and sophisticated algorithms are
required to effectively capture the intricate urban features, mak-
ing RS image segmentation challenging.

As shown in Fig. 1, the challenges of the semantic segmenta-
tion of RS urban scene images are mainly in three aspects. First,
ground objects are varied in size, so different scale receptive
fields are needed to obtain multiscale feature information [6].
For example, “Buildings” in Fig. 1(a) have varied sizes, and the
semantic categories of buildings cannot be accurately under-
stood using only single-scale feature information [7]. Second,
objects of different semantic categories may have high interclass
similarity with similar size, material, and spectral features, and it
is challenging to distinguish them using only local information.
Observing Fig. 1(b), we can note the similarity between the
Building’s roof and the “Impervious Surface” regarding their
material and appearance. Similarly, from Fig. 1(c), it can be
noticed that the skylight of the “Building” and the small “Car”
are similar in appearance. Finally, since the RS images are
taken from an overhead perspective [8], there is mutual occlu-
sion between objects, leading to incomplete feature extraction,
loss of context information, and semantic ambiguity. From
the example in Fig. 1(d), the “Car” is obscured by the “Low
Vegetation” from the top view. Analytically, the difficulty in
solving the above three challenges (objects with multiple scales,
high intraclass similarity, and mutual occlusion) is attributed to
insufficient contextual information extraction. In other words, it
is difficult to accurately segment RS images relying solely on
local information, emphasizing the criticality of incorporating
global information into the model, which is the challenge of
the segmentation task [9]. Based on the above analysis, how to
efficiently extract global information to apply to RS urban scene
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Fig. 1. Illustration of the dilemma in RS imagery segmentation and a schematic
diagram of the relationship between local and global context information.
(a) “Building” with varied size. (b) “Building” and “Impervious Surface”
have similar materials. (c) Roof skylight and “Car” have a similar appearance.
(d) “Car” with “Low Vegetation” covering the body. (e) For “Car,” the orange
line shows the need for global information for the long-range dependency, and
the blue line shows the role of local information for semantic understanding.

images motivates us to propose Efficient Global Understanding
semantic segmentation Network (EGUNet).

To alleviate the aforementioned concerns, several deep-
learning approaches have been explored to enhance the effi-
ciency of semantic segmentation. Representatively, convolu-
tional neural networks (CNNs)-based methods [10], [11], [12],
[13], [14], [15] have achieved remarkable results due to their
powerful ability to capture detailed low-level information and
flexible hierarchical feature representations. Subsequently, some
works focus on increasing the network’s magnitude to improve
networks’ fitting ability, enlarging the receptive field of semantic
understanding, and multiscale information representation [16].
Nevertheless, the convolution operation’s fixed receptive field
still limits the ability of CNNs to model global context and
establish long-range dependencies [17]. To enlarge the range of
CNNs for context modeling, some current work [18], [19] uses
attention mechanisms to address this limitation, while it brings
huge computation and memory consumption. Alternatively, a
multiscale feature fusion strategy [7], [20], [21] is also an
effective solution for enlarging the receptive field by using atrous
convolutions and feature pyramids, which can obtain multiscale
information. The above two ways can enlarge the receptive field
to some extent, but inherently, it is still not independent of the
convolutional operation and does not model global information.

Recently, Transformer has been breaking new ground in CV
research field due to its powerful global modeling capabilities.
Unlike CNNs that process 2-D images directly, the Transformer
converts the image into a sequence and models that global
sequence, achieving excellent results in object detection [22]
and image classification [23]. Driven by this, researchers have
tried applying the Transformer to the semantic segmentation
task [24]. More specifically, referring to CNNs, Transformer-
based methods adopt the encoder–decoder framework with the
skip connection to assist information recovery, which can ef-
fectively model global information and recover spatial loca-
tion information. Nevertheless, when practically applying the

Transformer-based model to RS images, the computational com-
plexity (quadratic to the imagery resolution [25]) is significantly
high, seriously affecting the feasibility of applying Transformer-
based methods in very high-resolution (VHR) RS urban scene
imagery.

To tackle the aforesaid challenges, we design an innovative
EGUNet to extract global context information efficiently while
keeping the computational complexity within a reasonable limit.
Specifically, we employ the CSWin Transformer [26] as the
encoder backbone for extracting global context and CNNs to
build a decoder for local spatial details recovery. Thus, the pro-
posed EGUNet has a powerful global extraction capability and
local position information recovery capability for RS imagery.
Besides, three effective modules are proposed to enhance the
segmentation accuracy of RS imagery. In each decoder stage, the
feature adaptive fusion module (FAFM) is proposed to enhance
the fusion of low-level detail features from the encoder stage and
semantic features from the deep network. At the skip connection,
an adaptive atrous-spatial pyramid pooling (AASPP) is designed
to enhance the multiscale understanding of high-level semantic
information. At the output stage, a lightweight enhanced seg-
mentation head (ESegH) is introduced to better utilize the infor-
mation from each decoder stage for segmentation. By adopting
these modules, our EGUNet can attain superior effectiveness and
precision in the semantic segmentation of urban scene imagery.

In conclusion, this article offers the following significant
insights and contributions.

1) To enhance global modeling and reduce complexity, we
construct a novel architecture, called EGUNet, which
combines CSWin Transformer, as an encoder backbone
network, with a CNNs decoder.

2) At each decoder stage, the FAFM is designed to adaptively
enhance low-level detail features or high-level semantic
features.

3) An AASPP is proposed to tackle object target and recep-
tive field mismatch, while the ESegH enhances output for
high-quality segmentation maps.

II. RELATED WORK

A. Semantic Segmentation on the Base of CNNs

Along with the emergence of deep learning, the semantic
segmentation model based on CNNs is an attempt by researchers
to explore end-to-end semantic segmentation methods using
machine learning. To be noted, fully convolutional network
(FCN) [12] improves on VGGNet [27] and is the pioneering
end-to-end processing network for semantic segmentation im-
plemented by full convolution. Since then, researchers have
explored the effectiveness of using CNNs-based models in the
semantic segmentation of RS and accomplished remarkable re-
sults [19], [28], [29], [30]. However, since the FCN architecture
is too simple, the segmentation accuracy is unsatisfactory for
some semantically complex VHR RS images. To enhance the
model’s efficacy, based on the FCN, Ronneberger et al. [13]
proposed a U-shaped symmetric structure model, called Unet,
which has become a standard framework segmentation with
its simple structure and accurate segmentation [31]. With Unet
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network architecture, the following efforts focus on three main
areas: improving the standard encoder standard backbone [27],
[32], [33], [34], designing more efficient decoders [14], [32],
and developing multiscale semantic understanding over skip
connections [35], [36], [37].

Despite the commendable performance in capturing local
features, CNNs-based approaches’ ability to model global in-
formation remains a significant challenge due to the limited
receptive fields [38]. This drawback becomes particularly evi-
dent when applying CNNs-based approaches to RS urban scene
images characterized by high-resolution nature [38], intricate
categories [39], and high object similarity [40], leading to inad-
equate semantic understanding and ambiguity.

B. Semantic Segmentation on the Base of Self-Attention
Mechanism

Extensive empirical evidence has consistently validated the
attention mechanism as a highly effective methodology for
enlarging receptive fields and establishing extensive long-range
dependencies. Unlike the strategy of increasing model scales,
the self-attention mechanism simplifies the context problem
by explicitly establishing relationships with relevant locations
to build long-range dependencies. Specifically, self-attention
allows the model to emphasize the essential features better
while suppressing some interfering features. In the context
of application examples, LANet [9] and AFNet [18] try to
adopt the attention mechanism to integrate low-level details
and high-level semantics. Moreover, CCNet [41] considers the
limitation of hardware conditions and designs recurrent criss
cross attention module to optimize self-attention computation,
thereby enhancing the network’s overall efficiency. Neverthe-
less, the abovementioned methods exclusively account for the
attention relations of a single dimension and ignore the depen-
dencies of other dimensions in the calculation process. To obtain
multidimensional dependency information, SCAttNet [42] and
DPA-Net [43] consider two dimensions of attention, channel
and spatial, to refine features adaptively using a lightweight
attention mechanism. Furthermore, HMANet [39] considers the
attention of the category dimension for calibrating the category
information. Unfortunately, the above attention mechanism still
relies on convolutional operations and does not directly model
global information.

C. Semantic Segmentation Based on Transformer

Recently, Transformer [44] has gained significant prominence
in CV applications attributed to its strong global modeling and
parallel processing powers, far superior to CNNs-based and self-
attention models. Significantly, the general vision framework
Visual Transformer (ViT) [23] first introduced the Transformer
to image vision tasks, and its transformation of images into
sequences makes global modeling of images feasible. Nonethe-
less, ViT introduces a computationally intensive self-attention
calculation for all image sequences, resulting in significant com-
putational complexity and prolonged training duration. Conse-
quently, enhancing the training efficiency and optimizing the

training method of ViT have become primary research focuses
in the CV domain. To illustrate, Chen et al. [45] design a
general pretraining method that can be directly applied to con-
struction, denoising, and rain removal tasks after fine-tuning.
Meanwhile, T2T-ViT [46], TNT [47], and Twins [48] redesign
the Transformer architecture to enhance Transformer perfor-
mance through local self-attention mechanisms. Following that,
TinyViT [49], DearKD [50], and DeiT [51] use distillation
strategies to improve pretraining methods through enhancing
the performance of smaller models by pretrained models, which
saves memory cost and computational overhead. Nevertheless,
the computational complexity of the ViT has been a challenge
since it grows quadratically with increasing image resolution.
To overcome this challenge, Swin Transformer [52], with its
improved version [53], comes through the shifted window
self-attention strategy, effectively reducing the computational
complexity.

Driven by the achievements of the Transformer in CV, re-
searchers attempt to employ Transformer on RS imaging tasks,
such as hyperspectral image classification [54], building ex-
traction [55], change detection [56], and, notably, semantic
segmentation [57]. The current RS image segmentation methods
follow Unet architecture, which could be mainly categorized
into pure Transformer architecture and CNNs-Transformer hy-
brid architecture. Moreover, combining CNNs and Transformer,
the latter hybrid architecture merges both strengths, which are
effective in RS semantic segmentation tasks. Along this line,
CCTNet [58], NT-Net [59], and WiCoNet [57] employ hybrid
networks to tackle specific practical applications in RS, such as
crop image segmentation, lake water extraction, and land object
segmentation. Furthermore, researchers [8], [16] have also tried
to use Swin Transformer as a backbone network in combination
with CNNs for RS imaging segmentation tasks. In this regard,
related research works [60], [61], [62], [63] have indicated that
Swin Transformer as an encoder can be combined with different
decoder architectures (e.g., Unet [13], PSP [20], and FPN [64])
for diverse tasks to achieve the optimal segmentation outcomes.
Besides, UnetFormer [65], the current state-of-the-art (SoTA)
network for semantic segmentation in RS, proposes a hybrid
Transformer and CNN lightweight network for real-time urban
scene segmentation, which looks similar to ours but is quite
different. UnetFormer models local and global information with
efficient local–global attention in the decoding stage, but the
global information is not sufficiently extracted in the encod-
ing stage. However, our EGUNet efficiently extracts global
information in the encoding stage and efficiently recovers local
information in the decoding stage, which is more in line with
the semantic segmentation of RS images.

In order to make Transformer-based segmentation methods
more feasible for VHR RS urban scene imagery segmentation,
we present a novel EGUNet, which can not only extract global
and local information effectively but also reduce the compu-
tational complexity to an acceptable level. In addition, using
a lightweight self-attention mechanism, we develop the FAFM
and AASPP to enhance semantic understanding, and propose an
ESegH to enhance segmentation effects.
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Fig. 2. Proposed EGUNet’s general framework. The model presents a novel hybrid CNNs-Transformer architecture comprising the CSwin backbone network and
three crucial modules (FAFM, AASPP, and ESegH). The backbone network effectively captures global information, while the latter modules focus on enhancing
segmentation accuracy.

III. METHOD

This section begins by outlining the general organization
of our proposed EGUNet and describing the relevant CSWin
Transformer. After that, we introduce three crucial modules in
EGUNet, namely the FAFM, the AASPP, and an ESegH.

A. Architecture

Fig. 2 demonstrates the overall structure of EGUNet, and it can
be seen that EGUNet adopts an encoder–decoder architecture
and adds skip connections to assist in locating information

recovery. Specifically, in the encoder stage, the EGUNet is
divided into four stages for multiscale and hierarchical feature
representation. In particular, for the ith stage, the size of the
feature map is H

2i+1 × W
2i+1 , and the number of channels is C

2i−1 ,
which is consistent with other common CNNs backbone network
structures. During the first stage, a given image X ∈ RH×W×3

first enters the token embedding layer (consisting of a convo-
lution of size 7 × 7 with stride 4), where the image is divided
into patch tokens of size W

4 × H
4 and the channels C. In each

of the latter three stages, the downsampling module employs a
3 × 3 convolution with a stride of 2, reducing the dimensions
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Fig. 3. Overview of the cross-shaped window self-attention mechanism of
CSWin Transformer. This mechanism divides the multiheads into two groups,
performing horizontal and vertical strip self-attention with strip width sw sep-
arately. The computations of the two self-attention groups are performed in
parallel and finally concatenated together.

of the feature map by half while simultaneously increasing the
channel count twofold.

After the encoder stage, the model obtains a feature map
of size W

32 × H
32 × 8C and sends this feature map to the de-

coder stage. The decoder exhibits a symmetrical structure to
the encoder, consisting of four stages, mainly of the CNNs
upsampling module and the FAFM. In detail, the upsampling
module employs a 2 × 2 deconvolution to increase the feature
map size twofold and reduce the channels by half. Besides, the
FAFM uses 1 × 1 convolution to design a lightweight attention
mechanism that facilitates the fusion of detailed and semantic
features in an adaptive weight manner. For a more detailed
explanation, refer to Section III-C.

In the four stages corresponding to the encoder and the
decoder, we follow the classical Unet design and incorporate
four skip connections to recover detailed information, such as
location. Since the feature in deep stages has large receptive
fields and rich deep semantic information, it could enhance its
comprehension of object semantics if the model can understand
deep semantic information at multiple scales. Therefore, in the
skip connection of stage 3 and stage 4, we design the AASPP
based on the attention mechanism described in Section III-D.

Finally, the model upsamples the output from each of the
four decoder stages to a uniform size, feeds it into the ESegH,
and outputs a segmentation map with the original input image’s
resolution.

B. CSWin Transformer Block

The CSWin Transformer presents an innovative cross-shaped
window self-attention mechanism, enabling the effective mod-
eling of global context information while minimizing computa-
tional overhead. This mechanism employs horizontal and ver-
tical striped window blocks, forming a distinctive cross-shaped
window, as depicted in Fig. 3.

For the horizontal direction, the CSWin Transformer block
divides the input X ∈ R(H×W )×C into sw horizontal strips that
do not overlap and have the same width, [X1, X2, . . . , XM ],
where each strip consists of sw ×W tokens. In particular, the

width of sw, which is not a fixed size, can be adjusted according
to the computational complexity and the stage of the model.
Thus, assuming that the dimensions of queries (Q), keys (K), and
values (V) in the CSWin transformer are dk, and the number of
multiheaded attention heads is k, there then the attention result in
the horizontal direction H-Attentionk(X) is defined as follows:

Xi =
[
X1, X2, . . . , XM

]
, where M = H/s w

Y i
k = Attention

(
XiWQ

k , XiWK
k , XiWV

k

)
,

where i = 1, . . . ,M

H-Attentionk(X) =
[
Y 1
k , Y

2
k , . . . , Y

M
k

]
(1)

where Xi ∈ R(sw×W )×C ,WQ
k ∈ RC×dk ,WK

k ∈ RC×dk , and
WV

k ∈ RC×dk represent the projection matrix of the kth at-
tention head Q, K, and V, respectively, and dk is set to C/K.
Correspondingly, the attention result in the vertical direction is
similar to the definition in the horizontal direction, denoted as
V -Attentionk(X). Finally, the attention of the two directions is
concated to form the self-attention result CSWin-Attention(X)

CSWin-Attention(X)

= Concat (head1, head2, . . . , headk)W
o

headk =

{
H-Attention(X), k = 1, 2, . . . , K

2

V -Attention(X), k = K
2 + 1, . . . ,K

(2)

where WO ∈ RC×C is the projection matrix that projects the
self-attention results to the target dimension C, from this, the
CSWin Transformer block in the encoder is calculated as

X̂ l = CSWin-Attention
(
LN

(
X l−1

))
+X l−1

X l = M L P
(

L N
(
X̂ l

))
+ X̂ l (3)

where LN denotes layer normalization, MLP means multilayer
perception, and X̂ l and X l denote the output of CSWin-
Attention, and the output of MLP, respectively.

C. Feature Adaptive Fusion Module

In each decoder stage, the role of FAFM is to better inte-
grate low-level details and high-level semantics. To enhance the
fusion process, the FAFM incorporates a lightweight attention
mechanism, enabling adaptive selection between low-level and
high-level features. In detail, Fig. 4 provides a visual depiction
of the FAFM’s structure.

Specifically, FAFM utilizes input from both the encoder,
which provides detailed low-level information, and the decoder,
which contributes high-level semantic information. For the ith
stage, first, the low-level detail information SLi passes through
the 1 × 1 convolution and batch normalization (BN) layer to
obtain the output result ŜLi. Then, two branches from the
decoder use the high-level semantic information GHi as in-
put, with one branch producing the semantic weight ĜH1i by
1×1 convolution, BN, and sigmoid activation, the other branch
producing ĜH2i by 1 × 1 convolution and BN. Finally, ŜLi

and the semantic weight ĜH1i are multiplied and then added
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Fig. 4. Structural design of FAFM. FAFM achieves the fusion of low-level
detailed features and high-level semantics through a lightweight self-attention
mechanism.

with ĜH2i to obtain the final output GHi+1. It is worth noting
that converting the high-dimensional semantic information into
a weight matrix ĜH1i can adaptively adjust the weight values
according to the importance of the semantic information. In turn,
the final output GHi+1 will adaptively adjust the proportion of
the high-dimensional and low-dimensional information accord-
ing to the dynamically changing weight matrix. The specific
formula is as follows:

ŜLi = Conv (B N (SLi))

ĜH1i = σ (Conv (B N (GHi)))

ĜH2i = Conv (B N (GHi))

GHi+1 = ŜLi × ĜH1i ⊕ ĜH2i (4)

where σ stands for sigmoid activation function, BN stands for
batch normalization, and Conv stands for 1 × 1 convolution
operation.

D. Adaptive ASPP

In the encoder–decoder architecture, skip connections facil-
itate the delivery of vital information from the encoder to the
decoder, enabling efficient feature recovery. Depending on the
characteristics of the Unet model, for deep stages of the network
containing rich semantic information, atrous-spatial pyramid
pooling (ASPP) is an effective strategy to enlarge the receptive
fields and enhance the understanding of semantic information.
Complementarily, ASPP typically has five branches to obtain
feature maps with different receptive field sizes: a 1 × 1 convo-
lution branch, three 3 × 3 dilation convolution branches with
different dilated rates, and a global average pooling branch.
However, each of the five branches of ASPP has a fixed-size
receptive field, which causes mismatches between the target
objects and the receptive fields of the feature map when ex-
tracting context information. To alleviate this limitation, we

redesign the AASPP using the self-attention mechanism, which
can adaptively use the attention map to weigh the multiscale
feature map. Specifically, through the attention fusion module
(AFM), MASPP adaptively enhances the branches that match
receptive fields with the target object while suppressing other
branches. Fig. 5 shows the specific structure of AASPP.

First, the input feature map Fi n has to go through the tradi-
tional five branches of ASPP and output five feature maps F ′

i n
with the same resolution but different receptive fields, where the
dilated rates of the dilation convolution branches are [6, 8, 12].
Then, each branch’s feature map passes through the AFM to
generate the attention weight map Fω . F ′

i n is multiplied by Fω ,
then added to the original input F ′

i n to obtain the output feature
map F ′

out

F ′
out = Fω · F ′

in + F ′
in (5)

where F ′
i n represents the output of the five branches of ASPP,

and F ′
out represents the feature map output after the AFM. Fω

represents the attention weight map, which can make the pixel
point pay more attention to its related pixel point. Depending
on the size of the receptive fields adapted to objects of different
scales,Fω will adaptively adjust the weights of the five branches,
that is, enhance the weights of the branches adapted to the
receptive fields of the target objects while suppressing the other
branches. Fω is defined as:

Fω = Sigmoid(B N(Conv ⊗ F )) (6)

where Conv denotes the 1 × 1 convolution operation, BN stands
for batch normalization, and the formula illustrates that Fω is
differentiable.

Finally, the module concats the F ′
out of the five branches and

adjusts the channel quantity through 1 × 1 convolution, yielding
the ultimate output feature map Fout.

E. ESegH Module

After FAFM and AASPP, feature maps for each stage in the
decoder contain different levels of spatial location and semantic
information, which are crucial for RS urban scene images. In
existing methods, only a simple structure (i.e., utilizing the final
output) is employed to generate the final segmentation map,
which overlooks the decoder’s crucial semantic information
of different scales. To further elevate the segmentation perfor-
mance, we introduce an ESegH module. Specifically, ESegH
first upsamples the feature maps of the decoder’s four stages
to the same resolution and performs element summation, then
adjusts the number of channels by two-layer convolution and
eventually generates a semantic segmentation map. Fig. 6 illus-
trates the structure of ESegH.

IV. EXPERIMENTS

A. Datasets

To substantiate the efficacy and generalization performance
of EGUNet, we conducted comprehensive experiments by com-
paring its performance with several existing methods on the
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Fig. 5. Structural design of AASPP. AASPP effectively incorporates a lightweight self-attention module, AFM, to select multiscale features adaptively.

Fig. 6. Structural design of ESegH. ESegH efficiently fuses the features from
the decoder’s four stages to generate the final segmentation map in a lightweight
manner.

ISPRS-provided aerial RS image datasets for the Vaihingen [66]
area and Potsdam [67] area in Germany.

Vaihingen: The Vaihingen dataset consists of 33 RS urban
scene images of different sizes with an average resolution of
2496 × 2064 pixels, 16 of which have feature category labels,
and the remaining 17 have no label. The images in this dataset
have been corrected and processed and are three-channel or-
thophoto images (Top images) with a ground sampling distance
(GSD) of 9 cm. Each Top image in the Vaihingen dataset contains
three multispectral bands: near-infrared, red, and green. In addi-
tion, it includes a digital surface model (DSM) and a normalized
digital surface model (NDSM). However, our experiments solely
utilized the Top image tiles, excluding the DSM and NDSM.
For the city characterized as a small and scattered village, the
dataset for Vaihingen consists of five target semantic categories
(Impervious Surface, Tree, Low Vegetation, Building, and Car)
and one background category (objects that differ from the other
defined categories, called Clutter/Background). Referring to [8]

and [65], we select 17 images (with the same number IDs as
in [8]) for testing, while the remaining 16 are assigned to the
training set.

Potsdam: The Potsdam dataset contains 38 VHR urban scene
images, all uniformly sized at 6000 × 6000 pixels. Similar to the
Vaihingen dataset, the images in this dataset have been corrected
and processed and are three-channel orthophoto images with a
GSD of 5 cm. Notably, four multispectral bands (red, green,
blue, and near-infrared) and DSM and NDSM are available in
the dataset. Similarly, only three bands (red, green, and blue)
are used in the experiments. Regarding urban characteristics,
Potsdam epitomizes a classic historical city characterized by
its expansive building complexes, tightly woven streets, and
dense architectural structures. Consistent with the Vaihingen
dataset, the dataset categories encompass five categories for
the foreground and one category for the background. Referring
to [8] and [65], we select 14 images as the testing set, while the
remaining 24 are assigned to the training set.

Fig. 7 showcases the proportion of each semantic label within
the two datasets mentioned. When quantitatively evaluating
these datasets, we adopt the approach presented in [8], [65],
and [68] and exclude the “Clutter/Background” category.

B. Implementation Details

We conduct experiments based on Python 3.9 and PyTorch
1.13.0 under Windows 10 OS and train the model using a
single NVIDIA GTX 3090ti GPU. To accelerate convergence,
the model uses AdamW [69] to optimize with a learning rate
6e-4 (referring to the setting of [65]), adjusting the learning rate
with a cosine strategy.

To enhance the training process by augmenting data diver-
sity, we adopt a random cropping strategy, resizing images to
512 × 512, and employ various data augmentation techniques,
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Fig. 7. Proportion of different semantic labels within Vaihingen and Potsdam
datasets.

including random scaling (with factors of [0.5, 0.75, 1.0, 1.25,
1.5]), vertical flipping, and random horizontal flipping of the
images. During the training, the training epoch is 105, and the
batch size is 16. The encoder backbone network of EGUNet
uses CSWin-Tiny in CSWin Transformer [26] with four stages
in CSWin Transformer blocks of [1, 2, 21, 1], and the strip width
sw of [1, 2, 7, 7]. It should be noted that the optimal results are
indicated by bold values in all tables, whereas the second-best
results are represented by underlined values.

Fig. 7 illustrates an imbalance in the distribution of ground
objects across various categories within the two datasets. This
imbalance can lead the model to prioritize categories with a
larger proportion while neglecting those with a smaller propor-
tion during training. To mitigate the impact of this problem,
referring to [70] and [71], we use a joint supervised model
training with dice loss [72] LDice and cross-entropy loss LCE,
with the total loss L calculated as follows:

L = LDice + LCE. (7)

C. Evaluation Metrics

When performing semantic segmentation on urban scene
images, each pixel in the input image is assigned a category to
achieve pixel-level classification. The resulting predictions can
be classified into four types: True positive (TP), false positive
(FP), true negative (TN), and false negative (FN). To assess the
performance of the segmentation algorithm, two key evalua-
tion metrics are used: precision (P ) and recall (R). Precision
measures the proportion of accurately predicted positive cases
relative to the total number of positive cases, while recall indi-
cates the ratio of predicted positive cases to the total number of
positive cases. The calculation methods for precision and recall
are as follows:

P =
T P

T P + F P

R =
T P

T P + F N
. (8)

We employ the average F1 score (F1), the overall accuracy
(OA), and the mean intersection over union (mIoU) as evaluation

metrics, which are calculated as follows.

F1 = 2× P ×R

P +R

IoU =
T P

T P + F P + F N

OA =
T P

T P + F P + F N + T N
. (9)

D. Comparison With Other Methods

The ISPRS Vaihingen and Potsdam datasets have emerged
as widely adopted benchmarks for evaluating the performance
of RS urban scene analysis methods. Recent research efforts
have demonstrated notable advancements in achieving pre-
cise segmentation results on these datasets. In this study, we
conduct a comprehensive comparative analysis between pro-
posed EGUNet and existing SoTA approaches. Notably, the
evaluated methods encompass a range of architectures, in-
cluding lightweight CNNs-based networks, such as Unet [15],
ShelfNet [73], and ABCNet [74], CNNs-based attention net-
works, such as FANet [75] and MANet [2], and CNNs-based net-
works tailored for RS image segmentation, such as EaNet [76].
In addition, we assess the performance of encoder–decoder net-
works exclusively built on Transformer as a comparison network
to EGUNet, such as Segmenter [77], as well as hybrid seman-
tic segmentation networks combining CNNs and Transformer
architectures, namely BANet [78], BoTNet [79], STUnet [8],
DCSwin [80], and UnetFormer [65]. Through comprehensive
evaluation, we aim to provide insights into the strengths and lim-
itations of the proposed method EGUNet, compared with SoTAs
on the specific segmentation tasks involving the Vaihingen and
Potsdam datasets. To mitigate computational expenses, all com-
parative networks in our experiments adopt lightweight back-
bone networks, such as ShelfNet, MANet, FANet, EaNet, ABC-
Net, BoTNet, and UnetFormer employing ResNet18, BANet
utilizing ResT-Lite, Segmenter incorporating ViT-Tiny, while
STUnet and DCSwin leveraging Swin-Tiny. In our proposed
approach, EGUNet, we utilize CSWin-Tiny as the backbone
network.

1) Semantic Segmentation Performance Evaluation on the
Vaihingen Dataset: Table I illustrates the performance of our
method, EGUNet, compared with other semantic segmentation
networks on the Vaihingen dataset. EGUNet achieves the most
exceptional segmentation performance, with Ave.F1, OA, and
mIoU results reaching 90.7%, 91.2%, and 83.2%, respectively,
far outperforming CNNs-based, Transformer-based, and hybrid
CNNs-Transformer networks. As observed, the hybrid networks
perform better overall than the ones based on CNNs or Trans-
former alone, owing to their ability to effectively utilize local
information and global context. Notably, UnetFormer com-
bines the lightweight transformer and CNNs to propose a new
local-global attention mechanism, which surpasses the previous
SoTA RS image semantic segmentation model and achieves
an Ave.F1 score of 90.7%. Furthermore, our EGUNet has a
significant performance improvement over UnetFormer, with
an Ave.F1 improvement of 1.0% and mIoU improvement of
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TABLE I
COMPARISON OF SEGMENTATION RESULTS OF EGUNET WITH OTHER EXISTING METHODS ON THE VAIHINGEN DATASET

Fig. 8. Visualization comparison of semantic segmentation prediction results for the Vaihingen dataset.

1.2%. Among the five segmentation categories, the two with
the most noticeable performance improvement are “Car” and
“Low Vegetation” with an average F1 improvement of 2.1%
and 1.4%, respectively. Such results show that EGUNet is most
effective for categories with semantic occlusion problems (e.g.,

“Low Vegetation”) and categories that require global semantic
understanding (e.g., “Car”).

Fig. 8 visualizes the semantic segmentation prediction results
of several methods in Table I for a more intuitive comparison.
The observations from the figure reveal that CNNs-based and
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TABLE II
COMPARISON OF SEGMENTATION RESULTS OF EGUNET WITH OTHER EXISTING METHODS ON THE POTSDAM DATASET

CNNs-based attention approaches, such as Unet and ABCNet,
exhibit limitations in capturing context information, leading to
semantic fragments and misclassifications in their segmentation
maps. Similarly, entire Transformer-based methods, such as
DCSwin, suffer from blurred object boundaries and imprecise
segmentation due to inadequate spatial location and detailed
information. Although the hybrid method UnetFormer partially
alleviates these issues, challenges of misclassifying objects
with multiple scales, high intraclass similarity, and mutual oc-
clusion persist. In contrast, our proposed EGUNet performs
better in reducing segmentation prediction errors, particularly
for objects with varied sizes, similar appearances, and mu-
tual occlusion. For instance, in the first row, the “Buildings”
have different sizes and varied shapes, and the segmentation
results of other methods are imprecise. At the same time,
our EGUNet showcases a remarkable capability for multiscale
building segmentation. Furthermore, in the second row, where
there is a high visual similarity and material resemblance,
other methods tend to misclassify the “Clutter/Background”
as “Building,” whereas EGUNet achieves comparatively accu-
rate segmentation. Then, in the fourth row of observation, the
shadow cast by the “Building” covers the “Car,” inducing mutual
occlusion that results in poor segmentation outcomes, while
EGUNet successfully addresses this challenge with more precise
segmentation.

2) Semantic Segmentation Results for the Potsdam Dataset:
The segmentation results of SoTAs on the Potsdam dataset
are presented in Table II, which further proves our proposed
EGUNet’s effectiveness. Our approach demonstrates supe-
rior performance compared with other methods, achieving an
Ave.F1 score of 89.4%, surpassing other methods by 0.8%.
However, it is noteworthy that the CNNs–Transformer hybrid
method does not substantially enhance segmentation accuracy.
This situation can be attributed to the relatively scattered dis-
tribution of objects in the Potsdam dataset and the low mu-
tual occlusion, making it less challenging and enabling even
simple methods to yield satisfactory segmentation results. One
more phenomenon to note is that the segmentation effect of
DCSwin is worse than that of the CNNs method because DC-
Swin cannot recover the spatial location information well, thus
proving that spatial location information is crucial for semantic
segmentation.

TABLE III
COMPARISON OF MODEL PARAMETERS AND COMPLEXITY

Fig. 9 visualizes the prediction results of several segmen-
tation methods. In the first two rows, when confronted with
a wide range of building sizes and irregular shapes, current
SoTA methods display limitations in accurately recognizing the
object’s shape and the precise boundary locations, and thus, the
segmentation is unsatisfactory. Confronted with this formidable
challenge, EGUNet excels in its ability to accurately identify
the intricate shapes of “Buildings” and smoothly and precisely
delineate boundaries. Next, we visualize and analyze the high
intraclass similarity of objects and mutual occlusion. In the
third row, “Clutter/Background” is distributed as points in “Low
Vegetation,” which is easily misclassified and challenging to
locate accurately. Compared with other models, EGUNet has a
more accurate segmentation performance. In the fifth row, the
“Low Vegetation,” “Impervious Surface,” and “Building” are
similar in appearance and can be easily misclassified because
they often overlap each other. In this case, EGUNet effectively
combines global context and local details, enabling precise seg-
mentation. Similarly occurring in the penultimate row, our model
demonstrates improved recognition of the “Low Vegetation”
positioned between the “Tree” and “Building” while accurately
segmenting the “Car” covered by “Tree.”

3) Analysis of Efficiency: For a comprehensive and holistic
comparison, we evaluate the efficiency of the model by ex-
amining two factors: the floating point operations per second
(FLOPS), which measures its complexity, and the number of
parameters, which determines its memory requirements. The
dual assessment provides a comprehensive understanding of
the model’s efficiency. Table III presents the parameters and
FLOPS of different methods in the same experimental setting.
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Fig. 9. Visualization comparison of semantic segmentation prediction results for the Potsdam dataset.

Overall, the CNNs-based method has fewer parameters and
lower FLOPS than the Transfomer-based method due to the
typically higher model size and computational complexity of the
Transfomer. Also consistent with the above rule, our EGUNet
features more parameters than the CNNs-based method while
holding a notable advantage over the Transformer-based model.
As the table data indicate, the number of parameters of EGUNet
is 37.2 M, which is 63.2 M lower than TransUnet, 123.8 M lower
than STUnet, and 29.7 M lower than DCSwin.

In contrast to UnetFormer, which employs a lightweight en-
coder, EGUNet exhibits a higher parameter count of 25.5 M
due to the adoption of the large-scale CSWin Transformer as
the encoder. Although EGUNet’s use of a larger backbone
network increases computational complexity, it ensures a robust
framework for high-performance semantic segmentation tasks.
A similar situation also appears in the comparison of FLOPS.
The memory footprint of EGUNet is generally higher than
CNNs-based methods but lower than most Transformer-based
methods.

From the summary, the model scale of EGUNet is slightly
larger than a few lightweight networks, which may limit the
application on some mobile devices. Nevertheless, the en-
hanced performance of EGUNet in semantic segmentation of
RS images, combined with its smaller model scale relative to
most Transformer-based and SWin Transformer-based methods,
highlights its continued value for research purposes.

E. Ablation Study

To validate the effectiveness of our proposed model and
its three constituent modules (FAFM, MASPP, and ESegH),
we conducted extensive ablation experiments on the Vaihingen
dataset. In these experiments, we employed the widely adopted
Unet as the baseline network to explore the impact of the back-
bone architecture on the overall performance. Furthermore, to
examine three crucial modules, the baseline backbone network
employ CSWin-Tiny, with the number of CSWin transformer
blocks in four stages [1, 2, 21, 1], the strip width sw [1, 2, 7, 7],
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TABLE IV
ABLATION EXPERIMENTS OF CSWIN TRANSFORMERS AS A BACKBONE

NETWORK

and the number of attention heads [2, 4, 8, 16]. These meticulous
ablation experiments scrutinize the impact and significance of
FAFM, MASPP, and ESegH within our EGUNet framework.

1) Ablation Experiment of CSWin Transformer as Backbone
Network: To evaluate the effectiveness of CSWin Transformer
as a backbone network, we use CSWin Transformer as an
encoder. As a comparison, we use Unet as the encoder base-
line network while TransUnet [17] and SwinUnet [81] as the
comparison network. Specifically, TransUnet employs ViT as
the encoder, SwinUnet adopts Swin Transformer as the encoder,
and all networks use the ResNet18 network to build the decoder
to ensure the experiment’s validity.

Table IV demonstrates that the segmentation performance of
the encoders with ViT and Swin Transformer is significantly
improved because both VIT and Swin Transformer model global
context information, which is effective for segmenting VHR RS
images. Notably, the encoder with the CSWin Transformer has
the best performance with mIoU of 78.5%, which exceeds that
of the baseline Unet by 5.9%, ViT by 3.8%, and Swin Trans-
former by 2.7%. Regarding efficiency, CSWin Transformer as
an encoder has a network parameter count of 24.8 M and a
computational complexity FLOPS of 56.8 G, much lower than
the network parameter count and computational complexity
of TransUnet and SwinUnet. Among them, the computational
complexity reduction is the most obvious, which is 123.6 G
lower than TransUnet and 56.7 G lower than SwinUnet. The
ablation experiments conclusively establish CSWin Transformer
as a superior choice for global encoding as an encoder backbone
network.

2) Effects of the FAFM: As depicted in Table V, incorpo-
rating the FAFM module yields substantial improvements in
segmentation performance, as evidenced by a notable 1.4%
increase in mIoU. Notably, the “Car” category exhibits the
most significant enhancement, with an impressive 2.1% rise in
IoU, closely followed by “Low Vegetation” and “Tree,” both
displaying a commendable 1.4% increase in IoU. These findings
underscore the practical utility of the FAFM in enhancing the
overall network performance, particularly in cases involving se-
mantically ambiguous categories (such as “Low Vegetation” and
“Tree”) and categories that require global semantic information
understanding and precise localization (such as “Car”).

Intuitively, Fig. 10 compares visual segmentation results,
highlighting the impact of incorporating the FAFM. In the first
and second rows, adding the FAFM improves the segmentation
accuracy of “Low Vegetation” adjacent to buildings. Similarly,
in the third row, the “Low Vegetation” hidden by the shadows of
the buildings is similar in appearance to the “Tree,” leading to

Fig. 10. Visualizing and comparing segmentation results of FAFM ablation
experiments.

Fig. 11. Visualizing and comparing segmentation results of AASPP ablation
experiments.

challenges in distinction. However, incorporating the FAFM fa-
cilitates more accurate differentiation between these categories,
further demonstrating the validity of FAFM.

3) Effects of the AASPP: The experimental findings pre-
sented in Table V demonstrate that the inclusion of the AASPP
yields a noteworthy enhancement of 1.1% in mIoU, underscor-
ing the effectiveness of this module. Notably, the most significant
improvements in segmentation accuracy are observed in the
“Building” and “Car” categories, with corresponding increases
in IoU of 1.5% and 1.4%, respectively. Given the multiscale sizes
of “Building” in RS images and the requirement of multiscale
context understanding for small objects, such as “Car,” achieving
accurate segmentation necessitates a model capable of leverag-
ing multiscale receptive fields. By incorporating the AASPP for
multiscale feature extraction, the segmentation performance of
these two categories can be significantly enhanced.
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TABLE V
ABLATION EXPERIMENTS ON THE PROPOSED THREE MODULES FAFM, AASPP, AND ESEGH IN THE VAIHINGEN DATASET

TABLE VI
QUANTITATIVE RESULTS OF ABLATION EXPERIMENTS ON AASPP MODULES ON THE VAIHINGEN DATASET

TABLE VII
ABLATION EXPERIMENTS ON THE LOCATION OF SKIP CONNECTIONS WITH THE ADDITION OF AASPP

As depicted in Fig. 11, in both the first and second rows,
the edge of “Building” is integrated with “Low Vegetation” and
“Tree,” posing a challenge for the model to precisely segment the
“Building” and its boundaries. By incorporating the AASPP, the
model’s segmentation performance for the “Building” category
and its boundaries is significantly enhanced. Another challeng-
ing aspect is the impact of lighting conditions. For instance,
in the first row, “Car” is entirely covered by the shadow of
“Building.” Similarly, in the third row, the shadows of the build-
ings overshadow the low buildings and the road background.
By visualizing the results, we can see that introducing AASPP
effectively improves the occlusion problem of the “Building”
and “Car” categories.

To further validate the effectiveness of the proposed module
of AFM in AASPP, we adopt the Unet network of CSWin
Transformer as the baseline network and use ASPP as the
control group for ablation experiments. Initially, we introduce
ASPP to skip connections in the third and fourth stages, as
summarized in Table VI. These modifications yield segmen-
tation results that exhibit a modest enhancement of 0.3% in
terms of mIoU. Nevertheless, after adding AFM to ASPP,
the mIoU is significantly improved by 1.1% over the base-
line, underscoring the effectiveness of AFM and, consequently,
AASPP.

Subsequently, the optimal placement for the introduced
AASPP is further analyzed. Table VII gives that we conduct
four experiments in which AASSP is added at skip 4, skips
3 and 4, skips 2–4, and all skips. The experimental findings

conclusively demonstrate that the best results were obtained
by adding AASPP at skips 3 and 4, with a mIoU of 79.6%.
Accordingly, we added AASPP at skips 3 and 4.

4) Effects of the ESegH Module: The results presented in Ta-
ble V demonstrate a noticeable improvement in the mIoU of the
model, with an increase of 1.3% following the integration of the
ESegH module. Remarkably, the data highlight the substantial
impact of ESegH on the “Low Vegetation,” exhibiting a notable
increase of 1.9% in IoU. Further analysis, supported by the
visualization results depicted in Fig. 12, elucidates the efficacy
of the ESegH in handling challenging scenarios characterized by
mutual obscuration. Specifically, in the first and third rows, “Low
Vegetation” is adjacent to “Building” and shadowed by “Build-
ing,” rendering accurate segmentation challenging. However, the
ESegH effectively mitigates this issue by enhancing the accuracy
of object segmentation, even in scenarios with mutual obscura-
tion. Furthermore, in the second row, the similarity between the
appearance of the “Low Vegetation” and the vegetation-covered
roof of the “Building” compromises segmentation accuracy.
Nevertheless, using ESegH, the semantic area of the vegetation-
covered roof can be more precisely delineated, significantly
improving the overall segmentation results.

In addition, we investigate the combined effect of modules
under the EGUNet. As demonstrated in Table V, the mIoU
is improved by 2.3% after adding FAFM and AASPP mod-
ules, 3.1% after adding FAFM and ESegH modules, and 3.3%
after adding AASPP and ESegH modules. Notably, when all
three modules (FAFM, AASPP, and ESegH) are employed
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Fig. 12. Visualizing and comparing segmentation results of ESegH ablation
experiments.

simultaneously, the most significant mIoU improvement is
achieved, surpassing the CSWinUnet baseline by 4.7%. Con-
sequently, our EGUNet effectively harnesses the synergistic
benefits of the FAFM, AASPP, and ESegH modules, thereby
yielding optimal segmentation performance.

V. CONCLUSION

In this article, we focus on developing a semantic segmen-
tation method suitable for VHR urban scene imagery, aiming
to achieve efficient global understanding with low computa-
tional complexity and memory requirements. By integrating
CSWin Transformer as the encoder backbone network into
Unet architecture, we construct a CNNs–Transformer hybrid
RS image semantic segmentation network called EGUNet. Our
proposed EGUNet incorporates critical components, including
FAFM, AASPP, and ESegH. Specifically, the FAFM enables the
adaptive fusion of local detail information and deep semantic in-
formation, while AASPP effectively learns multiscale semantic
features. Furthermore, ESegH improves semantic segmentation
accuracy through a lightweight fusion from each encoder stage.

Despite achieving SoTA results on the ISPRS Vaihingen
and Potsdam datasets, there are still many limitations. For ex-
ample, EGUNet does not segment the edges of objects well,
and the boundaries are not precisely aligned with the shape
of the objects. Future work will focus on enhancing the ac-
curacy of semantic segmentation by exploring methods to re-
fine boundary segmentation for diverse object types in RS
images.
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