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Model Based on Encoder–Decoder Network Using
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Abstract—3-D building change detection (CD) methods detect
more accurate multiple change maps than 2-D ones. Recent tech-
nologies, such as unmanned aerial vehicle (UAV) systems and dense
image matching have made it much easier to obtain 3-D data
nowadays. Developing a solution which produces an accurate map
of multiple building changes, including unclassified, no building
change, newly built, demolished, and taller, at an acceptable speed
is a challenging issue. In this article, we address a novel 3-D building
CD method based on an encoder–decoder network to detect accu-
rate multiple changes maps automatically, in the presence of highly
unbalanced remote sensing datasets. The proposed method consists
of three main parts: the preprocessing and mixed augmentation
(MA) step; the encoder–decoder network training; and finally the
prediction step. The data are augmented by the MA method to
manipulate highly unbalanced datasets. The encoder–decoder net-
work is constructed by the Yolov7 network as the encoder path and
the decoder path equipped with the convolutional layers of modified
Unet). Two datasets are used in this article. The first dataset is the
point clouds and orthophotos obtained from the UAV of Mashhad
City in 2011 and 2016. The second dataset consists of stereo images
of the GeoEye-1 satellite and the point clouds obtained from dense
image matching of Tehran city in 2009 and 2013. The results show
that the proposed method achieved accuracy and kappa coefficients
above 94% and 0.90 for both datasets, respectively.

Index Terms—3-D multiple building change detection (CD),
convolutional layers of modified Unet (CLMUnet), fully automatic,
unbalanced remote sensing dataset, Yolov7.

I. INTRODUCTION

AUTOMATIC change detection (CD) has recently been
recognized as an essential topic in remote sensing and

photogrammetry [1]. Buildings are the main elements of urban
areas so detecting building changes plays a critical role in provid-
ing comprehensive spatial information on rural-urban transition,
illegal constructions, city developments [2], [3], [4], [5] and
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disaster management [5], [6]. Previous researches presented
CD methods based on only spectral information of remote
sensing images have weaknesses such as relief displacement,
shadow presence, occlusion and spectral variation of buildings
[5]. Make use of UAVs, laser scanners, dense image (stereo)
matching, digital terrain models (DTMs) and digital surface
models (DSMs) building height information was created so that
3-D CD in buildings began [5].

As discussed in [7], traditional methods of 3-D CD are
classified into two broad categories: geometric comparison and
geometric-spectral analysis. There are three types of geometric
comparison methods: height differencing; Euclidean distance
height differencing; and projection-based differencing [7]. The
change map in the height differencing method is obtained from
the difference between two DSMs [8], [9], [10], [11], [12]. The
height differencing method is simple to implement and effective
for large-scale CDs, but it is sensitive to misregistration and
image matching errors and it can be used for 2.5-D levels [5],
[7]. The Euclidean distance of two 3-D surfaces is calculated
in Euclidean distance height differencing [13], [14]. Its stability
against small errors in registration for top-view 3-D data as well
as its application to full 3-D data comparison is two advantages
of this method, but its correspondence search is time consuming
and its implementation is complicated [7]. The projection-based
differencing method measures geometric differences. In this
method, the correlation of stereo images from one epoch is
calculated using point cloud or DSMs of other epochs and then
the correlations of these two data are compared and the amount of
spectral inconsistency is calculated [15], [16]. In homogeneous
areas this method may have missing detections and the accuracy
of 3-D data is important [5], [7].

Geometric-spectral analysis methods are postrefinement; di-
rect feature fusion; and postclassification [7]. The postrefine-
ment method improves geometric comparison results, such as
height differencing by utilizing geometric and spectral features
[17], [18], [19], [20]. Although this method is flexible and
efficient, the results depends on the geometric comparison and
the missing changes cannot be recovered in the subsequent
steps [5], [7]. To calculate simultaneously the changes in spec-
tral and geometric features, the direct feature fusion method
is considered [21], [22]. The combination of geometric and
radiometric information, as well as the simultaneous using of dif-
ferent information bands without the necessity of the algorithm
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improvement are advantages of this method, but determining
the appropriate parameters for the fusion is a major challenge
[5], [7]. The postclassification method classifies objects on each
dataset separately and then compares the results between labels
[23], [24], [25]. This method improves classification and object
detection accuracy compared with other traditional methods, but
the accuracy of the final results depends on the accuracy of the
classification [5], [7].

In addition to traditional methods, deep learning methods also
introduced and applied for 3-D CDs, as they have previously
been used in the 2-D CDs (e.g., applications in urban land use
and urban land cover [26], [27], [28], [29], [30], [31], [32],
building CD [33], [34], [35], [36], disaster monitoring [37],
[38], urban planning [39], [40] and resource survey [41], [42],
[43]), and obviously deep learning studies in 3-D CDs is in its
early stages. Zhang et al. [44] used Lidar data of point clouds
obtained from image matching for the 3-D binary CD in a deep
learning network. Pang et al. [5] created a 3-D change map using
a deep convolution network in addition to a graph-based and
simultaneous segmentation method. Yew and Lee [45] applied
a convolution network to balanced point clouds obtained from
“structure from motion” of two times for urban CD. In another
study, Yadav et al. [46] used Lidar point clouds for 3-D building
CD in the Unet network. Lian et al. [47] detected changes in
buildings using two-time DSMs in an end-to-end convolution
network with five convolution layers. Nagy et al. [48] used CNN
network architecture to detect changes in urban areas. Blocks
of a Siamese network, Unet network and a transformer were
used in that research to provide a map of binary changes only
in urban streets. de Gélis et al. [49] used a Siamese network
composed of kernel point convolution blocks for 3-D binary CD
on urban point clouds. Mohammadi and Samadzadegan [50]
used CNN only to extract 3-D features from stereo images of
point clouds and then presented the 2-D and 3-D changes of
buildings in urban areas. Amini Amirkolaee and Arefi [51] used
a convolutional network only to estimate DSM and detected
3-D changes in urban areas. It is noticeable that in all of these
researches balanced data has been assumed.

Deep learning methods in 3-D multiple CD are a new topic
and have not reached the same depth as research on 2-D CD.
Considering the necessity and importance of 3-D building CD
in this article, we proposed an efficient and accurate method
with an acceptable speed that can provide a map of multiple
building changes. Two highly unbalanced datasets are consid-
ered to detect 3-D building changes. The first one is the point
clouds and orthophotos obtained from the UAV of Mashhad
City in 2011 and 2016. The second dataset consists of stereo
images of the GeoEye-1 satellite and the point clouds ob-
tained from dense image matching of Tehran city in 2009 and
2013.

Highly unbalanced data has always been a significant and
difficult issue for most researches, particularly in deep learning
and machine learning. In our method this challenge has been
resolved by mixed augmentation (MA) and unbalanced data has
been properly distributed into the training network. Then, an
encoder–decoder network is employed. To extract features in

the encoder path we use the Yolov7 network [52] which has
a high level of accuracy and speed compared to other similar
networks. Semi-transfer learning technique is utilized in the
sense that the Yolov7 was pretrained by the MS COCO dataset
[27]. On the other hand, the convolutional layers of modified
Unet (CLMUnet) are used for the decoder path. By modified
Unet we mean that instead of a fixed-size kernel, a variable-size
kernel is used, making this network more capable for multiple
CDs.

The main contributions of this article are as follows.
1) Introduce an encoder–decoder network in 3-D multiple

CD by utilizing the combination of Yolov7 and CLMUnet.
2) Get the advantages of a transfer learning technique in

the encoder path (Yolov7 pre-trained by the MS COCO
dataset) to reduce the training time and the limitations of
GPU capacities.

3) Manipulate the highly unbalanced datasets in 3-D CD by
MA technique to increase the overall accuracy and kappa
coefficient.

4) Propose a deep learning network to completely automated
the 3-D multiple CD of buildings in urban areas.

The rest of this article is organized as follows. The studied
datasets are discussed in Section II. The proposed method is
explained in Section III. The experimental results obtained from
this method and the comparisons are expressed in Section IV.
The discussion of the results is presented in Section V. Finally,
Section VI concludes this article.

II. MATERIAL AND DATASETS

A. UAV Images and Point Clouds Dataset (the Densely Built
Mashhad City)

The first dataset used in this article is the images and the
point clouds taken by UAV in two epochs 2011 and 2016 from
a densely built urban area in the city of Mashhad, Iran. The
geometric structure and different heights of the buildings, as
well as the different spectral structures of their roofs express
the diversity and complexity of this area. This dataset includes
the DSMs obtained from the point clouds and the orthophotos
at both times, depicted in Fig. 1. The spatial resolution of
this data (10 cm) enables us accurate identification and CD in
buildings. To generate ground truth the orthoimages and their
corresponding Google Earth images are used. The polygons
of buildings are drawn in the global mapper software and the
different layers of “no building change, newly built, demolished,
and taller” are separated and different numbers are assigned to
them so that the ground truth image is obtained as shown in
Fig. 1(e). All these image datasets can be downloaded from
rslab.ut.ac.ir.

B. GeoEye-1 Satellite Stereo Image Dataset (Tehran City
Development)

The second dataset examined in this article is from the
22nd district of the city of Tehran. This is one of Tehran’s
newest and largest geographical urban areas located northwest
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Fig. 1. UAV of the Mashhad city dataset includes: (a) RGB time1; (b) RGB time2; (c) DSM time1; (d) DSM time2; and (e) ground truth.
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Fig. 2. GeoEye-1 satellite stereo images of Tehran city include: (a) RGB time1; (b) RGB time2; (c) DSM time1; (d) DSM time2; and (e) ground truth.

of it which has undergone significant changes in recent years due
to urban development such as the construction of residential
towers, commercial centers, shopping malls and local access
roads. This dataset includes two stereo-images of the GeoEye-1
satellite with a spatial resolution of 0.5 m for epochs 2009 and
2013. The semiglobal matching technique [53] is employed to
generate the point clouds from these stereo-images.

Fig. 2 exhibits the satellite images of both times and their
DSMs generated from the point clouds. The ground truth is
generated by using the satellite images of both times and their
Google Earth images. The polygons of buildings are drawn and
labeled in the Global Mapper in the same way as the first dataset.
The ground truth is depicted in Fig. 2(e). Table I gives the two
datasets.

III. PROPOSED METHOD

The method for 3-D building CD established in this article
is investigated thoroughly in this section. This method basi-
cally consists of three steps: the preprocessing and MA; the
encoder–decoder network training for 3-D building CD; and the
prediction step using the trained network.

Initially, to overcome the highly unbalanced problem, the data
is augmented by the MA method and then the preprocessing step
is performed to prepare the data as the input of the encoder–
decoder network, as well as to partition it into the training, the
validation and the test parts. The training and the validation parts
are then considered as the input of the encoder–decoder network
in the second step. This network includes Yolov7 pretrained by
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Fig. 3. Flowchart of the established method.

TABLE I
INFORMATION OF DATASETS USED IN THIS ARTICLE

the MS COCO dataset as the encoder path and CLMUnet as
the decoder path. Finally, the trained network will be evaluated.
Fig. 3 depicts the general flowchart of this method.

A. Preprocessing and Mixed Augmentation

The classification and segmentation of unbalanced data have
always been regarded as a challenging issue [54]. The weight of
each class is calculated by [55]:

Wi =
nsamples

nclasses × Fi
. (1)

In this equation Wi is the weight of each class, nsamples is the
amount of the whole data, nclasses is the number of classes and
Fi is the frequency of each class in the dataset. As the ground
truth in Fig. 1(e) shows, a highly unbalanced dataset is dealt
with in this article. For example, in the Mashhad UAV dataset
the weights of Unclassified, no building change, newly built,
demolished, and taller classes are 0.32, 0.59, 30.50, 42.43 and
8.56, respectively, so newly built and demolished classes are rare.
Similarly, the second dataset also is highly unbalanced according
to the demolished class, since the weights of unclassified, no
building change, newly built and demolished classes are 0.28,
3.17, 8.01, and 170.61, respectively. In previous researches
different loss functions or a combination of them have been
used to tackle the problem of data unbalancing [56], but those
methods are not applicable in our case. An effective solution is
to use the MA method emphasized on the rare classes which
unbalance the data. In [57], MA methods were classified into:

linearity-based and nonlinear. One of the nonlinear methods is
the horizontal concat method which is represented by

Y = λ ×X1 + (1− λ)×X2. (2)

In this method λ fraction of the image X1is concatenated to
(1− λ) fraction of the image X2 to produce the augmented
image Y . We generate three MA images by considering λ equals
to 0.3, 0.5 and 0.7. These MA stages are applied to the images
which contain demolished and newly built classes in the first
dataset and demolished class in the second one. Fig. 4 shows
one MA data result and their corresponding ground truths in the
first dataset.

In addition to the MA method, all images in every dataset are
also augmented by +90° and +180° rotations. All images are
normalized and resized and then they partition into the training,
the validation and the test parts.

B. Proposed Encoder–Decoder Network Architecture for 3-D
CD

The encoder–decoder network of this article consists of two
networks: Yolov7 and CLMUnet. Yolov7 was pre-trained by the
MS COCO dataset and since it is used only in the encoder part,
the technique is called “the semitransfer learning method” [27].
The convolutional layers of conventional Unet are modified in
the decoder part to handle the complexity of our problem and the
studied data. The resulting network has advantages over previous
3-D CD methods. Despite of the former researches in which the
deep learning networks were employed to perform only a few
steps of the 3-D CD process, our constructed encoder–decoder
network performs the entire 3-D CD process automatically.
Furthermore, this method can efficiently and accurately extract
the features of the input data at an appropriate speed. Our
modification to the structure of the convolutional blocks in Unet
and using kernels with different sizes handle the diversity and
complexity of urban buildings so that final multiple change maps
are generated more accurately. Finally, the network employs the
focal loss function which has proper performance on unbalanced
data classification [58].

1) Encoder Path: In the case of 3-D multiple building CDs
in the presence of a highly unbalanced dataset, we need
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Fig. 4. MA and their corresponding ground truth: (a) first image; (b) second image; (c) MA image produced by 0.3 of the first image and 0.7 of the second image;
(d) MA image produced by 0.7 of the first image and 0.3 of the second image; and (e) MA image produced by 0.5 of the first image and 0.5 of the second image.

to construct a single-stage object detector encoder network
that not only has good performance in acceptable speed but
also it can effectively and accurately extract the features of
the images and could be pre-trained. To achieve this goal,
we look for and examine more than 15 networks including
transformer-based networks and finally, blocks of Yolov7 as-
sist us to achieve our encoder requirements. We developed
the encoder path of the proposed network by utilizing some
blocks of Yolov7 to profit from its advantages and avoid its
weaknesses.

Redmon et al. [59] were the first to use the Yolo network for
object detection. Yolo models are commonly used to detect and
classify objects by only looking at an image or video once [60].
Yolo networks consist of three main parts: backbone; neck; and
head [60]. The backbone extracts the features from the input
image, the neck generates feature pyramids and the head (or
the predictor) displays the final results of the network [60].
The Yolov7 network was introduced in 2022 and it showed the
best speed and accuracy compared to other known networks
for object detection [52]. The Yolov7 network modules include
CBS, ELAN, SSPPCSPS, and MP. CBS includes a convolutional
layer, batch normalization and the Silu activation function [52].
The Yolov7 network was the first to introduce ELAN archi-
tecture which enables the network to use expand, shuffle and
merge cardinality techniques to effectively train the model while
preserving the original gradient route [60]. Down-sampling is
accomplished by the MP structure [61]. Fig. 5 depicts the Yolov7
network structure in detail.

2) Decoder Path: Unet is a U-shaped network that was first
used to segment medical images by Ronneberger [62]. The Unet
network has two paths: encoder and decoder. The encoder path
extracts deep features from the input, while the decoder path
uses transpose convolution to determine the exact position of
the features [63]. Each convolutional layer in the Unet network
takes the form of Fig. 6(a) which includes a convolution with
kernel size3× 3 and Relu activation function alternately. In each
layer of the MUnet network, a batch normalization layer has been
inserted in addition to the convolutions with kernel sizes of 3× 3

and 5× 5 [see Fig. 6(b)]. In this article, the convolutional layers
of the MUnet network are used as the decoder path. Gathering
all the above, Fig. 7 depicts the network architecture used in this
article.

C. State-of-the-Art Methods

Taking the advantages of encoder–decoder deep learning net-
works is one of the contributions of this article, so networks such
as Yolo families, EfficientNet families and some transformer-
based models were investigated. Transformer models have re-
ceived a lot of attention in recent deep-learning researches. We
implemented and compared the performance of some state-of-
the-art networks that have a pyramid and hierarchical design
in which their blocks can be partitioned. Because of the GPU
limitations, all of the networks should be pretrained. Further-
more, only versions which are executable based on the system
limitations are considered. These networks will be introduced
briefly in the following.

1) EfficientNet V2 [64]: This network consists of a set of
training-aware neural architectures that are intended to
improve training speed and parameters. Versions B0, B1,
B3, and T are supposed here because they have fewer
parameters than the others. This network was pretrained
by the ImageNet dataset.

2) Efficientformer V2 [65]: This network is based on vision
transformer models, but it is faster and more efficient. The
S0, S1, S2, and L versions of this model which had fewer
parameters are assumed.

3) TinyViT [66]: TinyViT networks resolve the problem of
having a large number of parameters in vision transformer-
based models. The main idea is based on transformer
knowledge from a large pre-trained model to a small one.
These networks were pre-trained by ImageNet.

4) YoloX [67]: Yolo networks are used for object detection,
as detailed in Section III-B.1. The Yolox network is one of
the fastest and most effective networks in the Yolo family.
This network was pre-trained by the MS COCO dataset.



GOMROKI et al.: AUTOMATIC 3-D MULTIPLE BUILDING CD MODEL BASED ON ENCODER–DECODER NETWORK 10317

Fig. 5. Network architecture diagram of Yolov7 consists of three parts: backbone, neck, and head, and five basic components: CBS; MPconv; ELAN; ELAN-H;
and SPPCSPC.

Fig. 6. (a) Convolutional layer of Unet and (b) the convolutional layer of
MUnet.

Consequently, the encoder–decoder network of this article is
made up of networks Yolov7 and CLMUnet.

IV. EXPERIMENTAL RESULTS

In this section, we examine the developed method and com-
pare the performances in the case of several encoder paths. This
section includes Experimental parameter settings, Evaluation
metrics and Comparison of experimental results.

A. Experimental Parameter Settings

The experimental environment is Intel(R) core (TM) i7-
7800X CPU 3.5GHz, 32.0GB installed RAM, NVIDIA GeForce
GTX 1050Ti, and all studied deep learning networks are trained

using Tensorflow 2.10.0 and Python 3.8. The datasets are par-
titioned into patches with dimensions of 128×128 due to the
limitation of running memory. Initially 600 patches obtained
from the first dataset and the MA step adds up 312 patches.
60% of these 912 patches considered as the train data and
the remaining 40% are used for the test data. After “train test
split” the augmentation (+90◦ and +180◦ rotation) is applied
to the train data so that it raises from 547 to 1641. For the
second dataset 266 patches obtain initially and MA step in-
creases them to 316. As before they split into 60% train and
40% test data sets. The augmentation (+90◦, −90◦, and +180◦

rotation) increases the train data to 756 patches. The focal
loss function is usually used to classify unbalanced data for
binary classification [58]. Since the map of final changes in this
article is multiple, the focal loss function is expressed as follows
[68]:

Lfl = −
c∑

i = 1

αi(1− yi)
γti log (yi) . (3)

In this equation,C is the number of classes, ti represents the real
probability distribution, yi represents the probability distribution
of the prediction and γ and αi are hyperparameters related to the
focal loss function. Table II gives the other parameters applied
to train the network in this article.
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Fig. 7. Top: The structure of Yolov7 which contains three main parts: backbone, neck, and prediction (each block of neck and backbone represented with a
different color); bottom: the structure of the proposed encoder–decoder network using Yolov7 as encoder and CLMUnet as a decoder. The encoder is concatenated
with the decoder at four different resolutions (Block1 backbone, Block1 neck, Block2 neck, and Block3 neck).

TABLE II
PARAMETERS USED FOR TRAINING PROPOSED METHOD

B. Evaluation Metrics

Five evaluation metrics are stated in this article to evaluate
the performance of the methods. TP indicates true positive
(number of images predicted to be changed that were actually
changed), FP denotes false positive (number of images predicted
to be changed that were actually unchanged), FN denotes false

TABLE III
INFORMATION FORMULAS FOR ACCURACY ASSESSMENT METRICS
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TABLE IV
QUANTITATIVE EVALUATION OF THE RESULTS

Fig. 8. Confusion matrix of: (a) UAV of Mashhad dataset and (b) GeoEye-1 satellite stereo images of Tehran dataset.

negative (number of images predicted to be unchanged that
were actually changed) and TN denotes true negative (number of
images predicted to be unchanged that were actually unchanged)
(Table III).

C. Comparison of Experimental Results

In Table IV, we used the evaluation metrics described in
Section IV-B to compare the performance of several encoder
paths.

We attempted to select versions of the networks that can be
implemented in our system with input dimensions of 128×128.
To achieve high accuracy at a reasonable speed and have the
ability to manipulate the complexity of 3-D multiple CDs of
buildings, the training time and the number of parameters of
each network has conveniently considered in Table IV.

Although networks, such as EfficienNetV2 B0, B1, B2, Yolox,
EfficienformerS0, and S2 have fewer parameters and faster
training time, they could not handle the complexities of 3-D
multiple CDs in the studied areas. The proposed network com-
prises an efficient number of parameters with high accuracy of

Fig. 9. Confusion matrix: UAV of Mashhad dataset without MA.

the 3-D CD at a reasonable speed. It has the most parameters
(12M) indicates that it can handle the necessary complexity for
3-D multiple CDs in buildings with suitable training time and
achieves better results than the others. The Mashhad UAV dataset
has the highest OA and KC of 94.87% and 0.9, respectively. In
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Fig. 10. Proposed method results for UAV of Mashhad dataset. (a) Ground truth. (b) Proposed method result, (c) two samples of buildings with different shapes
marked with yellow ellipsoids. (d) Prediction of the two buildings by the proposed method. (e) Walled building-free area in ground truth, and (f) the corresponding
prediction result of the walled area.

terms of other metrics, this network has achieved the best results
when compared to other networks, demonstrates the method’s
proper performance.

Table IV gives the performance of proposed network on the
GeoEye-1 Tehran dataset which after 60 epochs it achieved OA
and KC of 98.95% and 0.93, respectively, indicates its appropri-
ate performance on different datasets with variant complexities.

Fig. 8 depicts the confusion matrix associated with the net-
work results to assess the performance of the proposed method
detecting each class. The Mashhad UAV dataset has five classes:
Unclassified which is related to urban objects other than the
buildings; no building change which is related to the class of
buildings with no change; newly built which is related to the class
of buildings that did not exist in the first time and were built in
the second time; taller which is related to the class of buildings
that existed in the first time, but in the second time a newer

building has taken its place with a higher height and finally; and
demolished which is related to the class of buildings that are
built in this place in the first time, but the building is destroyed
in the second time. According to Fig. 8(a), the two classes with
the fewest pixels (i.e., newly built and demolished) are 83%
correctly recognized and the other classes are more than 92%
correctly recognized. The GeoEye-1 dataset of Tehran includes
four classes: unclassified; no building change; newly built; and
demolished which is an urban developing area. The amount of
the demolished class is much less than the other classes and
is obtained with reasonably good accuracy. The majority of
building changes related to construction and urban development
have been detected 95% correctly in the confusion matrix.

In [50], an object-based framework is applied to our second
dataset and the result is compared with two other methods. The
comparison of some evaluation metrics is given in Table V.
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Fig. 11. Comparison between the various network selections as encoder path. (a) Ground truth in which the white rectangle indicates the area of networks results.
(b) Eff V2 B0. (c) Eff V2 B1. (d) Eff V2 B2. (e) Eff V2 B3. (f) Eff V2 T. (g) Eff formerV2 L. (h) Eff formerV2 S0. (i) Eff formerV2 S1. (j) Eff formerV2 S2.
(k) Tiny ViT. (l) Yolox. (m) Proposed method.

D. Ablation Study

One of our strengths in the proposed method is utilizing
mixed-augmentation technique in 3-D CD method. Table VI
gives the influence of MA step as an ablation study in the first

dataset CD. One can observe that the proposed method without
MA step has lower performance. Furthermore, the confusion
matrix in Fig. 9 emphasizes the impact of MA specially in
detecting newly built, taller and demolished classes in compar-
ison with Fig. 8(a).
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Fig. 12. Proposed method results for GeoEye-1 satellite stereo images of Tehran dataset. (a) Ground truth. (b) proposed method result. (c) Two samples of
buildings with different shapes marked with green ellipsoids. (d) Prediction of the two buildings by the proposed method. (e) Four samples of small changes.
(f) Prediction of the small changes by the proposed method.

TABLE V
QUANTITATIVE COMPARISON OF THE SECOND DATASET RESULTS

TABLE VI
ABLATION STUDY OF THE MA IN THE CASE OF THE FIRST DATASET

V. DISCUSSION

The performance of the proposed method in 3-D multiple CD
in buildings is assessed by quantitative and qualitative evaluation
as well as visual analysis. The proposed method’s results are
compared to the ground truth in Fig. 10. The first data set includes
five classes: unclassified (dark blue); no building change (light
blue); newly built (light green); demolished (orange); and taller
(crimson). As shown in Fig. 10, the newly built and demolished

classes have the lower frequencies which is one of the major
challenges of this research and is overcome by employing the
MA method. The area of Mashhad City has a lot of diversity and
urban complexity, such as the discrepancy in geometric shapes
of the buildings and spectral and texture differences of their roofs
make 3-D CD difficult, so the proposed method should be able
to manipulate this variety and finally provide a map of multiple
changes with high accuracy. Yellow circles mark two buildings
with completely different geometric shapes in Fig. 10(c) and (d).
Comparing the network results with the ground truth indicates
that the proposed method can correctly recognize the shape of
buildings as well as preserve their edges. Furthermore, while
the roofs of buildings have sometimes the same color as other
urban features, such as streets or roads, the proposed method
can correctly detect the buildings. The red circle in Fig. 10(e)
and (f) marks a walled building-free area which is difficult to
distinguish from the buildings, even by the human vision, since
the spectral and texture of this area are very close to the buildings
and also have the same height as buildings due to the walls.

Fig. 11 compares the performance between the various net-
work selections as encoder paths along with a white rectangle of
the ground truth. Red rectangles mark an open-air stadium and
an urban green area. Other networks could not function properly
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and had significant errors in these areas, but the proposed method
had the best performance and the least amount of error in the
final multiple changes map.

The second studied area has four classes, as shown in
Fig. 12(a): unclassified (dark blue); no building change (light
blue); newly built (yellow); and demolished (crimson). In
Fig. 12(c) and (d), two examples of buildings with different geo-
metric shapes are marked by green ellipsoids which the proposed
method successfully preserved and detected their geometric
shape and the edge of the buildings. Furthermore, the proposed
method was able to detect small changes marked by orange
ellipsoids that was related to small buildings or commercial
centers.

VI. CONCLUSION

In this article, we developed a network based on the encoder–
decoder architecture for 3-D multiple building CDs. We examine
more than 15 networks as an encoder path and among them,
blocks of Yolov7 give the best performance and accuracy at
reasonable speed. We utilized this network pre-trained by the MS
COCO dataset as the encoder path to exploit the benefits of the
semi-transfer learning technique, and employed the convolution
layers of the MUnet network as the decoder path. This method
is applied to two datasets with multimodality and complexity.
The first dataset is the images and the point clouds taken by
UAV in two epochs 2011 and 2016 from a densely built urban
area in the city of Mashhad, Iran, which includes buildings with
various geometric shapes, spectrum, and textural roof structures.
The second dataset includes two stereo-images of the GeoEye-1
satellite of the city of Tehran, Iran, in epochs 2009 and 2013.
The semi-global matching technique is employed to generate
the point clouds from these stereo-images. The remarkable thing
about these two datasets is that they are both highly unbalanced
so the MA technique is applied to resolve this problem. The
method investigated in this article achieved an OA of 94.81% and
98.95%, and also a KC of 0.89 and 0.93 for the first and second
datasets, respectively. The results show that the constructed
method was successful to overcome the geometric and height
diversity of the buildings, as well as the spectral and textural
diversity of their roofs. Furthermore, an examination of the
confusion matrix reveals that the method investigated in this
article is capable of accurately distinguishing each class.

According to the appropriate performance of the method stud-
ied in this article which can automatically detect 3-D multiple
changes of buildings and cope with the complexities of the
studied areas, it is suggested that this method can be applied
to further 3-D multiple CD in other urban areas with different
complexities which have different kinds of highly unbalanced
datasets, such as Lidar and radar.
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