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Unsupervised Single-Generator CycleGAN-Based
Pansharpening With Spatial-Spectral
Degradation Modeling

Wenxiu Diao"”, Mengying Jin ", Kai Zhang

Abstract—Supervised pansharpening methods require the
ground truth, which is generally unavailable. Therefore, the pop-
ularity of unsupervised pansharpening methods has increased.
Generative adversarial networks (GANs) are often employed for
unsupervised pansharpening, although achieving precise control
over the generation process to capture rich spatial and spectral
details is challenging. CycleGAN introduces cycle consistency loss
and utilizes the cooperative training of two generators and two dis-
criminators to learn the mapping between different domains. This
approach partially addresses the issue of limited control over the
generated results in traditional GANs. Therefore, CycleGAN also
can be employed to accomplish unsupervised pansharpening tasks.
However, it is complicated to directly apply the network structure
of CycleGAN to pansharpening. To address this issue, we integrate
a process model capable of simulating spatial and spectral degrada-
tions into a single-generator CycleGAN, which can learn the target
distribution. Specifically, we propose an unsupervised CycleGAN
for pansharpening based on spatial and spectral degradations
and consists of one lightweight generator and two discriminators.
Then, the low-resolution multispectral and panchromatic images
are considered as the spatial and spectral degradations of the
high-resolution multispectral images. Besides, unsupervised loss
functions consisting of cycle consistency, adversarial, spectral angle
mapper, and edge enhancement losses are designed to preserve
spectral and spatial information. The experimental results on the
QuickBird, GeoEye-1, and GF-2 datasets show that the qualitative
and quantitative analysis of the proposed method is comparable
with most supervised methods and superior to most unsupervised
methods.

Index Terms—Cycle consistency (CC), generative adversarial
network (GAN), pansharpening, spatial and spectral degradations,
unsupervised.

I. INTRODUCTION

HE technology of remote sensing imaging has evolved
I tremendously. Many earth observation satellites have
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obtained remote sensing images, such as panchromatic (PAN)
and multispectral (MS) images [1]. PAN images include compre-
hensive spatial information that is used for object detection and
recognition [2]. MS images feature a variety of spectral bands
that are applied to image classification [1], [3]. Nevertheless,
due to the tradeoff between spatial and spectral resolutions in
remote sensing satellites [4], acquiring high-resolution (HR) MS
images is problematic. The task of combining the spatial and
spectral information of multisource remote sensing images is
known as pansharpening. It aims to generate a more complete
description of ground scene information by fusing PAN images
with low-resolution (LR) MS images [5].

There are four types of pansharpening methods, including
component substitution (CS)-based methods [6], [7], [8], [9],
[10], multiresolution analysis (MRA)-based methods [11], [12],
[13], [14], [15], model-based methods [16], [17], [18], [19], [20],
[21], and deep neural networks (DNNs)-based methods [22],
[23], [24], [25], [26], [27], [28], [29], [30]. The DNN-based
pansharpening methods have been a research focus in recent
years.

With the remarkable progress of DNNs in various image pro-
cessing tasks [31], [32], DNNs-based pansharpening methods
have been widely used. Based on whether the ground truth
is provided, these methods are classified as supervised and
unsupervised types. In supervised pansharpening, the labeled
training dataset is typically used to learn a mapping function
between the LR MS and PAN images [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43]. This mapping function
can be represented using DNNs. The DNNs learn from the
labeled training data to improve resolution and enhance visual
details. In natural environments, obtaining labeled datasets can
be challenging or even impossible. While using simulated la-
beled datasets can help alleviate the challenges of limited labeled
data, they may not completely replace the need for labeled
examples in some cases. Although unsupervised pansharpening
methods produce satisfactory results, there are numerous issues
that require additional investigation. GAN-based pansharpening
methods have achieved excellent fusion performance, however,
it is challenging to achieve precise control over the generation
process in GANS to capture accurate spatial and spectral in-
formation. Some unsupervised methods frequently use cycle
consistency (CC) to overcome this problem [25], [26], [27],
[28]. Existing unsupervised methods often do this by minimizing
the reconstructed data and the reconstructed data created by
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Different network frameworks based on CycleGAN. (a) Classic CycleGAN network with two generators (G, C') and two discriminators Dy and D x,

which are used to train tasks between two image domains. (b) CycleGAN with a known forward physics operator H, only a single pair of generator G and
discriminator D x is required. (c¢) Proposed simplified CycleGAN-based pansharpening framework with known degradation processes. As shown in (a) and (b),
pansharpening based on CycleGAN requires labeled datasets, which means they need ground truth data for training. In comparison, our proposed model does not

require ground truth data and operates in an unsupervised manner.

the model with the reconstructed data as input [26], or by
evaluating the difference between the reconstructed data and
the interpolated input data [25], [27], [28]. This can sometimes
blur the features of the original image distribution, which may
lead to a decrease in the visual quality of the generated images.

Considering the limitations raised above, we propose an

unsupervised single-generator CycleGAN with spatial-spectral
degradation modeling (SD-CycleGAN) for unsupervised pan-
sharpening, as shown in Fig. 1(c). We use CycleGAN to fully
exploit the cyclic consistency loss. A single generator is used
to simplify the network. To achieve high-quality results, finding
suitable methods for preserving spatial and spectral information
is essential. The pansharpening of the inverse problem is divided
into two degradation processes: spectral degradation, which
means that the HR MS image is turned into a single-channel
image that can be seen as a PAN image using the spectral
response function, and spatial degradation, which means that
the HR MS image is converted into a single-channel image that
can be seen as a PAN image using the spatial response function.
The proposed unsupervised method aims to fully leverage the
degradation relationship between the original image pairs, as
well as optimize the network and increase performance through
the use of simulated spectral and spatial degradations. The base
framework of this method is single-generator CycleGAN. Two
degradation modules are utilized to model the two degradation
processes on this basis. Furthermore, we offer a collection of
unsupervised losses for constraining spatial and spectral in-
formation. For example, CC and adversarial generation losses
maintain spatial and spectral consistency between input images
and predicted HR MS images generated by the spectral and spa-
tial degradation of fake-PAN and LR MS images. The spectral
angle and edge enhancement (EE) losses restrict the disparities
in spectral and spatial information between the input and output
images, resulting in similar distributions.

The following are the contributions of the SD-CycleGAN.

1) The proposed method is the unsupervised method that
is improved based on CycleGAN and fully exploits the
cyclic consistency characteristics. The proposed method
includes only one lightweight generator, enhancing the

stability of training. At the same time, this method rea-
sonably utilizes cyclic consistency.

The proposed network learns the generating process in a
model-driven way, which entails mapping the pansharp-
ening and corresponding degradation processes. The pro-
posed method could generate images of excellent quality
because of the stability of the degradation model.
Experiments on the QuickBird, GeoEye-1, and GF-2
datasets show that SD-CycleGAN is superior to the state-
of-the-art unsupervised compared methods in terms of
qualitative and quantitative evaluations.

The rest of this article is organized as follows. Section II
provides a brief overview of existing pansharpening methods
and the basic model of CycleGAN. In Section III, we introduce
the proposed method along with the various modules and their
functionalities. Section IV presents experimental results demon-
strating the effectiveness of the proposed approach. Finally,
Section V concludes this article and comments on this work.

2)

3)

II. RELATED WORKS

This section introduces existing traditional, DNN-based su-
pervised and unsupervised sharpening methods, and describes
the basic framework of CycleGAN.

A. CycleGAN

The degradation procedure of the observed LR and HR images
can be formulated as

Y=CX+N ey

where X € RWH*L represents the HR image, and W, H, and L
represent the width, height, and band number. And Y € R%"*F
represents the LR image, where w and h represent the width
and height. C € R*"*WH ig the measurement matrix. N is the
noise component. In practice, we cannot obtain C directly.'

"Here, for the convenience of description, we unfold the tensor of HR image
X € RW*H*L into a matrix with the size of W H x L. Similar for Y.
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Fig. 1(a) depicts the standard CycleGAN structure with two
generators G : Y — X andC : X — Y, and two discriminators
Dx and Dy . The degradation of LR and HR MS images
indicated in (1) can be accomplished by CycleGAN, as shown
in Fig. 1(a). Generator GG in Fig. 1(a) learns the process of
converting LR images into HR images, whereas generator C' in
Fig. 1(a) learns the process of transferring LR images into HR
images. Discriminator Dy in Fig. 1(a) differentiates between
the source LR MS images and fake LR MS images produced
by generator C, whereas discriminator Dx differentiates be-
tween the source HR MS images and fake HR MS images
generated by generator G. The competition between discrim-
inators and generators provides an environment that improves
network performance, resulting in higher quality image produc-
tion. Furthermore, cyclic consistency imposes the one-to-one
mapping condition between the two types of images, lowering
the likelihood risk of the difficulty of controlling the generated
results. The abovementioned structure can be viewed as a su-
pervised super-resolution network. When using HR MS images
as ground truth, it is necessary to provide supervision to this
network.

B. Traditional Pansharpening Methods

For CS-based methods, interpolated LR MS images are pro-
jected onto a new space [6], [7]. It is assumed in this space that
the spatial and spectral components of an image are independent
of one another. PAN images are thus utilized to replace the
spatial components in MS images. Finally, an inverse transfor-
mation is applied to the reconstructed components to obtain the
generated HR MS images. Popular methods include intensity-
hue-saturation transformation [8], principal component analysis
[9], and Gram—Schmidt transformation [10]. These methods
extract spatial and spectral components from MS images that are
difficult in practice and perform badly in terms of maintaining
spectral information. The MRA-based methods [11], [12] as-
sume that the missing spatial information in LR MS images can
be extracted from PAN images. As aresult, MRA extracts spatial
information from PAN images and injects it into interpolated
LR MS images. Image decomposition methods, such as wavelet
transform [13], contourlet [14], and curvature [15] are beneficial
when applied to MRA-based methods, but are sensitive to spatial
correspondence. The model-based methods [16], [17] assume
that LR MS and PAN images are spatial and spectral degraded
versions of HR MS images. Model-based methods offer a sys-
tematic framework for tackling inverse problems by formulating
them as optimization tasks. The search space is constrained
by defining an appropriate energy function, which encodes the
desired properties or constraints of the solution. These methods
employ several priors, such as sparsity [18] and low-rank pri-
ors [19], to decrease the solution space of the model. The rep-
resentative model-based methods are sparse representation [20]
and variation [21]. These methods necessitate an appropriate
model to contain spatial and geometrical information, which
can result in significant computing complexity and parameter
sensitivity.
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C. Supervised Pansharpening Methods

For supervised methods, training datasets with ground truth
are required. Masi et al. [33], for example, used PNN with a
three-layer convolutional structure for pansharpening. Zhang
et al. [34] designed an adaptive feature fusion module SSE-Net
that combines features from different subnetworks, reducing
feature redundancy. Zhang et al. [35] proposed an attention-
based Tri-UNet, which uses two subnetworks to extract spectral
and spatial features from both MS and PAN images. Zhou
etal. [41] proposed SFIIN, which is a spatial-frequency informa-
tion integration network that incorporates spatial and frequency
domain information branches with bidirectional interactions.
Zhou et al. [42] proposed a framework that encourages comple-
mentary information learning between PAN and MS images to
reduce information redundancy. Generative adversarial network
(GAN) [44] is a framework that achieved remarkable progress in
pansharpening by pitting a generator and a discriminator against
each other. Gastineau et al. [36] introduced a novel GAN with
two spectral information discriminators to preserve the spatial
resolution of source images. Liu et al. [37] proposed PSGAN for
generating high-fidelity images. In addition, Transformer [45]
is a deep learning model based on a self-attention mecha-
nism, which can better capture the relationships between image
patches [38], [39], [40], [43]. HyperTransformer [38] enhances
performance through attention mechanisms that learn spatial
correlations between PAN and LR hyperspectral images (HSI).
Zhang et al. [40] constructed a multiscale subnetwork with
a convolution-transformer encoder to extract local and global
features at different scales from LR MS and PAN images. Zhou
et al. [43] proposed a method that leverages both transformer
and information-lossless invertible neural modules to enhance
spatial and spectral resolution. Furthermore, model-driven meth-
ods leverage mathematical models to drive problem-solving,
which can address the lack of interpretability in deep learning
methods to some extent [46], [47], [48], [49]. Yan et al. [46]
combined model-driven and data-driven methods by introducing
deep priors as implicit regularization into the network. Xiang
et al. [49] proposed a depth fusion network based on a detail
injection model, treating pansharpening as a complex nonlinear
detail learning and injection problem.

The supervised pansharpening methods are trained on labeled
datasets. To obtain labeled datasets, the original PAN and MS
images are artificially degraded to reduce their resolution, re-
sulting in reduced-scale datasets. The original MS images are
used as a reference ground truth [50]. During the degradation
process, the images lose spectral and spatial details. DNN-based
models trained on the reduced-scale datasets may not be able to
fully recover the lost spectral and spatial details, leading to a
significant domain discrepancy between the training and testing
data. As aresult, when applying the trained models to real-world
data, the performance may not be as satisfactory as expected.

D. Unsupervised Pansharpening Methods

On the other hand, unsupervised methods can learn fea-
ture representations without the need for labeled information,
allowing them to better adapt to different domains of data.
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In unsupervised paradigms, various methods have been pro-
posed. The unsupervised methods do not require paired training
datasets. GAN is usually used in unsupervised methods [22],
[23], [24], [25]. PanGAN [22] was a GAN-based pansharpening
method, in which the generator set up an adversarial game with
spectral and spatial discriminators. These spectral and spatial
information were processed using two discriminators, respec-
tively. PGMAN [23] utilized dual-stream generators to extract
modality-specific features from the PAN and MS images and
developed dual discriminators to preserve the spectral and spatial
information during the fusion process. In addition, to enhance
the stability of the generator and encourage it to learn the
correspondence between domains, CC loss is commonly used
in training the network [25], [26], [27], [28]. UCGAN [26] was
a kind of unsupervised GAN that extracts spatial and spectral
information from source images on full-scale images, along
with a hybrid loss that combines CC and adversary principles.
Li et al. [27] proposed a self-supervised GAN with CC, con-
sisting of two generators and two discriminators. It employed
CC loss to ensure the consistency between the input LR MS
images and the fused images in terms of spectral information.
Besides, unsupervised methods have difficulty in dealing with
complex scenes with a wide range of materials, such as urban
areas with mixed land cover, textural heterogeneity, or strong
spectral variations. Therefore, they often rely on assumptions
about image statistical characteristics [29], [30]. LDP-Net [29]
was an unsupervised network with a learnable degradation pro-
cess, which learns two degradation processes using two basic
CNN modules. P2Sharpen [30] was a progressively growing
pansharpening network with deep spectral transformation. It
established a mapping from MS to PAN images using the U-Net
framework during the pretraining phase.

In addition, researchers have also proposed numerous unsu-
pervised methods to fuse HSI and multispectral image (MSI).
HyCoNet [51] consists of three coupled unsupervised autoen-
coder networks that adaptively learn the parameters of the point
spread function and spectral response function. Liu et al. [52]
proposed an unsupervised implicit autoencoder network for
the fusion of MSI and HSI images, treating each pixel as an
individual sample.

Existing unsupervised pansharpening methods typically rely
on evaluating the difference between the reconstructed data
and interpolated data, which has drawbacks in preserving the
characteristics of the original image distribution. As a result, the
generated images may lack the fine details and overall visual
quality present in the original images.

III. PROPOSED METHOD
A. Problem Setup

To overcome the limitations of unsupervised pansharpening
methods, we employ CycleGAN to address this issue. The CC
loss [53] compares the differences between the original images
and the reconstructed images. This loss function is mainly
designed to promote the learning of bidirectional mappings.
CycleGAN [53] allows for unsupervised image-to-image trans-
lation between two different domains, making full use of the
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advantages of CC loss, as shown in Fig. 1(a). CycleGAN is
typically used for processing between two image domains. If
pansharpening is applied directly to the CycleGAN framework,
there will be conversion issues between three image domains,
including HR MS into PAN images, HR MS into LR MS images,
and PAN and LR MS into HR MS images. The model is too
complex to attain stability since it requires three generators and
three discriminators. Therefore, a more complex model structure
isneeded to handle the transformation problem between multiple
image domains in this case. Besides, as shown in Fig. 1(b) [54],
if we have prior knowledge of the forward operator, we can
simplify the CycleGAN architecture. In this case, only one
generator GG and one discriminator D x are needed to accomplish
the task. However, the learned features may not be sufficient
with simple CNN modules, resulting in inferior pansharpening
results. Therefore, we need to create modules capable of learning
the degradation relationship between images.

For pansharpening, the LR MS and PAN images can be
expressed as

M =FX +N;,P = XR + N, )

where M € R¥"*L and P € RV *1 represent LR MS and
PAN images. X € RW#*L represents the HR MS image. F €
RwP>WH and R € RE*! describe the spatial and spectral degra-
dations, respectively. N and Ny are both noise components.

B. SD-CycleGAN

Unsupervised methods are utilized to explore patterns and
structures within the data without relying on prior knowledge
or guidance. The proposed unsupervised pansharpening method
SD-CycleGAN is shown in Fig. 2. SD-CycleGAN learns three
mappings G : [P,M] - X, R: X — P,and F : X — M. To
simplify the network structure, the proposed pansharpening
method based on CycleGAN only has one generator G. PAN
and LR MS images are fed into generator G, which is used to
generate image X . Meanwhile, the generator G is lightweight.
On this basis, to find efficient methods for preserving spatial
and spectral information, we established spectral and spatial
degradations. As shown in Fig. 2, spectral degradation R and
spatial degradation F together constitute the inverse operator C'
in CycleGAN shown in Fig. 2. The degradation model is used to
preserve spatial and spectral features. According to the spatial
and spectral degradations, the generated image X is fed into
the spatial and spectral degradations to generate the fake LR
MS image M and fake PAN image P, respectively. In addition,
we use the source images and the degraded PAN and LR MS
images to achieve an unsupervised network as discriminant cri-
teria and conditions to maintain cyclic consistency, respectively.
Therefore, we require two discriminators to distinguish spatial
and spectral information separately. Therefore, we present two
discriminators D), and D,,,. D,, differentiates the spatial details
between P and P, whereas D, , distinguishes the spectral infor-
mation between M and M. Adversarial loss is important among
them. We also use CC loss in CycleGAN to address the issue
of difficult-to-control the generated results. Furthermore, both
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Overview of the proposed SD-CycleGAN. In this CycleGAN-based framework, there is one lightweight generator GG used to generate HR MS image X.

In addition, spatial degradation F' and spectral degradation R are employed to produce spatially and spectrally degraded images M and P of the generated image.
The two discriminators Dy, and D, are responsible for assessing the realism of the generated images. The CC loss ensures that the spatial and spectral degradation
information of the generated images remain consistent with the original LR MS and PAN images.
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Fig. 3. Overview of the lightweight generator GG, which is composed of a
residual block. By stacking the PAN image P and interpolated LR MS image

My, the input is fed into G to generate HR MS image X.

spectral angle loss and EE loss are used to preserve spectral and
spatial information, respectively.

1) Generator: As shown in Fig. 3, the proposed method
employs generator G, which includes a residual block.

As the only generator in CycleGAN, the input of G is the
concatenation of P and the up-sampled LR MS image M. The
spatial size of M, is the same as P. The generator includes
dense connections [55] to improve feature propagation across
different convolutional layers and to stabilize the network. In
Fig. 3, conv(n) represents the convolutional layer operator
with n filters, and LReLLU denotes the leaky ReLU activation
function. The generator contains a residual module with five
convolution layers and four Leaky ReLU activation functions.
The first four convolutional layers are 32 channels, whereas the
final convolutional layer is four channels. The filter size is 3 x 3.

2) Discriminators: The structure of discriminator D,, is
shown in Fig. 4, which can capture the difference in distribution

Discriminator Dm

Q Q
9 = 9 = o = gl g ©» Real
AR P R R N (- S
Aot |a T | D e =
| S = S| = T =y - Fake?
S| S A ) 2 a L a Z|la ’
= hadd ~ ~

Fig. 4.
differences between the source LR MS images M and the generated fake LR
MS images M.

Overview of the discriminator D,,,, which is used to evaluate the

between M and M. The symbols in Fig. 4 represent the same
as those in Fig. 3. The filter size is 3 x 3. The full convolution
is used to effectively model the spatial and spectral information.
The stride for the first three filters is 2, whereas the stride for the
last two filters is 1. The architectures of D,, and D,,, are similar,
whereas P and P are fed into D,.

3) Spatial Degradation: One important aspect of spatial
degradation is simulating the degradation of HR images into LR
images. The consistency principle of Wald’s Protocol [50] states
that once the fused images are degraded to their original resolu-
tion, they should be similar to the original MS images. However,
the spatial filter used for degradation remains an open question.
To address this issue, filtering operators can be used, such as
emulating a modulation transfer function (MTF). However, the
MTF filters differ for each satellite sensor. Nevertheless, the
filter gain at the Nyquist cutoff frequency can be obtained from
on-orbit measurements. Utilizing this information, we assume
that the frequency response of each filter approximately follows
a Gaussian shape [56]. As a result, we can estimate the MTF
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Fig. 5.
mechanism to learn the pixelwise channel degradation mapping.

filters for each sensor of each satellite. Therefore, we substitute
the MTF-shaped filters with approximated ideal Gaussian filters,
which aims to ensure that the fused image maintains similarity
with the original MS image even after being downscaled to its
original resolution. In addition, [57] compared several opera-
tors such as truncated Shannon function, bicubic interpolation,
pyramid-weighted averaging, and wavelet transform for differ-
ent scenarios, showing that the relative differences between the
results are only a few percentage points. Therefore, as long as
the operator is sufficiently appropriate, the impact of the filtering
operators can be kept minimal.

To more accurately describe the degradation model of HR and
LR MS images, we introduce blurring operation and downsam-
pling into the spatial degradation. According to [56], we approx-
imate the blurring kernel by Gaussian filter with variance and
mean of 2.28 and 5, respectively. The downsampling operation
uses bilinear interpolation.

4) Spectral Degradation: We use the structure in Fig. 5 to
focus on simulating spectral degradation from HR MS images
into PAN images, which is equal to adaptively learning the
spectral response function. The middle part of the proposed
model differs from the standard convolutional layer. Convo-
lutional operation is a feature map that shares convolutional
kernel parameters at different spatial places in a single channel
but utilizes a separate convolutional kernel for each channel.
And our method is the opposite. We employed the same con-
volutional kernel for different channels, as inspired by [58],
and constructed a shared convolutional kernel for channels.
This can summarize the information of the front and rear
channels within a spatial range and learn pixel-level spectral
degradation.

According to [1], there is a relationship between the spec-
trums of PAN and MS images. To more accurately simulate
the relationship among each spectrum corresponding to MS and
PAN images, we introduce a self-attention mechanism on the
channel dimension to approximate the spectral degradation R.
First, we expand the HR MS image into a feature map of 32

C
gl
[=]
L2 E
2=
k. W H

@: Element-wise product 6—): Sum

Overview of spectral degradation R. To simulate the relationship between each spectral channel of MS and PAN images, we employ a self-attention

channels through a layer of convolution and the ReLU activation
function. As shown in Fig. 5, the single pixel point k; ; at
the (7, 7) in the feature map generates a tensor with a size of
(1,1,g) by convolutions. The 1-D vector containing K ; is
divided into g groups, each having c, channels. As the weight,
the generated tensor multiplies the tensor with C' channels of
the pixel point k; ;. Finally, the multiplied tensor is added as
a residual to the original tensor to obtain the generated result
at k; ; of the PAN image. By repeating this process for each
point on the feature map, PAN images with one channel are
generated. The proposed spectral degradation learns pixelwise
channel degradation relationships.

To improve the optimization of SD-CycleGAN, the spectral
degradation is pretrained by original LR MS images M and
PAN images after spatial degradation F'(P) with the size of
64 x 64 x 4 and 64 x 64. During the pretraining process, the
regularization constraint used is the mean absolute error between
F(P) and P. This constraint helps to regularize the model and
encourage consistency between the two variables F'(P) and P.
Furthermore, pretraining provides a better initial state for subse-
quent optimization processes, allowing for a rapid improvement
in overall performance.

C. Unsupervised Loss Functions

To train SD-CycleGAN for effective unsupervised learning,
we propose the following unsupervised loss functions.

1) Cycle Consistency Loss: As shown in (2), pansharpening
requires the simultaneous acquisition of spatial and spectral
degradations. The CC of SD-CycleGAN requires that any P
and M can be reconstructed after applying the generator operator
G(-) and degradation operators [R(-), F'(-)] on P and M in turn.
Any X can be reconstructed after applying [R(-), F'(-)] and G(-)
on X. That is, R(G([P,M])) =~ P and F(G([P,M])) ~ M.

SD-CycleGAN uses CC to optimize the network. The spectral
information of M and the spatial details of P are unsupervised
information from the network training. The CC loss is expressed
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Leyae =[P = R (G ([P, M])) ],
+BIM = F(G ([P, M]))]; . ©)

2) Adversarial Loss: In the proposed SD-CycleGAN, the
adversarial learning between real and fake images is achieved
by the WGAN-GP [59] loss, which is expressed as

Lwean-cp=Dp(P) =Dy (P)+(|[VD,(P) | ,- 1)
+Diy (M) =Dy (M) + (|| VD (M) ||, — 1)(2

2

where P = R(G([P,M])), M = F(G([P,M])), V denotes
the gradient operator. Furthermore, D, (-) and D,(-), respec-
tively, represent the MS and PAN discriminator operators.

3) Spectral Angle Mapper (SAM) Loss: Spectral angle con-
siders the spectrum of each pixel to be a high-dimensional vector
and calculates the angle between the two vectors to determine
the similarity of spectra. The smaller the angle is, the closer the
two spectrums are. So, we use the SAM loss to constrain the
spectral information, which is denoted as

i (FGPM)) M
Fsaw = <|F<G<[P7MJ>>||F-|M||F>' )

4) EE Loss: The edge and texture of the images have con-
siderable influence on spatial information. Sharper image edges
with higher spatial resolution, but blurrier image edges with
lower spatial resolution. The Sobel operators are used to com-
pute the gradient map in the = and y directions of images, and
the extracted edge information is used as side information to
compute the gradient difference between the faked PAN image
and the real one to preserve the spatial characteristics of the
generated images. The EE loss is denoted as

Lup = [PoG.-PoG,

2 N 2
+|[pec,-Pec,
" (6

where G, and G, are the Sobel operators of the x and y
directions, respectively. ® denotes convolution.

To summarize, the total loss functions are expressed as fol-
lows:

L= LWGANfGP + Lcycle + 5LSAM + ’)/Ledge~ @)

SD-CycleGAN can be optimized by minimizing (7).

IV. EXPERIMENTS

A. Experimental Settings

In this section, we compare and analyze the varied per-
formance of the proposed method. BDSD [60], P+XS [61],
PNN [33], PSGAN [37], M-GAN [36], PanGAN [22], LDP-
Net [29], UCGAN [26], and SSCycleGAN [27] are the compared
methods.

We conduct experiments on the QuickBird, GeoEye-1, and
GF-2 datasets. The QuickBird dataset is collected in an urban
area of Xi’an, which consists of buildings, roadways, and so on.
The GeoEye-1 dataset includes some land, buildings, vegetation,
and roads in the rural and urban districts of Hobart, Australia.
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Table I displays the spatial resolution of each satellite dataset
along with the number of image pairs in the training, validation,
and testing sets. The LR MS and PAN images have sizes of
64 x 64 x 4 and 256 x 256.

Reduced-scale datasets can serve as a reference for quality
evaluation. Wald’s protocol [50] is utilized to generate the
reduced-scale LR MS and PAN images by blurring and down-
sampling original MS and PAN images in datasets on which
SD-CycleGAN is trained. Original MS images serve as refer-
ence images. Therefore, the generated images and the reference
images have the same spatial size and can be compared. When
evaluating fused images at the reduced-scale, we consider root-
mean-squared error (RMSE), Erreur Relative Globale Adimen-
sionnelle de Synthese (ERGAS) [62], SAM [63], Q4 [64], and
universal image quality index (UIQI) [65]. Full-scale datasets
are another option to assess image quality without reference.
While evaluating full-scale fused images, D,, Dg, and quality
w/o reference (QNR) [66] are considered.

To train the network, we employ the Adam optimizer. The
batch size is set to 2. The learning rate is set at 0.0001. The
parameters «, (3, 9, and ~y in (3) and (7) are set to 50, 30, 100,
and 100.

B. Reduced-Scale Dataset Experiments

Figs. 6-8 depict the fused images of SD-CycleGAN and the
compared methods on the reduced-scale QuickBird, GeoEye-1,
and GF-2 testing datasets. Building and road regions are selected
from the fused images for further qualitative analysis in this
section. The figures also show the absolute error mappings
between the fused and reference images. The spectra in the
BDSD fused images are distorted because BDSD cannot effec-
tively estimate the gain parameters. The intensity in the P+XS
fused images is overenhanced, and spectral distortion occurs
in the road area. The spectral relationship among MS image
bands is difficult to depict due to the simple structure of the
PNN method. The PNN fused images have an obvious spectral
distortion in the building area. The PSGAN fused images show
some blurring effects because the method does not consider
the loss of space enhancement. The M-GAN fused images
produce spectral distortion, and the color of the magnified area
becomes nearly gray, which is caused by the improper tradeoff
between the two discriminators. The fused images of LDP-Net
show spectral distortion, whereas the fused images of PanGAN
and UCGAN have some fuzzy effects, owing to the difficulty
of weighing the weight of spectral and spatial constraints in
unsupervised methods. SSCycleGAN fused images have minor
spectral distortion. The fused images of the proposed method
show improved reconstruction performance and efficacy.

Tables II-IV show the quantitative analysis of full- and
reduced-scale QuickBird testing datasets, with the best values
of traditional, supervised, and unsupervised methods, marked
in bold. These tables show that SD-CycleGAN performs well
in both qualitative and quantitative effects. The average quan-
titative comparison results in these tables demonstrate that SD-
CycleGAN outperforms most indexes of unsupervised methods,
including RMSE, ERGAS, Q4, and UIQI.
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TABLE I
DETAILS OF THE DATASETS USED IN THE FOLLOWING EXPERIMENTS

Spatial resolution(m) #Image pairs
Sensor .. - Testing data
LR MS PAN Training data  Validation data Reducedoscale  Tulloscale
QuickBird 2.8 0.7 7720 10 155 395
GeoEye-1 2.0 0.5 6000 10 624 676
GF-2 4.0 1.0 6500 10 627 400

Fig. 6. Qualitative comparison of the reduced-scale QuickBird dataset fused images. (a) LR MS. (b) PAN. (c) Reference. (d) BDSD. (e) P+XS. (f) PNN.
(g) PSGAN. (h) M-GAN. (i) PanGAN. (j) LDP-Net. (k) UCGAN. (1) SSCycleGAN. (m) SD-CycleGAN.
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Fig. 7.

Qualitative comparison of the reduced-scale GeoEye-1 dataset fused images. (a) LR MS. (b) PAN. (c) Reference. (d) BDSD. (e) P+XS. (f) PNN.

(g) PSGAN. (h) M-GAN. (i) PanGAN. (j) LDP-Net. (k) UCGAN. (I) SSCycleGAN. (m) SD-CycleGAN.

C. Full-Scale DataSet Experiments

Furthermore, we conducted comparative experiments on the
full-scale QuickBird, GeoEye- 1, and GF-2 datasets. The qualita-
tive and quantitative comparisons of the proposed and compared
methods are depicted in Figs. 9—11 and Tables V-VII, respec-
tively.

In Figs. 9-11, a detailed analysis of the fused images re-
veals certain characteristics for each method employed. For
BDSD fused images, it is observed that the spectral details are

excessively enhanced, leading to an overemphasis on the spectral
information. Some spectral distortion is evident in the P+XS and
LDP-Net fused images. This distortion indicates the presence
of inconsistencies or inaccuracies in capturing the true spectral
properties of the scene. The PNN fused images exhibit obvious
spectral distortion, suggesting a significant deviation from the
original spectral content. Spatial artifacts are noticeable in the
PSGAN fused images, which may indicate imperfect integration
of spatial information from the input images. Significant spectral
distortion is observed in the M-GAN fused images, indicating



DIAO et al.: UNSUPERVISED SD-CYCLEGAN-BASED PANSHARPENING WITH SPATIAL-SPECTRAL DEGRADATION MODELING

10255

Fig. 8.

Qualitative comparison of the reduced-scale GF-2 dataset fused images. (a) LR MS. (b) PAN. (c) Reference. (d) BDSD. (e) P+XS. (f) PNN. (g) PSGAN.

(h) M-GAN. (i) PanGAN. (j) LDP-Net. (k) UCGAN. (1) SSCycleGAN. (m) SD-CycleGAN.

substantial alterations or deviations in the spectral characteristics
of the scene. In the enlarged areas of the PanGAN fused images,
the building edges appear fuzzy, suggesting a loss of sharpness
or clarity in the representations of these edges. Comparatively,
the fused images obtained from UCGAN exhibit some spatial
differences when compared with the reference images. Subtle
spectral distortion is present in the fused images produced by
SSCycleGAN, implying minor deviations or inconsistencies in

the spectral representations of the scenes. When compared with
other methods, the proposed SD-CycleGAN fused images have
better visual performance. This suggests that the SD-CycleGAN
effectively preserves the spectral and spatial information, result-
ing in fused images with improved overall quality and fidelity.
The best values of traditional, supervised, and unsupervised
methods are indicated in bold, respectively. Tables V-VII show
that the fused images of SD-CycleGAN perform better in spatial
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TABLE II
AVERAGE QUANTITATIVE ANALYSIS OF REDUCED-SCALE QUICKBIRD DATASETS FUSED IMAGES

Index RMSE ERGAS SAM Q4 UIQI
Traditional BDSD [60] 41.3444 1.8226 3.1447 0.8664  0.9215
Methods P+XS [61] 121.6095 5.3649 43113  0.8449  0.8598
Supervised PNN [33] 36.4301 1.6553 42041  0.8741  0.9346
Methods PSGAN [37] 15.7709 0.6959 1.7358  0.9479  0.9857
M-GAN [36] 35.5564 1.5736 2.7618  0.8736  0.9205
PanGAN [22] 349118 1.5237 3.1995 0.8574 0.9224
Unsupervised LDP-Net [29] 35.8977 1.5984 3.0972  0.8864 0.9219
Methods UCGAN [26] 35.7197 1.5755 2.8379 0.8558 0.9186
SSCycleGAN [27] 31.2334 1.3718 2.6660 0.8866  0.9391
Proposed SD-CycleGAN  28.9953 1.2741 3.1213 09114  0.9538

Ideal value 0 0 0 1 1

TABLE III

AVERAGE QUANTITATIVE ANALYSIS OF REDUCED-SCALE GEOEYE-1 DATASETS FUSED IMAGES

Index RMSE  ERGAS SAM Q4 UIQI
Traditional BDSD [60] 29.6742  1.8975 59940  0.7815 0.9365
Methods P+XS [61] 44.4760  2.9445 5.8446  0.7748  0.9222
S . PNN [33] 33.0988  2.1108 7.0581  0.7556  0.9245

upervised
Methods PSGAN [37] 229820  1.4597 44784  0.8054  0.9556
M-GAN [36] 41.6747  2.7468 52310  0.7065  0.8378
PanGAN [22] 31.9981  2.0682 49724  0.7156  0.9026
Unsupervised LDP-Net [29] 29.4963 1.8719 5.8026  0.7758  0.9197
Methods UCGAN [26] 28.2518 1.8095 54077  0.7625  0.9262
SSCycleGAN [27] 29.1689 1.8669 53442 0.7663  0.9186
Proposed SD-CycleGAN  26.2875  1.6543 54913  0.8071 0.9405

Ideal value 0 0 0 1 1
TABLE IV

AVERAGE QUANTITATIVE ANALYSIS OF REDUCED-SCALE GF-2 DATASETS FUSED IMAGES

Index RMSE  ERGAS _ SAM Q4 UIQI
Traditional BDSD [60] 117.6551  3.6265 35713 05123 0.6406
Methods P+XS [61] 129.0614  4.0632  3.5352  0.6470  0.7659
S . PNN [33] 280379 08693  1.9420 09037 0.9740
upervised PSGAN [37] 223323 0.6883 15872 09119  0.9827

Methods : : ) . -
M-GAN [36] 431395 13322 27196 0.8693  0.9371
PanGAN [22] 1288774 39461  5.0036 05252  0.6481
Unsupervised LDP-Net [29] 975132 3.0806  3.5774 05662  0.6915
Mo UCGAN [26] 73.1148 22275 29771  0.6434  0.7948
SSCycleGAN [27] 674087 20736 27390  0.6273  0.7945
Proposed SD-CycleGAN 532287  1.6717 25103  0.7664 0.8848

Ideal value 0 0 0 1 1

) O

Fig. 9. Qualitative comparison of the full-scale QuickBird dataset fused images. (a) LR MS. (b) PAN. (c) BDSD. (d) P+XS. (e) PNN. (f) PSGAN. (g) M-GAN.
(h) PanGAN. (i) LDP-Net. (j) UCGAN. (k) SSCycleGAN. (1) SD-CycleGAN.

w W 0
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(@) (h) 1)

Fig. 10.
(h) PanGAN. (i) LDP-Net. (j) UCGAN. (k) SSCycleGAN. (1) SD-CycleGAN.

) (k) M

Qualitative comparison of the full-scale GeoEye-1 dataset fused images. (a) LR MS. (b) PAN. (c) BDSD. (d) P+XS. (e) PNN. (f) PSGAN. (g) M-GAN.

(g) (h) )

Fig. 11.
(h) PanGAN. (i) LDP-Net. (j) UCGAN. (k) SSCycleGAN. (1) SD-CycleGAN.

TABLE V
AVERAGE QUANTITATIVE ANALYSIS OF FULL-SCALE QUICKBIRD DATASETS
FUSED IMAGES

)] (k) )

Qualitative comparison of the full-scale GF-2 dataset fused images.(a) LR MS. (b) PAN. (c) BDSD. (d) P+XS. (e) PNN. (f) PSGAN. (g) M-GAN.

TABLE VI
AVERAGE QUANTITATIVE ANALYSIS OF FULL-SCALE GEOEYE-1 DATASETS
FUSED IMAGES

Index Dy Dg QNR Index Dy Dg QNR
Traditional BDSD [60] 0.0593  0.0325  0.9102 Traditional BDSD [60] 0.0594  0.0530  0.8925
Methods P+XS [61] 0.1489  0.1227  0.7496 Methods P+XS [61] 0.1543  0.0979  0.7753
Supervised PNN [33] 0.0475  0.0440  0.9109 Supervised PNN [33] 0.0567 0.0621  0.8859
Methods PSGAN [37] 0.0412  0.0775 0.8846 Methods PSGAN [37] 0.0880  0.0545  0.8656
M-GAN [36] 0.0409 0.1325 0.8321 M-GAN [36] 0.0796  0.0777  0.8595
PanGAN [22] 0.0593  0.0692 0.8773 PanGAN [22] 0.0526  0.1033  0.8513
Unsupervised LDP-Net [29] 0.0593  0.0455  0.8986 Unsupervised LDP-Net [29] 0.9135  0.0870  0.8392
Methods UCGAN [26] 0.0370  0.1009  0.9037 Methods UCGAN [26] 0.1105  0.0959  0.8165
SSCycleGAN [27] 0.0508  0.0723  0.8806 SSCycleGAN [27] 0.0904  0.0831  0.8754
Proposed SD-CycleGAN  0.0435  0.0531  0.9059 Proposed SD-CycleGAN  0.0796  0.0656  0.8646

Ideal value 0 0 1 Ideal value 0 0 1

and spectral information. At the same time, the performance of
the proposed SD-CycleGAN outperforms both most traditional
and some supervised methods.

D. Investigation on Network Architecture of the Spectral and
Spatial Degradations

Spatial and spectral degradations are essential factors influ-
encing fusion performance in the proposed method. To evaluate

the effectiveness of the proposed network, we compare the
spatial and spectral degradations employed in our method with
the learnable degenerate modules of LDP-Net [29], as illustrated
in Fig. 13. We investigate the effect of spatial and spectral
degradations on the performance of image fusion by replacing
the proposed spatial and spectral degradations with the learnable
degenerate modules of LDP-Net and analyzing the resulting
fusion performance. Table VIII shows the quantitative analysis.
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Qualitative analysis of network structures for different spatial and spectral degradation modules. (a) LR MS. (b) PAN. (c¢) Reference. (d) Proposed method

with Spectral and Spatial Modules of LDP-Net. (e) Proposed method with spectral module of LDP-Net. (f) Proposed method with spatial module of LDP-Net.

Fig. 12.
(g) Proposed method.
TABLE VII
AVERAGE QUANTITATIVE ANALYSIS OF FULL-SCALE GF-2 DATASETS FUSED
IMAGES

Index Dy Ds QNR
Traditional BDSD [60] 0.0338  0.0584 0.9101
Methods P+XS [61] 0.1179  0.0884  0.8060
Supervised PNN [33] 0.0266 0.1721  0.8058
Methods PSGAN [37] 0.0368  0.1870  0.7828
M-GAN [36] 0.0443  0.1589  0.8035
PanGAN [22] 0.0946 0.1612  0.7618
Unsupervised LDP-Net [29] 0.0948  0.1438  0.7771
Methods UCGAN [26] 0.0480 0.3187  0.6487
SSCycleGAN [27] 0.0643  0.3148  0.6413
Proposed SD-CycleGAN  0.0575  0.1283  0.8215

Ideal value 0 0 1

QlQ l
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Fig. 13.  Different network structures of the spectral and spatial degradations of
LDP-Net [29]. (a) Spatial degradation of LDP-Net [29]. (b) Spectral degradation
of LDP-Net [29].

Fig. 12 displays fused images under various architectures for
qualitative analysis.

The performance of the proposed method exhibits significant
superiority compared with other structures, as demonstrated in

Table VIII. The results indicate that when the spectral degra-
dation module of LDP-Net [29] is combined with our proposed
structures, the fused image experiences a degradation in spectral
information. In spectral degradation, the model can dynamically
learn the spectral relationships between different bands. By
introducing a pixelwise self-attention mechanism in the channel
dimension, this module can better preserve and utilize the cor-
relations among multiple channels. Similarly, the fusion of the
learnable spatial degradation modules from LDP-Net [29] with
our proposed structures leads to a blurring of spatial details in the
fused image. This can be attributed to the rationale behind our
proposed modules, which are designed to better simulate both
spectral and spatial degradation processes. In spatial degrada-
tion, by using an approximate ideal Gaussian filter, it is possible
to maintain the similarity between the degraded fused images
and the original MS images as much as possible after the fused
images degrade to their original resolution. This can accurately
simulate the process of degrading the HR images to LR images,
thereby providing a more accurate degradation model for image
fusion and further enhancing the fusion effect. In comparison
with the learnable degradation module in LDP-Net [29], our
proposed method consistently outperforms alternative structures
in terms of fusion quality and preserving spectral and spatial
features.

E. Ablation Study

Unsupervised loss functions are utilized in the unsupervised
network to preserve image spatial and spectral information. This
section focuses on examining the impact of each loss function
mentioned in Section III-C on the performance of the proposed
method. To carry out this analysis, an ablation experiment is
conducted on the reduced-scale testing dataset, as illustrated in
Fig. 14. “w/0” is an abbreviation for “without”, indicating that it
does not contain an item. The CC loss helps ensure that the map-
ping from one domain to another and back again is consistent,
thereby preserving the spectral and spatial characteristics of the
fused image. Without CC loss, the fused image exhibits severe
distortion both in spectral and spatial information. This indicates
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TABLE VIII
QUANTITATIVE ANALYSIS OF NETWORK STRUCTURES FOR DIFFERENT SPATIAL AND SPECTRAL DEGRADATION MODULES

Spectral Module ~ Spatial Module Spectral Module

Spatial Module

of LDP-Net of LDP-Net of proposed SD-CycleGAN  of proposed SD-CycleGAN RMSE  ERGAS SAM Q4 uIQr
v v 36.6187  1.6102  4.3539  0.8908  0.9182

v v 37.3834  1.6732  3.7742 0.8995 0.9324

v v 37.5379  1.6467  4.3744  0.8940  0.8921

v v 289953  1.2141  3.1213 09114 0.9538

Fig. 14.
loss. (f) SD-CycleGAN.

TABLE IX
ABLATIONS STUDY ON THE REDUCED-SCALE QUICKBIRD DATASETS

Index RMSE ERGAS SAM Q4 UIQI

w/o CC loss 439.9318 19.1122 8.3093 0.3725 0.4719

w/o SAM loss 31.1110 1.3818 3.5631 0.9107 0.9344

w/o EE loss 31.7742  1.3992 3.5962 0.9099 0.9415

w/o Adversarial loss 29.1527 1.2856 3.3436 0.9148 0.9466
Proposed SD-CycleGAN 28.9953 1.2741 3.1213 09114 0.9538

The bold entities indicate the best quantitative analysis values for each evaluation metric
among the ablation studies, respectively.

that the CC loss plays a crucial role in preserving the spectral and
spatial characteristics of the fused image. When the SAM loss
is excluded, spectral distortion becomes apparent in the fused
image, indicating that the SAM loss helps in eliminating spectral
artifacts generated during the fusion process. The EE loss term
aims to enhance the spatial details and edges in the fused image,
preventing blurring or loss of fine structural information during
the fusion process. In the absence of the EE loss, the fused image
tends to appear blurred, highlighting the contribution of the EE
loss in enhancing the spatial details of the fused image. Fur-
thermore, the application of the adversarial loss proves effective
in reducing spectral distortion and artifacts in the fused image.
The experimental results demonstrate the effectiveness of the
proposed unsupervised loss functions through both qualitative
and quantitative analyses, showcasing their ability to preserve
the spatial and spectral information of the fused images.

The effectiveness of each unsupervised loss function is further
supported by the quantitative analysis presented in Table IX.
Each unsupervised loss function contributes significantly to
network performance.

250

1

8

1

8

@
g

Visual comparison of the fused images with different loss functions. (a) Reference. (b) w/o CC loss. (c) w/o SAM loss. (d) w/o EE loss. (e) w/o Adversarial

F. Analysis of Parameter Setting in Unsupervised Loss
Functions

In this section, we investigate the impact of adjusting the pa-
rameters in the unsupervised loss function L within the proposed
SD-CycleGAN. Specifically, we analyze the effects of varying
the values of parameters «, /3, §, and ~ on the fused images.
These parameters control different aspects of the unsupervised
loss functions in terms of spatial and spectral terms. The spatial
term of the CC loss is controlled by parameter o, whereas the
spectral term is controlled by (. Increasing « enhances the
spatial details, but may introduce blurriness in the fused images.
On the other hand, reducing /3 can lead to spectral distortion
in the fusion results. Parameters § and ~ are responsible for
preserving additional spectral and spatial information, respec-
tively. Gradually increasing ¢ enhances the spectral information,
but may result in excessive enhancement. Similarly, increasing
~ improves the spatial details, but it may cause instability in
the spectral information. To examine the effects of these pa-
rameter adjustments, experiments are conducted by using the
QuickBird reduced-scale testing dataset. The optimal values
for the different parameters are highlighted in bold. As shown
in Fig. 15, when the value of « is small, the spatial details
of the fused images are relatively blurry. When the value of
[ is small, the fusion result exhibits spectral distortion. As §
increases gradually, the spectral information of the fused images
is excessively enhanced. When + increases gradually, the spatial
details become richer, but the spectral information becomes
unstable. Similarly, as shown in Table X, when these parameters
are in a relatively balanced state, most of the quality evaluation
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G. Investigation on Network Architecture of the Generator

We represent the structure of the generator GG in Fig. 3 as
a block with dense connections. We believe that using dense
connections and the number of blocks are two important factors
influencing the fusion performance of G in the proposed SD-
CycleGAN. We discuss the impact of different structures of G
on the fused images. For example, using a single block without
dense connections or multiple blocks with dense connections.

Table XII presents the variations in quantitative analysis
metrics for different structures of G. From Table XII, it is
observed that the proposed SD-CycleGAN outperforms other
architectures in terms of the quantitative analysis metrics com-
pared with the different structures of G mentioned above. With
the introduction of dense connections, there is a significant
improvement in the quantitative analysis values in Table XII.

10260
Reference
Fig. 15.  Proposed SD-CycleGAN visual analysis in relation to different parameters.
TABLE X
PERFORMANCE OF THE PROPOSED SD-CYCLEGAN AGAINST SEVERAL
PARAMETERS

a B 3 ~ RMSE  ERGAS  SAM Q4 UIQI

10 30 100 100 | 33.8761 1.5359 4.1147  0.8959  0.9406
30 30 100 100 | 30.1638 1.3376 3.3574 09127 0.9427
50 30 100 100 | 28.9953 1.2741 31213 09114 09538
70 30 100 100 | 30.3361 1.3299 3.4385 0.9109  0.9427
90 30 100 100 | 30.3971 1.3508 34793 09107 0.9428
50 10 100 100 | 31.4724 1.3908 3.7614  0.9081  0.9373
50 20 100 100 | 29.9614 1.3154 3.3343 09102  0.9466
50 30 100 100 | 28.9953  1.2741  3.1213 09114  0.9538
50 40 100 100 | 30.7927 1.3544 34797 09128 0.9367
50 50 100 100 | 30.6850 1.3754 3.4568  0.9156  0.9432
50 30 60 100 | 33.4497 1.4426 3.9586  0.9073  0.9319
50 30 80 100 | 30.3852 1.3317 3.3091  0.9081  0.9464
50 30 100 100 | 28.9953  1.2741  3.1213 09114  0.9538
50 30 120 100 | 30.1053 1.3240 3.3772 09144  0.9355
50 30 140 100 | 29.9127 1.3158 3.3710 09142  0.9425
50 30 100 60 29.3617 1.3122 34008 0.9126  0.9460
50 30 100 80 30.0358 1.3126 3.3653 09127  0.9417
50 30 100 100 | 28.9953  1.2741  3.1213 09114  0.9538
50 30 100 120 | 30.2588 1.3319 34508 0.9137 0.9367
50 30 100 140 | 31.0962 1.3702 3.3971  0.9077  0.9300

Ideal Value 0 0 0 1 1

metrics reach their optimal values. This analysis demonstrates
the importance of fine-tuning these parameter values to achieve
optimal performance in terms of spectral and spatial fidelity in
the fused images. As shown in Table X and Fig. 15, the best
fusion results are obtained when «, /3, §, and ~y are set to 50, 30,
100, and 100, respectively.

Although the computational complexity increases significantly
with the number of blocks, the quantitative analysis values do not
improve. The qualitative analysis of different network structures
of G is shown in Fig. 16. Compared with the fused image from
SD-CycleGAN, fused images without dense connections exhibit
noticeably poorer spectral and spatial information. In addition, it
can be observed that with an increased number of blocks, most of
the spectral information is lost in the fused images. Table XII and
Fig. 16 demonstrate the superior performance of the proposed
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TABLE XI
TIME COMPARISON AND MODEL SIZE ANALYSIS

Index PNN PSGAN M-GAN PanGAN LDP-Net UCGAN SSCycleGAN Proposed SD-CycleGAN
Test time (ms) 0.8 72 11.7 3.6 6.1 8.6 8.7 2.2
#Para. (M)  0.08 3.02 15.51 0.88 0.11 2.83 0.37 0.85

@ ) ©

Fig. 16.
(e) 4 Blocks. (f) SD-CycleGAN.

TABLE XII
QUANTITATIVE COMPARISON OF THE FUSED IMAGES WITH DIFFERENT
NETWORK STRUCTURES

Index RMSE ERGAS SAM Q4 UIQI
w/o Dense Connection 31.7333 1.3986 3.5500 0.9073 0.9356
2 Blocks 29.6008 1.3218 3.5149 0.9130 0.9492
3 Blocks 32.3228 1.4363 3.5456 0.8993 0.9424
4 Blocks 31.9297 1.4457 3.9499 0.9063 0.9455
Proposed SD-CycleGAN 28.9953 1.2741 3.1213 09114 0.9538

The bold entities highlight the best quantitative analysis values for each evaluation metric
among the various generator network structures.

generator structure compared with others. Therefore, the archi-
tecture used in SD-CycleGAN is a good choice for modeling
spatial and spectral information.

H. Running Time and Model Size

In Table XI, we analyze the complexity of SD-CycleGAN
and DNN-based comparison methods, which are trained and
tested on NVIDIA GeForce RTX 3090 and Intel (R) Core (TM)
17-9700KF CPU @3.60 GHz. Based on the values in Table XI, it
is feasible to conclude that SD-CycleGAN has fewer parameters
and less testing time than the compared methods. As a result,
the computational complexity and model size of SD-CycleGAN
perform well.

V. CONCLUSION

To generate improved fusion images, we propose an un-
supervised single-generator CycleGAN containing the spatial
and spectral degradation processes, called SD-CycleGAN. This
method is based on the well-established CycleGAN frame-
work. To simplify the unsupervised CycleGAN framework, our
proposed method utilizes only one generator. In addition, the

Qualitative comparison of the fused images with different generator structures. (a) Reference. (b) w/o Dense connection. (c) 2 Blocks. (d) 3 Blocks.

@ ©

®

method incorporates modules that can simulate spatial and spec-
tral degradation processes to facilitate the unsupervised learning
process. Moreover, to preserve spatial details and spectral infor-
mation, we introduce a set of unsupervised losses to enhance the
spatial details and reduce spectral distortion in the fused images.
Compared with state-of-the-art methods, experimental results on
the QuickBird, GeoEye-1, and GF-2 datasets demonstrate that
the fusion images produced by SD-CycleGAN contain more
spatial and spectral information.
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