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Multiscale Template Matching for Multimodal
Remote Sensing Image

Tian Gao , Chaozhen Lan , Wenjun Huang , Longhao Wang, Zijun Wei, and Fushan Yao

Abstract—Multimodal matching remains a difficult and press-
ing problem in the imaging processing community. Accurate and
robust multimodal matching is important for the performance of
applications, such as registration and fusion. Traditional image
matching algorithms cannot effectively handle multimodal images
with severe nonlinear radiometric distortion (NRD). In this article,
a novel multiscale template matching algorithm for multimodal
image matching is proposed to address this problem. We propose
a novel frequency-domain convolutional map based on the wavelet
transform and phase congruency to construct a feature descrip-
tion map that significantly reduces the NRD between multimodal
images. The development of omnidirectional aggregated feature
vectors with rotational invariance also helped to achieve robustness
on rotated images. Finally, a multiscale template matching strategy
improved the matching performance on multimodal images with
displacement and scale variations. To improve the time efficiency
of the algorithm, most of the complex computations in this article
are performed in the frequency domain. According to the exper-
imental findings on six multimodal image datasets, the method
can obtain accurate and robust matching results between multi-
modal images. Through qualitative and quantitative evaluations,
the method outperforms several mainstream multimodal image
matching algorithms in terms of matching accuracy, success rate,
and time consumption.

Index Terms—Multimodal remote sensing images, multiscale
strategy, template matching, wavelet transform.

I. INTRODUCTION

W ITH the rapid development of space and sensor tech-
nologies, remote sensing observation methods are grad-

ually becoming more diverse. Diverse remote sensing obser-
vation data [e.g., optical, depth, light detection and ranging,
infrared, and synthetic aperture radar (SAR)] and terrain data
can be obtained. Combining multiple data to form multisource
remote sensing data is beneficial for better change detection [1],
[2], land classification [3], [4], [5], environmental simulation [6],
target localization [7], and environmental and disaster detection
[8], [9], [10]. Among these, multimodal image matching is
essential for achieving the benefits of mutual complementarity
and using data from multiple sources.
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Fig. 1. Example of showing the differences between multimodal images.

Remote sensing images typically have higher resolution than
natural images, and processing and analyzing these images
may require more computing resources and time. The acqui-
sition of remote sensing images is limited by lighting and
weather conditions, which may lead to a decrease in image
quality, affecting the visibility and recognition accuracy of
features. Remote sensing images are usually acquired from
platforms, such as satellites, airplanes, or drones, and their
viewing angles and scales differ from natural scene images.
This can lead to changes in the shape, size, and scale of figures
in the image, adding complexity to image interpretation and
analysis.

The purpose of image matching is to find the corresponding
image points with the same name in two or more images contain-
ing the same scene and then find the transformation relationship
between the images to achieve the registration of the reference
frame of the two images. As shown in Fig. 1, there may be
differences in displacement, rotation, scale, radiation, and noise
between remote sensing observations from different sources
[11]. The same feature may correspond to different locations and
exhibit significant nonlinear radiometric distortion (NRD) due
to different sensors causing the same feature to exhibit vast dif-
ferences in appearance. These huge differences pose significant
difficulties for the existing image-matching algorithms, which
cause significant degradation in most algorithms’ matching per-
formance to meet the requirements of multisource data fusion.
Therefore, it is important to develop a reliable multimodal
image-matching algorithm to provide accurate multimodal ob-
servations of the same scene. To design a reliable multimodal
image-matching algorithm, the following three issues must be
addressed: the algorithm should: 1) be highly adaptive to NRD;
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2) have a more accurate and stable outlier removal model; and
3) have strong adaptability to geometric differences.

Template matching [12] is a common image processing
method in the field of computer vision that determines the match-
ing region in the target image that most closely resembles the
template image. In particular, it consists of the following three
steps: 1) it designs a search strategy to determine the candidate
matching window regions corresponding to all the template
images; 2) it selects the feature vectors of the corresponding
window regions on the designed feature description map; and
3) it calculates the similarity between the feature vectors of the
template windows and those of the candidate matching windows
using the designed similarity metric. The highest score candidate
matching region is considered the final candidate matching
window. Template matching is important for facial recognition
[13], visual localization [7], and other processes.

Therefore, this study aims to investigate a template matching
algorithm that can be used for multimodal image registration.
Although slow and poorly adaptive to geometric differences,
template matching has high accuracy. In addition, it is difficult
to determine the mapping relationship between the template
windows and candidate matching windows. Therefore, devel-
oping a multimodal image template matching algorithm that is
faster and more adaptable to geometric differences is crucial.
Based on the above analysis, this study developed an effec-
tive template matching search strategy for multimodal image
registration, overcame difficulties in multisource remote sens-
ing image matching and proposed a novel template matching
framework for multisource remote sensing image registration.
It maintains the advantages of the high matching accuracy of the
template matching method while essentially solving the disad-
vantages of slow matching speed and poor geometric differences
adaptability and can automatically complete multimodal remote
sensing image registration under most conditions. The main
contributions of this study are as follows.

1) A multiscale template matching (MSTM) algorithm is de-
signed to solve the multimodal image registration problem
with severe NRD. MSTM has strong robustness and relia-
bility and can handle general multisource remote sensing
image registration problems, including images from dif-
ferent sensors, time phases, views, and resolutions.

2) A frequency-domain convolutional map (FDCM) based
on the wavelet transform and phase congruency (PC) is
proposed, which can more accurately describe the feature
information of multimodal images and significantly re-
duce the NRD of multimodal images. An omnidirectional
aggregated feature vector with rotational invariance was
designed to accomplish the automatic registration for poor
quality multimodal images with significant geometric dif-
ferences and NRD.

3) To address the problem of geometric differences of mul-
timodal image data and of determining the mapping rela-
tionship between the template window and the candidate
matching window, a multiscale template matching strategy
based on the scale space was applied to MSTM. Good
results were obtained by solving geometric differences
and optimizing the template matching speed.

The rest of this article is organized as follows. Section II
reviews the related work on multimodal remote sensing image
registration. Section III describes the typical framework and the
key processes of the proposed MSTM. The experimental results
and performance analysis of MSTM for various multimodal
image datasets are discussed in Section IV. Finally, Section V
concludes this article.

II. RELATED WORK

This section divides the matching methods into three cate-
gories, learning, feature, and template based, to briefly review
them for multisource remote sensing images.

Although learning-based methods [14] are currently signifi-
cantly advanced techniques, with many related studies having
achieved good results on the corresponding datasets [15], they
are difficult to use. The lack of a general multimodal image
dataset for model training makes it impossible to train reliable
and stable parameters; however, the trained models are poorly
adapted to different real data and have insufficient generalization
ability.

Feature-based methods [16] start with an image feature ex-
traction and then perform matching using the similarity between
the feature descriptors of the image feature points. The extracted
features should be robust, stable, and repeatable, and they can
be points [17], lines [18], and faces [19]. Ma et al. [20] proposed
the PSO-SIFT algorithm, which is an improved method for
calculating image gradients to improve the robustness to NRD.
Li et al. [11] proposed the RIFT algorithm, which uses a PC
and innovatively introduces a maximum index map descriptor
(MIM). Yao et al. [21] proposed the MOTIF algorithm, which,
with better performance, establishes a diffusion tensor model
using the image gradient direction information and obtains
multidirectional index map descriptors using this algorithm.
Yao et al. [22] proposed the HAPCG algorithm, which uses
anisotropic filtering for image nonlinear diffusion and constructs
an anisotropic weighted moment scale space. The absolute PC
direction gradient was established using the PC model and
combined with the log-polar coordinate description template,
which greatly enhanced the robustness. However, the matching
accuracy of feature-based methods is typically lower than that
of template-based methods because of the unstable localization
accuracy of the extracted feature points.

The template-based [23] approach compares the similarity
metrics of the two selected regions to accomplish matching.
The sum of squares (SSD), normalized correlation coefficient
(NCC), and mutual information (MI) are the typically used
similarity metrics. The SSD is quick but less robust and sensitive
to noise [24]. The NCC is less suitable as a similarity metric
for multimodal image matching because it is highly adaptable
to linear distortion but less adaptable to NRD [25], [26]. Al-
though MI has good adaptability to NRD, it is more sensitive
to matching windows and is computationally inefficient [27].
Recent studies have found that the geometric structure remains
stable between multimodal data. Ye et al. [28] achieved good
results in generating HOPC descriptors based on HOG [29]
using PC maps. To describe the geometric structure features in
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Fig. 2. Proposed MSTM multimodal remote sensing image registration framework mainly includes the Shi-Tomasi feature point detection, FDCM, omnidirectional
aggregated feature vector, and multiscale template matching strategy using the scale space and the outlier removal method. The acceleration strategy converts the
primary function into frequency-domain processing.

more detail, Ye et al. [30] further proposed the CFOG algorithm,
which addressed the issue of not providing a detailed description
of HOPC geometric structure features using pixel-by-pixel de-
scription and substantially improved the matching speed using
frequency-domain template matching. However, regardless of
how good the template-based method is, it has extremely high
requirements for the initial position; for example, the CFOG uses
the point position calculated using the satellite rational poly-
nomial coefficient parameters as the initial matching reference
control point. However, data from different sources lack spatial
mapping relationships, and if the initial reference control point
position deviates too much or there is no initial reference control
point, the matching performance drops significantly. This is
because it is sensitive to geometric differences, and the size of
the selected template limits its speed.

Therefore, this study aimed to investigate a practical mul-
timodal image registration method using template matching,
which is quick, suitable for NRD, and adapts to geometric
differences. We also generate the FDCM using the wavelet
transform and PC in the feature description, which enhances
the robustness of NRD. An omnidirectional aggregated feature
vector with rotational invariance was designed that was robust to
rotating multimodal images. By designing a multiscale matching
strategy using the scale space, the template-based method is
also robust to geometric differences, and a better performance
is obtained in comparison experiments with CFOG, HAPCG,
RIFT, SuperGlue, and Ms-HLMO on multiple multimodal im-
age datasets.

III. METHODOLOGY

The framework of the proposed MSTM algorithm is shown in
Fig. 2. The input image pair to be aligned is first preprocessed,
primarily for basic image denoising. The Shi-Tomasi corner
point detection algorithm is used to extract feature points from
the multimodal image pair to provide initial control points for
subsequent template window determination. The key to the
proposed MSTM is the feature description map construction and
template matching from a multiscale strategy. The multiscale
space of the feature description map from the multiscale strategy

is created by building a Gaussian pyramid, first constructing
the FDCM at the lowest level and then downsampling the
FDCM several times. The scale space is top down, and the
feature templates of the feature points corresponding to windows
are extracted at each level of the FDCM, the feature templates
are rotated several times, and all the rotated feature templates
are aggregated to generate an omnidirectional aggregated feature
vector. Subsequently, the window with the highest similarity at
the same position in the target image is selected as the correct
match, and outlier removal is performed to remove incorrect
matches. The correct corresponding scale level is determined
using a multiscale strategy, and the parameters of the exact
transformation matrix are transformed stepwise. Finally, the ex-
act spatial transformation relationship between the image pairs
is determined using the final computed exact transformation
model.

A. Shi-Tomasi Feature Point Detection

The Harris corner point detector [31] is one of the most stable
corner point extraction algorithms, and the Shi-Tomasi corner
point extraction algorithm [32] is an improved version of the
Harris corner point detector. This algorithm has a simpler cal-
culation of corner point response values and typically produces
better results than the Harris operator. The Shi-Tomasi corner
point response values were calculated for each image, as follows:

Corner = min (λ1, λ2) (1)

M =

[∑
Wσ

G2
x

∑
Wσ

GxGy∑
Wσ

GxGy

∑
Wσ

G2
y

]
(2)

where λ1 and λ2 are two eigenvalues of the matrix M . Gx

and Gy are the gradient values of the image along the x- and
y-directions, respectively, andWσ is a Gaussian sliding window
with a variance σ. The pixel points with corner response values
greater than the threshold are considered as reliable feature
points for multimodal images.

According to previous studies, feature points with a uniform
distribution reduce the local error of the interimage transforma-
tion model and improve image matching accuracy. Conversely,
the Shi-Tomasi corner point detector uses image intensity to



GAO et al.: MULTISCALE TEMPLATE MATCHING FOR MULTIMODAL REMOTE SENSING IMAGE 10135

Fig. 3. (a) Effect before homogenization when the feature point is 800.
(b) Effect after homogenization when the feature point is 800.

extract feature points; therefore, most feature points extracted
using this algorithm are clustered in structural information rich
regions. To address the problem of the uneven distribution of
feature points, an efficient adaptive nonmaximal suppression
algorithm [33] was used, which can quickly divide the extracted
feature points evenly and avoid using the chunking method
for feature point extraction. This significantly improves the
algorithm performance. The suppression region edge length
threshold ah was calculated as follows:

ah = − HI +WI + 2m−√
Δ

2(m− 1)
(3)

Δ = 4(WI +m+HIm) + (HI −WI)
2 + 4WIHIm (4)

where HI and WI denote the height and width of the image,
respectively, and m denotes the number of feature points to be
extracted.

Therefore, when the input image size changes, the feature
points can be redivided according to the image size and the
number of feature points to be extracted, making the feature
points more evenly distributed, as shown in Fig. 3.

B. Frequency-Domain Convolutional Map

Because of the severe NRD between multimodal images, it
is difficult to achieve good results by directly using image in-
formation for matching. Therefore, the most multimodal image
matching algorithms, such as HOPC, CFOG, and RIFT, feature
images using specific methods to produce a feature description
map, which increases the similarity between multimodal images
and significantly improves the matching performance of the
algorithms. As mentioned, compared with other description
methods, such as gradient information, PC is more resistant
to NRD between multimodal images, and most of the above
algorithms are based on the PC model for constructing the
feature description graph. However, when there is considerable
NRD, the PC model may be inadequate, and the generated
feature description map may not be sufficiently clear for feature
description or may lack some of the geometric structure. We
constructed a new FDCM based on the PC model using a
wavelet transform, which can decompose an image into low-
and high-frequency parts [34]. The low-frequency part contains

the overall geometric structure information of the image, while
the high-frequency part contains the local detailed information
of the image, and most of the nonlinear radiative aberrations
in the image are contained in the local details of the image.
After the wavelet transform, the NRD of the image’s local
details is used to significantly reduce the low-frequency image,
which significantly enhances its robustness to NRD. The FDCM
generation process is shown in Fig. 4.

The wavelet decomposition is first performed on the input
image and is calculated as follows:

[CN ,Hs,Vs,Ds] = WTN (I) (5)

where I denotes the input image, N denotes the scale size in
the wavelet decomposition process, s is the number of layers,
CN denotes the decomposed low-frequency components, and
Hs, Vs, and Ds denote the horizontal, vertical, and diagonal
high-frequency wavelet components, respectively.

Good noise suppression and edge extraction drive the supe-
rior performance of the feature description maps. A log-Gabor
wavelet was used to construct the FDCM. It describes the geo-
metric structure of an image in a multiscale and multidirectional
manner. The log-Gabor wavelet is expressed as follows [35]:

L(ρ, θ, s, o) = exp

(
− (ρ− ρs)

2

2σ2
ρ

)
exp

(
− (θ − θso)

2

2σ2
θ

)
(6)

where (ρ, θ) denotes log-polar coordinates, s and o represent
the scale and the direction of the log-Gabor wavelet, (ρs, θso)
represents the central frequency of the log-Gabor wavelet, and
σρ and σθ represent the bandwidth of ρ and θ, respectively.

Log-Gabor wavelets can be decomposed into even- and odd-
symmetric filters in the spatial domain and are defined as follows
[28]:

L(x, y, s, o) = Leven (x, y, s, o) + iLodd (x, y, s, o) (7)

where the real partLeven (x, y, s, o) represents the even wavelets,
and the imaginary part Lodd (x, y, s, o) represents the odd
wavelets.

For the low-frequency part CN generated by wavelet de-
composition, convolving CN with an even-symmetric wavelet
Leven (x, y, s, o) and an odd-symmetric wavelet Lodd (x, y, s, o),
respectively, produces Eso(x, y) and Oso(x, y) as follows [11]:

Eso(x, y) = CN (x, y) ∗ Leven(x, y, s, o) (8)

Oso(x, y) = CN (x, y) ∗ Lodd(x, y, s, o). (9)

Then, the magnitude of the amplitude of the image in the
frequency domain is expressed as follows:

Aso(x, y) =
√
Eso(x, y)2 +Oso(x, y)2. (10)

The multiscale log-Gabor features in the specified directions
are

Ao(x, y) =
S∑

s=1

Aso(x, y). (11)

The feature maps normalized and downscaled to the multidi-
rectional log-Gabor features are then used as the reconstructed
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Fig. 4. Proposed framework for generating FDCMs. First, the image is wavelet decomposed, and the decomposed low-frequency image is processed using a
multidirectional and multiscale log-Gabor wavelet to generate a multidimensional feature vector. Then, the multidimensional features are dimensionally reduced to
decrease the number of dimensions. Finally, wavelet reconstruction is performed using the high-frequency information generated from the decomposition, which
generates an FDCM.

low-frequency wavelet components of the following:

Ao(x, y) =
Ao(x, y)√

|Ao(x, y)|2 + ε
(12)

where ε is a small constant value

F (x, y) =

o∑
i=1

Ao(x, y). (13)

Wavelet reconstruction is then performed on the four subim-
ages to generate the final FDCM

f(x, y) = (IWTN (F,Hs,Vs,Ds)) (14)

where f(x, y) is the FDCM, and IWTN (•) denotes the recon-
struction function.

Fig. 5 presents a comparison of the FDCM with other typical
feature description maps. The original data comprised an optical
map image pair with a significant NRD. For comparison, the
two images were manually aligned to eliminate geometric dif-
ferences. The image gradient feature description map generated
using the following equation is shown in Fig. 5. Most algorithms
use this approach [36], [37], which results in discontinuous and
unstable feature descriptions due to the effect of NRD, making
them less robust {

Gx(x, y) =
∂I(x,y)

∂x

Gy(x, y) =
∂I(x,y)

∂y

(15)

⎧⎨⎩Gρ =
√

Gx
2 +Gy

2

Gϕ = arctan
Gy

Gy

. (16)

The PC map shown in Fig. 5 describes the geometric infor-
mation of the image but is susceptible to noise, with blurring
and ghosting at the edges. The MIM shown in Fig. 5 is the
feature description map of the RIFT algorithm, and it selects the
main direction of the local features for a description based on
the PC map. Although it is more robust to NRD, the geometric
structural information of the image is lost, and the robustness is
poor for some poor quality images. The FDCM shown in Fig. 5
is robust to NRD, clearly describes the geometric structure of the
image, and performs well on complex and poor quality images.
It is used in the MSTM to describe the multiscale local feature

information of the feature point matching window for template
matching.

C. Omnidirectional Aggregated Feature Vectors

The template-based matching approach has the disadvantage
of being poorly rotatable. The strategy used in this study to
solve the rotation invariance of template matching is to extract
multidirectional feature description maps for one image of the
image pair and aggregate these directional feature description
maps to construct matching window omnidirectional feature
description vectors that adapt to different directions. Multiple
directions are matched using the template-matching algorithm,
and the direction with the best matching effect is the main
direction of rotation.

To extract the matching window feature description vectors
in different directions, the original image-generated feature de-
scription map FDCM must be rotated n times to achieve full di-
rectional coverage, which constitutes the directional feature de-
scription map ̂FDCM = {FDCM0,FDCM1, . . . ,FDCMn−1}.
For the r-direction, the rotation transformation equation is ex-
pressed as follows:{

FDCMr = Rotm(FDCM0)

m = 2π
n r, r ∈ {0, 1, . . . , n− 1} (17)

where Rot denotes the rotation operation on the image, FDCM0

is the original nonrotated feature description map, and m is the
rotation angle of the r feature description map.

The Shi-Tomasi algorithm can be used to obtain the keypoints
for the rotated directional feature description map FDCMr.
The keypoint at position (i, j) in the feature description map
FDCMr can be represented as prij , and the directional feature
description vector of the corresponding matching window can
be represented as fr

ij . The set of directional feature description
vectors of all the feature points in image FDCMr can be de-
scribed as (p̂r, f̂r), which is defined as the r-directional feature
description vector of the image. In the aggregation model, the
feature description map FDCM aggregates feature keypoints and
matches the window omnidirectional feature description vector
(p̂, f̂) for the feature description map FDCM.

After obtaining the matching point pairs in each direction, the
number of matching points scorer obtained in the r-direction
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Fig. 5. Comparison of multiple feature description maps of the selected
optical-map image pairs, including image gradient, PC, MIM, and FDCM.

was recorded as the matching score. The direction with the
highest matching score scorer was determined as the main
feature direction rmain, and the formula is as follows:

rmain = argmax scorer

r∈{0,1,...,n−1}
. (18)

Because the rotational differences of the matched images are
typically not strictly in the main direction rmain, correct matches
may occur in the main, front, and back directions. Therefore,
the proposed algorithm merges the matching results of adjacent

direction features with the main direction to obtain the best
matching result.

Instead of the position on the original feature description map,
the keypoint position in the matching result is the coordinate on
the rotated feature description map, FDCMr. Therefore, it must
still be inversely rotated and transformed to map back to the
coordinate on the original feature description map{

p̂r0 = Rot−1
m (p̂r)

m = 2π
n r, r ∈ {0, 1, . . . , n− 1} (19)

where p̂r is the directional feature keypoint after rotation,Rot−1

is the rotational transformation inverse to the feature description
map FDCMr, and the output result p̂r0 is the coordinate on the
original feature description map.

D. Fast Frequency-Domain Template Matching

After extracting the feature points and generating the feature
description map, the template-based matching strategy requires
selecting a suitable similarity metric and performing template
matching using the feature point positions in the search region
of the target image to determine the corresponding points with a
similarity greater than a threshold value as the correct matching
points. To increase the matching speed of the algorithm, we
adopted a concept similar to that in [30], i.e., that of converting
the SSD-based similarity metric to the frequency domain and
using a fast Fourier transform (FFT) for template matching.

The matching image pairs consisted of two images, and their
corresponding 2-D feature description maps [frequency-domain
convolutional maps (FDCMs)] are denoted by M1 and M2. The
SSD between the corresponding template windows in the feature
description map is defined as follows:

Ti(s) =
∑
p

[M1(p)−M2(p− s)]2 (20)

where p denotes the position representation of the pixel in the
2-D feature description map, and Ti(s) denotes the SSD simi-
larity metric function between two template windows after the
template window on M1 is displaced by s at the corresponding
position on M2. The best match between the template windows
on M1 and M2 is achieved when T reaches its minimum value.
The matching function is defined as follows:

si = argmin
s

{∑
p

[M1(p)−M2(p− s)]2
}

(21)

where si denotes the displacement vector between M1 and M2

when the SSD similarity metric function of the corresponding
template window reaches its minimum value.

Expanding and simplifying the above equation, the displace-
ment vector s is only related to the parameters of the following
equation:

si = argmax
s

[∑
p

M1(p) ·M2(p− s)

]
. (22)

The convolution operation in the spatial domain is equal to
multiplication in the frequency domain. We used the 2-D FFT
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Fig. 6. Feature similarity maps. The similarity maps of NCC, HOPC (Reproduction version), CFOG, and the proposed FDCM were obtained for the
(a) optical-SAR and (b) optical-infrared images with a template window of 70 × 70 pixels and a search window of 30 × 30 pixels. In each plot, the center
of the plot corresponds to the correct matching position.

to accelerate the spatial-domain convolution calculation. The
above equation can be defined as follows:

si = argmax
s

{
F−1

2D [F2D (M1(p)) · F ∗
2D (M2(p− s))]

}
(23)

where F2D and F−1
2D denote the forward and reverse 2-D FFT,

respectively, and F ∗
2D represents the complex conjugate of the

2-D FFT.
Fig. 6 shows the similarity plots of various similarity metrics.

The test images were optical-SAR (a) and optical-infrared (b),
and the similarity metrics used were NCC, HOPC, CFOG, and
FDCM. Of all the metrics, the NCC method failed to determine
a correct match. Both CFOG and FDCM could accurately detect
the corresponding region, but CFOG had interference from other
peaks and suffered from mismatching, and the peaks of FDCM
were smoother and more robust.

E. Outlier Removal

Template matching was performed on the extracted feature
points in the feature description map following the above prin-
ciple, and numerous matching results were obtained. However,
many outliers in the matching results must still be eliminated;
otherwise, parameter estimation of the transform model will
be negatively affected. Therefore, we adopted a more accurate
MAGSAC++ [38] method to eliminate outliers.

F. Multiscale Matching Strategy

It is well known that the most challenging aspect of the
template-based matching method is determining the correct tem-
plate matching search area corresponding to the feature points.
For a feature point in the reference image, we looped through

the entire image search to be matched. Although it is possible
to determine the correct corresponding search area this way,
the process is time consuming. In particular, when faced with
many feature points, the search time increases exponentially,
significantly reducing the matching performance. Moreover,
when processing two images with inconsistent scales, the local
feature content described within the template window is incon-
sistent even when the template matching windows correspond
correctly, leading to unreliable matching results or matching
failure. A multiscale template matching strategy was designed
to solve these two key problems, which eliminates the depen-
dence on the initial control points and achieves robustness to
scale.

A Gaussian pyramid of image feature description maps was
adopted using a scale-space theory [39]. As shown in Fig. 7,
since generating FDCM feature description maps for different
scale images separately would consume a lot of time, and the
original images are not high-dimensional features to generate
FDCM feature description maps first, they are directly down-
sampled layer by layer to obtain a series of feature description
maps with different resolutions.

After establishing the feature description scale space, tem-
plate matching on the low-level feature map using a template
with a larger window is time consuming, and it is difficult to
search for the correct corresponding region using a template with
a smaller window. However, template matching with a larger
window on a high-level feature map can reduce the matching
time and improve the matching success rate (SR). Although
the location of the correctly matched search points may not
be very accurate, a more reliable transformation model can
still be estimated using the remaining points after MAGSAC++
eliminated the outliers. The model is passed to the next level to
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Fig. 7. Scale space pyramid designed in MSTM.

Fig. 8. Multiscale template matching strategy in MSTM.

continue template matching, and with the initial transformation
model, the template matching search window can be appropri-
ately narrowed, further reducing the search time and improving
the matching accuracy. This continues until it reaches the lowest
level, where the entire multiscale matching is complete. When
there is scaling, the layers of the reference image and the image
to be matched may not be the same. First, the highest level
of the reference image is matched with all the levels of the
image to be matched by templates separately to determine the
correct corresponding level. Then, the entire multiscale match-
ing is completed by passing them in order according to the
conventional matching process. The complete matching process
is shown in Fig. 8.

The resultant feature description scale space is similar to the
classical and widely used Gaussian scale space in SIFT. The
main difference is that SIFT provides scale attribute information
for feature points based on the scale space and uses it for feature
extraction and multiscale feature description. Finally, all the
scale features participate in matching simultaneously. The scale
space in this study does not involve scale information in feature
matching but is used to search for the corresponding layers,
which more effectively solves the problem of scale differences.

IV. EXPERIMENTS

A. Datasets and Evaluation Indicators

In order to verify the matching performance of this frame-
work, several sets of typical multisource remote sensing image
data are selected, and various effective matching algorithms,
such as CFOG, SuperGlue [40], RIFT, HAPCG, and Ms-HLMO
[41], are compared. The experimental computer is a Lenovo
Y9000K notebook with i7-10875H CPU, GeForce RTX 2080
graphics card (8-GB video memory), 64-GB RAM, and Win-
dows 10 64-bit.

To ensure that the comparison experiments were fair, we
used the default optimal parameters for the parameter settings
of various algorithms. The SuperGlue, RIFT, HAPCG, and
Ms-HLMO parameters were consistent with the original pub-
lished versions. CFOG cannot be applied to multimodal data,
which lacked known information because the published version
requires known initial control point information; therefore, we
removed this part and kept the rest unchanged.

We collected six real multimodal image datasets for our ex-
periments: optical-depth, optical-infrared, optical-map, optical–
optical, optical-SAR, and day–night datasets. The dataset image
sizes ranged from 400× 400 to 1000× 1000 pixels. The optical–
optical dataset included different seasons, views, and other ele-
ments. These multimodal remote sensing images covered almost
all the multimodal image matching scenarios, and each dataset
contained ten image pairs, for a total of 60 pairs of multimodal
image data. Most images contained a significant NRD, which
was highly representative and experimentally valuable for fully
validating the performance of multimodal matching algorithms.
Fig. 9 shows several sample pairs for each dataset.

The images of the six datasets were first separately matched
with features, and a correspondence with an error of less than
three pixels was considered the correct matching relationship
[11]. In this study, the number of correct matches (NCM), SR,
and root-mean-square error (RMSE) were used as evaluation
metrics. These metrics were calculated as follows:

NCM =
∣∣∣{∥∥p1i −Hp2i

∥∥ < 3
}N
i=1

∣∣∣ (24)

where p1i and p2i are the coordinates of a matched pair of points,
H is the ground truth spatial transformation between image pairs
(calculated from manually selected points), and N is the total
number of all the matches

RMSE =
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)2
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SR =
Mcorrect

Mcorrect +Merror
× 100% (27)
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Fig. 9. Sample data of our four multimodal image datasets. (a) Dataset
1: optical-depth. (b) Dataset 2: optical-infrared. (c) Dataset 3: optical-map.
(d) Dataset 4: optical–optical. (e) Dataset 5: optical-SAR. (f) Dataset 6: day–
night.

where SR represents the matching SR, M represents the total
number of image pairs of a multimodal image sets, Mcorrect

represents the number of successfully matched pairs of images,
and Merror represents the number of failed pairs of images.

B. Parameter Setting

The main parameters of the proposed MSTM algorithm in-
cluded the template sizes of the highest and lowest levels and the

Fig. 10. (a) Matching SR statistics for different template sizes at each level.
(b) Matching time consumption statistics for different template sizes at each
level.

Fig. 11. Statistics on the NCM on multiple types of rotated image pairs
between −90◦ and 90◦ for the MSTM algorithm without rotation invariance.

number of rotation directions in the omnidirectional aggregated
feature vector. To determine the template size for each level
and select the best parameters, a comparison experiment was
conducted, and the results are shown in Fig. 10. According to
Fig. 10(a), the matching SR was higher at the highest-level
template size of 200 pixels and at the lowest-level template size
larger than 100 pixels. As shown in Fig. 10(b), the matching time
increased exponentially as the template size increased. Using
this analysis, we determined the highest-level template size J1
as 200 pixels and the lowest-level template size J2 as 100 pixels.
When a difficult-to-match image was encountered, the lowest
template size can be increased to 200 pixels.

To determine the number of directions in the all-directional
aggregated feature vector of the MSTM algorithm, we selected
a random set of image pairs in each of the six sets of data for
the test experiment. The results are shown in Fig. 11. One of the
images remained unchanged as we rotated the other image from
−90◦ to 90◦ to calculate the number of correct matching points
after the rotation. According to Fig. 11, the MSTM algorithm
without rotation invariance can adapt to the rotated image pairs
above and below ±15◦. The number of directions n was set
to 24. Theoretically, this parameter can be rotated in all the
directions.

C. Invariance Tests

Determining whether the template matching based on the
constructed feature description map is robust to NRD is im-
portant for template-based multimodal image matching. Ac-
cording to the analysis, rotation and scale differences are
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Fig. 12. NCMs of MSTM on different types of multisource remote sensing
scenes as the rotation angles from 0◦ to 359◦.

the most common differences; therefore, we designed ex-
periments to test whether the algorithm developed in this
study has better invariance from these two aspects and
whether the algorithm can handle various multimodal image
data.

1) Rotation Invariance: For image pairs without rotation
differences in the above dataset, one image was fixed, while
the other was rotated to test the algorithm’s ability to adapt
well to the rotation. The rotation angle ranged from 0◦ to 359◦

at 1◦ intervals, and 360 image pairs were generated for each
pair. The matching algorithm was then executed for each image
pair, and the NCMs of the corresponding datasets are plotted in
Fig. 12. The matching results for different rotation angles are
shown in Fig. 13. According to Fig. 12, the NCMs of all six
scenes vary with the rotation angle; however, they are stable
within a certain interval. No matching failure occurred at any
angle, which demonstrates that the algorithm proposed in this
study has exceptional rotational adaptability. As shown in Fig.
13, the matching results of this algorithm are sufficient to ac-
complish other functions such as image alignment for image
pairs with different rotation angles.

2) Scale Invariance: To test whether the algorithm adapts
well to images with certain scale differences, the same strategy
was used to fix one image in the image pair and scale the other
image. The scaling ratio was 1:2, and the interval was 0.2. Five
pairs of image pairs were generated for each pair of images. The
matching results are shown in Fig. 14. The algorithm could still
obtain accurate matching results even if the images had scale
differences. This is because of the multiscale matching strategy
used in the algorithm, which enhances the matching performance
for images with scale differences and can adapt to multimodal
image data with certain scale differences.

D. Matching Performance Test

1) Qualitative Evaluations: We selected one image pair from
each of the six multimodal datasets for testing, as illustrated in
Fig. 15. Among them, Fig. 15(a) and (e) contains translational
and small rotation variations, Fig. 15(b) and (d) contains only

Fig. 13. Some typical visualization results of Fig. 12. The angle below an
image represents the rotation angle between the image pairs.

translational variations, and Fig. 15(c) and (f) shows transla-
tional, small rotation, and scale variations. Because these image
pairs are multimodal image data from different imaging devices,
there is a significant NRD. Therefore, performing tests on these
image pairs is difficult. The matching results for CFOG, Ms-
HLMO, HAPCG, RIFT, SuperGlue, and the proposed MSTM
are plotted in Fig. 15.

The results showed that the CFOG algorithm could not suc-
cessfully match all the images, and its SR accuracy was 0.
Although the CFOG algorithm provides a pixel-by-pixel fea-
ture description with powerful feature description capability, its
requirement for initial reference control points leads to drastic
performance degradation in images with displacement, rota-
tion, and scale differences. The Ms-HLMO algorithm could not
match the second and third image pairs, and its SR accuracy
was 50%. The HAPCG algorithm could not match the first,
fifth, and sixth image pairs, and its SR accuracy was 50%.
Although the two image pairs failed to match, the performance
of the successfully matched image pairs was satisfactory. This is
because the HAPCG algorithm constructs an anisotropic scale
space and uses log-polar coordinates for the feature description,
which is more robust. The SuperGlue algorithm could not match
the third and fourth image pairs, achieving an SR accuracy of
66.6%. Although the SuperGlue algorithm uses a deep learning
approach that combines an attention mechanism and a graph
neural network, it has strong robustness for multimodal data.
However, because the training optical-depth dataset does not
contain multimodal data, the matching performance degrades
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Fig. 14. (a)–(d) Examples of feature matching results of scene with scale
differences. Matching results by MSTM with scale ratio of 1:2.

for some multimodal datasets. The RIFT algorithm could not
match the third image pair, achieving an SR accuracy of 83.3%.
Because the RIFT algorithm designs the MIM map based on the
PC map, it is more robust to NRD. In addition, it analyzes the
effect of rotation on the MIM and achieves the rotation invari-
ance of the feature description, which improves the algorithm
performance. Conversely, the MSTM algorithm proposed in this
study successfully matched all six image pairs with 100% SR
accuracy.

The MSTM outperformed the popular algorithms in terms
of matching on multimodal data because: 1) MSTM designs
the FDCM feature description map, which has better feature ro-
bustness than other algorithms and lays an important foundation
for subsequent matching, and 2) a multiscale matching strategy
was adopted, which makes the algorithm robust to multimodal
images and guarantees matching accuracy.

2) Quantitative Evaluations: Fig. 16 presents the quantita-
tive results for the NCMs and the results of the six methods on the
six multimodal datasets. The results demonstrate that the CFOG
algorithm outperforms the other methods on the optical-depth

TABLE I
COMPARISONS ON SR METRIC

dataset. This may be caused by the small difference in displace-
ment and scale between the depth and optical images, making
it possible to successfully match without the initial reference
control point. The Ms-HLMO algorithm performs relatively well
on all the datasets, and its stability is significantly enhanced
because of its construction of PMOM, the use of GGLOH de-
scriptors, and the adoption of a multiscale matching strategy. The
SuperGlue algorithm outperformed the other three algorithms on
the optical-depth dataset, probably because of its use of a combi-
nation of RGB images and depth data during training. However,
its performance on the optical-SAR dataset is not much different
from the other three algorithms because there is a significant
NRD between the SAR and optical images, which makes the
matching considerably more difficult. Because the gap between
this dataset and the training dataset of SuperGlue is the largest,
the training parameters of SuperGlue cannot be adapted to this
dataset. The HAPCG algorithm outperformed all the algorithms
on some datasets mainly because it uses anisotropic filtering
to nonlinearly diffuse the images and constructs an anisotropic
weighted moment scale space based on this. Then, the PC model
is extended to establish an absolute PC directional gradient and
is combined with a log-polar coordinate description template to
establish a kind of absolute phase directional gradient histogram,
which significantly enhances the robustness of the descriptor.
The relatively balanced performance of the RIFT algorithm
on all the datasets is because the RIFT algorithm designs the
MIM map based on the PC map, which makes it more robust
to NRD. In addition, it achieved rotational invariance of the
feature description, which improved the algorithm performance.
Conversely, the proposed MSTM successfully matched all the
images in the six datasets, and the NCMs for almost all the image
pairs were significantly larger than 250. The matching perfor-
mance of this algorithm is more stable and robust, with better
adaptability to NRD, and it outperformed the other algorithms.

As shown in Table I, the CFOG algorithm performs the
best on the optical-depth dataset with 90% SR, the Ms-HLMO
algorithm performs the worst on the optical-SAR dataset with
only 50% SR, the HAPCG algorithm achieves 100% SR on
several datasets, the SuperGlue algorithm performs the worst
on the optical-SAR dataset with only 70% SR, which is not
as good as the traditional algorithm, and the RIFT algorithm
performs well on all the datasets and can match successfully.
The SuperGlue algorithm had the worst performance on the
optical-SAR dataset, with only 70% SR, which is inferior to the
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Fig. 15. Qualitative comparison results on the sample data. The red and green circles in the figure indicate the feature points on the reference and target
images, respectively. (a) Matching results of optical-depth datasets. (b) Matching results of optical-infrared datasets. (c) Matching results of optical-SAR datasets.
(d) Matching results of optical–optical datasets. (e) Matching results of optical-map datasets. (f) Matching results of day–night datasets.

traditional algorithm; RIFT had a balanced performance on all
the datasets and could match successfully; the MSTM algorithm
had 100% SR on all the datasets. The average SRs of CFOG,
Ms-HLMO, HAPCG, SuperGlue, and RIFT for the six datasets
were 60%, 80%, 86.6%, 88.3%, and 98.3%, respectively. Com-
pared with the CFOG algorithm, the performance of the MSTM
algorithm was improved by 40%. Fig. 17 and Table II show
the RMSEs of the six methods for all the datasets. Only the
RMSEs of successfully matched images were counted because
of the low SR of some algorithms on some datasets. In terms
of RMSE, the accuracy of feature-based matching methods was
slightly lower, whereas the accuracy of both the HAPCG and
RIFT algorithms was lower than that of the CFOG and MSTM
algorithms. The CFOG algorithm, which is the multimodal
matching algorithm with the highest accuracy, maintained the
same RMSE accuracy as CFOG compared with the MSTM
algorithm and is slightly higher than the CFOG algorithm on
some datasets. This demonstrates that the MSTM algorithm
had the same RMSE accuracy as that of CFOG and slightly
higher than that of CFOG in some datasets, showing better
performance.

Combining the above qualitative and quantitative test results,
we can conclude that each part of the MSTM algorithm is de-
signed for NRD, including feature point extraction, a feature de-
scription map, template matching, omnidirectional aggregated
feature vectors, and a multiscale matching strategy. Therefore,
the algorithm has good adaptability to NRD. Exceptional NCM

and RMSE accuracies were obtained for all six datasets, exceed-
ing those of the other algorithms. This implies that the proposed
algorithm is a superior multimodal matching algorithm.

E. Registration Performance

In this section, we apply MSTM to image registration and
fusion. After image matching using MSTM and calculating
the transformation matrix, the two images were mapped to the
same reference frame to generate corrected images. The tests
were performed on six datasets, and the visualization results are
shown in Fig. 18. All the images were well aligned and fused
without displacement. The ghosting and blurring cases further
demonstrate that the MSTM algorithm achieves matching with
high accuracy and good distribution.

F. Running Time Analysis

Table III lists the average running time of each algorithm on
all the datasets. CFOG, Ms-HLMO, HAPCG, and RIFT were
computed using MATLAB 2021a, while SuperGlue and MSTM
were computed using Python. The graph shows that MSTM runs
slightly slower than CFOG and SuperGlue and is one-fifth of the
running time of HAPCG and RIFT. According to the analysis
of the algorithm principle, the HAPCG algorithm consumes
considerable time when constructing the nonlinear diffusion
scale space and generates high-dimensional feature vectors,
which requires a significant amount of time for subsequent
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Fig. 16. (a)–(f) Comparisons on the NCM metrics.

TABLE II
COMPARISON RESULTS OF THE MATCHING METHODS

Fig. 17. (a)–(f) Comparisons of the RMSE metrics. Note that the matching
failure cases are drawn onto the failed line.

TABLE III
COMPARISONS OF THE TIME METRIC

matching. The RIFT algorithm mainly consumes running time
when constructing the MIM graph and achieves the rotation
invariance of the MIM graph. Ms-HLMO consumes the most
time because the MSTM algorithm uses a multiscale matching
strategy, which makes its running time much longer than that of
the other algorithms. However, because the MSTM algorithm
reduces the dimensionality of the multidimensional feature de-
scription vector when constructing the feature description map,
it significantly reduces the search time of the template matching
window. Then, the matching result information searched in the
upper pyramid can be shared with the lower pyramid, and the
mapping relationship can be approximately obtained, which also
saves considerable time. The MSTM with rotation invariance
requires more time to generate the omnidirectional aggregated
feature vector than CFOG and SuperGlue.
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Fig. 18. Image registration and fusion results of MSTM on the multimodal image pairs. (a) Registration results of optical-depth datasets. (b) Registration results of
optical-infrared datasets. (c) Registration results of optical-map datasets. (d) Registration results of optical–optical datasets. (e) Registration results of optical-SAR
datasets. (f) Registration results of day–night datasets.

V. CONCLUSION

In this study, a stencil matching method we call MSTM with
better robustness to NRD was proposed. The method adapted to
multimodal image data with displacement and scale transforma-
tion better. The initial motivation of MSTM originated from the
advantages of stencil matching in multimodal matching. After
analyzing and summarizing the advantages and disadvantages
of the existing mainstream methods, the MSTM algorithm was
described in detail. We developed a novel FDCM with better
robustness to NRD feature description and rotation-invariant
and multiscale matching strategies for stencil matching, which

significantly improved the adaptability of stencil matching to
multimodal image data. Qualitative and quantitative experi-
ments were conducted to verify the reliability and superiority
of the MSTM algorithm.

At the same time, the MSTM algorithm is not particularly
effective on images with both the rotation and zoom states, and
in the future, we will look at how to make MSTM work better
in this regard. We intend to develop a direction index map based
on the FDCM to achieve rotation invariance, which can reduce
the time required for matching. In addition, template matching
will lead to the situation that some areas at the edges cannot
participate in matching, and we will try other ways to solve this
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problem and make the edge areas match better. The algorithm
will play an important role in multimodal image fusion and land
classification.
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