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MDFF: A Method for Fine-Grained UFZ Mapping
With Multimodal Geographic Data and

Deep Network
Song Ouyang , Shihong Du , Xiuyuan Zhang , Shouhang Du , and Lubin Bai

Abstract—As basic units of urban areas, urban functional zones
(UFZs) are fundamental to urban planning, management, and
renewal. UFZs are mainly determined by human activities, eco-
nomic behaviors, and geographical factors, but existing methods
1) do not fully use multimodal geographic data owing to a lack of
semantic modeling and feature fusion of geographic objects and
2) are composed of multiple stages, which lead to the accumulation
of errors through multiple stages and increase the mapping com-
plexity. Accordingly, this study designs a multimodal data fusion
framework (MDFF) to map fine-grained UFZs end-to-end, which
effectively integrates very-high-resolution remote sensing images
and social sensing data. The MDFF extracts physical attributes
from remote sensing images and models socioeconomic semantics
of geographic objects from social sensing data, and then fuses mul-
timodal information to classify UFZs where object semantics guide
the fine-grained classification. Experimental results in Beijing and
Shanghai, two major cities of China, show that the MDFF greatly
improves the quality of UFZ mapping with the accuracy about
5% higher than state-of-the-art methods. The proposed method
significantly reduces the complexity of UFZ mapping to complete
the urban structure analysis conveniently.

Index Terms—Deep learning, image classification, multimodal
geographic data fusion, remote sensing, urban functional zone
(UFZ) mapping.

I. INTRODUCTION

URBAN functional zones (UFZs) are spatially represented
by zones with the same social functions, such as com-

mercial, residential, and industrial zones [1]. UFZs are often
employed as basic units to analyze urban spatial structures
and social characteristics [2], which have become increasingly
crucial for urban planning [3], [4], e.g., transportation planning,
factory relocation, environmental protection, and sustainable
development [5], [7]. However, fine-grained UFZ maps with
large areas are hardly available [8] due to 1) the lack of methods
for fine-grained UFZ mapping and 2) unreliable interpretation
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of UFZs. The rapid development of urbanization and economy
has brought a huge demand for timely updating UFZ maps.
Therefore, urban studies urgently need to break through the
existing difficulties to obtain large-scale and fine-grained UFZ
maps that keep up with the pace of urban development in a timely
and accurate manner [9].

As functions of urban zones are mainly determined by human
activities, economic behaviors, and geographical factors, UFZs
present complex physical structures and socioeconomic prop-
erties, which makes the UFZ mapping full of challenges. With
the development of earth observation technologies, lots of high-
quality remote sensing (RS) images are produced, especially
for very-high-resolution satellite images (VHR) which hold
advantages in representing UFZs, because of the large spatial
coverage, detailed information, and wide availability [10], [11].
However, it is a challenge to accurately and reliably interpret
UFZs relying on a single source data. For example, with only
the satellite image (see Fig. 1), it is difficult to decide whether the
blue area in (a) is a residential or a commercial area and which
category the shadow area of (b) belongs to, because UFZs are
not only related to physical attributes, but also to socioeconomic
attributes.

There have been substantial multimodal geographic data to
represent UFZs, such as image data (VHR, synthetic aperture
radar images, nightlight images, etc.) and social sensing data
(e.g., points of interest, mobile signal data, social media data),
which constitute complementary information sources [12]. RS
images provide pixel-level characteristics but lack information
on the characterization of geographic objects, while social
sensing data contain socioeconomic attributes and correlations
of geographic objects. Therefore, these two types of data are
complementary. Comprehensive utilization of multimodal infor-
mation can help to reduce the uncertainty of interpretation. With
socioeconomic properties of points of interest (POIs) attached
to the satellite image in Fig. 1, the blue area in (a) and the
shadow area in (b) are easily assigned as the commercial and the
transport, respectively. However, existing studies do not full fuse
multimodal semantics to assist the classification and are complex
for multistage processes, which significantly limits the quality
and reliability of UFZ mapping. To map fine-grained UFZs
end-to-end with multimodal data, three challenging issues must
be resolved, i.e., multimodal feature representation, multimodal
feature fusion, and urban-function classification.
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Fig. 1. Examples of interpreting UFZs in satellite images.

A. Multimodal Feature Representation

Appearance features extracted from images, such as spec-
trums, textures, and geometry, are adopted in the early land cover
and urban function classification [13], [14], [15]. These features
are shallow-level features because of their weak expressiveness
and robustness. For better discrimination, middle-level cues are
generated from shallow-level features by the developed meth-
ods such as the principal component analysis, the probability
latent semantic analysis, the support vector machine, and the
latent Dirichlet allocation [16], [19]. With the rapid progress
of deep learning, convolutional neural networks (CNNs) have
great advantages in extracting deep-level features from images
for their powerful learning ability [20], [21], [22]. Zhou et al.
[23] employed a trained CNN to assign functional attributes with
RS images. Therefore, deep features from CNNs can effectively
characterize UFZs’ physical properties. Unlike RS images, so-
cial sensing data contain socioeconomic semantics which are
important for UFZ interpretation. However, socioeconomic se-
mantics are difficult to extract due to discrete arrangement of
social sensing data and the lack of modeling methods. Existing
studies mainly used social sensing data as training labels of
classifiers, samples for accuracy evaluation, or shallow-level
features [24], [25]. It not only failed to mine the high-level
information of social sensing data, but also discarded semantic
relationships between objects. Thus, there is an urgent need for
a modeling approach within social sensing data to extract UFZs’
socioeconomic semantics.

B. Multimodal Feature Fusion

It is challenging to fuse multimodal features especially for
RS images and social sensing data as these two types of data are
arranged in completely different ways. The fusion methods are
divided into two types: the pixel-wise overlay approaches and

the object-based methods [27]. The former directly concatenates
images and the density maps of social sensing data pixel by
pixel. Some studies follow this way [28], but these pixel-wise
approaches only fuse at the pixel level and lose the object se-
mantics [29], [30]. The latter extracts attributes of social sensing
data to characterize objects for classifiers [31], [32]. Based on
the units of road blocks, Zhang et al. [12] calculated discrete
features from POIs and social media data, then combined them
with spectral attributes to map land uses. Du et al. [24] merged
spectral features and semantic features at the object level for
large-scale UFZ mapping. However, existing methods mainly
fuse features at a single scale (pixel scale or object scale), and
shallow fusion at the attribute level rather than semantic level
cannot mine objects’ semantic information from multimodal
geographic data. The pixel-wise approaches provide detailed
features in pixel space, and the object-based methods are suit-
able for expressing object semantics [33]. Therefore, integrating
information at both pixel and object levels to characterize UFZs
is critical for UFZ mapping. Therefore, it is urgent to develop
fusion methods that consider joint features and the high-level
semantics of multimodal geographic data under the two levels
[34], [35], [36].

C. Urban-Function Classification

Due to its importance to urban space planning, urban-function
classification has attracted considerable attention in the past
decade [9]. On one hand, RS images and social sensing data are
employed to map UFZs in early attempts. However, multimodal
geographic data were not fully utilized in UFZ mapping due to
the insufficient feature expression. On the other hand, each UFZ
is composed of geographic objects [37], such as the commercial
zone in Fig. 1(a) including buildings and roads. Therefore, it
has become the mainstream method that segments land cover
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Fig. 2. Workflow of the proposed MDFF.

objects at first and then aggregates them into UFZs. In the hier-
archical semantic cognition model [12], objects in the model are
segmented with the multiresolution segmentation method [38],
and then developed the inverse hierarchical semantic cognition
model for refining the results at the land-cover layer [39]. Du
et al. [9] designed a CNN to extract pixel-wised predictions for
initializing UFZ categories of geographic objects, then used the
conditional random field with road block constraints to regroup
the objects into the fine-grained UFZ map. In general, these
methods are multi-stage. The lack of the end-to-end mechanism
leads to the accumulation of errors from different stages and
increases the complexity of UFZ mapping. Therefore, it is
necessary to develop an end-to-end method to interpret UFZs
with multimodal geographic data.

In summary, existing studies have three limitations. First,
making no full use of multimodal geographic data, i.e., insuffi-
cient expression of image features and the lack of socioeconomic
semantic modeling of social sensing data, results in failing
to interpret UFZs accurately and reliably. Second, the feature
fusion of multimodal geographic data is still at the shallow
level rather than the semantic level, which limits the semantic
representation of UFZs. Third, existing UFZ mapping methods
are multi-stage, e.g., CNN + postprocessing. There is a lack
of methods fusing multimodal geographic data to map UFZs
end-to-end. To solve these issues, this study designs a multi-
modal data fusion framework (MDFF) to map fine-grained UFZs
end-to-end, which organically integrates multimodal geographic
data, i.e., RS images and social sensing data. The MDFF learns
the deep features from images at the pixel scale and models

socioeconomic semantics of UFZs with social sensing data at
the object scale. With the designed deep feature fusion module,
the MDFF fuses multimodal features at both pixel- and object
scales to take advantage of the two scales in expressing detailed
features and object semantics for UFZs. The training or opera-
tion of the MDFF is completed in one step. The following three
contributions have been made in this study.

1) A method (MDFF) fusing multimodal geographic data is
proposed for mapping fine-grained UFZs end-to-end. It
automatically learns physical attributes from RS images
and models socioeconomic semantics from social sensing
data.

2) The MDFF fuses multimodal information both at pixel-
and object scale with two fusion modules [i.e., the image
feature to graph feature (IF2GF) and the graph feature to
image feature (GF2IF) in Section II-B] for learning urban
semantics where object semantics guide the fine-grained
UFZ mapping.

3) Experiments conducting on two typical modal data, i.e.,
RS images and social sensing data, show that the MDFF
can significantly improve the quality of UFZ mapping and
reduce the complexity of UFZ mapping.

II. METHODOLOGY

A. Overview

Fig. 2 illustrates the workflow of the proposed MDFF.
1) Multimodal feature extraction: In the MDFF, the pixel-

based module extracts deep features from RS images,
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which provides detailed information for fine-grained map-
ping, while the object-based module generates character-
istics of objects from social sensing data, which models
semantics relationships between objects within UFZs.

2) Multimodal feature fusion: With the proposed feature fu-
sion modules, i.e., the IF2GF and the GF2IF, the pixel-wise
deep features and the object-wise semantic characteristics
are fused at pixel and object scales. Integrating multimodal
information under the “pixel-object-UFZ” semantic hi-
erarchy is critical for mapping fine-grained UFZs and
improving the reliability of the interpretation.

3) UFZ mapping: The MDFF is trained end-to-end with pixel
samples and object samples, where the pixel samples are
collected manually in the form of polygons, and the object
samples are generated with the first category of POI data
and the pixel samples. After the training, the MDFF is
exploited to map UFZs with multimodal geographic data
in the study area.

B. Multimodal Feature Extraction

In this Big Data era, image and social sensing data are
important components of multimodal geographic data. They
bring rich information for eliminating the uncertainty of the
interpretation. The former provides pixel-level characteristics,
while the latter contains socioeconomic properties of and mutual
relationships between objects. Images and social sensing data
need to be processed separately to obtain representative features
because of their different characteristics. The MDFF is proposed
to take full advantage of RS images and social sensing data.
Therefore, the pixel-based module and the object-based module
are designed in the MDFF to extract multimodal features. Each
UFZ is composed of objects and pixels constitutes each object.
Pixel-scale features and object-scale features are exploited to
characterize UFZs in physical and socioeconomic terms.

1) Pixel-Based Module: The pixel-based module is designed
to learn image features, which consists of an encoder and a de-
coder. The encoder extracts deep features from RS images with
the stacked layers. Each layer is composed of the convolution
and the pooling operations. The convolution scans the image
step by step and generates feature representations of a local
region in each step. The pooling expands the receptive field
of the network to reduce information redundancy and obtain
global information. The deep features with abstract expression
are generated through the stacked layers. fe

i denotes the ith layer
feature from the encoder function ϕe

i which is composed of
the convolution Conv(·) and the pooling Pool(·). we

i and bei ,
which are learnable parameters, represent weights and bias of
the convolution kernel of ϕe

i

fe
i+1 = ϕe

i (we
i · fe

i + bei ) (1)

ϕe
i = Pool (Conv (·)) . (2)

The encoder reduces the size of the features with the convolu-
tion and the pooling operations. The features are too small to hold
fine-grained information, which hardly meets the requirements
of intensive prediction tasks (e.g., UFZ mapping). Therefore, the
features are enlarged to the original size with the upsampling of

the decoder. The decoder function ϕd
j generates the jth layer

feature fd
j . ϕd

j consists of the convolution Conv(·) and the
upsampling Ups(·) with the learnable parameters wd

j and bdj

fd
j+1 = ϕd

j

(
wd

j · fd
j + bdj

)
(3)

ϕd
j = Conv (Ups (·)) . (4)

2) Object-Based Module: UFZs are aggregated from objects
and the compositional patterns of objects affect the categories of
UFZs [40]. To construct the graph, image objects are regarded as
the graph nodes and the spatial relationships between objects as
the graph edges. In this way, the object compositional patterns
of UFZs are modeled in the form of the graph. The objects are
characterized with object features ( fo = [f sp, f t, fg, fs])
in Table I. Spectral features (f sp), textural features (f t), and
geometrical features (fg) have been widely used to measure
objects from different aspects in most object-based image anal-
yses [25]. Features from social sensing data present the com-
position of socioeconomic attributes of UFZs, as social sensing
data are closely related to socioeconomic activities. The vector
fs = [fs

poi, f
s
sm, f

s
ms] is used to express primary semantics of

each object, wheref s
poi,f

s
sm, andfs

ms denote features from POIs,
social media data, and mobile signal data, respectively. POIs and
social media data are generated by socioeconomic activities,
which contain socioeconomic semantics. Mobile signal data
reflect the flow of urban population and is closely related to
socioeconomic activities. Therefore, these three kinds of social
sensing data are selected to extract socioeconomic semantics for
UFZ mapping. fs

poi = [fs
density, f

s
1 , f

s
2 , . . . , f

s
c ], where c denotes

the second category of POIs and fs
i represents the proportion of

the ith category within an object. Similarly, fs
sm can be obtained

from social media data. The average population mobility of
objects constitutes fs

ms.
We first segment RS images into image objects using multires-

olution segmentation method [38]. Then, object features fo
i in

Table I and deep features fd
j are adopted to characterize objects.

The feature vector of each node is xn = [fo
1 , f

o
2 , . . . , f

o
m, fd

j ]

and the graph feature is denoted as X = [x1,x2, . . . ,xN ]T ∈
RK×D, where N is the number of the nodes and D is the
dimension of xk. Finally, the first-order adjacency relationships
(with common edge) between objects are adopted as graph edges
to take the topological spatial relationship into consideration.
The adjacency matrix A ∈ RN×N quantifies the graph edges
where the strength of each edge is determined by the spectral
similarity and the spatial location of objects. The connecting
edge between node vi and node vj has the weight aij ∈ A. if vi
is adjacent to vj , aij = exp(−‖labi−labj‖

σ2
w

), otherwise, aij = 0.
lab denotes the average color value of the node in the CIE LAB
color space and σ2

w controls the range of the weight.
Graph convolution has powerful ability in modeling semantic

relationships of discrete objects. Thus, the object-based module
is designed with the graph convolution to extract socioeconomic
semantics from social sensing data and its structure is shown in
Table II. This module is a hierarchical network with L layers
(L = 3). Each layer consists of a graph convolution function
and a nonlinear activation function.
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TABLE I
OBJECT FEATURES FROM IMAGES AND POI

TABLE II
LAYER STRUCTURE OF THE OBJECT-BASED MODULE

The object-based module implements the graph convolution
[41] to extract objects’ features X . X(l) is the feature from the
lth layer of the graphic neural network (GNN). After the graph
convolution, new features X(l+1) are activated by the nonlinear
activation function σ. The core idea of the graph convolution
is that graph nodes with edge connections are aggregated for
generating new representations of the nodes where semantic
information flows between the nodes with edge connections, so
the object-based module can model the semantic relationships
between image objects and build the spatial object patterns
of UFZs. On the other hand, graph nodes have the socioeco-
nomic features from POI data, thus the object-based module

can learn both the socioeconomic attributes and relationships
within X(l+1) to restore the real state of UFZs

X(l+1) = σ
(
LGX

(l)W (l)
)

(5)

Ã = A+ I (6)

LG = D̃
− 1

2 ÃD̃
− 1

2 (7)

where W and LG are the Laplacian matrix and the learnable
parameters, respectively, I is the identity matrix and D̃ is the
degree matrix of Ã.

C. Multimodal Feature Fusion

Features from images are pixel-regular and vision-related,
while graph features from social sensing data are discrete and
semantic-related, thus different modalities of features make it
difficult to fuse these two kinds of features. One solution is to
transform the form of the two kinds of features. Therefore, the
IF2GF and the GF2IF are designed to conduct this task in the
MDFF (see Fig. 3).

Due to the gradient vanishing [42], GNNs are usually limited
to shallow layers, which restricts GNN’s performance in feature
learning. Therefore, the deep features from the pixel-based
module’s decoder are transformed by the IF2GF and then added
to the GNN-base module (see Fig. 3), which helps GNN focus
on modeling semantic relationships. In the IF2GF, deep features
fd
1 are transformed to graph features fg

1 with the transforming
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Fig. 3. Multimodal feature fusion and network training of the proposed MDFF.

functionT 1. Within each object (the addressing functionA), the
average value on each channel of the deep features is taken as the
graph feature (the assignment function S). In the object-based
module, the graph features and the attribute features presented
in Table II are concatenated together at object scale, and are used
as the features of graph nodes

fg
1 = T 1

(
fd
1

)
(8)

T 1 = S (A (Mean (·))) . (9)

The object-based module outputs graph features fg
2. In the

GF2IF, the graph features are transformed to image features fd
2

with the transforming function T 2, where the pixels in each
object are assigned the same features from the graph feature
of the object. Then, the GF2IF aligns the graph features with
the deep features pixel to pixel. To adjust value distribution of
features, the transformed features are input into a module Con
with a convolution layer (3 × 3 kernel, 1 stride, and 1 padding),
a BatchNorm layer, and a ReLU activation function. Then, both
the transformed features and the deep features are concatenated
together at the pixel scale, where the graph features provide
additional semantics of socioeconomic relationships for the UFZ
mapping

fd
2 = T 2 (fg

2) (10)

T 2 = Con (S (A (·))) . (11)

The deep features provide detailed features in pixel space,
while the graph features contain object semantics and relation-
ships. With the feature fusion modules, i.e., the IF2GF and
the GF2IF, the deep feature and the graph feature are fused
at both the object and the pixel scales successively, which
further help to improve features’ expressiveness in depth or
semantics and generate richer and more comprehensive features
for UFZs. Therefore, multimodal information is integrated for
better details and semantics to interpret UFZs.

D. UFZ Mapping

1) Study Area and Data Collection: The two largest and most
famous cities in China, Beijing and Shanghai, are chosen in this
study. Beijing (see Fig. 4) is the capital of China and Shanghai is
the economic center of China. Beijing and Shanghai are rapidly
developing at a high urbanization level and contains diverse
archaic and modern urban zones. The evolution of UFZs is cru-
cial for revealing urban sustainable development. UFZ maps are
produced in the study area (within the fifth ring road of Beijing

Fig. 4. Study areas in Beijing and Shanghai.

TABLE III
CATEGORY SYSTEM

and the outer ring road of Shanghai, main urban area of Beijing
and Shanghai) with the proposed method. For image data, the
level-3 VHR satellite image (see Fig. 4) from ArcGIS World
Imagery in 2019 is used as the experimental area, which cover
667 km2 of Beijing and 664 km2 of Shanghai with the spatial
resolution of 2.4 m and the RGB band. As shown in Table III,
the class system proposed in the paper [9] is adopted to map
UFZs in this study. As there are no woodlands and farmlands in
the main urban area of Beijing and Shanghai, the two categories
are removed. The Residential-1 and the Residential-2 zones are
merged into one class, Residential area, because of their similar
functions.

Social sensing data are common in cities and easily accessible.
It reflects socioeconomic attributes which are closely related to
UFZs. POIs, mobile signal data, and social media data are typical
social sensing data. Take POIs as an example, it is discrete and
irregularly arranged in the geospatial space (see Figs. 5 and 6).

a) POIs: About 267 000 POIs of Beijing and 356 000 POIs
of Shanghai are adopted in this study. The categories of POIs
are divided into two levels: the first category and the second
category (see Table IV). The POIs are labeled with six categories,
i.e., commercial points (55.8% of Beijing), residential points
(20.6%), shantytown points (3.1%), institutional points (11.4%),
industrial points (8.6%), and urban green points (0.5%). There
is a large class imbalance within the POI categories because of
the POI’s correlation with socioeconomic activities.

b) Mobile signal data: The data record the spatial loca-
tions of the mobile phone users when exchanging information



OUYANG et al.: MDFF: A METHOD FOR FINEGRAINED UFZ MAPPING WITH MULTIMODAL GEOGRAPHIC DATA AND DEEP NETWORK 9957

Fig. 5. UFZ samples (a) and POIs (b) of Beijing. (c)–(f) Detailed illustrations
of four sub-regions.

Fig. 6. UFZ samples (a) and POIs (b) of Shanghai. (c)–(f) Detailed illustrations
of four sub-regions.

with the base station. It presents the spatial and temporal flow
of people’s movement on a large scale. The base stations are
distributed in the grid of 500 m × 300 m. Within a base station,
local population, working population, residential population,
flow population, and transit population are recorded, which are
closely related to socioeconomic activities. This study adopts
mobile signal data in Beijing and Shanghai from January to
February 2020 (33 days in total).

c) Social media data: The data are obtained from the web
of Dianping, showing commercial activities of merchants which
are divided into 15 categories (see Table IV). About 268 000
records of Beijing and 688 000 records of Shanghai are used to
extract socioeconomic attributes of UFZs.

The MDFF is trained end-to-end with both pixel and object
samples. In the MDFF, pixel samples guide the pixel-based
module to extract deep vision features and the object samples
help the object-based module to learn semantic features for
reliable UFZ mapping. Pixel samples of UFZs are manually
selected in polygonal form, and polygons are labeled according

TABLE IV
CATEGORIES OF POIS AND SOCIAL MEDIA DATA

to the new class system (see Figs. 5 and 6). These samples
are randomly divided into three parts with the ratio of 8:1:1.
Then, 80% samples are exploited for training the MDFF, 10%
for evaluation, and 10% for test. By the proposed method in
Section II-C.2, the object samples are automatically generated
with the first category of POI data and the pixel samples.

2) Generating Object Samples: Categories of objects are
required for supervising the MDFF to learn graph features.
Objects (graph nodes) can be described by its main attributes.
Therefore, we count POIs in each object and assign the most
frequent class of POIs as the category of the object. However,
POIs are distributed unevenly in space as shown in Figs. 5 and 6.
Categories of objects without POIs are unknown. In addition,
categories of objects may be incorrect as there is a large class
imbalance in POI data. Incorrect samples will seriously affect
the learning process of deep networks. Thus, object samples
must be optimized. Pixel samples are the true label of the real
world and thus can be used to optimize the object samples. If
a graph object intersects with a sample polygon by more than
50%, its category will be changed to the category of the polygon;
otherwise, its category will be maintained.

As described above, object samples need to be optimized
by pixel samples. As the example shown in Fig. 7, the white
circle areas in (b) are corrected in (c) with true labels of (a) and
object samples become better in (c), which means the object
samples have been optimized. The better samples will facilitate
the network to learn more discriminative feature representations.

3) Generating UFZ Maps End-to-End: UFZs are the results
of urbanization and are closely related to human activities,
economic behaviors, and geographical factors. Meanwhile, land
covers constitute UFZs in RS images. As a result, physical
features and semantic cues are critical for mapping UFZs. The
multimodal features from images and social sensing data are
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Fig. 7. Examples of optimizing object samples with pixel samples. (a) Pixel
samples and POIs. (b) Object samples generated from POIs where the areas of
each object is shown with its class. (c) is object samples optimized from (b) with
the image polygon sample of (a).

more helpful for the interpretation. In the MDFF, the fused
multimodal features from Section II-C are input into the last
convolution layer (3 × 3 kernel, 1 stride, and 1 padding) to
output the confidence map. The UFZ map is generated from
the confidence map according to the maximum confidence.
Losspixel and Lossobject are calculated by the cross-entropy loss
function with pixel samples and object samples, respectively.
The MDFF is trained end-to-end with the total loss Losstotal

which is composed of the pixel- and the object-based losses
(see Fig. 3)

Losstotal = Losspixel + Lossobject (12)

Losspixel = −
w∑

i = 1

h∑
j = 1

n∑
c = 1

ycij log
(
pcij

)
(13)

Lossobject = −
k∑

k = 1

n∑
c = 1

ycklog (pck) . (14)

The feature map has width of w and height of h. There are
c categories that the pixel (i, j) or the object k belongs to.
Prediction from the forward propagation of network is Yij ∈ Y ,
if Yij = c, then ycij = 1, otherwise, ycij = 0.

III. EXPERIMENTS

A. Implementation Details and Evaluation Metrics

As the nodes in the graph, image objects are segmented from
RS images using the multiresolution segmentation method [38]
with the multiple scale of 60. The multiresolution segmentation
algorithm is a commonly used image processing technique that
can obtain more comprehensive and accurate segmentation re-
sults by processing images at different scales. The basic principle
is achieved through steps of scale transformation, segmentation
algorithms, and scale fusion. For multimodal feature represen-
tation, the advanced deep network DeepLab v3+ [43] is used as
the baseline and its backbone is adopted as the backbone of the
pixel-based module to extract deep features from images, and
the object-based module with three layers (L = 3) is designed
for social sensing data modeling. The RS image and training
polygon labels are clipped into samples with size of 512 × 512
in the step of 256 pixels, where each sample has a clipped
image and the corresponding label. After preparation of data,
the proposed MDFF is trained with the learning rate, the batch
size, and the epoch being 0.0001, 4, and 150, respectively. The

stochastic gradient descent method (SGD) and the cross entropy
are adopted as the optimizer and the loss function, respectively.

In this article, the overall accuracy (OA), the intersection over
union (IoU ), the mean intersection over union (MIoU ) and
the frequency weighted intersection over union (FWIoU ) are
adopted as the evaluation metrics. IoU , MIoU, and FWIoU
are classic metrics, which are often used to validate intensive
predictions such as semantic segmentation

OA = (TP + TN)/(TP + FP + TN + FN) (15)

IoUi =
TPi

TPi + FPi + FNi
, i = 1, 2, . . . , n (16)

MIoU =
1

n

n∑
1

IoUi, i = 1, 2, . . . , n (17)

FWIoU =

n∑
1

(
IoUi · TPi + FNi

TPi + FPi +TNi + FNi

)
(18)

where TP, TN, FP, and FN refer to the number of true positive
points, true negative points, false positive points, and false
negative points, respectively, and n is the number of classes.

B. Classification Accuracy of UFZ

The comparative experiments are set up to verify the ef-
fectiveness of the proposed MDFF. As the MDFF makes full
use of UFZs’ physical and socioeconomic information from
multimodal geographic data, thus the MDFF is significantly
better than the baseline (see Tables V–VIII), which demonstrates
the advance of the proposed method. The MDFF has the reliable
performance in classifying complex UFZs, e.g., commercial,
institutional, and residential zones, as there are many POIs in
these UFZs. It illustrates that the representation and the fusion
of multimodal information improve the discriminative ability
of the network. From the results of the third and the fourth
rows, the MDFF performs better as it has learned the better
features with the optimized labels. In addition, when trained
with the Graph Loss, the MDFF achieves the better accuracy,
which shows that the Graph Loss assists the MDFF to make full
use of social sensing data. Therefore, the accurate label and the
loss constraint guides the learning process of the graph model.
With the Graph Label-OP and the Graph Loss, the MDFF obtains
the best accuracy in OA, MIoU, and FWIoU.

C. UFZ Mapping Results

Figs. 8 and 9 show the final UFZ maps of Beijing and Shang-
hai, respectively, which is produced by the proposed MDFF with
the Graph Label-OP and the Graph Loss. There are different UFZ
categories: commercial, institutional, urban green, industrial,
residential, shantytown, undeveloped, and transport.

In Beijing, it is shown in the UFZ map those large areas
of commercial zones are in the city center. Institutional zones
are mainly clustered in the center and northwest of the city
for the distribution of government departments and campuses.
Industrial zones and urban-green zones are located on the urban
outskirts, which reflects the distribution of highly urbanized
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TABLE V
OA (%) OF THE UFZ MAPPING OF BEIJING

TABLE VI
OA (%) OF THE UFZ MAPPING OF SHANGHAI

TABLE VII
IOU (%) OF THE UFZ MAPPING OF BEIJING

TABLE VIII
IOU (%) OF THE UFZ MAPPING OF SHANGHAI

areas. In addition, shantytown zones cluster in the urban center
because of the historical legacy (Hutong). Hutong is the unique
building of Beijing.

Shanghai is the economic center of China, with a highly
developed economy. Commercial zones are mainly clustered in
the urban center in Shanghai. In addition, Shanghai’s industry
is highly developed, especially the automobile industry and the
semiconductor industry. It is shown in Fig. 9 that there are many
industrial zones in Shanghai. Same with Beijing, shantytown

zones in Shanghai cluster in the urban center for the historical
legacy.

To evaluate the fine-grained UFZ mapping of the MDFF,
the detailed UFZ maps of eight areas in Beijing and Shanghai
are shown in Figs. 10(a)–(h) and 11(a)–(h), respectively. These
maps overlap on the original RS images with 40% transparency.
The proposed MDFF interprets multimodal geographic data
accurately and achieves good performance in classify UFZs,
especially for commercial, residential, institutional, industrial,



9960 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 8. UFZ map of Beijing.

Fig. 9. UFZ map of Shanghai.

shantytown, urban green, and water. The classification results
match well the real status of UFZs.

D. Urban Functional Structure Analysis

The urban functional structures reflect the development status
of cities [44]. Proportions of diverse UFZs in the main urban area
of Beijing and Shanghai are calculated from the UFZ results of
the proposed MDFF. As shown in Fig. 12, residential districts of

the two city have the largest proportion about 30%. This is a nor-
mal phenomenon in big cities, because the population brought by
urbanization requires many dwellings to carry. As the capital of
China, Beijing is the political and cultural center of China, where
there are many government agencies and research institutes
(12% institutional zones). As the economic center of China,
Shanghai has the thriving economy reflected by the commercial
zones with 11%. The proportion of transport shows that ground
transportation of the two city is well developed. However, urban
greening rate (15% of Beijing and 13% of Shanghai) needs to
be improved. In addition, there is 7% undeveloped area left
in Beijing for further construction. Industrial zones are mainly
distributed in the suburbs, so there are few industrial zones in the
urban area. Due to the developed automobile and semiconductor
industries in Shanghai, Shanghai has more industrial zones than
Beijing in downtown. As a legacy of history, shanty towns still
account for 5% in Beijing and Shanghai.

IV. DISCUSSIONS

A. Comparing With Existing Methods

Some representative studies for mapping UFZs are listed in
Table IX, such as traditional methods based on image tiles and
blocks [8], [44], [45], hierarchical semantic cognition models
[25], [39], and CNN-based approaches [9], [46]. Although the
adopted evaluation methods are different, these studies are more
likely consistent in the study area for comparison. Traditional
methods are often limited because of insufficient feature repre-
sentation. The CNN-based methods have obvious advantages
in UFZ mapping. Du et al. [9] designed a CNN for feature
extraction and adopted the conditional random field to regroup
objects for the large-scale and fine-grained UFZ maps. These
methods achieve good performance but still have limitations:
1) multimodal geographic data are not fused to eliminate un-
certainty of the interpretation, and 2) the two-stage methods
(CNN + postprocessing) are not the end-to-end mechanism,
which increases the complexity of interpretation and can lead
to accumulation of classification errors. The proposed MDFF
overcomes the above limitations and improves the accuracy
(about 5% in OA) and reliability of UFZ mapping.

B. Advantages of Fusing Multimodal Geographic Data

Data-driven learning strategies are often unstable, which
makes deep networks susceptible to noise, especially for RS
images. The complex spectrum and spatial structure greatly in-
crease the uncertainty of classification. Multimodal geographic
data contain information (e.g., physical, and socioeconomic in-
formation) obtained from different perspectives, which can give
the classifier more discriminative basis to enhance the reliability
of the classification. With all the multimodal geographic data
shown in Tables X and XI, the best classification accuracy is
achieved (about 3% higher than that of single modality with
images, Tables X and XI), and POIs are more important than
mobile signal data and social media data in UFZ mapping, be-
cause POIs are more closely related to socioeconomic semantics
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Fig. 10. Detailed UFZ maps of eight areas in Beijing.

of UFZs. In addition, mobile signal data and social media data
are sparser, resulting in local lack of semantics.

However, effectively fusing multimodal geographic data and
features at the high level is difficult due to the different distribu-
tions and structures of the data. In the MDFF, two feature fusion
structures are designed to fuse image data and social sensing
data at pixel scale and object scale. The MDFF effectively fuses
multimodal geographic data and generates accurate and reliable
classification results. Compared with (a) and (b) in Fig. 13, the
UFZ results from the MDFF with images and social sensing data
are more refined and accurate. The detailed results of (c) and (d)
shows that the MDFF accurately identifies UFZs, especially in
commercial, shantytown, industrial, water, transport. As shown
in the red circles of (c) and (d), the MDFF corrects misclassifi-
cations with the help of socioeconomic semantics of UFZs from

POI data, which demonstrates the effectiveness of multimodal
geographic data fusion.

C. How to Select Multimodal Geographic Data for UFZ
Mapping

RS images carry the spectral and spatial properties of ground
objects, which characterize UFZs in detail. In addition, RS
images hold advantages in representing UFZs, because of the
large spatial coverage and wide availability. UFZs are closely re-
lated to socioeconomic activities, thus socioeconomic attributes
are very important for UFZ mapping. Socioeconomic semantics
from social sensing data are helpful for interpreting UFZs. Three
typical social sensing data, i.e., POIs, mobile signal data, and
social media data, have different characteristics. POIs record
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Fig. 11. Detailed UFZ maps of eight areas in Shanghai.

Fig. 12. Proportions of diverse UFZs. (a) For Beijing and (b) for Shanghai.

the semantics of various subjects in socioeconomic activities,
while social media data generally provide static information for a
single subject and mobile signal data present the spatiotemporal
flow of people’s movement. Therefore, POIs provide richer and
more representative socioeconomic semantics. RS images and
the three typical social sensing data are selected for experi-
ments. Experimental results in Tables X and XI show that RS
images contribute the most to the interpretation of UFZs, which
demonstrates that RS images are essential to the interpretation.
In addition, it can be seen from Tables X and XI that POIs are
more important than mobile signal data and social media data
for UFZ mapping. In general, RS images and POIs are vital to
the high-precision mapping of UFZs.
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TABLE IX
COMPARISONS WITH EXISTING STUDIES

TABLE X
UFZ MAPPING ACCURACY (%) OF THE MDFF UNDER DIFFERENT DATA

CONFIGURATIONS IN BEIJING

D. MDFF’s Extensibility

As demonstrated above, the MDFF serves as a general frame-
work for mapping UFZs, and we have evaluated the framework
on two typical modal data, i.e., RS images and POI, but it
has different forms according to different modal data. Lots
of different modal data are available in cities, such as images
(VHR, SAR, DEM, nightlight images, etc.) and social sensing
data (POIs, GNSS trajectories, mobile signal data, social media
data, etc.). These data characterize the physical and socioeco-
nomic attributes of urban zones from different perspectives.
For example, nightlight images provide strength of nightlight
related to economic development, and mobile signal data reflect
population mobility. Therefore, the MDFF can be extended with
more data for better performance. There are two approaches: 1)
using another data, such as replacing POIs with mobile signal

TABLE XI
UFZ MAPPING ACCURACY (%) OF THE MDFF UNDER DIFFERENT DATA

CONFIGURATIONS IN SHANGHAI

data, and 2) integrating all data (see Fig. 14) by adding branches
(pixel-based module or object-based module) to extract features
from data (image data or social sensing data). Then, training
the MDFF according to different types of input data. Thus, the
MDFF is a flexible framework which can be easily extended
according to the input data.

E. Pros and Cons of the MDFF

The MDFF achieves good performance in interpreting UFZs
due to the following three aspects. First, the MDFF effetely
integrates multimodal geographic data and fuses multimodal
features, which makes full use of physical compositions and
socioeconomic characteristics of UFZs to reduce the uncertainty
of interpretation. Second, unlike two-stage methods, the MDFF
has only one stage and works end-to-end. It avoids error ac-
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Fig. 13. Visual comparison of classification results. (a) Is the UFZ map from the MDFF only with images. (b) is generated by the MDFF with images and social
sensing data. (c) and (d) are sub areas of (a) and (b). (c’) and (d’) are UFZ results from (a). (c”) and (d”) are UFZ results from (b).

Fig. 14. Extended MDFF for integrating more data.

cumulation in stages and reduces mapping complexity, which
facilitates fine-grained mapping in large urban areas. Third, the
MDFF is a flexible framework which can be easily extended
according to the input data, which is beneficial for dealing with
unstable supply of urban data. However, the MDFF still has
some limitations. First, objects generated by the multiresolu-
tion segmentation method are inconsistent with objects of the

real world, which reduces the integrity of the mapping results.
Second, UFZs are usually composed of land-cover objects,
while the MDFF does not take semantics of land-covers into
consideration. Consequently, these two issues need to be further
studied.

V. CONCLUSION

UFZ maps are essential for urban studies and applications. It is
a major open problem in the field of urban geography and survey
to map fine-grained UFZs accurately and reliably. In order to
solve the problem, the MDFF is proposed to fuse multimodal
geographic data with deep network to map fine-grained UFZs
end-to-end, which effectively integrates image data and social
sensing data. With two designed fusion modules (i.e., the IF2GF
and the GF2IF), the MDFF fuses multimodal features to learn
urban semantics. The semantic features of geographic objects
assist the classification of UFZs. Experiments are conducted on
two typical modal data, i.e., VHR satellite images and social
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sensing data. First, the MDFF significantly improve the quality
of UFZ mapping with the accuracy about 5% higher than the
state-of-the-art method, which shows advantages of the end-to-
end mechanism and multimodal geographic data fusion of the
MDFF. Second, socioeconomic semantics from social sensing
data effectively enhance the interpretation’s reliability. Third,
the MDFF is a flexible framework which can be easily extended
according to the input data, which is beneficial for dealing with
unstable supply of urban data. Fourth, RS images and POIs are
vital to the high-precision mapping of UFZs. Finally, the MDFF
significantly reduces the complexity of UFZ mapping and fine-
grained UFZ maps from the MDFF has effectively contributed
to urban structure analysis.
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