
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023 9831

Unsupervised Seismic Facies Deep Clustering Via
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Abstract—Seismic facies analysis (SFA) is a crucial step in the
interpretation of subsurface structures, with the core challenge
being the development of automatic approaches for the analysis of
4D prestack seismic data. The dominant isolated learning-based
SFA schemes have gained considerable attention and primarily
focus on learning the best representation of prestack data and gen-
erating facies maps by clustering the extracted features. However,
in isolated learning, the independent nature of feature extraction
and clustering leads to the ineffectiveness of clustering loss guid-
ance on feature extraction, thereby resulting in derived features
that unnecessarily facilitate the clustering task. As an alternative,
we proposed a new unsupervised, end-to-end learning-based SFA
method, which is referred to as the lognormal mixture-based vari-
ational autoencoder (LMVAE) and enhanced the existing Gaussian
mixture variational autoencoder-based deep clustering framework
(GMVAE framework). In this approach, both the extraction and
clustering of seismic features are simultaneously performed by
determining from which mode of the latent mixture distribution
the seismic data were generated. Furthermore, the LMVAE ex-
tends the Gaussian mixture modeling of seismic features in the
GMVAE framework to lognormal mixture modeling, improving
the adaptability of SFA to field data. The effective performance of
the LMVAE is demonstrated in synthetic and field prestack seismic
data.

Index Terms—Deep clustering, end-to-end learning, lognormal
mixture-based variational autoencoder (LMVAE), Seismic facies
analysis (SFA).

I. INTRODUCTION

S EISMIC facies analysis (SFA) endeavors to perpetuate the
interpretation of the depositional environment and facies

distribution, being solely observed from both the seismic reflec-
tor and horizon information [1], [2], [3]. Traditionally, SFA has
relied on the expertise and collaboration of multidisciplinary
teams, including geophysicists, geologists, and petrophysicists,
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to manually interpret seismic data [4]. However, the exponential
increase in the seismic data volume has rendered this process
both difficult and time-consuming [5], [6]. Consequently, there
is an urgent need to develop automatic approaches for SFA to
improve the efficiency and accuracy.

The prevailing automatic SFA mainly focuses on two princi-
pal types of machine learning techniques, i.e., isolated learning-
based SFA and end-to-end learning-based SFA. In isolated
learning-based SFA, feature extraction and clustering are per-
formed separately. For feature extraction, both model-driven
methods and data-driven methods are employed to obtain a
more insightful representation of seismic data. In model-driven
methods, time-series transforms are generally implemented to
provide nonredundant insights into the underlying prior prop-
erties of seismic data [7], [8], including time-domain [1], [9],
[10], [11], [12], time-frequency-domain [13], [14], [15], [16],
[17], and frequency-domain [1], [18], [19], [20]. In contrast,
data-driven methods are aimed at automatically learning local
patterns in seismic data without prior knowledge or assump-
tions, which builds upon the learning capability of the autoen-
coder [21], [22], [23], [24], [25], [26], or recurrent network [27],
[28], [29]. Thereafter, isolated learning-based SFA achieves
SFA via multifarious feature clustering algorithms, such as
centroid-based clustering [30], [31], [32], [33], [34], [35], [36],
probabilistic model clustering [37], [38], [39], and spectral
clustering [11], [40], [41]. However, due to the isolation between
feature extraction and clustering, the guidance of clustering loss
is ineffective for feature extraction. Therefore, the SFA results of
isolated learning may be suboptimal since the derived features
are not necessarily conducive to the clustering.

To avoid the aforementioned suboptimal results, as an alterna-
tive, end-to-end learning-based SFA is performed to establish a
straight pathway from seismic data to the facies map without fea-
ture appraisal. This approach can be categorized into supervised
and unsupervised methods. In the case of supervised methods,
the focus lies in directly learning the relationship between the
input seismic samples and their corresponding seismic facies
category directly from labeled data [42], [43]. Alternatively, em-
ploying leveraging image segmentation techniques to partition
seismic data into distinct regions for the purpose of classifying
seismic facies, where seismic samples belonging to the same
region share the same seismic facies. Typical segmentation
methods include the following: attention mechanism-based net-
works [44], [45], [46], U-net-like networks [47], [48], [49], [50],
and segmentation with less data [51], [52]. These supervised
methods offer a significant boost in the accuracy of facies
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classification by leveraging labeled training data. Nevertheless,
annotated data are often constructed by interpreters from limited
well-log information [53], making labeled data scarce and valu-
able. Therefore, the entire survey’s depositional environment
cannot be fully represented. These constraints ultimately hinder
the application of supervised methods. Conversely, unsuper-
vised end-to-end learning-based methods do not need labeled
training data and try to discover hidden patterns in data, which
routinely relies on embedding clustering layers or classifiers
in neural networks to cluster features [5], [54], [55]. However,
despite their effectiveness, the aforementioned embedding meth-
ods are not purely end-to-end, as they require a pretraining stage
for cluster centre initialization [5]. Notably, the loss function
used in the formal training stage differs from that in the pretrain-
ing stage, resulting in isolated optimization for the two stages.
Consequently, these unsupervised SFA methods exacerbate the
complexity of the analysis procedure.

To address the abovementioned issue, the variational autoen-
coder (VAE) provides a promising way. The VAE tends to encode
input data into a distribution over a latent space, from which new
data points can be generated through latent space sampling. This
capacity of the VAE has found substantial application in seismic
data processing, often leveraged for the generation of labeled
data sources [56], [57], [58]. Beyond data generation, the poten-
tial to define the distribution of the latent space as a multimodal
distribution [59] has extended the utility of VAE to data cluster-
ing tasks, such as the Gaussian mixture variational autoencoder-
based deep clustering framework (GMVAE framework) [60],
[61], [62]. Inspired by the GMVAE framework, we propose a
lognormal mixture-based variational autoencoder (LMVAE) for
the unsupervised SFA of prestack data. The proposed method
effectively inherits the merits of the GMVAE framework. These
advantages include the following: 1) No need for labeled data:
As a VAE approach, the LMVAE accomplishes unsupervised
seismic facies clustering for prestack data without the reliance
on labeled data. 2) End-to-end learning: The network is capable
of directly generating final results without the necessity for pre-
training or any additional supplementary operations. In addition,
the LMVAE seeks to model the features as a lognormal mixture
distribution. Experimental results suggest that this modeling
choice has enhanced the performance of LMVAE in handling
field seismic data. The substantial contributions of our work are
presented as follows.

1) In this study, the GMVAE framework [60] is applied to
the unsupervised SFA of prestack seismic data. Through
rigorous statistical analysis, employing techniques, such
as Quantile-Quantile (QQ) plot [63], real seismic data
are meticulously analyzed. The outcome of this analysis
effectively corroborates the hypothesis of non-Gaussian
properties inherent in seismic features, thereby enlighten-
ing the constraints posed by the GMVAE framework in
the context of SFA.

2) In this article, we introduce remarkable technical inno-
vations in the classical GMVAE framework, facilitating
the creation of an unsupervised deep clustering approach
specifically designed for prestack SFA. By expanding
the GMVAE framework with the incorporation of a

lognormal mixture-based modeling approach for seismic
data features, we achieve effective solutions even in sce-
narios where the data features deviate from Gaussian
distributions. To the best of authors’ knowledge, this is
the first instance of employing VAE-based methods for
unsupervised seismic facies deep clustering.

3) The experimental results on both synthetic and field
prestack data demonstrate that our suggested LMVAE ap-
proaches can be used to achieve remarkable improvements
over the two state-of-the-art (SOTA) approaches.

The rest of this article are organized as follows. Section II
provides some background knowledge on the GMVAE frame-
work. In Section III, the problem statement and formulation of
SFA are presented. Section IV describes the limitations of the
GMVAE framework and the details of the proposed LMVAE
method for improvement. The experimental results are reported
in Section V. Finally, Section VI concludes this article.

II. BACKGROUND

In this section, we shall provide a concise overview of
some fundamental concepts related to GMVAE framework. In
Section II-A, we begin by revisiting the fundamental concepts of
the generative and recognition models of GMVAE. Afterward, in
Section II-B, we provide a concise presentation of the variational
lower bound of GMVAE.

A. Generative and Recognition Model

As an extended version of the VAE, the GMVAE is charac-
terized by both a generative model and a recognition model. As
detailed in [60], given the generative model pβ,θ(x, h, w, y) =
p(w)p(y)pβ(h|y, w)pθ(x|h), the generative process of the sam-
ple x can be described as follows:

w ∼ N (0, I) (1)

y ∼ Mult(π) (2)

h|y, w ∼
K∏

k=1

(N (μyk
(w;β), diag(σ2

yk
(w;β))))yk (3)

x|h ∼ N (μ(h; θ), diag(σ2(h; θ))) (4)

where from the perspective of clustering tasks, K is the pre-
defined number of Gaussian components (i.e., the number of
categories). Then, y is a one-hot vector following a multinoulli
distribution, with a length of K, sampled from the mixture
probabilitiesπ. Specifically, y represents the weights of different
mixture components, indicating the probabilities of x belonging
to different classes. Meanwhile, h is a continuous latent variable
following a Gaussian mixture distribution conditioned on y and
w, representing the projection (or features) of x in the latent
space. The neural networks parameterized by θ and β give
μyk

(·;β), σ2
yk
(·;β), μ(·; θ), and σ2(·; θ), respectively.

Subsequently, the recognition model is factorized as fol-
lows [60]:

q (y, h, w|x) = qφh
(h|x) qφw

(w|x) pβ (y|h,w) (5)
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where φh and φw denote the parameters of the partial inference
network responsible for parameterizing each variational factor
and yielding means and diagonal covariances of the posterior
variational distributions [60], respectively.

B. Variational Lower Bound

Since the GMVAE is trained using variational inference [61],
the model trains the parameter φh, φw, β, and θ by maximizing
the log-evidence lower bound (ELBO) [61], [62], [64]. As shown
in [60], the ELBO used in the training process can be rewritten
as follows:

LELBO = Eq

[
pβ,θ(x, h, w, y)

q(h, y, w|x)
]

= Eq(x|h)[log pθ(x|h)]
− λEq(w|x)p(y|h,w)[KL(qφh

(h|x)||pβ(h|w, y))]
− γKL(qφw

(w|x)||p(w))
− ηEq(h|x)q(w|x)[KL(pβ(y|h,w)||p(y))] (6)

where KL(·) stands for the Kullback–Leibler divergence, and
the terms in LELBO can be called as the reconstruction term,
conditional prior term, w-prior term, and y-prior term (for
more details, see [60]), respectively. In addition, the balance
parameters λ, γ, and η are introduced to control the weights of
the different priors [65], and they are typically set to 1.

III. PROBLEM STATEMENT AND FORMULATION

We assume that the prestack seismic data can be represented
by a four-dimensional tensor X ∈ R

n1×n2×n3×n4 , where n1,
n2, n3, and n4 are the sample numbers of the crossline, in-
line, timeline, and offset, respectively. The goal of SFA is to
devise an automated mechanism to learn the deep features
H ∈ R

n1×n2×m3 that can best represent the prestack data X and
then to utilize H to generate a facies map Y ∈ R

n1×n2 that can
provide an insightful interpretation of the subsurface geology,
where in accordance with the dimensionality of the features
extracted by LMVAE, we assumeH to be in a three-dimensional
form, and m3 represents the length of features corresponding to
crossline and inline positions. Mathematically, for a given input
X , the corresponding facies map Y can be expressed as follows:

H = f(X ,Ψ1)

Y = g(H,Ψ2) (7)

where SFA relies on two mapping functions: f(·) :
R

n1×n2×n3×n4 → R
n1×n2×m3 , parameterized by Ψ1, is

designed to learn the best representation H from prestack data
X , and g(·) : Rn1×n2×m3 → R

n1×n2 , parameterized by Ψ2,
is aimed transforming the incomprehensible seismic latent
features H into a geologic interpretation Y .

Based on the difference in the optimization procedure of pa-
rametersΨ1 andΨ2, SFA can be categorized into two types: iso-
lated learning-based SFA and end-to-end learning-based SFA.
In the case of the isolated learning-based SFA, the optimization

process of Ψ1 and Ψ2 is separated as follows:

Ψ̂1 = argmin
Ψ1

L1(X , f(X ,Ψ1))

Ψ̂2 = argmin
Ψ2

L2(f(X , Ψ̂1), g(f(X , Ψ̂1),Ψ2)).

(8)

In this category, Ψ1 is optimized by minimizing the loss
function L1(·), enabling the mapping function f(·) to estimate
the most suitable representation of the prestack seismic data X .
Subsequently, the clustering loss L2(·) is minimized to learn
g(·), parameterized by Ψ2, thereby facilitating the transforma-
tion of the seismic latent features H into a geologic interpreta-
tion Y . Consequently, isolated learning-based SFA achieves the
seismic data interpretation by optimizing Ψ1 and Ψ2 separately.
However, it is worth noting that during the optimization ofL2(·),
Ψ̂1 obtained from the previous stage may be fixed, which can
potentially hinder the loss function from reaching a global op-
timum. This limitation might result in suboptimal performance
of the isolated learning-based SFA approach.

As an alternative, end-to-end learning-based SFA can jointly
learn representations of seismic data and perform clustering
on learned features. The optimization process of end-to-end
learning-based SFA is expressed as follows:

{Ψ̂1, Ψ̂2} = argmin
Ψ1,Ψ2

L(X , g(f(X ,Ψ1),Ψ2)). (9)

By the abovementioned simultaneous optimization of bothΨ1

and Ψ2, loss L(·) concerning feature extraction and clustering
tries to theoretically reach the global minimum, avoiding the
occurrence of suboptimal results that may arise in isolated
learning-based SFA.

IV. METHODOLOGY

To obtain an efficient solution to Problem (9), the LM-
VAE, which overcomes the limitations of the traditional GM-
VAE framework, is presented in this section [60]. The draw-
backs of the conventional GMVAE framework are discussed in
Section IV-A, and the proposed LMVAE model is introduced in
Section IV-B. Lastly, the fundamental structure of the LMVAE
model is detailed in Section IV-C.

A. Shortcomings of the GMVAE Framework

As shown in (3), it is commonly assumed that the observed
seismic data are generated from a mixture of Gaussians [60],
[61], [62], [64]. Hence, during the new seismic data generation
process, the input seismic data clustering is accomplished by
determining which Gaussian component in the GMVAE’s latent
space the input data features belong to. Similar to (6), the
network training process for this purpose can be formulated as
follows:

{Ψ̂1, Ψ̂2} = argmin
Ψ1,Ψ2

− LELBO(X ; Ψ1,Ψ2)

= argmin
Ψ1,Ψ2

− Eq

[
pΨ1,Ψ2

(X ,H, Y, w)

q(H, Y, w|X )

]
(10)
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Fig. 1. Statistical plots of seismic data features (belonging to the same cluster). (a) Histogram of F3’s features. (b) Probability plot of F3’s features. (c) QQ
plot between the Gaussian distribution and F3’s features. (d) QQ plot between the lognormal distribution and F3’s features. (e) QQ plot between the Gaussian
distribution and prestack data features. (f) QQ plot between the lognormal distribution and prestack data features.

where the capital letters used here correspond to the lowercase
letters introduced in Section II.Ψ1 andΨ2 denote the parameters
of the encoder and decoder, respectively.

However, by using the F3 facies map that is skillfully la-
beled by experts utilizing a precise geological model1 [66], we
may detect the non-Gaussian property of the seismic data, as
described in the following steps. As shown in Fig. 1(a) and
(b), the features of the F3 seismic samples belonging to the
same cluster exhibit an asymmetric distribution, which deviates
from the characteristics of a Gaussian distribution. Moreover,
we employ QQ plots [63] to analyze the data in Fig. 1(a). In
the QQ plot, instances that lie closer to the line with a slope
of 1 indicate a stronger similarity between the samples and the
theoretical distribution [63]. As depicted in Fig. 1(c) and (d), the
QQ plot between the Gaussian distribution and seismic features
deviates more from the line with a slope of 1 compared to the QQ
plot between the lognormal distribution and seismic features.
This observation further supports the non-Gaussian nature of
the F3 features. To further corroborate the non-Gaussian nature
of seismic data, additional analyzes were conducted. Fig. 1(e)
and (f) presents the QQ plot of prestack data from Section V-D, in
which the accurate SFA results of Fig. 7(e) are utilized to assign
seismic feature categories in the GMVAE. In comparison to
Fig. 1(e), the instances shown in Fig. 1(f) are obviously closer to

1[Online]. Available: https://github.com/yalaudah/facies_classification_
benchmark

the line with a slope of 1 in the range where thex-axis is less than
0.08. Moreover, in the range where thex-axis is greater than 0.08
but less than 0.1, although both instances exhibit some deviation
from the line with a slope of 1, it is discernible that the instances
shown in Fig. 1(f) display less deviation. In the range where
the x-axis is greater than 0.1, both instances exhibit substantial
deviations for a minority of data points. For these points, neither
Gaussian nor lognormal distributions can adequately model
them, suggesting the presence of a more suitable probability
model for this data In summary, Gaussian probability modeling
is not suitable for capturing the characteristics of seismic data.

B. Lognormal Mixture-Based Variational Autoencoder

Inspired by the abovementioned discussion, we developed
the LMVAE for prestack data SFA, substituting the probability
modeling of H in (3) with the lognormal mixture distribution as
follows:

H|Y,w ∼
K∏

k=1

lnN (μYk
(w;Ψ1), diag(σ

2
Yk

(w;Ψ1)))
Yk (11)

where lnN (·) denotes the lognormal distribution [67] with
respect to the seismic data features belonging to the same cluster.
Compared to the limitation of assuming that the observed data
are generated from a mixture of Gaussian distributions, the
LMVAE may achieve a better performance in handling field
seismic data.

https://github.com/yalaudah/facies_classification_benchmark
https://github.com/yalaudah/facies_classification_benchmark
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Fig. 2. Schematic of LMVAE.

Furthermore, theLELBO of the LMVAE is akin to the GMVAE.
Similarly, the reconstruction term can be formulated utilizing
either binary cross-entropy loss or mean squared error loss,
while the w-prior term, representing the divergence between
two Gaussian variables, can be computed analytically [60]. In
the case of the conditional prior term and the y-prior term, their
estimations necessitate the utilization of Monte Carlo samples.
Drawing upon the conclusions presented in [60], these terms can
be expressed as follows:

Eq(w|X )p(Y |H,w) [KL (qφH(H|X )||pβ(H|w, Y ))]

=

K∑
k=1

pβ (Yk = 1|H, w)KL (qφH(H|X )||pβ (H|w, Yk = 1))

(12)

Eq(H|X )q(w|X )[KL(pβ(Y |H, w)||p(Y ))]

=

K∑
k=1

pβ (Yk = 1|H, w) (ln pβ (Yk = 1|H, w) + lnK) (13)

where the computation of the conditional prior term [see (12)]
requires the use of the Kullback–Leibler divergence between
two lognormal distribution variables (see [67]).

C. Network Structure of the LMVAE

The architecture of the LMVAE closely resembles that of GM-
VAE [60], leveraging the capabilities of two distinct networks,
the inference (encoder) and generative (decoder) networks, to
effectively estimate the posterior probability of latent variables
and generate seismic data likelihood. As depicted in Fig. 2,
the encoder of the LMVAE employs two convolutional layers
(kernel size 3× 3) and a series of parallel linear layers. Follow-
ing each convolutional layer, there is a sequential connection
of a batch normalization (BN) layer, a leaky rectified linear
unit (LeakyReLU) activation function, and a max-pooling layer
with dimensions of 2× 2. For the sake of simplicity, these
components are not explicitly depicted in Fig. 2. Once the convo-
lutional architecture accomplishes the initial feature extraction,
a series of parallel linear layers are utilized to generate w and Y .
After sampling the specific values of H based on its mean and
variance, the decoder proceeds to reconstruct new data from H.
This process involves expanding the dimensions of H through
two connected linear layers, followed by a convolutional struc-
ture consisting of upsampling layers, transposed convolutional
layers, BN layers, and LeakyReLU layers to reconstruct the
features.



9836 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

In fact, the encoder, employing parallel linear layers,
simultaneously output the value of Y , as well as the mean and
variance ofw andH. The value ofY undergoes a softmax layer to
obtain seismic facies results. Meanwhile, by sampling from the
mean and variance, the specific values of H are acquired. Since
H belongs to one of the components in the lognormal mixture
distribution, its sampling strategy is as described in [67]

H = μ+ σ � eε

ε ∼ N (0, I). (14)

Similar with [60], w follows a Gaussian distribution, and its
sampling employs a Gaussian variable sampling strategy. After
obtaining the specific values of w, a linear layer is employed to
generate the prior for H.

V. EXPERIMENTS

In this section, the performance of the proposed LMVAE
is validated using one synthetic and two field prestack seismic
datas. All experiments are set to have five seismic facies. Subse-
quently, the SFA results obtained by the LMVAE are compared
with those of three SOTA methods, i.e., Gabor [68], deep con-
volutional autoencoder (DCAE) [21], and GMVAE [60]. Both
the Gabor and DCAE methods are isolation-based methods.
Gabor feature extraction is implemented using MATLAB, while
DCAE is implemented using PyTorch. After feature extraction,
self-organizing maps (SOM) [69] algorithms are employed to
cluster the features and generate the final seismic facies maps.
The SOM implementation is also carried out in MATLAB.
In contrast, the GMVAE and LMVAE are end-to-end learning
methods. They directly generate seismic facies maps and are
implemented using PyTorch. All experiments are performed on
a computer with a 4-core Intel i5-6500 CPU, 32 GB of memory,
and an NVIDIA TITAN X (Pascal) GPU. The LMVAE is trained
with the Adam optimization algorithm. Specifically, for training
on synthetic data, 500 epochs of training are conducted with
a learning rate of 5 × 10−7. When processing the Liziba data,
the model undergoes 150 epochs of training with a learning rate
of 3 × 10−5. In the case of the Zhongjiang data, 500 epochs of
training are carried out with a learning rate of 7 × 10−5. The
parameters λ, γ, and η in the LELBO are typically set to 1.

A. Performance Metrics

1) RMS Amplitude Attributes: Following the methodology
established in prior works [5], [21], the accuracy of facies maps
is assessed using the rms amplitude attributes of seismic data,
as shown in Figs. 4(a), 5(a), and 7(a).

2) t-Distributed Stochastic Neighbor Embedding (t-SNE):
The t-SNE is a nonlinear dimensionality reduction technique
employed for visualizing high-dimensional data in a lower
dimensional space [70]. In particular, given points bi in the
high-dimensional space and points oi in the low-dimensional
space, t-SNE utilizes joint probability distributions and Student
t-distribution to depict the similarity of data in both the high-
dimensional and low-dimensional spaces, as illustrated in the

Fig. 3. Schematic of the physical model. (a) Preparation of the physical model.
(b) Prototype of the physical model.

following:

pij =
exp

(
−‖bi − bj‖22 /2δ2

)
∑

m �=n exp
(
−‖bm − bn‖22 /2δ2

)

qij =

(
1 + ‖oi − oj‖22

)−1

∑
m �=n

(
1 + ‖om − on‖22

)−1 (15)

where δ is the variance parameter.
Subsequently, t-SNE determines the precise positions of

points oi by minimizing the following Kullback–Leibler diver-
gence:

KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

. (16)
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Fig. 4. SFA results of synthetic data. (a) RMS amplitude attribute of synthetic data. (b) Gabor+SOM. (c) DCAE+SOM. (d) Photo of the physical model.
(e) GMVAE. (f) LMVAE.

t-SNE finds utility in visualization for both labeled and unlabeled
datasets [71], [72], [73]. To facilitate further comparison of the
experimental outcomes, we utilized the t-SNE for visualizing
the latent representations of data learned by these methods, as
shown in Figs. 6(a)–(d) and 8(a)–(d).

3) Davies Bouldin Index: In addition, quantitative metrics
are employed to evaluate the algorithm’s performance. As SFA
involves clustering tasks, when sample labels are known, ex-
ternal indicator like normalized mutual information [74] are
commonly used to assess clustering performance. However, in
practical seismic data processing, acquiring accurate seismic
phase labels is challenging, often relying on limited well-log
data as references [53]. Therefore, we resort to internal indicator,
such as the Davies Bouldin index (DBI) [75] to quantitatively
compare the performance of our LMVAE with other SOTA
methods. Specifically, DBI is utilized to compute the ratio of
the sum of intracluster distances to the intercluster distances.
A smaller DBI value indicates a better clustering performance,
as it signifies more compact and well-separated clusters. It is
mathematically defined as follows:

DBI =
1

C

C∑
i=1

maxj �=i

{
Si + Sj

dij

}
(17)

whereC denotes the number of clusters,Si andSj are present the
average distances of each element to their corresponding cluster
i and j centroids, and dij is defined as the distance between
centroids of clusters i and j.

B. Validation on Synthetic Data

To demonstrate the effectiveness of our LMVAE, we im-
plement SFA on the synthetic prestack data from an artificial
physical model [21] that simulates the Longgang block of China.
By controlling various fracture parameters in terms of fracture
lengths and orientations [using the preparation method shown
in Fig. 3(a)], the physical model can simulate the geological
environment of the Longgang fracture zone. The prototype of
the physical model is depicted in Fig. 3(b), consisting of a sim-
plified practical fracture zone encompassing various fractures
and caves.

The SFA results of the Gabor, DCAE, GMVAE, and LM-
VAE methods are presented in Fig. 4. To better illustrate the
advantages of the LMVAE, we have highlighted selected regions
within red boxes for comparison. From Fig. 4(b) and (c), it can
be observed that Gabor and DCAE are capable of identifying
most of the caves in the facies map, as evident in the upper part
of the facies map within the red-boxed regions. However, when
it comes to fractures, both methods struggle to recognize them
accurately. In comparison to the rms attribute in Fig. 4(a) and the
photo of the physical model in Fig. 4(d), within the red-boxed
area at the bottom of the facies map, Gabor is almost unable to
discern the shape of the fractures, while DCAE, though able to
roughly identify the shape, results in a cluttered background in
the facies map, leading to blurred fractures boundaries. In con-
trast, both LMVAE and GMVAE exhibit superior performance
in identifying caves and fractures in the facies map and produce
clear facies map backgrounds, as illustrated in Fig. 4(e) and
(f). However, GMVAE’s identification of caves is not flawless,
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Fig. 5. SFA results of Liziba field data. (a) RMS amplitude attribute of field data. (b) Gabor+SOM. (c) DCAE+SOM. (d) GMVAE. (e) LMVAE.

TABLE I
DBI PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH EXISTING

METHODS

as there are irregularly distributed other facies classes within
the caves, as demonstrated in the red-boxed region. Besides
visual comparisons, a quantitative assessment based on DBI
between LMVAE and the SOTA methods is presented in Table I.
Our LMVAE achieved a lower DBI value (11.77) compared
to Gabor, DCAE, and GMVAE, where their respective DBI
values were 43.39, 33.25, and 23.46. Therefore, based on the
abovementioned comparisons, the results of the LMVAE are
more proximate to the artificial physical model.

C. Validation on Liziba Field Data

To verify that the LMVAE can exhibit superior performance in
practice, we conduct experiments on a field exploration region,
namely, the Liziba region in southwestern Sichuan Province,
China [21]. The final facies maps generated by the DCAE,
GMVAE, and LMVAE are presented in Fig. 5, where several
areas are circled to facilitate the comparison of the results. As
shown in Fig. 5(b) and (c), Gabor can only identify a partial
number of faults and caves, while DCAE accurately recognizes
most of them, but both methods produce facies maps with blurred
backgrounds. Moreover, as depicted in Fig. 5(d) and (e), both

Fig. 6. t-SNE plots for the latent feature space of the (a) Gabor, (b) DCAE,
(c) GMVAE, and (d) LMVAE applied to Liziba field data whose colour is labeled
according to the corresponding SFA results.

GMVAE and LMVAE effectively identify faults and caves with
higher overall resolution in the facies maps. However, within
the delineated region, LMVAE achieves even higher resolution
(resulting in clearer fault outlines) compared to GMVAE. In
Table I, the DBI comparisons are presented, and in DBI com-
parison to Gabor, DCAE, and GMVAE with DBI values of 27.27,
24.66, and 30.40, respectively, LMVAE exhibits the lowest DBI
value of 23.62. Thus, as theoretically anticipated, the LMVAE
is capable of better achieving SFA for field data.

Furthermore, the t-SNE results of the features extracted by
each method are depicted in Fig. 6(a)–(d). The partition of latent
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Fig. 7. SFA results of Zhongjiang field data. (a) RMS amplitude attribute of field data. (b) Gabor+SOM. (c) DCAE+SOM. (d) GMVAE. (e) LMVAE.

representations in both Gabor and DCAE are not discernible
[see Fig. 6(a) and (b)], while that in the GMVAE is excessively
scattered [see Fig. 6(c)]. In contrast, the LMVAE demonstrates
significantly more reasonable partitioning in that associated
clusters are well-separated and distinguishable [see Fig. 6(d)],
revealing that the LMVAE outperforms both Gabor, DCAE, and
GMVAE in terms of clustering the features into more distinct
and separable clusters.

D. Validation on Zhongjiang Field Data

To further verify the effectiveness of the LMVAE, we apply
it to a field exploration region covering the Zhongjiang area and
located in northeastern Sichuan Province, China. This region
presents unique challenges due to the complex distribution of
gas and water, including a narrow distribution width of the
underwater channel and numerous overlapping relationships
among different geological features. Fig. 7 shows the SFA
results of the four methods, and part of the maps is circled
for a prominent comparison. From Fig. 7(b) and (c), it can be
observed that Gabor accurately identifies most of the features
but completely fails to recognize the underwater channels within
the circled region. On the other hand, DCAE can only identify
a small portion of the channels. Similarly, from Fig. 7(d), it can
be seen that GMVAE roughly identifies the wider underwater
channels within the circled region, but the overall SFA map
appears too blurry and chaotic. In contrast, the LMVAE precisely
identifies the underwater channels within the circled region, as
shown in Fig. 7(e). The overall results are clearer and more
continuous compared to other SOTA algorithms. Moreover, the
fact that the LMVAE achieves the lowest DBI value of 4.46

Fig. 8. t-SNE plots for the latent feature space of the (a) Gabor, (b) DCAE,
(c) GMVAE, and (d) LMVAE applied to Zhongjiang field data whose colour is
labeled according to the corresponding SFA results.

among all methods, as shown in Table I, indicates a significant
enhancement in the SFA performance for field seismic data.

The t-SNE technique was also employed in the experiments
of this dataset, as shown in Fig. 8(a)–(d). In the latent representa-
tions obtained by DCAE, the data points are scattered too widely
without clear clustering [see Fig. 8(b)]. On the other hand, in
the latent representations of GMVAE, there are an excessive
number of clusters with indistinct categories [see Fig. 8(c)]. In
comparison, Gabor exhibits a relatively clear categorization of
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TABLE II
COMPUTATION TIME COMPARISON OF THE PROPOSED METHOD WITH THE

EXISTING METHODS

the latent representations [see Fig. 8(a)], but LMVAE shows even
more distinct clustering, with well-separated relevant clusters
[see Fig. 8(d)]. This observation indicates that LMVAE produces
a well-defined latent space with meaningful clustering.

E. Discussion

Through experimental validation with both physical mod-
els and two field datasets, our proposed LMVAE successfully
achieves automated end-to-end SFA on seismic data. However,
a notable limitation of the LMVAE, in comparison to other
benchmarked methods, is its computational efficiency. As shown
in Table II, the GMVAE exhibits relatively longer execution
times, and the LMVAE, which builds upon GMVAE improve-
ments, shares a similar characteristic. When compared to DCAE,
another unsupervised deep learning method, the increased com-
plexity in LMVAE’s network architecture and loss functions may
necessitate additional training time.

Similar to the GMVAE, the LMVAE is sensitive to its pa-
rameters, and achieving optimal results requires meticulous
experimentation. Parameters such as the number of training
epochs and the learning rate of the optimization algorithm
need to be carefully tuned. Furthermore, in addition to these
network-specific parameters, achieving superior performance
may necessitate further adjustments to the balance parameters
λ, γ, and η in the LELBO, like in [65]. As shown in [60], it is
also crucial to consider phenomena, such as over regularization
in the GMVAE framework.

VI. CONCLUSION

In this article, an unsupervised SFA method, the LMVAE,
which is based on the GMVAE framework, is proposed to
automatically classify prestack seismic data into distinct facies
categories. In this LMVAE approach, SFA is formulated as a
joint feature extraction and clustering problem. Specifically, in
our proposed LMVAE method, feature extraction and clustering
are performed simultaneously in an end-to-end manner by
modeling the probability distribution of features as a lognormal
mixture distribution, thereby assigning class labels while
generating the features. Moreover, experimental validations
suggest that the lognormal mixture distribution may better
suit field seismic data, leading to improved accuracy of the
LMVAE method. The experiments conducted on synthetic and
real datasets demonstrate the superiority of our proposed SFA
method in achieving more effective delineation of interfaces
compared to several SOTA methods.

In our future work, we may explore combining the pro-
posed method with other SOTA convolutional neural network

approaches (e.g., attention mechanisms). In addition, we plan
to investigate the applicability of other GMVAE framework
variants in SFA.
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