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Unsupervised PoISAR Change Detection Based on
Polarimetric Distance Measurements and
ConvLSTM Network

Rong Gui"”, Xinyue Zhang ", Jun Hu

Abstract—Time-series PolSAR are capable for continuous
change monitoring of natural resources and urban land-covers
regardless of weather and lighting conditions. However, in the
big SAR data era, the scarcity of labeled PolSAR samples poses
new challenge to the traditional change detection methods. To
reduce the dependence on labeled samples and ensure the efficiency
of long time-series PoISAR interpretation, an unsupervised and
pseudolabel-based change detection method is proposed. First, the
similarity maps of time-series PoISAR are gauged by three selected
polarimetric distance measurements (PDMs), which are suitable
for PolSAR distribution characteristics and have the potential
to reflect PoISAR changes. Second, the high-confidence changed
pseudosamples are selected based on the similarity maps, and the
unchanged pseudosamples are selected based on the nonsimilarity
maps. Third, the limited selected pseudosamples (changed and
unchanged) and multidimensional features are used to train the
ConvLSTM network for change detection, and the input features
include the T3 coherence matrix elements of time-series PoOISAR
and the aforementioned PDMs. Finally, the change detection re-
sults based on pseudosamples and the ConvLSTM network can
be obtained, without additional manual labels. Adequate experi-
ments are conducted on Radarsat-2, UAVSAR full-polarized, and
Sentinel-1 dual-polarized datasets, achieving improved unsuper-
vised change detection accuracy at 89.59-93.24%.

Index Terms—Long short-term memory (LSTM) network,
polarimetric distance measurements (PDMs), synthetic aperture
radar (SAR), time series images, unsupervised change detection.

I. INTRODUCTION

HANGE detection is a well-established field in remote
sensing image interpretation. The definition of change
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detection is to identify changes between time-series images.
Such technology has been first established in the satellites with
optical sensors, and been widely used in urban and rural plan-
ning [1], [2], agricultural management [3], disaster emergencies
[4], [5], and other fields [6]. With the rapid development of
airborne and spaceborne synthetic aperture radar (SAR) sys-
tems, an extensive and worldwide repository of time-series SAR
image data has been accumulated. Because the SAR system
equips with active imaging sensor in microwave band, it en-
ables weather-independent ability for the change detection. Al-
though the scattering information contains in multidimensional
dual-polarization, and full-polarization time-series SAR data
can reflect the long-term dynamic changes of the land-covers,
corresponding research is still in an early age [7].

Deep learning is a machine learning model driven by Big
Data. The deep learning method can automatically extract the
quantitative expression of features from raw data, thereby en-
abling the real-world tasks such as pattern recognition. Typical
deep learning networks, such as CNN [8], [9], RNN [10], recent
Transformer [2], and their derivatives such as Unet [11], Ms-
CapsNet [12], ShearNet [10], have been involved in supervised
SAR change detection tasks. These supervised deep learning
network have outperformed in SAR temporal data change de-
tection. However, the accurate construction of supervised deep
learning models depends on large-scale training labels, while
limited annotated dataset is available [13], [14]. Obviously, the
efficiency of manual annotation is label tedious, thereby imped-
ing the efficient and high-precision interpretation of time-series
SAR images.

Therefore, considering the dependence of supervised methods
on annotated samples, how to automatically obtain changing
information of land-cover from time-series SAR data under un-
supervised conditions is an important issue in current SAR inter-
pretation research [15], [16]. Compared to supervised methods,
unsupervised change detections do not require labeled samples,
and can obtain SAR change information more quickly and con-
veniently. However, traditional unsupervised methods are diffi-
cult to discover the variation patterns contained in massive time-
series SAR data. Thus, the accuracy of traditional unsupervised
methods is always lower than that of supervised methods. Deep
learning is beneficial for discovering the changing patterns of
massive time-series data. Therefore, combining advanced deep
learning algorithms to explore efficient unsupervised change
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detection networks will be a key research direction for future
deep learning interpretation methods of PoISAR images.

To achieve an effective and generalized PolISAR change detec-
tion method under unsupervised conditions, this article proposes
a method for generating changing/un-changing pseudolabels in
time-series PoISAR data and an innovate unsupervised Pol-
SAR change detection method rooted on the new generation
of changing/un-changing pseudolabels in time-series PoOISAR
data and polarimetric similarity and long short-term memory
(LSTM) network. The proposed method has the following nov-
elty and contributions.

1) An unsupervised change detection method based on po-
larimetric feature similarity and LSTM network is pro-
posed, achieving both generalization and efficiency accu-
racy.

2) The reliance of manual labeled samples has been exten-
sively decreased using the pseudolabel strategy, and en-
abling its unsupervised application to time-series POISAR
data rather than the dual time series.

3) The potential change factor evaluation indicators for time-
series POISAR have been validated, facilizing the rapid
identification of potential changing sites.

The rest of this article is organized as follows. In Section II,
the domain shifts problem between time-series PoISAR im-
ages and related change detection works are documented. In
Section III, the proposed polarimetric distance measurements
(PDM)-LSTM framework is presented. Section IV describes the
datasets, the experimental settings, and the results and discus-
sion. Finally, Section V concludes this article.

II. DOMAIN SHIFTS PROBLEM AND RELATED WORKS
A. Domain Shifts Problem in Time-Series PoISAR Images

Commonly, there is a significant domain shifts problem
among time-series PolISAR data. This problem arises from the
side looking imaging mode and multiple acquisition times. As
shown in Fig. 1, two fully polarized data sensed by Radarsat-2
shows a significant domain shift problems of polarimetric fea-
ture among samples in the same region. This varying domain
shifts problem hinders the reuse of labeled samples between
time series POISAR images. That is to say, the existing annotated
PoISAR samples cannot be applied to the subsequent data di-
rectly. Moreover, the domain adaptive transfer learning methods
for optical images may not be suitable for POISAR image data
either.

This domain shifts problem indicates that the accumulated
historical labeled samples are difficult to be effective in recent
temporal data. Moreover, varying degrees of domain shifts in
time series data can also make it difficult to reuse labeled sam-
ples. Therefore, obtaining change detection results of PoISAR
time series data by unsupervised manner is necessary. It is worth
noting that even though there has feature differences between
multitemporal PolISAR images, a certain degree of similarity
also exists. Inspired by this similarity, this article intends to
express the measurements of change and nonchange information
between time-series PoISAR through the similarity of polari-
metric features. By utilizing polarimetric feature similarity and
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Fig. 1. Pseudocolor images of time-series PoOISAR data, and corresponding
H/alpha/A scattering maps of different land-covers, (a) and (b) are the Pauli
RGB images for radarsat-2 datasets of wuhan region in 2011 and 2015, (c) and
(d) are the H/alpha/A scatterings of building areas in (a) and (b); (e) and (f) are
the H/alpha/A scatterings of vegetation areas in (a) and (b); (g) and (h) are the
H/alpha/A scatterings of vegetation areas in (a) and (b).

unsupervised methods to avoid the influence of domain shifts
indirectly, a more widely applicable change detection method
for PoISAR time-series is studied.

B. Unsupervised Change Detection Methods for SAR Images

With the continuous development of earth observation tech-
nology and artificial intelligence technology, the methods ap-
plied to SAR image change detection are also continuously de-
veloping and improving. These change detection methods can be
classified and summarized according to different classification
standards. Depending on the necessity of prior data, SAR change
detection methods can be divided into unsupervised methods and
supervised methods. The supervised change detection method
provides accurate guidance information from both raw and given
data. It is often possible to obtain a highly representative and
distinguishable combination of feature information. Therefore,
the detection accuracies of the supervised methods outperform
the unsupervised methods, typically. However, in most change
detection application scenarios, prior data of the target area is
difficult to be obtained or requires significant human efforts.
Consequently, most change detection scenarios lack effective or
sufficient labeled sample data for supervised learning. At this
point, the unsupervised methods can play an important role.
The main steps of unsupervised change detection methods are
as follows: 1) Preprocessing such as registration and geometric
correction; 2) difference map generation; 3) difference graph
analysis processing (threshold segmentation or clustering) [17].
Unsupervised change detection methods can be divided into two
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types: object-based and pixel-based. Object-based methods in-
clude method based on binary tree segmentation, method based
on hyperpixel segmentation, wishart hybrid model method, and
extended region statistical fusion method. Pixel-based meth-
ods include difference method, ratio method, logarithmic ratio
method, change vector analysis method, and principal compo-
nent analysis method.

Pixel-based change detection methods take pixel points as
the unit of analysis, perform difference analysis on high-
dimensional features, and ultimately generate a change map.
Zhang et al. [18]extracted patches around pixels from images
of different time periods as spatial neighborhood features of
pixels, and used unsupervised deep belief networks to obtain
high-dimensional features of the pair of patches. Then, the cosine
distance and change intensity of the high-dimensional features
of the two images are calculated, and the changing pixel points
and nonchanging pixel points are distinguished through a two-
dimensional polarization domain analysis method. Gao et al.
[19] established a very DCNet to utilize discriminant features,
and introduced residual learning and fusion mechanisms to solve
the exploding gradients problem. Gao et al. [20] introduced
dual-tree complex wavelet transform in convolutional-wavelet
neural networks (CWNNYS) to effectively reduce the effect of
speckle noise, and employe a virtual sample generation scheme
to create samples for CWNN training for the problem of limited
samples.

Object-based change detection method detects changes on
an object-by-object basis based on the segmented object, and
segments the high-dimensional features of the object extracted
from the deep learning network. Lv et al. [21] used a simple
linear clustering method to segment hyperpixels, then used a
compression codec to extract high-dimensional features from
hyperpixels, and finally used the K-means clustering method
to classify and detect changing and nonchanging categories of
hyperpixels. Lei et al. [22] proposed a novel change detection
technique based on multiscale super pixel segmentation and
stacked denoising autoencoders. This approach is designed to
achieve super pixel-based change detection, in which the basic
analysis unit is between pixel-based and object-based ones.
Recently, research works proposed some new change detection
methods such as hybrid change detection method. Lu et al. [5]
proposed a new unsupervised algorithm-level fusion scheme to
improve the accuracy of Pixel-based change detection using spa-
tial context information through object-based change detection
approach.

The above unsupervised change detection methods are usually
not highly automated and inaccurate, but with a wide application
to most SAR data. To enhance the automation and efficiency
of unsupervised time-series PolISAR data, this article aims to
utilize polarimetric similarity and deep learning to improve the
efficiency and accuracy of unsupervised change detection for
PolSAR data.

C. Application of LSTM Network in Remote Sensing Image
Interpretation

The basis of SAR image change detection is the time-series
data. The recurrent neural network (RNN) can combine two
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temporal data through cyclic hiding states to extract temporal
correlation information from dual temporal data, making full
use of the temporal correlation characteristics of time series
data. The RNN has more advantages than CNN in processing
sequence data with interdependence. Due to the difficulty of
RNN in learning the feature representation of long sequences,
the LSTM network was proposed by improving the cyclic struc-
ture of RNN [23]. The training errors in the LSTM network
propagate over a time sequence to capture the time-dependent
relation of historical information on training data. The LSTM
network can extract characteristic time series curves from remote
sensing images, demonstrating excellent performance in SAR
image interpretation tasks.

Recently, Wang et al. [24] proposed a multiview attention
convolutional neural network with LSTM network to extract
and fuse the features from SAR images with adjacent azimuths.
Zhou et al. applied a LSTM model to quantify the relations
between tobacco’s phenological information and the pheno-
logical features extracted from time series S1-A SAR data,
demonstrating the potential of LSTM network in using time
series S1-A SAR data to map crop cultivation [3]. Lin et al. [25]
proposed a change type recognition method for SAR images
based on a statistical bidirectional LSTM network. This model
produced high-quality results under small sample on two sets
of medium-to-low resolution SAR image data and one set of
GaoFen-3 high-resolution real SAR image data.

To fully utilize the high-dimensional features and polarimetric
similarity of time-series PolSAR data, the LSTM network is
chosen as the framework in this article.

III. METHODS

The workflow of proposed PDM-ConvLSTM framework is
shown in Fig. 2. First, the similarity maps of time-series Pol-
SAR are calculated, including the three selected typical PDMs,
which are used to evaluate the similarity and nonsimilarity
of time-series PoISAR. Second, the high-confidence changed
pseudosamples are selected based on the similarity maps, and
the unchanged pseudosamples are selected based on the nonsim-
ilarity maps. Third, the selected pseudosamples (changed and
unchanged) are used to train LSTM network for change detec-
tion, and the input features include the 7' elements of time-series
PolSAR and the above three distance measurement features.
Finally, the change detection results based on pseudosamples
and LSTM network can be obtained, without additional manual
labels.

A. Applied Polarimetric Similarity Metrics

Similarity measurement based on the polarimetric metric
can be used to determine the similarity of time-series POISAR
images. The steps of determining the similarity of time-series
PolSAR images include calculating the difference maps and
automatically determining the similarity thresholds. Distance
measurement can measure the similarity of time-series images
and plays a crucial role in various applications of PoISAR image
data. The distance measures can be used to measure the degree
of change between PolSAR in change detection [26].
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Fig. 2. Flowchart of the proposed PDM-ConvLSTM framework.

1) Symmetric Revised Wishart Distance: Revised Wishart
distance drw has been widely used in previous studies [27],
[28], and defined as follows:

|7}
dRW (Ti7 T) = —ln
! T3]

+tr(I7'0) =d ()
where tr(-) denotes the trace operation, d is the dimension of
scattering vector, and T; and T are the coherence matrices for
time-series POISAR image i and j, respectively.

Considering the symmetry of the revised Wishart distance,
a revised Wishart distance dsrw is introduced and defined as
follows [29]:

_drw (T3, Tj) + drw (T}, T3)
B 2
(T 4+ T,
2
where drw () is the revised Wishart distance.
Ren et al. [30] incorporate the weight adjacency matrix to
perform weighted graph convolution based on the symmetric
revised Wishart distance, which describes the similarity between
the neighboring pairwise superpixels.
2) Bartlett Distance: Bartlett distance can capture street lat-
tice and building structures, and perform well for double-bounce

objects. The similarity measure called the Bartlett distance is
defined as follow [28]:

dsgw (T3, T})

—d (2)
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where T; and T; are the coherence matrices for time-series
PoISAR image i and j, respectively, and T;, j = 1T, + 1T,

3) Structural Similarity Index Measure: The structural sim-
ilarity index measure (SSIM) is used to measure the similarity
between two given images. SSIM mainly considers three key
characteristics of images: luminance {(z,y), contrast ¢(x,y),
and structure s(z,y) [31]. The time-series PoISAR images are

converted into grayscale images after Pauli RGB decomposition,
as the input images x, y.

The measured values of the above three characteristics are
represented as follows:

g fby + C

4
pz +py +Ch @

l(x’y) =

where f1, = + Efvz L Zi, C1 = (K1 L)? , L is the grayscale
progression of the image, and K1<<1.
(20,0, + C2)

c(@y) = (02 + 02 + (o)

)
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Oy + 03
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where 05, 0y = 57 22,2 1 (@0 — pa) (Yi — )
Combine [(x,y), ¢(x,y), and s(x,y) to obtain SSIM(x, y):

(N

where «, 3, 7y, respectively, represent the proportion of different
features in SSIM. When o = =~y =1 and C3 = C2/2

(2papy + C1) (20504 + C3)
(M%‘F,U%*FCH) * (O’%‘FO’% +CQ)

SSIM (2, y) = I(z, )" - c(z, )" - s(z,y) "

SSIM (z,y) = (8)

There are two main motivations for selecting these three
PDMs. First, the selected distance measures need to be suitable
for polarimetric features. Due to the special distribution charac-
teristics of polarimetric features, not all distance measures are
suitable for polarimetric data. In addition, the measure maps
obtained by the selected distances should have good correlation
with the PoISAR change and nonchange areas, which means the
selected distances should be potential benefit to reflect POISAR
changes. The three distance measures introduced abovemen-
tioned that are suitable for describing polarimetric matrices can
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Fig. 3. Process of obtaining pseudolabels map.

be used to obtain similarity and dissimilarity maps between
time-series PoISAR data. Here, because SRWD and BD distance
measure maps are more likely to reflect the difference of the
change region, this article mainly uses them to determine the
difference measure map between the two-time PolSAR data,
and then obtain the changed pseudosample labels according to
the adaptive threshold. Compared with SRWD and BD, SSIM
is a more straightforward way to gauge the areas with higher
similarity in PoISAR data (i.e., unchanged regions). In this
article, SSIM is mainly used to obtain similarity maps between
PolSAR data of dual time series, and then obtain unchanged
pseudosample labels according to adaptive thresholds.

B. Pseudolabeled Samples Obtaining

To make full use of full-polarization and dual-polarization
data for a more accurate change detection, this paper first
obtains three kinds of distance measure maps based on three
similarity metrics. This section is mainly based on the three
distance measure maps combined with adaptive thresholds to
obtain more reliable pseudochanged and unchanged samples.
The pseudolabel obtaining method must simultaneously meet
the following conditions: unsupervised manner, visualizable,
with generalization, and have a certain correlation with real
changes areas. Based on the above three distance measure maps,
this section uses the process shown in Fig. 3 to obtain reliable
pseudosamples, mainly including feature distribution equaliza-
tion, threshold selection, and postprocessing.

Specifically, due to the distribution characteristics of POISAR
data, there is also a significant uneven statistical distribution
problem in the obtained distribution of original PoISAR distance
measurements. First, the linear function normalization method
of optimizing the maximum and minimum values is applied to
normalize the distance measure maps, which is convenient for
visualization and subsequent threshold selections. Second, for
the normalized measure maps SRWD and BD, we set a threshold
based on 1.5 times of the mean value, and the areas with measure
values higher than this threshold as preliminary change samples.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023
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Only the samples that exceed the thresholds in both normalized
SRWD and BD maps are selected as pseudochange samples. For
the normalized SSIM measure maps, we set a threshold of 0.5
times the mean value, and the areas with measure values lower
than this threshold as preliminary nonchange samples. For the
obtained initial changes and nonchange samples, combined with
morphological postprocessing, small and fragmented areas are
removed. After normalization, threshold selection, and postpro-
cessing, the changed and unchanged samples are combined to
form pseudochanged samples. As shown in the right of Fig. 3,
there are many regions still undetermined in the pseudosample
maps. Further judgment needs to be made in conjunction with
subsequent networks. The selected two types of pseudosamples
are used as accurate labeled samples for subsequent ConvL-
STM network input to time-series POISAR data, and the pseudo
samples and network is applied for efficient change detection.
It is not necessary to obtain too many pseudosamples in this
step, but the accuracy of the obtained changed and unchanged
pseudosamples is required to be high.

C. Applied ConvLSTM Architecture

Based on the pseudolabels obtained from Section III-B, com-
bined with the T's coherence matrices of temporal PolSAR and
the distance measure maps obtained from Section III-A, these
multidimensional features and limited pseudolabels are used
as inputs for training the ConvLSTM network. The applied
ConvLSTM architecture is shown in Fig. 4, which combines
convolutional operations that can extract spatial features with
LSTM networks that can extract temporal features. Introducing
ConvLSTM network into time-series PoISAR change detection
has advantages in multidimensional data processing with spatial
information sequences. This ConvLSTM network is a super-
vised network, we trained the model using 5% of the selected
pseudosamples. Considering the superior performance of this
network for limited number of samples and the needs of multidi-
mensional inputs, we chose this robust ConvLSTM to detect the
change and nonchange regions of time-series SAR. The network
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Fig. 4. Applied ConvLSTM architecture.

parameter settings and specific effects of parameters, and sample
proportion will be further discussed in the Sections V-B and C.
Although this article uses the supervised learning network, the
obtained pseudosamples are automatically generated without
manual participation. Therefore, the proposed method should
be categorized as an unsupervised method, fitting to the massive
unlabeled temporal SAR change detection tasks.

IV. EXPERIMENTAL AND RESULTS

The applied datasets, experimental settings, and comparative
experiments are introduced in this section. Then, the proposed
PDM-ConvLSTM are verified. Moreover, further comparisons
and discussion are presented.

A. Experimental Datasets and Settings

The effectiveness of the proposed method was tested on three
Radarsat-2 spaceborne PolSAR data, two Sentinel-1 spaceborne
PolSAR data, and two UAVSAR airborne PolSAR data. The
basic information of selected dataset is shown in Table I. As
shown in Figs. 5, 6, and 7, these three groups of datasets include
typical land-cover changes such as changes in urban expansion,
changes in water bodies, and changes in vegetation types. For
the Radarsat-2 dataset and open-source UAVSAR [32], [33]

dataset, there are corresponding labeled Ground Truths (GT)
with changed areas that can be used for validation. For the
Sentinel-1 dataset, only part of GTs is available.

It should be noted that the proposed method in the article
belongs to unsupervised methods and does not require labeled
samples for training. The selection of pseudosamples is based
on unsupervised approach. The manually annotated GT used in
this article are all used for accuracy verification and partial com-
parative experiments. For the proposed PDM-ConvLLSTM, the
ratio of pseudosamples is set as 5% by default in an unsupervised
manner. Based on the selected reliable pseudosamples, combin-
ing with ConvLSTM network, the change detection results can
be obtained. The rationality of setting the ratio of pseudosamples
will be further demonstrated in Section IV-C.

As the comparisons of proposed method, the following meth-
ods are applied to provide benchmark experimental groups.

1) Traditional Methods. (I)Unsupervised — Information-
theoretic divergence change detection (ITD-CD) [34], [35]:
Based on the polarimetric coherence matrix of time series
PoISAR, unsupervised ITD-CD combined with information-
theoretic divergence and constant false alarm rate detection, the
change areas of time-series POISAR can be obtained.

(@ Unsupervised — Polarimetric entropy theory change
detection(PET-CD) [36]: Based on the polarimetric covariance
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TABLE I

DETAILED INFORMATION OF APPLIED TIME-SERIES POLSAR DATA

Dataset Ser{sor: Imagn.lg Area- Resolutlon. (m) Iqlage.: size  Main types of land Change GT
polarization Time [Rangex Azimuth] (in pixel) cover
Rs2-WH- Radarsat-2 Wuhan, China, Building, vegetation, .
2011 Full-polarized 2011-12 128 2450235005 ter, and bare land ~ Contains
. L . change GT for
Rs2-WH- Radarsat.-2 Wuhan, China, 12x8 2450%3500 Building, vegetation, verification
2015 Full-polarized 2015-06 water, and bare land
Rs2-WH- Radarsat-2 Wuhan, China, Building, vegetation,
2016 Full-polarized 2016-07 128 24303500 water, and bare land No
UAVSAR- UAVSAR Los Angeles, Building and .
LA-2009 Full-polarized ~ USA, 2009-04 0.5%1.6 300786 vegetation Ch:flo‘;tgs o
UAVSAR- UAVSAR Los Angeles, 05% 1.6 300%786 Building and Verigﬁcation
LA-2015 Full-polarized USA, 2015-05 ) ) vegetation
Sentinel-1 Xi’An, China, Building, vegetation, Contains
S1-XA-2015 Dual-polarized 2015-12 20722 9892x3100 water, mountains  partial change
S1-XA-2021 Sentmel-.l Xi’An, China, 20%22 98925100 Building, Vegeta_tlon, GT f(_)r
Dual-polarized 2021-12 water, mountains comparison

(c) ()
[ Jchanged areas [ unchanged areas[llundefined

Fig. 5. Rs2-WH dataset: (a) Pauli RGB image of Rs2-WH-2011; (b) Pauli
RGB image of Rs2-WH-2015; (c) Pauli RGB image of Rs2-WH-2016;
(d) change GT map of Rs2-WH-2011-2015.

matrix of time series POISAR, unsupervised PET-CD combined
with the entropy images and user-defined thresholds to obtain
change information of time series data.

2) Deep Learning Methods. (1) Unsupervised —
Convolutional-wavelet neural networks (CWNN) [20]: Wavelet
transform is introduced into unsupervised multitemporal SAR
CWNN change detection to reduce the effect of speckle noise.
The CWNN can effectively exploit change information from
multitemporal images.

(b) ()
[ Jchanged areas [l unchanged areas

Fig. 6. (a) Pauli RGB image of UAVSAR-LA-2009. (b) Pauli RGB image of
UAVSAR-LA-2015. (c) Change GT map of UAVSAR-LA-2009-2015.

(@ Unsupervised — Fully Convolutional Change Detection
Framework with Generative Adversarial Network (FCD-GAN)
[37]: FCD-GAN is a newly proposed framework for change
detection in multitemporal remote sensing images. The iterative
optimization of Unet segmentor and image-to-image genera-
tor can build a network for unsupervised multitemporal image
change detection.

(3 Supervised — Convolutional Long Short Term Memory
(ConvLSTM) [38]: The end-to-end supervised ConvLSTM net-
work is used to learn the deep mutual information of polarimetric
coherent matrices in the rotation domain with different polari-
metric orientation angles for POISAR image change detection.

For the above comparison methods, the applied features are
generally the nine elements of coherence matrix or the three
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Fig. 7. (a) Pseudocolor image of S1-XA-2015. (b) Pseudocolor image of S1-
XA-2021. (c) Change GT map of S1-XA-2015-2021.

diagonal elements of polarimetric coherence matrix. The un-
supervised comparison method does not need labeled samples,
while the supervised comparison method sets 5% of the labeled
samples. The proposed unsupervised PDM-ConvLLSTM also ap-
plied 5% pseudosamples for training. The selections of samples
are all randomized.

B. Experimental Results

To validate the proposed PDM-ConvLSTM, this section first
presents the results of key steps, including similarity maps, pseu-
dolabel maps, and change detection results. The similarity maps
are the foundation, and the pseudolabel maps are the key to the
effectiveness of PDM-ConvLSTM. By combining ConvLSTM
network and the accurate pseudosamples, the change detection
results can be obtained. Taking the Rs2-WH-2011/Rs2-WH-
2015 dataset as an example, Figs. 8 and 9 show the similar-
ity maps, pseudolabel maps. From Fig. 8, it can be seen that
the pseudosamples selected through PDMs visualization and
thresholds are not many in quantity, and only a portion of
these pseudosamples will be selected to participate in network
training. In the subsequent discussion section, the reliability
of these pseudosamples will be evaluated in multiple aspects
through change detection accuracies and direct comparisons
with annotations.

In addition, the change detection results of the UAVSAR-LA-
2009/UAVSAR-LA-2015, S1-XA-2015/S1-XA-2021, and Rs2-
WH-2011/Rs2-WH-2016 datasets are shown in the Figs. 10, 11,
12, and 13, respectively.
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Dpseudo changed areas

.pseudo unchanged areas
. undefined

(e)

Fig. 8. Similarity map and pseudosamples map of Rs2-WH-2011/2015
dataset. (a) SRWD+BD map. (b) SSIM map. (c) Changed pseudolabels gener-
ated by SRWD+BD map. (d) Changed pseudolabels generatedby SSIM map.
(e) Unchanged pseudolabels generated by SSIM map.

Fig. 9. Pseudolabels map of Rs2-WH-2011/Rs2-WH-2015 dataset.
(a) changed pseudolabels map. (b) Unchanged pseudolabels map.
(c) Changed—unchanged pseudolabels map.
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(a (b)
[ ]changed areas [JJj unchanged areas[lllundefined

Fig. 10. (a) Change detection result of Rs2-WH-2011-2015 dataset. (b) Cor-
responding GT map.

Fig. 11. (a) Change detection result of UAVSAR-LA-2009-2015 dataset.
(b) Corresponding GT map.

ﬂﬂ'-: .unchanged areas

[}
N .undefmed areas

' .false alarms
.mission error

Dchanged areas .unchanged areas

Fig. 12.  Change detection result of S1-XA-2015-2021 dataset. Fig. 14. Change detection results of Rs2-WH-2011-2015 dataset. (a) ITD-CD.
(b) PET-CD. (c) CWNN. (d) FCD-GAN. (¢) ConvLSTM. (f) PDM-ConvLSTM.
(g) GT map.

C. Comparisons and Analysis

Section IV-B provides the change detection results of three
groups of applied datasets. It can be seen that the proposed
unsupervised PDM-ConvLSTM can detect change regions in
time-series POISAR imageries. To evaluate the method quanti-
tatively, we selected two groups of datasets from Part IV-A and
comparative experimental results to quantitatively evaluate and
compare the effectiveness and stability of the PDM-ConvLSTM.

Taking  datasets  Rs2-WH-2011/Rs2-WH-2015  and
UAVSAR-LA-2009/UAVSAR-LA-2015 as examples, Figs. 14
and 15 show the comparative experimental results, and
the quantitative evaluations are detailed in Tables II and
III, respectively. From the results, it can be seen that the

Dchanged areas.unchanged areas

Fig. 13.  Change detection result of Rs2-WH-2011-2016 dataset.
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.false alarms
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(2)

Fig. 15. Change detection results of UAVSAR-LA-2009-2015 dataset.
(a) ITD-CD. (b) PET-CD. (¢) CWNN. (d) FCD-GAN. (e) ConvLSTM.
(f) PDM-ConvLSTM. (g) GT.

quantitative evaluation of the PDM-ConvLSTM on the
UAVSAR-LA-2009/2015 dataset is comparable with that
of the supervised method under the same sample condition. The
quantitative results of two datasets indicate that the proposed
method is superior to other unsupervised methods, and has
comparability with the results of supervised methods under the
same proportion of samples. Multiple quantitative results and
comparative results demonstrate the effectiveness and stability
of the proposed PDM-ConvLSTM.
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TABLE II
QUANTITATIVE EVALUATIONS OF RESULTS ON R$2-WH-2011-2015 DATASET

Methods OA* KC Pre Rec F1
ITD-CD 0.8405 0.0782  0.8145 0.0512  0.0963
PET-CD 0.8472  0.1950 0.6861 0.1470  0.2422
CWNN 0.8444  0.2130 0.6096  0.1743 0.2711
FCD-GAN 0.8287  0.1387 0.4465 0.1323  0.2041
ConvLSTM 0.9194 0.7028 0.7715 0.7312  0.7508
PDM- 0.8959  0.6663 0.6420 0.8439 0.7292
ConvLSTM

* OA: overall accuracy; KC: Kappa coefficient;

Pre: precision rate; Rec: recall rate;

F1: Fl-score, which is the weighted harmonic mean of
precision rate and recall rate.

The bold entities indicate the highest or prominent values.

TABLE III
QUANTITATIVE EVALUATIONS OF RESULTS ON UAVSAR-LA-2009-2015
DATASET
Methods OA KC Pre Rec Fl
ITD-CD 0.8625  0.1851 0.9627 0.1198  0.2131
PET-CD 0.9201 0.6641 0.8164 0.6272  0.7094
CWNN 0.8749  0.5242  0.5973  0.5993  0.5983
FCD-GAN 0.8058 0.4762 0.4379 0.8805 0.5849
ConvLSTM 09155 0.6170 0.8749  0.5325  0.6620
PDM-
ConvL.STM 0.9324 0.7445 0.7775 0.7918  0.7846

The bold entities indicate the highest or prominent values.

V. DISCUSSIONS

To further demonstrate the rationality of applied PDM, pseu-
dosamples and network, as well as the sensitivity and limitations
of the proposed method. This section uses comparative exper-
iments and quantitative evaluations to discusses the rationality
of the selected PDM, the rationality of the selected network and
network parameters, the accuracy and impact of pseudosamples
proportional, and the qualitative analysis of the local regions of
interest in change detection results.

A. Discussions About Rationality of the Selected PDMs

The comparisons in Tables II and III illustrate the effec-
tiveness of the three selected PDMs, but their superiority over
other distance measures has not been compared. Based on the
UAVSAR-LA-2009-2015 dataset, we supplemented the dis-
cussion on the experimental effects of other typical distance
measures, including Bregman divergence, Jensen Shannon di-
vergence, revised Wishart distance, Wishart distance, mean
squared error/MSE, and cosine similarity. And combined with
the contrasting results in following Table IV, we further demon-
strated that the three selected PDMs are preponderant. In above
supplementary experiments about other distances, the applied
pseudosample proportional and network framework were con-
sistent, the MSE and cosine similarity are common distance
measures, while the other measures (including Bregman diver-
gence, Jensen Shannon divergence, revised Wishart distance,
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TABLE IV TABLE V
EVALUATION OF COMPARATIVE RESULTS BASED ON DIFFERENT DISTANCE EVALUATION OF COMPARATIVE RESULTS OF SUPPLEMENTING TYPICAL
MEASURES NETWORKS AND CONVLSTM PARAMETER ANALYSIS
Different Different networks
distances OA KC Pre Rec F1 and parameters OA KC Pre Rec F1
Brogman VGG 0.9235 0.7359 0.7024 0.8810 0.7816
divergence 0255 02704 02890 0.9657 04449 ViT 0.9214 0.7295 0.6959 0.8782 0.7765
Jensen Shannon ConvLSTM
diverpence 0.5376  0.1122 0.2105  0.7181  0.3256 (Default 0.9324 0.7445 0.7775 0.7918  0.7846
revised Wishart parameters)
‘ 0.6939 03397 03315 0.9535 0.4920
distance (h;‘;‘;ﬁgﬁ@ 0.9328 07480 07739 0.8025 0.7839
Wishart distance  0.6599  0.2650 0.2929 0.8404 0.4344 ConvLSTM
MSE+SSIM  0.8994 0.6650 0.6306  0.8523  0.7249 (hidden dim20y 09319 0.7464 07659 0.8092  0.7870
Cosine 1C en_L;I;lM
similarity+SSiM 09222 0.7126.0.7324 - 0.7874 07589 (oo g3y 09307 07452 0.7554 0.8203  0.7865
Only SRWD  0.8822  0.6333  0.5783  0.8949  0.7026 ConvLSTM
OnlyBD ___ 0.7359 03960 03672 0.9659 _0.5321 (num_layers=5) 09230 07292 07099 0.8539  0.7753
Only SSIM 0.9160 07059 0.6893 0.8372 0.7561 The bold entities indicate the highest or prominent values.
SRWD+BD  0.8272 0.5306 0.4719 0.9368 0.6277
SRWD+SSIM _ 0.9093  0.6929 0.6594 0.8613  0.7470
BD+SSIM 0.8991 0.6713  0.6239 0.8832  0.7312 . : S
applied convLSTM has advantages, especially in high-
Applied PDMs _ 0.9324 0.7445 07775 0.7918  0.7846 PP S £68,  especlally &

The bold entities indicate the highest or prominent values.

Wishart distance) were classical measures suitable for describ-
ing PolSAR data. Due to the influence of SAR speckle and the
particularity of polarimetric distributions, not all typical distance
measurements suitable to be applied for pseudosamples selec-
tion in this method. The three adopted PDMs in the proposed
framework utilize the distribution characteristics of POISAR data
and the similarity of PolSAR image structures. Compared to
other typical distance measures, they are more suitable for the
accuracy of unsupervised PolSAR change detection.

In addition, in order to further improve the ablation experi-
ments, we also conducted supplementary experiments by com-
paring a single distance and any combination of two distances
for the three applied PDMs in Table IV.

B. Discussions About Rationality of the Selected Network and
Network Parameters

After obtaining the three distance measures, the nine-
dimensional polarimetric coherence matrix features of two time
series POISAR are combined. And these high-dimensional fea-
tures are input to the network for deep learning model training
and testing. These high-dimensional data input has high require-
ments for network selection. And in addition, due to the limited
number of pseudosamples, there are also high requirements
for the applied network. Thus, considering the requirements of
multidimensional input and limited samples (with imbalanced
change/unchanged class samples), we select the convLSTM
model. Although the motivations of selected convLSTM is not
novel enough, this model has strong robustness and scalability.
In addition, to demonstrate the suitability of convLSTM for the
proposed method, we further compared the change detection
results using other networks combined with the obtained pseu-
dosamples. Based on the UAVSAR-LA-2009-2015 dataset, we
supplemented the experimental effects of other typical networks
(including VGG and Vision Transformer/ViT [39]). The results
are shown in Table V, these can further demonstrate that the

dimensional input and limted samples.

Furthermore, for the applied ConvLSTM network architec-
ture in this paper, the default parameters are: the learning rate is
set to 0.001, the Epochs is set to 200, the batch size is set to 128,
the activation function is set to ReLu and the optimizer is set to
SGD (Stochastic Gradient Descent), the number of the middle
layer (hidden_Dim) is set to 10, the number of network cells
(num_ Layers) is set to 1. The purpose of ConvLSTM training
is to update parameters and optimize the objective function. The
applied SGD calculates a local estimate based on the data of each
batch, minimizing the cost function. The SGD results are more
reliable with good initialization and learning rate scheduling
scheme. The learning rate determines the size of each step. To
further demonstrate the rationality of the applied network param-
eters, we analyzed some network hyperparameters, including the
adjustment of the network hidden_Dim, num_Layers, as shown
in following Table V. Among them, increasing the number of
LSTM cells will increase significant time cost.

Considering the balance between accuracy and training time
cost, the applied network parameters are mainly implemented
based on experience and by default. The comparative evaluations
of results under different network parameters are shown in
Table V, these also proves that the selected parameter settings
are feasible.

C. Accuracy and Proportional Impact of Pseudosamples

For the proposed method, the accuracy of pseudosamples is
the core, this section demonstrates the accuracy of selected pseu-
dosamples and the rationality of the proportion of applied pseu-
dolabeled samples through two comparative experiments. First,
we directly evaluate the accuracy of the pseudosamples through
labeled GTs of Rs2-WH-2011-2015/ UAVSAR-LA-2009-2015
dataset, based on the accuracy of for all pseudosamples and 5%
of the selected pseudosamples. In Table VI, from the evaluated
results of pseudosamples and change and nonchange GTs, it can
be seen that not all pseudosamples are accurate. However, the
strategy of using 5% pseudosamples has achieved an average
accuracy of 94.50-95.31% in labeled GTs. Based on these
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TABLE VI
EVALUATIONS OF MATCHING ACCURACY BETWEEN SELECTED
PSEUDOSAMPLES AND THE LABELED CHANGE/NONCHANGE GTS

Evaluated pseudo samples Pre_change* Pre unchange  Average pre
All preado samples of 0.8418 0.9704 0.9330
Al pueado samples of RS2 0,7823 0.9710 0.9367
7% preudo samples of 0.8529 0.9714 0.9450
5% pseudo samples of Rs2- 0.8241 0.9806 0.9531

WH-2011-2015 dataset

*Pre_change: precision rate of the change pseudo samples and
the labeled change GTs; Pre_unchange: precision rate of the
unchange pseudo samples and the labeled unchange GTs;
Average_Pre: average precision rate of the selected pseudo
samples and the labeled GTs.

The bold entities indicate the highest or prominent values.

TABLE VII
PROPORTION OF PSEUDOLABELED SAMPLES AND THE IMPACT ON THE
ACCURACY OF CHANGE DETECTION

Proportion ~ OA KC Pre Rec F1
2% 0.9279 0.7322 0.7524 0.7992 0.7751
5% 0.9324 0.7445 0.7775 0.7918 0.7846
10% 0.9290 0.7403 0.7468 0.8221 0.7826

The bold entities indicate the highest or prominent values.

experiments, it can be demonstrated that the pseudosamples
and selection strategies in this paper are reliable. However,
in reality, labeled GTs are difficult to obtain or unavailable.
The pseudosamples obtained by proposed method can greatly
guarantee samples’ quality. On the other hand, from Table VI,
it can be seen that there is serious class imbalance between the
number of change and nonchange pixels in the real datasets. For
the UAVSAR dataset, the ratio of change and nonchange pixels is
1:3.6767, and for the Radarsat-2 dataset, the ratio of change and
nonchange pixels is 1:4.5245. This imbalance phenomenon also
provides certain limitations and motivations for the selection of
network models.

Second, we further analyzed the proportion of pseudolabeled
samples and the impact on the accuracy of change detection,
to demonstrate the sensitivity and limitations of the PDM-
ConvLSTM. We carried out the unsupervised change detection
under the pseudolabeled sample rate of 2%, 5%, and 10% for
the applied UAVS AR datasets. The accuracy evaluation is shown
in the following Table VII and Fig. 16. From the comparisons,
when the pseudolabeled sample rate is only 2%, the effect of
change detection is not satisfying enough than that of 5%. Upon
the rising rate of randomized pseudolabeled sample of 10%, the
recall metric is enhanced. However, other metrics may degrade
than that achieved at 5% sample rate. This is because there may
be some inaccurate pseudosamples mixed in the applied sam-
ples, and the selection of pseudosamples is random. Therefore,
from the perspective of the balance between the training cost
and the accuracy, we choose 5% of pseudolabeled samples for
model training and change detections.
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Fig. 16.  Evaluation of PDM-ConvLSTM under different rates of pseudola-

beled sample.
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Fig. 17.
results.

Local regions of interest in S1-XA-2015-2021 change detection

D. Qualitative Analysis of the Local Regions of Interest in
Change Detection Results

At last, the robustness and effectiveness of the PDM-
ConvLSTM are further qualitatively analyzed by the local
regions of the change detection results. The local regions of
interest in the results of S1-XA-2015-2021 and Rs2-WH-2011-
2016 are shown as following Figs. 17 and 18. From the local
comparison results, the proposed PDM-ConvLSTM can detect
possible changing regions on time-series unlabeled SAR images,
including identifying the mutual changes between water bodies,
buildings, vegetation, and bare land. Due to the lack of labeled
annotation for accuracy evaluation of the changed areas in these
S1-XA-2015-2021 and Rs2-WH-2011-2016 datasets, verifying
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Fig. 18.
results.

Local regions of interest in Rs2-WH-2011-2016 change detection

the change detection results through local regions can also
demonstrate the effectiveness.

However, due to the sensitivity of polarimetric features, it can
be seen that the change detection rate of the PDM-ConvLSTM
is relatively high, from quantitative and qualitative evaluations.
This is mainly due to the detected change areas being larger than
the labeled GT, and some unlabeled changes have been detected.
These also indicate that polarimetric features can capture some
intraclass changes, such as changes in the renovation of building
areas and changes in the growth of vegetation areas. At present,
the method in this article only uses polarimetric features and
deep learning to detect the changing regions, belonging to the bi-
nary change detection method. The following research will fur-
ther explore the polarimetric features to express detail and typi-
cal land-cover change types, and focus on utilizing polarimetric
features and deep learning to quickly track and analyze specific
types of land-cover changes in time-series POISAR images.

VI. CONCLUSION

An unsupervised change detection method for PolSAR data
based on PDM and ConvLSTM, namely PDM-ConvLSTM, is
proposed in this article. The pseudosamples obtained based on
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multiple polarimetric distance measures can enable the proposed
PDM-ConvLSTM to reduce the dependence on labeled samples
and the combination of pseudosamples and deep learning can
balance the efficiency and accuracy of unsupervised change de-
tection for time series POISAR images. There are two highlights
for the proposed PDM-ConvLSTM method: first, three selected
PDMs are utilized to obtain similarity and dis-similarity maps
of time-series PoISAR and changed/unchanged pseudosamples,
which are suitable for PoISAR distribution characteristics and
have the potential to reflect POISAR changes. This approach
aids in mitigating the labor burden for manual annotation.
Second, by combining selected reliable pseudosamples with
efficient LSTM networks, unsupervised PDM-ConvLSTM does
not require additional manual labeled samples, but also attains
comparable the efficiency and accuracy as the supervised meth-
ods. The sufficient unsupervised experiments and comparisons
demonstrate the effectiveness of the PDM-ConvLSTM. The
unsupervised change detection accuracy can reach 89.59%-—
93.24% and is relatively robust. This indicates that the pseu-
dosamples obtained by PDM are reliable. Sufficient comparative
experiments, including results from different methods, different
distances, different network parameters, and different sample
ratios, further demonstrating the effectiveness and reliability of
the unsupervised PDM-ConvLSTM. The future work will focus
on using similarity maps to measure and track the specific types
of land-cover changes in long-time PoISAR series.
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