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Semisupervised Complex Network With Spatial
Statistics Fusion for PolSAR Image Classification
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Abstract—Deep learning has achieved satisfactory results in po-
larimetric synthetic aperture radar (PolSAR) image classification,
which requires a large number of labeled samples for training.
However, in practice, labeling work is time-consuming and la-
borious. As a result, an insufficient number of labeled samples
will lead to a limited ability of the network to recognize different
terrains. To alleviate this problem, we take advantage of labeled
and unlabeled samples simultaneously to train the deep learning
model and, thus, propose a semisupervised complex network with
spatial statistics fusion (SCN-SSF) for PolSAR image classification.
First, the semisupervised complex network (SCN) continuously up-
dates the pseudolabels of unlabeled samples during the training of
complex-valued CNN, and their errors constitute the regularization
term of the objective function, which improves the generalization
of the network. As a result, SCN can recognize different terrains
more accurately, and the classification has a higher belief. Then,
a parameter-free spatial statistics module is built to model neigh-
borhood label interactions based on the product of experts (POEs),
thus enhancing contextual smoothness and correcting some mis-
classifications. Finally, based on the Dempster–Shafer theory, the
contextual label information of POE and pixel-level information
obtained by SCN are integrated to preserve image structure. Over-
all, with only a small number of labeled samples, SCN-SSF can
accurately identify each terrain and obtain smooth classification
while preserving edge information. The effectiveness of SCN-SSF
is demonstrated by classifying PolSAR images with a small number
of labeled samples.

Index Terms—Semisupervised complex network (SCN),
polarimetric synthetic aperture radar (PolSAR) image
classification, contextual label information, product of experts
(POEs), Dempster–Shafer theory (DST).

I. INTRODUCTION

POLARIMETRIC synthetic aperture radar (PolSAR) trans-
mits and receives electromagnetic signals with various
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polarimetric states [1], [2], [3]. As a result, PolSAR can provide
much richer terrain information than single-polarization systems
and has been developed rapidly recently. Terrain classification
plays an important role in the analysis and interpretation of
PolSAR data. A lot of methods have been proposed to mine
effective information for PolSAR image classification, where
statistical modeling and deep learning play important roles.

The statistics-based methods are classical techniques for Pol-
SAR image classification. Lee et al. [4] model the covariance
matrix of PolSAR data using the complex Wishart distribution,
and the final classification is obtained by maximum likelihood
(ML). Furthermore, the scalar product model is proposed for
PolSAR data analysis. It models the backscattering signal by the
product of a random scalar texture component and a complex
Gaussian speckle variable [5] and has been widely applied in
non-Gaussian modeling of PolSAR images, such as the Gamma
distribution [6], G distribution [7], and Fisher distribution [8].
However, these pixel-based methods have poor performance
against speckles. Considering the spatial relationships, Markov
random field (MRF) and conditional random fields (CRF) meth-
ods are introduced to process PolSAR data [9], [10], [11], [12],
[13], [14], [15]. In [14], Wishart MRF (WMRF) model combines
the Wishart distribution with MRF to explore the spatial relation
of neighboring pixels for initial oversegmentation. In [13], mix-
ture Wishart-generalized Gamma-MRF (MWGΓ-MRF) utilizes
Wishart-generalized Gamma distribution mixture model (WGΓ
MM) to maintain statistical correlations and introduce MRF to
capture spatial–contextual information. In [15], CRF is com-
bined with SVM to describe the spectral and spatial information
in the max-margin frame. These MRF/CRF-based models have
achieved satisfactory results. However, it is necessary to choose
an appropriate statistical distribution for different scenes, which
requires expert knowledge. Besides, inference is a relatively
difficult task [16].

Recently, with the development of computer hardware, deep
learning models have achieved great success in many fields, such
as image processing [17], [18], [19], [20], speech recognition
[21], [22], [23], natural language processing [24], [25], [26], etc.
Deep learning models can automatically extract representative
deep features through multiple cascaded convolution layers,
which are also applied to PolSAR image processing. CNN is
first applied to PolSAR image classification by Zhou et al.
[27]. The complex coherence matrix of PolSAR is converted
into a six-dimensional (6-D) real vector fed into the network.
Complex-valued CNN (CVCNN) [28] extends real networks
to the complex domain, including complex convolution and
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complex pooling, etc. As a result, CVCNN can directly extract
effective deep complex features for classification. The amplitude
and phase information of complex data is fully utilized. Further-
more, the complex-valued 3-dimensional CNN (CV3DCNN)
[29] performs 3-D complex-valued convolution to extract hier-
archical complex features in spatial and scattering dimensions.
These models consider the characteristics of PolSAR data and
achieve satisfactory results. All the above deep models rely on
sufficient labeled samples to ensure good classification perfor-
mance while annotations are time-consuming and require expert
knowledge. In practice, labeled samples are often insufficient,
which can lead to overfitting of the network. As a result, the
network has a limited ability to identify different terrains.

To alleviate this problem, semisupervised networks have been
studied and applied to PolSAR image classification [10], [30],
[31], [32], [33]. Bi et al. [10] propose a graph-based semisu-
pervised model. The model extracts representative polarimetric
features through a deep network and efficiently propagates class
labels through a graph model. Finally, these two models are
integrated into a principled framework. In [30], the K-means
algorithm is used to generate pseudolabels for unlabeled sam-
ples. Unlabeled samples with pseudolabels and labeled samples
are fed into 3DCNN to obtain discriminative deep features. Guo
et al. [32] propose a memory CNN (MCNN), which introduces
a memory module and designs an additional loss for unlabeled
samples. These semisupervised networks effectively introduce
unlabeled samples into training, thus expanding the training set
and alleviating overfitting.

In addition, neighboring pixels within PolSAR images are
highly correlated. To explore spatial relations, Zhang et al. [34]
and Hu et al. [35] utilize the spatial distance of the neighborhood
to measure the weights and feed the weighted inputs into a
stacked sparse autoencoder (SSAE) for further feature extraction
and classification. These two models exploit the relationship
between neighboring pixels and are robust against speckles.
However, SSAE extracts features by reconstructing the inputs
while discriminative features useful for the classification task are
ignored. In [36], minigraph convolutional networks (miniGCNs)
are applied to model middle- or long-range spatial relation-
ships of samples and are fused with spatial–spectral features
extracted by CNN to achieve better classification results. In [37],
multimodal deep learning-remote sensing (MDL-RS) combines
spatial–spectral joint classification guided by CNN and pixel-
level labeling provided by fully connected in a unified MDL
framework. These models design different network structures to
capture spatial information and integrate it with pixel-level in-
formation, whose superiority has been demonstrated experimen-
tally. Inspired by the above models, we propose a semisupervised
complex network with spatial statistics fusion (SCN-SSF) model
for PolSAR image classification. The model has the following
contributions.

1) The semisupervised complex network (SCN) part of SCN-
SSF is an off-the-shelf CVCNN whose training involves
unlabeled samples. Concretely, SCN can generate and
update pseudolabels for unlabeled samples during train-
ing, and their errors constitute the regularization term of
the objective function, which improves the generalization

of the network. In this way, SCN is able to recognize
different terrains more accurately and improve the belief
of classification.

2) To capture spatial information, a parameter-free spatial
statistics module is designed to compute neighborhood
label dependencies based on the product of experts (POEs)
to enforce label consistency. As a result, SCN-SSF can
obtain smooth homogeneous regions and correct some
misclassifications.

3) To preserve the image structure, Dempster–Shafer theory
(DST) is applied to integrate pixel-level information pro-
vided by SCN and contextual label information of POE.
In this way, with a small number of labeled samples,
the SCN-SSF model can preserve the edge structure and
achieve smoother classification within the consistent class
region.

The rest of the article is organized as follows. Section II briefly
introduces the PolSAR data. Section III describes SCN-SSF
model in detail. Section IV shows the experimental results and
discussion. Finally, Section V concludes this article.

II. PRELIMINARY

Each resolution cell of PolSAR data can be represented as a
complex scattering matrix S [1]

S =

[
SHH SHV

SVH SVV

]
(1)

whereSHV denotes the complex scattering coefficient of vertical
transmitting and horizontal receiving polarization, and the other
coefficients have similar definitions. In the reciprocity theorem,
SHV is assumed to be equal to SVH. Under the Pauli basis, the
scattering matrix S can be expressed by the scattering vector k

k =
1√
2
[SHH + SVV, SHH − SVV, 2SHV]

T. (2)

To reduce the effect of speckle, multilook processing is ap-
plied to polarimetric data [33]. An n-look coherence matrix can
be given by

T =
1

n

n∑
i=1

kik
H
i =

⎡
⎣T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎦ (3)

where the superscriptT in (2) andH in (3) indicate transpose and
conjugate transpose operations, respectively. T is a Hermitian
matrix, and Tij = T̄ji. The elements of the upper triangular, i.e.,
{T11, T12, T13, T22, T23, T33}, are used to represent the input
data. Finally, a sliding window is used to crop the PolSAR image
into a set of patches with the size being m×m× 6, where m
is the window size and 6 denotes the number of channels.

III. METHODOLOGY

Deep networks trained by insufficient number of labeled
samples suffer from overfitting and have a poor ability to identify
different terrains. To alleviate this problem, we propose the
SCN-SSF model, as shown in Fig. 1. First, SCN is a special



JIANG et al.: SCN-SSF FOR POLSAR IMAGE CLASSIFICATION 9751

Fig. 1. Backbone of the SCN-SSF model. The model has three main components. The first SCN module learns the network parameters in a semisupervised way.
The second part has two branches, including spatial statistics and probability generation. The third part fuses the information from these two branches by DST.

Fig. 2. Training process of SCN.

CVCNN whose training involves unlabeled samples. Specifi-
cally, SCN continuously generates pseudolabels for unlabeled
samples during training, and their corresponding errors play
the role of regularization in the objective function. Thus, the
generalization of the network is improved, and the network can
recognize different terrains more accurately.

Then, the output of SCN is fed to the spatial statistics and
probability generation branches to explore the pixel-level in-
formation and contextual label information. Finally, these two
different kinds of information are combined for classification.
Consequently, the SCN-SSF model can achieve smoother ho-
mogeneous regions and preserve edge information.

A. Training of SCN

SCN is a CVCNN jointly trained by labeled and unlabeled
samples. The main structure and training process of SCN are
shown in Fig. 2, where the input patches are a set of complex
patches extracted from the PolSAR images. SCN consists of
two complex convolutional layers, a complex pooling layer, and
a complex fully connected layer [28]. The complex network
can integrate amplitude and phase information directly in the
complex domain, thus effectively extracting more complete deep
complex features.

In this part, the training process using labeled and unlabeled
samples is described in detail. The labeled dataset is represented
as {XL, TL}, whereXL denotes the labeledN1 samples, andTL

is its corresponding complex labels consisting of 0 + 0 · i and
1 + i. The unlabeled dataset is denoted asXU withN2 unlabeled
samples. Then, the training setX = {XL, XU} is fed into SCN,

and the corresponding output set is OT = {OL, OU}. Thus, the
loss function of the labeled data is given by

EL =
1

N1

N1∑
i=1

K∑
k=1[(� (

T k
i

)−� (
Ok

i

))2
+
(� (

T k
i

)−� (
Ok

i

))2]
(4)

where�(·) and�(·) denote the real and imaginary parts, respec-
tively, and K represents the number of classes. Furthermore,
based on the maximum modulus of the output OU , the pseu-
dolabels T̃U of unlabeled samples are generated. Thus, the loss
function of unlabeled data can be given by

EU =
1

N2

N2∑
i=1

K∑
k=1[(

�
(
T̃ k
i

)
−� (

Ok
i

))2

+
(
�
(
T̃ k
i

)
−� (

Ok
i

))2
]
.

(5)

The pseudolabels of unlabeled samples are iteratively updated
during training. Finally, the loss function of the SCN can be
expressed as

E = EL + αEU (6)

where α is a coefficient varying with time [38]. In this way,
the error of unlabeled samples is the regularization term of
the final objective function, which can prevent overfitting and
improve the generalization performance of SCN. Thus, SCN can
recognize different terrains more accurately.
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Fig. 3. Uncertainty of CVCNN and SCN on the Flevoland1 dataset. The black
areas in (c) and (d) indicate that the probabilities of the classified class are greater
than 0.1 while the colorful areas are the opposite. (a) Pauli image. (b) Ground
truth. (c) Uncertainty of CVCNN. The colorful uncertain regions account for
29.74% of the whole image. (d) Uncertain of SCN. The colorful uncertain regions
account for 18.33% of the whole image.

Fig. 4. T-SNE visualization of the features learned by different methods on
the Flevoland1 dataset. (a) CVCNN. (b) SCN. The corresponding boxes in (a)
and (b) have the same size.

With the introduction of unlabeled samples, classified labels
have a higher class probability. An experiment is conducted
here to visualize this. As shown in Fig. 3, it is obvious that the
colorful uncertainty regions in Fig. 3(d) are smaller than those
in Fig. 3(c). This indicates that the introduction of unlabeled
data reduces the uncertainty of the classification. The classifi-
cation has higher beliefs, which brings two benefits. On the one
hand, CVCNN with unlabeled data can learn more effective and
discriminative deep features. As shown in Fig. 4, the features
of SCN have larger interclass distances (see box) and smaller
intraclass distances (see circle), thus improving the classification
accuracy. On the other hand, the higher beliefs facilitate the
preservation of structural information in the subsequent SSF.

B. Pixel-Level and Contextual Label Information Capturing

Moreover, the spatial statistics and probability generation
branches are designed to explore pixel-level and contextual label
information from the output of SCN. The probability generation

Fig. 5. Neighborhood system of pixel s. (a) High-order neighborhood window
Hs is centered on pixel s, where the red box is its low-order neighborhood. (b)
Five cliques decomposed from the red box in (a) are the single cliqueC1, the two
horizontal pairwise cliques C2H , and the two vertical pairwise cliques C2V .
The blue, green, and yellow represent three different categories, and the center
pixel has no color, indicating that it can take any category and calculate the
corresponding probability.

branch assigns a probability value to each SCN output through
the softmax function, which is expressed as

p(k) = softmax(z(k)) =
ez(k)∑
k∈Ω ez(k)

(7)

where p(k) is the probability that pixel belongs to class k,
and z(k) is the modulus of O(k), where Ω = {1, 2, ...,K}
denotes a set of K labels. In this branch, pixel-level information
is obtained, preserving structural information and preventing
oversmoothing in subsequent SSF.

The spatial statistics branch first obtains the labels Y =
{Ys ∈ Ω}s∈S based on the output of SCN, where S =
{s}s=1,...,N represents a set of N pixels. Then, to correct
some misclassifications, contextual label information is utilized.
Specifically, a high-order neighborhood windowHs centered on
pixel s is shown in Fig. 5(a). Here, the red box is the low-order
neighborhood of s, which consists of a single clique C1, two
horizontal pairwise cliques C2H , and two vertical pairwise
cliques C2V , as shown in Fig. 5(b). Then, the label of the center
pixel is set to the label k, and k takes the labels in Ω. And the
other labels remain unchanged. At this time, the label frequency
of each clique is counted, including single cliques Ys = k
and pairwise cliques (Yt1 , Ys) = (k, q1), (Ys, Yt2) = (k, q2),
(Yt3 , Ys) = (k, q3), and (Ys, Yt4) = (k, q4) in the neighborhood
window Hs, where t1,2 ∈ C2H , t3,4 ∈ C2V , and qj ∈ Ω. The
frequency of each clique in Hs is then considered as an expert.
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In this way, the high-order label dependencies of pixel s are
decomposed into low-order ones. Based on POE, the spatial
label interactions of s are modeled, expressed as

fs(k) =
gs(k)

∏4
t=1 gs(k, qt)∑K

k=1 gs(k)
∏4

t=1 gs(k, qt)
(8)

where fs(k) denotes the probability that Ys takes k. gs(k) =
Mk/MC1

and Mk denote the frequency and number of sin-
gle cliques with the label being k in Hs, where MC1

indi-
cates the total number of single cliques within Hs. gs(q1, k) =
M(q1,k)/MC2H

andM(q1,k) represent the frequency and number
of pairwise cliques with the label being (q1, k) in Hs, which is
counted by the normalized joint histogram (NJH) [39]. MC2H

indicates the total number of horizontal pairwise cliques within
Hs. gs(k, q2), gs(k, q3), and gs(k, q4) have similar definitions.

The second branch measures the label dependencies based
on the classification of SCN and obtains the POE-based class
probabilities. First, the label frequencies of single cliques are
calculated in high-order neighborhoods. Thus, for homogeneous
regions, the label with the largest proportion can correct the mis-
classification caused by speckle. In addition, the model considers
the labels of pairwise cliques. Therefore, pairwise cliques with
the same labels [e.g., (k, k)] can further suppress speckle. In
contrast, pairwise cliques with different labels [e.g., (k, q)k �=q]
take into account the edge information, which prevents the loss
of structure information due to overcorrection.

C. Information Fusion

Finally, to preserve more edge structure, DST is applied to
introduce the pixel-level information obtained by SCN into the
fusion iteration. Specifically, in evidential theory, the label set Ω
is considered as the frame of discernment. The class probability
p and the spatial statistics class probability f are Bayesian basic
belief assignment (BBA) functionsm, satisfying two constraints

{
m(∅) = 0∑
A⊆Ω m(A) = 1

(9)

where ∅ is an empty set, and proposition A denotes a subset
of Ω. The value of m(A) can be interpreted as a part of the
unit belief mass, which is assigned to A based on a corpus of
evidence.

Based on the evidential theory, the class probability p and
spatial statistics class probability f are fused by

m(k) = p⊕ f(k) =
p(k)f(k)∑K
k=1 p(k)f(k)

(10)

where ⊕ represents the fusion operation. Next, the classification
result of the fusion probability m is fed to the second branch to
calculate its spatial statistics class probability, which is fused
with the class probability of SCN to obtain a new fusion proba-
bility. After several iterations, the final classification results are
obtained. In this way, the SCN-SSF model effectively preserves
the edge structure while enhancing label consistency.

IV. EXPERIMENT RESULTS AND DISCUSSION

A. Implementation

SCN-SSF model is tested against other models: 1) CNN [17];
2) CVCNN [28]; 3) SCN; 4) the semisupervised PL3DCNN
[30]; 5) CVCNN-SSF. These models have similar parameter set-
tings. Concretely, 100 samples with the size being 12× 12× 6
per class [40] are fed into the networks. For the semisupervised
model, some unlabeled samples are randomly selected and par-
ticipate in the training. The networks are optimized by the Adam
algorithm with the learning rate being 0.001, and the number of
iterations is set to 300. The batch sizes of the labeled set and the
unlabeled set are 50 and 120, respectively. The experiments are
performed on Pytorch-CPU (4.2 GHz).

B. Hyperparameter Analysis

Besides, there are two hyperparameters that need to be de-
termined through experiments. The experiments are conducted
on two representative datasets, including the San Francisco and
Flevoland1 dataset, and the results are shown in Fig. 6.

The first experiment is to choose a suitable size for the neigh-
borhood window. Based on the classification results of SCN,
the size of the neighborhood window in the spatial statistics
branch varies from 3 to 23, and the corresponding classification
results of SCN-SSF are shown in Fig. 6(a). For the Flevoland1
dataset, as the window size increases to 11, the classification
accuracy gradually converges. For the San Francisco dataset, the
classification accuracy gradually improves as the window size
increases. In addition, larger window sizes mean longer running
times. Overall, when the window size is 15, the accuracies of
the Flevoland1 and San Francisco datasets are relatively high.
Consequently, in our experiments, the window size is set to 15.

Another experiment is performed to determine the number
of iterations. In the SSF part, the number of iterations is in-
creased from 0 to 15, and the change in classification accuracy
is presented in Fig. 6(b). For the Flevoland1 and San Francisco
datasets, the classification accuracies gradually converge as the
number of iterations increases to 6. As a result, the number of
iterations in our experiment is set to 6.

C. Ablation Experiment

To clearly illustrate the roles of SCN, POE, and DST in
SCN-SSF, three ablation experiments are designed, including
SCN, CVCNN-SSF, and SCN-POE. The comparison of SCN
and CVCNN can validate the effectiveness of the semisuper-
vised network. In addition, the comparison of CVCNN-SSF and
SCN-SSF can clarify the role of the SCN module in SCN-SSF.
Similarly, the role of POE is illustrated by comparing SCN and
SCN-POE, and the role of DST is illustrated by comparing
SCN-POE and SCN-SSF.

SCN and CVCNN-SSF are used as reference models, and
their experiment results are shown in Figs. 9, 11, and 12. The
corresponding quantitative evaluations are listed in Tables I–III.
Comparing the classification results of SCN and CVCNN, it can
be found that Wheat2 regions in Fig. 11(j) are well classified, and
Wheat2 in Fig. 11(f) is not identified, which is also confirmed
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Fig. 6. Effect of different hyperparameters on classification accuracy. (a) Effect of the neighborhood window size on classification accuracy. (b) Effect of iteration
number on classification accuracy.

TABLE I
QUANTITATIVE EVALUATION (OA/KAPPA) OF THE CLASSIFICATION FOR THE

SAN FRANCISCO DATASET

by the quantitative evaluation listed in Table II. Similarly, the
Cropland regions framed by the black box in Fig. 12(f) are
well classified while some Cropland regions in Fig. 12(d) are
misclassified as Water. As a result, with a small number of
labeled samples, SCN possesses a stronger ability to identify
different terrains compared to CVCNN. In addition, comparing
the classification results of CVCNN-SSF and SCN-SSF, it can
be found that SSF as a simple postprocessing method can
effectively enhance contextual smoothness and correct some
misclassifications. However, in Figs. 11(k) and 12(g), the mis-
classifications of Wheat2 and Cropland framed by the black
boxes still exist and cannot be corrected by SSF. Therefore,
to fully utilize the ability of SSF, deep networks trained with
a small number of samples need to have stronger recognition
ability. SCN introduces unlabeled samples to participate in the
training of CVCNN and designs the objective function to induce
a more focused network output. In this way, SCN improves
the generalization of the model and alleviates overfitting, thus
improving the ability to recognize different terrains.

To illustrate the effectiveness of DST, we conduct experiments
on the Flevoland1 dataset, and the classification accuracies of
SCN-POE and SCN-SSF with different numbers of iterations
are shown in Fig. 7. As the number of iterations increases, the
classification accuracy of SCN-SSF gradually increases and con-
verges while that of SCN-POE gradually increases and then de-
creases. Compared with SCN, SCN-POE can efficiently smooth

Fig. 7. Classification accuracies of the Flevoland1 dataset with different
numbers of iterations.

homogeneous regions and correct some misclassifications, but
it can also lead to the loss or even distortion of edge information
due to oversegmentation. To visualize this, a simulated PolSAR
image with clear edges is generated [13] and classified. In detail,
four homogeneous regions in the Flevoland2 dataset are selected
and then fill the ground truth map in Fig. 8(c). The obtained
simulated image is shown in Fig. 8(b). The experiment results
of SCN, SCN-POE, and SCN-SSF are shown in Fig. 8(d)–8(f).
Obviously, as shown in Fig. 8(e), POE has a strong ability to
enhance label consistency, and the misclassifications in Fig. 8(d)
are corrected. However, at the same time, the smoothing ability
of POE leads to the loss or even distortion of edge information.
Fortunately, based on DST, SCN-SSF continuously introduces
pixel-level information in the fusion iterations to prevent the
loss of edge information. As a result, compared to Fig. 8(d),
the classification of Fig. 8(f) possesses smoother homogeneous
regions while preserving structural information. Quantitatively,
the classification accuracy of SCN-SSF is 94.27%, which is
1.09% higher than that of SCN-POE. Overall, POE has a strong
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TABLE II
QUANTITATIVE EVALUATION (OA/KAPPA) OF THE CLASSIFICATION FOR THE FLEVOLAND1 DATASET

TABLE III
QUANTITATIVE EVALUATION (OA/KAPPA) OF THE CLASSIFICATION FOR THE

FLEVOLAND2 DATASET

ability to smooth homogeneous regions, but it can also lead
to the loss and distortion of edge information. In SCN-SSF,
DST is applied to continuously introduce pixel-level information
into the fusion iterations, thus preventing edge distortion and
preserving structural information.

D. Experiment on the San Francisco Dataset

The San Francisco dataset (900 × 1024) is acquired by
NASA/JPL AIRSAR (L-band). It has five terrain classes includ-
ing High-density urban, Vegetation, Water, Developed urban,
and Low-density urban, as shown in Fig. 9.

As shown in Fig. 9(c), CNN achieves good results in the
Developed urban areas (yellow), where fewer pixels are misclas-
sified as High-density urban (red). Compared to CNN, CVCNN
identifies the Vegetation regions better (green), as shown in Fig.
9(d). However, they both misclassify the Water regions in the
upper right corner of Fig. 9(c)–(d) (marked by the white box) due
to the lack of sufficient labeled samples. As shown in Fig. 9(e),
the semisupervised PL3DCNN is severely affected by speckle.
Fortunately, our SCN is more robust against speckles, as shown
in Fig. 9(f). Furthermore, SCN-SSF utilizes the contextual infor-
mation of samples to model the spatial label dependencies. As
shown in Fig. 9(h), SCN-SSF achieves smoother homogeneous
areas and identifies the Vegetation areas more accurately.

Quantitative evaluation including overall accuracy (OA) and
Kappa parameter [40] further validates the superiority of the
proposed model. The objective evaluations and Running time are

listed in Table I. Concretely, CNN with short running times can
identify the Developed urban and the Low-density urban well but
performs poorly in the Vegetation regions. CVCNN fully utilizes
the amplitude and phase information of the polarimetric data,
thus achieving higher accuracy. The semisupervised PL3DCNN
achieves good results in the Water regions, but unsatisfactory
results in the Low-density urban. Moreover, the training of
PL3DCNN is time-consuming. Different from the fixed pseu-
dolabels of PL3DCNN, our SCN continuously generates the
pseudolabels of unlabeled data in iterations, thus capturing more
useful information. Consequently, the classification accuracy
of SCN reaches 90.90%. Moreover, the Running time of SCN
is relatively low compared to the semisupervised PL3DCNN.
Besides, SCN-SSF also extracts contextual label information
through SSF, which further improves classification accuracy
by 3.98%. Finally, the classification accuracy of SCN-SSF
enhances by 6.46%, 5.35%, and 6.45%, compared to that of
CNN, CVCNN, and PL3DCNN, respectively, with the Kappa
increasing by 0.0891, 0.0742, and 0.0895, respectively.

Besides, these models with different numbers of labeled
samples are experimented on the San Francisco dataset. Fig. 10
shows the classification accuracy when the number of labeled
samples for each category is 100, 300, 500, 700, 900, 1100,
and 1300. Comparing the results of SCN-SSF, SCN, CVCNN-
SSF, and CVCNN, it can be found that SSF can effectively
improve classification accuracy. Fortunately, the classification
performance of our SCN-SSF is significantly superior to that
of CNN, CVCNN, PL3DCNN, and CVCNN-SSF for different
numbers of samples. And the experiment shown in Fig. 10 can
also be used to determine the number of labeled samples. In
this figure, as the number of labeled samples increases, it can
be found that the classification accuracies of CNN, CVCNN,
PL3DCNN, CVCNN-SSF, and our SCN part all improve sig-
nificantly. In contrast, the number of labeled samples has less
effect on SCN-SSF, and a small number of labeled samples can
still achieve good performance. Therefore, in our experiments,
only 100 labeled samples per class are selected.
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Fig. 8. Classification results of the simulated dataset. (a) Pauli RGB image of
Flevoland2 dataset. (b) Pauli RGB image of the simulated dataset. (c) Ground
truth. (d) SCN. (e) SCN-POE. (f) SCN-SSF. The classification accuracies of
SCN, SCN-POE, and SCN-SSF are 92.49%, 93.18%, and 94.27%, respectively.

E. Experiment on the Flevoland1 Dataset

The Flevoland1 dataset (750 × 1024) is acquired by
NASA/JPL AIRSAR (L-band) and has 15 different cate-
gories, including the Stembeans, Peas, Forest, Lucerne, Wheat,
Beet, Potatoes, Bare soil, Grasses, Rapeseed, Barley, Wheat2,
Wheat3, Water, and Buildings. Its pseudocolor image is shown

in Fig. 11(a), and the corresponding ground truth is shown in
Fig. 11(b).

CNN, as the basic deep learning model, obtains good classi-
fication results, as shown in Fig. 11(c). Considering the charac-
teristics of polarimetric data, CVCNN extends the real network
to the complex domain and exploits the amplitude and phase
information of polarimetric data. Thus, compared to Fig. 11(c),
the Water regions in the upper right of Fig. 11(e) (marked by
the white box) are correctly classified. However, the two deep
models rely on a large number of labeled samples to ensure
excellent performance while labeled samples are limited in our
experiment. The semisupervised PL3DCNN assigns pseudola-
bels to unlabeled samples by the K-means algorithm before
network training, thus expanding the training set. As shown in
Fig. 11(g)–(h), PL3DCNN can accurately identify each category
but suffers greatly from speckle. SCN generates and updates
pseudolabels for unlabeled samples in training, which captures
more useful information to improve the performance, as shown
in Fig. 11(i). Besides, the SSF part is designed to explore
contextual label information. Obviously, in Fig. 11(n), some
misclassifications of SCN are corrected. In addition, comparing
the white box regions in Fig. 11(i) and (m), we can find that
the SCN-SSF model not only corrects the misclassification
using spatial information but also preserves the clear edges. In
summary, SCN-SSF obtains smooth homogeneous regions and
preserves the edge structure well.

Quantitatively, Table II lists its objective evaluation. For the
results of the Flevoland1 dataset, CNN obtains high accuracy in
all categories except the Water regions. Similarly, CVCNN has
poor classification performance in the Wheat2 regions. Classi-
fying images containing many terrains using a small number
of labeled samples is a challenging task, and some terrains
may not be identified. By introducing unlabeled samples into
the training, the semisupervised PL3DCNN can identify all the
categories and improve the classification accuracy to 93.19%.
As a semisupervised model, our SCN improves the accuracy to
97.26%, which is attributed to two aspects. On the one hand, the
pseudolabels of unlabeled samples are constantly updated during
training, which is more favorable for classification. On the other
hand, SCN makes full use of the amplitude and phase infor-
mation of the polarimetric data. The extracted features contain
more useful information. Furthermore, SCN-SSF is designed
with a simple postprocessing module that only needs to count
the labels in the neighborhood, which increases the accuracy by
another 1.75%. Finally, the OA of SCN-SSF is higher than that of
CNN, CVCNN, and PL3DCNN by 11.53%, 8.65%, and 5.82%,
respectively, with the Kappa increasing by 0.1253, 0.0945, and
0.0636, respectively.

F. Experiment on the Flevoland2 Dataset

The Flevoland2 dataset with the size being 1400 × 1200 is
acquired by RADARSAT-2 (C-band) in April 2009. The pseu-
docolor and ground truth image are shown in Fig. 12(a) and
(b), respectively. The dataset contains four different terrains,
involving the Urban area, Cropland, Water, and Woodland.
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Fig. 9. Classification results of the San Francisco dataset. (a) Pauli RGB. (b) Ground truth. (c) CNN result overlaid with the ground truth. (d) CVCNN result
overlaid with the ground truth. (e) PL3DCNN result overlaid with the ground truth. (f) SCN result overlaid with the ground truth. (g) CVCNN-SSF result overlaid
with the ground truth. (h) SCN-SSF result overlaid with the ground truth.

Fig. 10. Effect of the number of labeled samples on the classification accuracy.

CNN and CVCNN achieve good results in general, as shown
in Fig. 12(c) and (d). However, these two supervised networks
lack sufficient labeled samples for training, and the networks
are not discriminative enough. Consequently, there are many
obvious misclassifications, such as the regions framed by the
black box. By contrast, PL3DCNN achieves better results in
this region, as shown in Fig. 12(e). As a semisupervised model,
PL3DCNN generates pseudolabels for unlabeled samples, thus

expanding the training dataset. However, there are many mis-
classifications caused by speckle. Different from PL3DCNN,
pseudolabels of SCN are generated iteratively during training.
Our SCN makes better use of unlabeled samples. The Cropland
areas within the black box are correctly classified. And there are
fewer misclassifications caused by speckle, such as the regions
framed by the purple box in Fig. 12(f). In addition, SSF is
introduced to improve the performance. As shown in Fig. 12(h),
SCN-SSF has smoother homogeneous regions and corrects some
misclassifications in SCN.

Furthermore, their corresponding quantitative evaluations are
presented in Table III. CNN has a good performance in the
Urban areas while CVCNN performs well in the Cropland,
Water, and Woodland areas. The OA of CNN and CVCNN
is 5.06% and 5.34% higher than that of PL3DCNN, respec-
tively. Fortunately, our SCN achieves good results in all cat-
egories, especially in the Cropland regions, which is consis-
tent with the previous visual analysis. The OA of SCN en-
hances by 1.91% and 1.63%, respectively, compared to that
of CNN and CVCNN. Besides, SSF is introduced in SCN-
SSF, which improves the classification accuracy to 87.62%.
Overall, the OA of SCN-SSF is 5.67%, 5.39%, and 10.73%
higher than that of CNN, CVCNN, and PL3DCNN, respectively,
and the Kappa is improved by 0.0769, 0.0735, and 0.1465,
respectively.

In addition, our proposed SCN-SSF is compared with the
other three state-of-the-art semisupervised models to illustrate
its advantages. Improved Tritraining with a minimum spanning
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Fig. 11. Classification results of the Flevoland1 dataset. (a) Pauli RGB. (b) Ground truth. (c) CNN. (d) CNN result overlaid with the ground truth. (e) CVCNN.
(f) CVCNN result overlaid with the ground truth. (g) PL3DCNN. (h) PL3DCNN result overlaid with the ground truth. (i) SCN. (j) SCN result overlaid with the
ground truth. (k) CVCNN-SSF. (l) CVCNN-SSF result overlaid with the ground truth. (m) SCN-SSF. (n) SCN-SSF result overlaid with the ground truth.

tree (ITT-MST) [41] is a semisupervised method that recog-
nizes different terrains well, as shown in Fig. 13(b). However,
ITT-MST is not robust enough against speckles, and Fig. 13(b)
has many misclassifications. Compared to ITT-MST, cross label-
information network (CLIN) [42] obtains smooth homogeneous
regions as shown in Fig. 13(c). CLIN finds similar sample
pairs by the scattering mechanism of PolSAR and achieves
consistency regularization. However, the Cropland regions in
the black box are misclassified as Water regions, and the edge
locations of the Water regions in the purple box are inaccurate.
PolNet [43] efficiently obtains the polar-spatial fusion features

and a smooth classification map by imposing a Gaussian random
field prior to the fusion features and a CRF posterior on the label
configuration. Thus, as shown in Fig. 13(d), PolNet achieves a
better classification result, with the accuracy being 85.25%. Our
proposed SCN-SSF utilizes unlabeled samples to improve the
recognition ability of CVCNN. Besides, a parameter-free SSF
module is designed to enhance the classification smoothness and
correct some misclassifications. In this way, with a small number
of labeled samples, our SCN-SSF recognizes different terrains
more accurately and obtains smooth homogeneous regions, as
shown in Fig. 13(e).
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Fig. 12. Classification results of the Flevoland2 dataset. (a) Pauli RGB. (b) Ground Truth. (c) CNN result overlaid with the ground truth. (d) CVCNN result
overlaid with the ground truth. (e) PL3DCNN result overlaid with the ground truth. (f) SCN result overlaid with the ground truth. (g) CVCNN-SSF result overlaid
with the ground truth. (h) SCN-SSF result overlaid with the ground truth.

Fig. 13. Classification results for different semisupervised models. (a) Ground truth. (b) 84.60% ITT-MST. (c) 84.92% CLIN. (d) 85.25% PolNet. (e) 87.62%
SCN-SSF.

V. CONCLUSION

In this article, an SCN-SSF model is proposed for PolSAR
image classification, which achieves satisfactory classification
results with a small number of labeled samples. First, the
SCN part of SCN-SSF iteratively updates the pseudolabels
of unlabeled samples during the training of CVCNN. Their
errors constitute the regularization term of the objective func-
tion, thus improving the recognition ability of the network.
And the classification has higher accuracy and belief. Then, a

parameter-free spatial statistics module is designed to model the
spatial label dependencies by POE, which effectively enhances
contextual smoothness and corrects some misclassifications.
Finally, DST is used to integrate contextual label information and
pixel-level information to preserve structural information and
prevent oversegmentation. Experimental results have demon-
strated that the SCN-SSF model can accurately identify different
terrains using only a small number of labeled samples and
obtain smoother homogeneous regions while preserving edge
information.
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In the future, there are two directions to try. First, SSF can
be used as a postprocessing module for other networks to en-
hance classification smoothness. Besides, we will investigate
incorporating the spatial statistics module into an appropriate
network framework to construct an end-to-end classification
model, rather than as a postprocessing component. In this way,
the network will also be able to take spatial information into
account during training, fully integrating pixel-level and spatial
information for classification.
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