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Abstract—This study addresses the problem of finding the op-
timal correspondence for a given synthetic aperture radar (SAR)
image patch from a large collection of optical reference patches,
which is crucial for various applications, including remote sens-
ing, place recognition, and aircraft navigation. However, achieving
one-to-one SAR-Optical patch correspondence is challenging due
to the distinct modal discrepancy and the poor discriminability
of the target instances. To address these challenges, we propose
a cross-modal patch correspondence scheme that consists of two
modules: A retrieval-based coarse search module and a corre-
spondence refinement module. Specifically, to explicitly represent
the modal discrepancy, we first introduce a cross-modal adversar-
ial learning strategy in the coarse search module and learn the
modal-invariant feature embedding for retrieval. Furthermore, to
improve the instance discriminability of retrieved candidates, we
propose a graph representation in the refinement module to inte-
grate the visual and spatial information, which is finally fed to an
attention graph network to estimate the optimal correspondence.
To evaluate the effectiveness of the proposed scheme, we also
propose three new SAR-Optical patch correspondence datasets.
Comprehensive experiments show that our approach significantly
outperforms the competitors on all three datasets.

Index Terms—Adversarial training, cross-modal image re-
trieval, graph neural network, synthetic aperture radar (SAR).

I. INTRODUCTION

V ISUAL localization is an important application of remote
sensing [1], place recognition [2], and aircraft naviga-

tion [3], which is achieved by estimating the correspondence
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of the query and reference database images. This task is typi-
cally addressed as an image retrieval problem based on visual
similarity. While the existing image-based retrieval methods
have shown promising performance in scenarios where images
are captured using optical cameras, they heavily rely on the
assumption that optical images can always reliably capture the
necessary information. However, this assumption may not hold
true in challenging conditions such as low-light environments
or adverse weather conditions. Hence, it becomes imperative to
explore alternative and more robust information sources that can
facilitate stable image correspondence even in such challenging
scenarios.

The advantage of offering stable imaging during both day and
night allows synthetic aperture radar (SAR) robust to adapt to
light changes and variable weather on remote sensing. At the
same time, optical satellite images are still the most popular and
accessible archive, which can serve as the reference database for
localization. Taking advantage of the imaging stability of SAR
and the accessibility of optical satellite image archives for visual
localization makes SAR-Optical patch correspondence a great
potential task. However, SAR-Optical patch correspondence
remains an underexplored research area. Optical sensors capture
images by detecting reflected sunlight, whereas SAR sensors
produce images by detecting backscattered waves from multiple
microwave signals. The two types of images differ in radiation,
noise level, and imaging geometry, resulting in distinct modal-
ity discrepancies. However, images originating from the same
target/scene captured by different sensors should inherently
possess consistent semantic information, which can be extracted
using deep networks as modal-invariant features. Although the
existing methods [4], [5], [6] proposed for cross-modal retrieval
have succeeded in identifying the category of the query images,
they primarily focused on treating the retrieval problem as an
image classification task, which cannot distinguish between dif-
ferent places within the same category to meet the requirement of
the patch correspondence. Therefore, it is necessary to develop
new methodologies that go beyond the existing retrieval task to
fully unlock the potential of SAR-Optical patch correspondence.

Concretely, two challenges of this task are listed as follows.
1) Poor instance discriminability: The patch correspondence

requires optimal matching between the query and only
one target. However, similar visual features lack instance
discriminability, posing the challenge of identifying the
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Fig. 1. Challenges of the CMPC task. Query1 shows challenge 1: The poor
discriminability of the retrieved candidates on one-to-one correspondence.
Query2 shows challenge 2: The modal discrepancy leads to the distinct feature
distribution.

best correspondence from the retrieved candidates, as
shown in query1 of Fig. 1. This limitation can lead to
inaccurate and unreliable results in scenarios where the
retrieved candidates have a high degree of similarity.

2) Distinct feature distribution: The fundamental differences
in the imaging principles of SAR and optical modalities
lead to variations in the appearance and structure of the
same object in the two modalities, which makes it difficult
to find a common representation for cross-modal features.
As shown in query2 of Fig. 1, the negative sample is more
similar than the true positive in embedding space due
to the distinct feature distributions. It poses a challenge
for learning-based methods that rely on the feature dis-
tribution metric. Overcoming this challenge requires the
development of techniques that can efficiently model and
bridge the feature distribution gap between these SAR and
optical images.

Matching images for localization involves extracting feature
descriptors from the images and computing similarity metrics
to find the best correspondence. Over the last decades, feature
description methods have been developed and proven helpful for
retrieval between ground-to-satellite optical images [7], [8], [9],
UAV-satellite optical images [10], [11], and cross-time place
recognition [12], [13]. These methods are quite effective in
matching query and reference images, which are both captured
by optical sensors. However, their limitations become evident
when facing inconsistent feature distribution across modalities,
due to the large differences in imaging principles between SAR
and optical images.

To address this challenge, several cross-modal retrieval meth-
ods [4], [14], [15], [16], [17] have been proposed. While these
methods have shown remarkable performance in retrieving im-
ages across modality within scenes of specific categories, they
retrieve multiple possible similar category candidates rather than
a unique ground instance. It poses a challenge for applications
that require precise localization and identification of specific
objects. Since the GPS information is available in the refer-
ence archive, it provides an available way to refine the optimal

correspondence by leveraging the location information of the
reference candidates. This strategy might provide helpful spatial
information to address the limitations of instance discriminabil-
ity in category-level methods.

To overcome the aforementioned difficulties of SAR-Optical
patch correspondence, we propose a coarse-to-fine correspon-
dence scheme to explore the feasibility of instance-level cross-
modal patch correspondence (CMPC). The proposed scheme
comprises a cross-modal coarse search module and a refinement
module. The coarse search module adopts adversarial learning
to narrow the modal gap and extract modal-invariant features to
retrieve the candidates. The refinement module turns the embed-
ding features and the candidates’ GPS information into a graph
representation and then selects the optimal correspondence by
updating the graph via an attention message propagation. To
evaluate the performance of our proposed scheme, we also
construct three SAR-Optical patch correspondence datasets.

In summary, our contributions are listed as follows.
1) We introduce a coarse-to-fine scheme for SAR-Optical

remote sensing CMPC to find the optimal correspondence
between SAR and optical images.

2) We explicitly model the cross-modal feature distribution
as Wasserstein distance and propose a cross-modal ad-
versarial learning strategy to learn the modal-invariant
feature.

3) We propose a graph representation that incorporates the
visual feature and spatial information to improve the dis-
criminability of the retrieved candidates and refine the
coarse retrieval to optimal correspondence.

4) We construct three datasets to evaluate various methods’
feasibility of the CMPC task and even the localization
applications. Our proposed scheme achieves state-of-the-
art results on these proposed datasets.

The rest of this article is structured as follows. Section II
offers a succinct survey of the related works. In Section III, we
provide a comprehensive exposition of our proposed scheme,
including the overview of the scheme, the cross-modal coarse
search module, and the refinement module. Section IV presents
and analyzes the experimental results. Section V discusses the
limitations of the proposed scheme, as well as possible avenues
for future research. Finally, Section VI concludes this article.

II. RELATED WORK

In this section, we will review the recent progress in image-
based retrieval, cross-modal category-level retrieval, and cross-
modal instance-level retrieval.

A. Image-Based Retrieval

The task of image retrieval involves finding relevant images
from a database of images given a query image [18]. This task
has received significant attention in the research community
in recent years. Since deep learning has been widely used to
extract robust image features, Gong et al. [19] showed that the
convolutional neural network (CNN) could effectively embed
images into the global features for retrieval. Despite directly
employing a developed model, Noh et al. [20] designed an
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attention module on the vanilla model to strengthen the local
features of the image. To leverage the advantage of both the
local and global information, Song et al. [21] combined both
local and global features to align different images and further
improve retrieval effectiveness. To guide the network embed-
ding the discriminative feature from images, a large number
of metric learning methods have been proposed to regular-
ize the distance between positive and negative samples. The
core idea of these loss functions is to reduce the feature distance
between the positive samples, as well as to enlarge the feature
distance between the negative samples. Wen et al. [22] proposed
the center loss, which distinguishes the feature center of each
class of target during training. Schroff et al. [23] proposed a
triplet loss to guide the network to learn an embedding distance
between the positive samples and negative samples. Since the
hard samples deteriorate the performance of the vanilla triplet,
Hermans et al. [24] introduced the hard case mining strategy
to make the triplet loss focus on the challenging samples.
Sun et al. [25] unified the classification-based loss function and
the distance-based loss function to improve retrieval effective-
ness. However, these methods suffer from the domain gap when
applied to the cross-modal retrieval task.

B. Cross-Modal Retrieval

Cross-modal image retrieval refers to measuring the similarity
between images involving more than one modality. Due to the
large visual appearance changes of the images from differ-
ent types of sensors, the hand-crafted feature descriptor meth-
ods [26], [27], [28] encountered a bottleneck in the development
of cross-modal image retrieval. Benefiting from the development
of deep learning, recent works [29], [30] focus on learning
modal-invariant features for both query and reference images
from different modalities to improve the matching performance.
To leverage the modal gap, Khokhlova et al. [31] adopted a
Siamese network to extract modal-invariant descriptors of the
multimodal images. In addition to extracting the modal shared
feature, Liu et al. [13] proposed a separation network to extract
modal exclusive features of the images from different domains.
Ye et al. [32] employed a channel exchange strategy to switch
the RGB image to a single-channel infrared image to reduce the
color discrepancy between of two modalities. Jing et al. [12]
improved a cross-modal center loss via a multilayer perception
(MLP) to map different modality features into the mutual metric
space. Huang et al. [33] considered that the positional relation-
ships of the region are stable across different modalities and
aligned the positional feature to improve the cross-modal match-
ing accuracy. Facing the remote sensing sources, Li et al. [14]
first proposed the cross-modal remote sensing category-level
image retrieval dataset and employed the CNN to classify the
panchromatic and multispectral images. Hash network [4] first
solved the SAR-Optical category-level retrieval task by trans-
forming the paired image to train the embedding network. How-
ever, these works focus on employing feature representations for
classification, which cannot discriminate across instances, and
thus are not suitable for instance-level retrieval.

Fig. 2. Workflow of our proposed cross-modal remote sensing patch corre-
spondence scheme.

C. Instance-Level Correspondence

Instance-level correspondence aims to identify the instances
from images, such as localizing a street-view image to a satellite
map. The main target of these works is to propose accuracy
metric learning techniques to discriminate the instances. Several
works [34], [35] focus on designing learning strategies for
mining the discrimination between the instances. VIGOR [11]
trained a network with the help of the neighbor patches of
the target patches to estimate the image correspondence. In
the situation when query images are from a new category,
Yang et al. [36] showed that mapping the images into a uniform
space would distort the manifolds of unseen classes, therefore
designing a graph scheme to represent the feature space. With the
help of Transformer [37], Tan et al. [38] mined the relationship
between retrieved candidates by patch-based attention to rerank
the retrieval results. In the SAR-Optical correspondence task,
Hughes et al. [39] designed a pseudo-Siamese CNN to identify
the established SAR-Optical patch correspondence. However,
the discrepancy between SAR and optical images is too large to
establish an optimal correspondence, leading to the unsatisfac-
tory performance of the aforementioned methods.

III. METHODOLOGY

We propose a coarse-to-fine scheme to solve the task of SAR-
Optical patch correspondence. The cross-modal coarse search
module can be viewed as the cross-modal retrieval task, and the
refinement can serve as the inlier estimation task. In this section,
we present the overview of the proposed scheme, followed by
a detailed description of the cross-modal coarse search module
and the refinement module. Fig. 2 shows the overall flowchart
of the proposed scheme.

A. Overview

In the retrieval step, deep cross-modal methods mainly reduce
the impact of radiometric differences and speckle noise by dedi-
cated network structures. However, designing a specific network
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module would increase the model’s complexity and reduce the
model’s robustness. Therefore, we propose to suppress these
impacts in the training strategy without designing additional
network modules.

First of all, we adopt random channel exchange transfor-
mation and image normalization as data augmentation. The
random channel exchange can force the network to focus on
contour and texture information shared by both optical and SAR
images. Moreover, image normalization mitigates the impact of
speckle noise by narrowing the dynamic range of the images,
making it more visually interpretable and suitable for subsequent
processing.

Second, we propose a cross-modal training strategy (see
details in Section III-B) to guide the cross-modal embedding
network femb, which maps the input images Ii to the modal-
invariant feature xi:

xi = femb(Ii). (1)

After training the modal-invariant embedding network, the large
optical satellite map is split into N patches and embedded to
construct the reference vector set X ref = {xref

i }Ni=1 via femb.
The SAR image Isar is also embedded to a query feature xque

as well. The retrieval candidate set D is obtained by sorting
the similarity in descending order, as shown in the following
equation:

D = {k|k ≤ Kn,x
ref
k ∈ sort(d(X ref,xque))} (2)

where Kn means the number of selected candidates.
Due to the poor instance discriminability between the query

and reference images, the top retrieved candidate might not be
the optimal correspondence for the query. Considering that the
reference patches in the optical database typically contain the
correct GPS location, we can leverage the location informa-
tion of the reference patches to increase the discrimination of
the retrieved candidates. Therefore, a refinement module (see
details in Section III-C) is employed to address this issue and
improve the initial retrieval results. Practically, we propose a
graph representation G to incorporate the visual feature x and
the location information P ref of the retrieved candidates. The
learnable refinement module ffine finally estimates the inlier
from this graph representation. The equation of refinement is
shown as follows:

ŷ = ffine(G(xque,X ref,P ref)) (3)

where P ref = {pref
i }Ni=1 denotes the GPS coordinate of the ref-

erence patches. The final corresponding optical patch Iopt
match can

be selected from the highest predicted score of the refinement
module, as shown in the following equation:

Iopt
match = {Ii| argmax

i
ŷi, i ∈ D}. (4)

B. Cross-Modal Coarse Search Module

To overcome the distinct modal discrepancy and extract
modal-invariant features, we train the CNN with the Wasserstein
adversarial learning strategy, combining it with the hard mining
triplet and the feature projector, which aims to directly narrow
the modal gap and learn the hard cross-modal samples. The

coarse search module is shown in Fig. 3. The network’s weights
are shared between SAR and optical image embedding to enable
the extraction of the mutual information from SAR and optical
images.

1) Wasserstein Adversarial Training: In the cross-modal fea-
ture embedding, the significant disparity between two modali-
ties results in differences between feature distributions, causing
instability in cross-modal feature similarity measurement.

To address the challenge of the modal discrepancy in cross-
modal feature representations, it is essential to model and re-
duce the gap explicitly. Besides employing the same shared
network to extract the mutual information from SAR and optical
images, we employ an adversarial discriminator to minimize
the distance between extracted features from different modal-
ities. The traditional classification discriminator only differen-
tiates the modality to which the feature belongs, which does
not measure the feature discrepancy. Instead, we introduce a
Wasserstein discriminator to directly estimate the discrepancy
between modalities. As cross-modal features belong to the dis-
tributions of their respective modalities, the Wasserstein distance
can represent the discrepancy between the modal distributions
by solving the earth-moving problem. Therefore, we employ the
1-D Wasserstein distance to explicitly model the cross-modal
gap and introduce the Wasserstein adversarial learning to mini-
mize the discrepancy between the modalities.

The 1-D Wasserstein distance between distributions Ps and
Pt can be estimated by solving the optimal transportation prob-
lem. The definition of the Wasserstein discrepancy is given by

W1(Ps,Pt) = inf
γ∈Π(Ps,Pt)

E(x,y)∼γ [||x− y||] (5)

where γ represents an optimal transportation fromPs toPt, and
Π is the set of all couplings of Ps and Pt.

In practice, we adopt the Kantorovich–Rubinstein duality [40]
to approximate the original optimal transport problem (5), which
avoids solving the bipartite matching problem iteratively

W1(Ps,Pt) = sup
||fw ||L≤1

Ex∼Ps
[fw(x)]− Ex∼Pt

[fw(y)]. (6)

The equation demonstrates that maximizing the expectation of
the optimal 1-Lipschitz function ||fw||L can approximate the
Wasserstein discrepancy presented in (5). In the training phase,
fw acts as the Wasserstein discriminator, and we optimize it to
achieve the maximum expectation of (6), which represents the
1-D Wasserstein distance. To train the Wasserstein discriminator,
we first sample SAR and optical patches from the training
batch as the two modal distributions and then use the negative
Wasserstein distance as the loss function Ldis, as given in the
following equation:

Ldis(x) = −W1(Xsar,Xopt)

=
∑

xj∈Xopt

fw(xj)−
∑

xi∈Xsar

fw(xi). (7)

During the training phase, the discriminator fw maps the embed-
ding features into the scalar space and calculates the expectation
of the output scalars as the 1-D Wasserstein. The discriminator
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Fig. 3. Pipeline of the cross-modal coarse search module on the training and the testing phase. The training strategies are shown in the dashed red box. The
testing phase is shown in the solid green box indicating coarse retrieval inference.

fw also needs to fulfill the constraint of the 1-Lipschitz, which
follows the regulation in WGAN [41]. It allows us to represent
the discrepancy between different modalities through the output
of the Wasserstein discriminator.

After Td iterations of updating for the discriminator, Ldis

can approach convergence, and its negative term can be used
to approximate the Wasserstein discrepancy between the two
modalities. Then, we can train the embedding network to mini-
mize the discriminator output, effectively reducing the modality
gap. The loss function for the feature embedding network is
shown as follows:

Lw(x) = W1(Xsar,Xopt) = −Ldis(x). (8)

Finally, the embedding network is trained in an adversarial way.
Specifically, we iterate the following two steps in the training
phase: 1) estimate the Wasserstein discrepancy between output
features of the embedding network by iteratively updating the
discriminator fw and b) update the embedding network femb by
minimizing the estimated discrepancy W1(Xsar,Xopt).

2) Hard Mining Triplet Loss: The distinct feature distri-
bution across modalities can also lead to ambiguity between
positive and negative samples. This issue may pose a challenge
for the network to distinguish between the hard negative samples
and positive samples. To address this issue, we employ the
hard mining triplet loss, which selects only the hardest negative
samples for each anchor sample. By focusing on the hardest
negative sample, the model is forced to embed the discriminative
features that can better distinguish between positive and negative
samples in challenging cross-modal scenarios. In addition, the
hard mining triplet loss reduces the computational complexity
of the training process by eliminating common negative samples
that are less informative.

Specifically, a training batch typically consists of B image
pairs {Isar

i , Iopt
i }Bi=1. The embedded feature of each image in

the batch is set as the anchor xa. Its matched patch in the other
modality is used as the positive samplexp, while the nonmatched
patches are negative samples. We select the most similar feature

from negative samples as the hard negative sample xn. There-
fore, we can sample 2B triplet sets consisting of three features
{xi

a,x
i
p,x

i
n}2Bi=1 that are used in the loss function, as shown in

the following equation:

Ltri =
1

2B

2B∑
i=1

max(||xi
a − xi

p||22 − ||xi
a − xi

n||22 + β, 0) (9)

where β means the margin distance. This loss function ensures
that the selected negative samples are the most difficult to
distinguish for the anchor within the batch, which can force the
network to learn the feature that can better discriminate between
the anchor and the challenging samples.

3) Feature Projector: The distinct feature discrepancy be-
tween SAR and optical makes the network lack of robustness and
easily show overfitting. Therefore, a learnable feature projector
fp is employed in the training phase to improve the robustness
of the network in cross-modal tasks. The projector fp maps the
output feature x to a normalized lower dimensional space with
dimension d′, as shown in the following:

fp(x) =
Norm(Wx)

||Norm(Wx)||2 , W ∈ Rd×d′
(10)

where Norm(·) is the batch normalization utilized only on
training phase. The batch normalization is only utilized in the
training phase for regularization.

Our final loss function for the embedding network is shown
as follows:

Lemb = Ltri(fp(x)) + λLw(fp(x)) (11)

where the parameter λ controls the weight of the Wasserstein
distance loss.

C. Correspondence Refinement Module

Benefiting from the modal-invariant feature embedding, the
features can overcome the modal discrepancy and retrieve the
candidates belonging to the same category. However, the visual
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Fig. 4. Proposed refinement module. The graph representation combines the information of feature pairs and reference locations. The attention network updates
the nodes to predict the inlier as the final optimal correspondence between the query and the references.

feature cannot be clearly corresponded to an instance within the
same category, due to the poor discriminative of the visual and
texture feature. Considering that the GPS tag of the reference
patch is provided and represents the distinct location information
of the retrieved candidates, we can mine the position relationship
between the retrieved candidates to obtain the final match. We
also concatenate the embedded features of both the query and
the reference as node features to mine the mutual information.

Specifically, for each query image and its top-Kn matched
candidates, we construct a graph with Kn nodes, where each
node hasKe connections with its nearest neighbors based on the
distance of the reference location. This graph structure allows
us to perform message passing between nodes to refine their
features and estimate the inlier probability of each node using a
graph network. Fig. 4 shows the graph representation refinement
module.

1) Graph Representation for Matching Pairs: The coarse
search module produces a set of top-Kn feature candidates
xk ∈ {xopt}Kn

k=1, which are ranked by the similarity of the
embedded features. However, there exists only one best matched
reference patch from the retrieved candidates, so the module
must predict the final matching probability of the candidate pairs.
To do this, the information of the query feature and the reference
features is combined as the graph node and fed into the network
for prediction. Specifically, we concatenate the query feature
xque and the reference candidate feature xk along the channel
dimension into the node feature x0

k:

x0
k = σ(C1(x

que||xopt
k )), k ∈ D (12)

where || denotes a concatenation operator, C1(·) means 1× 1
convolutional operation, and σ(·) means ReLU activation func-
tion.

After aggregating the matching pairs into input features for
the refinement module, the node with the highest score repre-
sents the optimal correspondence from the retrieved candidates.
Although the queries do not contain location information, the
reference patch database can provide the correct GPS location.
Therefore, we design the graph representation to take advantage
of the reference GPS location with rich geometric information.
We extract the position information from retrieved candidates’

GPS tags and set it as the geometric position of the node
feature. We calculate the distance between nodes and sort them
in ascending order. The Ke nearest neighbors of each node can
then be connected, and the feature of each edge is derived from
the distance, as shown in the following equation:

ekl =

{
exp

(−||pk−pl||22
σe

)
, l ∈ N (k)

0, otherwise
(13)

where p is the GPS coordinate of retrieved candidate patches,
N (k) are the neighbors of node k, defined as the Ke nodes with
the closest geometric distance to k, and σe is the hyperparameter
to control the scale of the connection weight.

After defining the node features and edge features, a graph
representation can be built for the retrieval results, which trans-
forms the refinement problem into an inlier selection problem.

2) Graph Attention Network: The ultimate goal of SAR-
Optical patch correspondence is to find the best correspondence
prediction from the reference patch for every query. After trans-
forming the matching pairs into a graph representation with
nodes X and edge connection E, we propose a graph attention
network fgnn to estimate the inlier probability ŷ of each node,
as shown in the following equation:

ŷ = fgnn(X,E). (14)

To improve message propagation in the graph and leverage
the effectiveness of the attention mechanism, we employ graph
attention layers for message propagation, as shown in the right
side of Fig. 4. Three learnable linear transformations first project
the feature to the query qk for node k, and key kl, value vl for
its neighbor l, respectively, as shown in the following equation:

qk = W qxk

kl = W kxl

vl = W vxl. (15)

To update the kth node feature, we compute an edge attention
weight αkl for each of its connected neighbors l ∈ N (k) by
taking into account the query vector qk, the key vector kl, and
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Fig. 5. Sampling strategy of the proposed datasets. (a) SAR and optical image data. (b) Nonoverlap region protocol for the training set and the test set.
(c) Cropping strategy of optical patches. (d) Patch correspondence definitions.

the edge weight ekl, as denoted in the following equation:

αkl = softmax(eklqkk
�
l ). (16)

This mechanism enables differential attention allocation to vary-
ing levels of information, allowing for the prioritization of
important neighbor features. Then, we add the values v from
the neighboring nodes to the original node feature and update it
using a feedforward MLP fθ:

xt+1
k = fθ

⎛
⎝xt

k +
∑

l∈N (k)

αklvl

⎞
⎠ (17)

where t = 0, 1, 2, ..., T is the step of update time; the node
features updateT times iteratively by catching the message from
neighbors. The attention layers output the embedded feature xT

of every node. The final linear projectionWf maps the embedded
feature to a scalar ŷ as the inlier score of the node, as shown in
the following equation:

ŷ = Wfx
T . (18)

The highest score from the nodes means the optimal correspon-
dence between the query feature and the corresponding reference
feature.

3) Inlier Loss: The refinement module aims to estimate the
inlier node, which represents the optimal correspondence from
the retrieved candidates. To accomplish this, we utilize the cross-
entropy loss function Lce to quantify the dissimilarity between
the predicted probability ŷ and the true inlier label y, as shown
in the following equation:

Lce = −
Kn∑
k=1

(yk log(ŷk) + (1− yk) log(1− ŷk)). (19)

Specifically, the ground-truth label yk is set to 1 if the retrieved
candidate k is the true correspondence and 0 otherwise. By min-
imizing the loss function, the refinement module can effectively
distinguish the inlier node from the outlier nodes and improve
the accuracy of the retrieval results.

IV. EXPERIMENTS

A. Experimental Setup

1) Patch Correspondence Datasets: Our proposed patch cor-
respondence dataset is based on the SpaceNet 6 data [42], which
consists of 204 different strips of SAR data collected from
Rotterdam, The Netherlands, covering over 120 km2 of the city.
The SAR strips cover every area of the city, with at most 30
strips overlapping in some areas, as illustrated in Fig. 5(a). Each
strip has four different polarization modes (HH, HV, VH, and
VV), and we use three of these modes (HH, VV, and VH) to
construct the polarized SAR pseudo-color images with a spatial
resolution of 0.5 m. The optical imagery is acquired by the Maxar
Worldview-2 satellite, with a spatial resolution of 0.5 m as well.
We design the optical patch references and the SAR queries from
these data and design three datasets to evaluate the proposed
method. We manually align the SAR strips with the optical map
to ensure that the cross-modal images are consistent. The GPS
information of both the optical image and the SAR strips is
manually corrected as well.

a) Optical patch archive: Given an optical map of the city,
our objective is to match a SAR query in this map by searching
the reference patches cropped from this map. To ensure that all
queries can be matched with the reference patches, the reference
patches must cover the entire map seamlessly. As shown in
Fig. 5(c), the reference patches are cropped at a grid without
any overlap. Every patch has a unique identification (ID) and
has a fixed size of 200 × 200 pixels.

b) SAR patch queries: In real-world applications, the SAR
strips captured by aircraft are not perfectly aligned with the
optical map and have varying sizes. We design two types of SAR
patches: aligned patches and nonaligned patches to construct the
matching pairs. The IDs of SAR patches are the same as the
matched optical patches.

1) Aligned pairs: The cropped SAR patches are aligned
with the optical patches and have the same image size.
The SAR patches that fall in the boundary of the strip
are discarded due to the image being incomplete. The
optical patches aligned with SAR patches are set as the
positive samples of the SAR query, as shown at the top of
Fig. 5(d).
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TABLE I
DETAILS OF THE PROPOSED SAR-OPTICAL PATCH

CORRESPONDENCE DATASETS

2) Nonaligned pairs: All the SAR patches are cropped at
a grid of size 200 × 200 pixels without being aligned
to the optical map. These SAR patches are labeled with
ground-truth GPS tags which are only used for correspon-
dence identification. As shown at the bottom of Fig. 5(d),
the green patch is considered as ground truth, which has
the nearest GPS to the SAR query and contains the most
shared objects with the query image.

c) Dataset protocol: We design two protocols for assigning
the training set and the test set on the experiments: The overlap
setting and the nonoverlap setting, according to different appli-
cation scenarios.

1) Region overlap: All the optical patches are included for
both the training phase and the testing phase. And the
SAR patches are randomly split into two disjoint sets. This
setting is for evaluating the methods when the data of the
city is available in training.

2) Region nonoverlap: To assess the generalizability of the
proposed scheme to new cities, we design the dataset
protocol to ensure that the test region is not learned in
the training phase. Fig. 5(b) shows that the patches are
separated into two regions.

Above all, we design three datasets depending on whether
the matching pairs are aligned and whether the testing region is
available in training, as shown in Table I.

1) The Aligned dataset contains the paired SAR query
aligned with the optical reference patches, which aims
to evaluate the instance consistency of the cross-modal
features.

2) The Same-Area dataset contains the nonaligned pairs,
where all the optical patches are available in both the train-
ing and testing phases, which is focused on application
scenarios when the city data is available for training.

3) The Cross-Area dataset represents a general challenge for
methods to match pairs in a new region, which contains
nonaligned pairs from no overlapping regions between the
test set and the training set.

2) Evaluation Metrics

For the retrieval performance, we adopt the precision of top
K in retrieval (P@K) and mean average precision (mAP) as the
evaluation metrics. For geolocalization, we employ meter-level
accuracy to evaluate the localization capability of nonaligned

SAR patches. During the experiments, we evaluate the re-
trieval and geolocalization performance of the methods on three
datasets. The best results in the experiments are bolded. All
methods are trained using the training set and tested on the test
set of each corresponding dataset.

1) Top-K precision: P@k computes the number of queries
where the ground-truth label is among the top k label
prediction. The definition is given by

P@K =

∑M
i=1 Acck
M

(20)

where Acck equals 1 if the ground-truth matched target is
included in top k retrieval candidates, 0 otherwise. M is
the number of all queries.

2) mAP: The average precision (AP) of each query i is the
order in which the retrieved target is presented, and the
mAP is the mean values for a retrieval result over a set of
queries. The definitions are shown as follows:

APi =

N∑
k=1

rel(k)i
k

mAP =
1

M

M∑
i=1

APi (21)

where rel(k)i is an indicator function equaling 1 if the item
at rank k is a ground-truth target of query i, 0 otherwise.
N is the patch number of the reference archive.

3) Meter-level localization accuracy: Localization accuracy
evaluates the real-world distance between the predicted
location and the ground-truth GPS location of the SAR
query.

3) Implementation Details

The experiments are conducted on a platform equipped with
4x NVIDIA TITAN Xp GPUs. We adopt the stochastic gradient
descent as the optimizer of the proposed scheme. All backbones
on the experiments are pretrained with a batch size of 24 on
the ImageNet dataset [43] and re-trained for 60 epochs. During
the evaluation, we set the Top-1 matched target’s geolocation
as the localization prediction for the query patch.

We utilize the Res-Net50 as our feature embedding network
on the coarse search module. β in Ltri is set to 0.3, and λ on Lemb

is set to 0.01. The update time Td for the discriminator is set to
be 5, and the update time T of the refinement attention network
is set to 3. We first train the coarse search module with Lemb.
Then, we train the refinement module on the same training set
with Lce.

B. BENCHMARKING RESULTS

1) Comparison With Retrieval Methods

To evaluate the performance of our proposed CMPC, we
compare it with several retrieval benchmarks on our proposed
SAR-Optical patch correspondence datasets, including the ge-
olocalization methods and the cross-modal methods.
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TABLE II
METHOD COMPARISON ON THE ALIGNED DATASET

TABLE III
METHOD COMPARISON ON THE SAME-AREA DATASET

Regarding geolocalization methods, we use RK-Net [48] and
VIGOR [11]. RK-Net is a UAV-Satellite cross-view geolocal-
ization method that aims to classify the building from the query.
We modify the instance loss with triplet loss to adapt RK-Net for
the cross-modal task. VIGOR is a ground-to-satellite geolocal-
ization method that focuses on predicting the geolocation of the
query. We use neighbor patches as semipositive samples defined
in VIGOR and follow the original training process to train the
VIGOR model.

For cross-modal methods, we use ReIDSB [45], X-
modality [46], and DCMHN [4]. ReIDSB is a strong retrieval
baseline for IR-RGB person reidentification, while X-modality
is a cross-modal IR-RGB retrieval method focused on modal
adaptation. DCMHN is a SAR-Optical retrieval method for the
classification of area categories.

In the experiment of the Aligned dataset, we compare our
proposed method with previous cross-modal retrieval methods
by evaluating their retrieval performance on this task, as shown
in Table II. Our method achieves 81.95 and 85.98 in Top-1 pre-
cision and mAP. This improved performance can be attributed
to that our method directly models the distributional gap and
focuses on the instance-level retrieval objective, rather than
simply extracting cross-modal features from aligned pairs. By
doing so, we are able to achieve better accuracy and overcome
the modal discrepancy.

In the Same-Area dataset, we further focus on the localization
performance of the methods to predict the query location. Our
proposed scheme achieves 57.59 and 40.79 in top-1 precision
and 50-m accuracy respectively, as shown in Table III. The
top part of the table lists the geolocalization retrieval methods
that directly learn the embedded feature distance between query
and reference patches for locating the reference image in the
same area. RK-Net, which focuses on learning the position shift
between query and reference patches, suffers from unstable po-
sition relations due to the gap between SAR and optical imaging

TABLE IV
METHOD COMPARISON ON THE CROSS-AREA DATASET

modalities. VIGOR, which benefits from overlapping semiposi-
tive patches, outperforms other methods in Top-10 retrieval pre-
cision, but still suffers from modality discrepancy, resulting in
unsatisfactory results in Top-1 matching precision. The bottom
part of the table lists cross-modal retrieval methods designed
to overcome the gap between modalities. Image transformation
used in DCMHN fails to address the gap between SAR and
optical modalities, and similarity reranking strategies, such as
those used in X-modality, do not provide additional information
to improve matching accuracy, resulting in poor performance. In
contrast, our proposed CMPC scheme first overcomes the modal
gap in the coarse search and then refines the matching prediction
by considering the location information of retrieved candidates,
achieving state-of-the-art performance in this task.

In the experiment of the Cross-Area dataset, as presented in
Table IV, all methods exhibit a substantial decrease in accuracy,
highlighting the difficulty of this dataset. This dataset includes
nonaligned pairs between the cross-modal patches, and the
test data come from a new region that did not appear in the
training phase, making it more challenging than the previous
two datasets. Despite this challenge, the proposed scheme still
outperforms other methods in this task. However, the improve-
ment is not as significant, as the refinement module cannot
learn sufficient information in the coarse retrieval phase, which
contains a vast number of outliers. Nevertheless, the proposed
method still demonstrates its effectiveness in handling CMPC,
even under the challenging conditions of the Cross-Area dataset.

To evaluate whether our method can also work on lower res-
olution data, we conduct experiments on OS-Dataset [49]. The
OS-Dataset comprises 2673 nonoverlapping aligned patch pairs
of 512× 512 pixels with 1-m spatial resolution. We downsample
the images to 200 × 200 pixels, making them lower than 2-m
spatial resolution. When using the same image size as our pro-
posed dataset, the low-resolution images from the OS-Dataset
can capture a larger region, providing a broader field of view.
Therefore, the retrieval accuracy shown in Table V is higher in
general. Notably, our proposed method still outperforms other
methods with a top-1 precision of 96.93 and an mAP of 97.94.

2) Comparison With Feature Correspondence Methods

Following the coarse search, the previous steps involve the ge-
ometric verification via features correspondence [50], [51] and
correlation verification [52] to rerank putative retrieval results.
Therefore, we also compare our method with these methods [52],
[53], [54] on the Same-Area dataset. In this experiment, the
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Fig. 6. Visualization of the retrieval result on the Same-Area dataset. The patches with green boxes are real matches, while the yellow boxes are neighbors with
region overlaps. The numbers under patches are the location distance between the query and the retrieved optical patches.

TABLE V
METHOD COMPARISON ON THE OS-DATASET

TABLE VI
COMPARISON OF FEATURE CORRESPONDENCE METHODS ON THE

SAME-AREA DATASET

global features are extracted and the coarse search is performed.
Then, we conduct a comparative analysis of these methods
in the refinement stage. Notably, RIFT [53] is a multimodal
image matching approach based on radiation-invariant feature
descriptors, SuperGlue [54] stands out as a deep- learning-based
method for feature correspondence, and CVNet [52] serves as
a robust deep verification network for image retrieval tasks.
In addition, we compare the computational speeds of these
methods, assessed in frames per second (FPS). The results shown
in Table VI demonstrate that our approach achieves superior
accuracy with a higher computational speed.

3) Qualitative Analysis

We show the visualization of retrieval and match results on
nonalign pairs setting and compare with the state-of-the-art
instance-level retrieval methods VIGOR [11] and cross-modal
methods X-modality [46]. Given the SAR queries, as shown
on the left in Fig. 6, the compared methods cannot find the
real match or even cannot retrieve the corresponding target in

TABLE VII
ABLATION STUDY OF THE MODULES

the top-ranked candidates. One reason is that they retrieve the
wrong candidates due to the modal discrepancy between queries
and references, resulting in matching wrong targets, which are
similar in visual appearance but distinct in semantics. Another
reason is that they do not improve the correspondence prediction
from the retrieved candidates. Compared with previous methods,
our proposed CMPC can extract more instance discriminative
features; therefore, the retrieved patches have more semantic
similarity and belong to the same region category. Moreover,
the proposed CMPC can retrieve as most as possible neighbors
in the coarse search module, which are marked as the yellow
boxes, and then takes into account the location information of
these retrieved candidates and adopts deep graph learning to
mine the relationship between the candidates. The visualization
results show that the proposed method can match the correct
target from the cross-modal patch database.

C. ABLATION STUDY

In this article, we propose the cross-modal retrieval module,
the modal-invariant adversarial learning, and the refinement for
the task of SAR-Optical patch correspondence. In this section,
we analyze the impacts of these modules and explore their
effects on different configurations to better understand their
contributions to this task.

Table VII presents the performance results of our proposed
methods for the Same-Area and Cross-area datasets, evaluated
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TABLE VIII
COMPARISON OF DIFFERENT TYPES OF ADVERSARIAL LEARNING ON THE

CROSS-AREA DATASET

TABLE IX
COMPARISON OF DIFFERENT TYPES OF ADVERSARIAL LEARNING ON THE

CROSS-AREA DATASET

under various configurations. The baseline is the pretrained
ResNet-50 supervised with the soft-margin triplet loss [34].
Compared with the soft-margin triplet, the hard-mining triplet
loss can improve the performance of the retrieval module. With
the proposed feature projector, the network has a gain of 16.76
points and 8.47 points on Top-1 precision on the Same-Area and
Cross-Area datasets, respectively. Combined with the Wasser-
stein adversarial learning, the network has improved perfor-
mance on the Cross-Area dataset but slightly decrease on the
Same-Area dataset. By applying the refinement module, the
scheme has a high performance at 57.59 points and 28.90 points
on Top-1 precision on both the nonaligned datasets, respectively.

We further analyze the effectiveness of the Wasserstein learn-
ing and refinement module.

1) Wasserstein Discriminator

We compare our proposed Wasserstein discriminator with
the traditional classifier discriminator [1] and analyze how the
different types of discriminators affect retrieval performance.
We conduct the experiments on the Aligned dataset and the
Cross-Area dataset. The baseline is the proposed embedding
network trained without adversarial learning, while the com-
pared discriminator is a classifier discriminator, which outputs
the binary modality prediction of SAR and optical.

The experiments on the Aligned dataset are shown in Ta-
ble VIII, we observe that compared with the baseline, applying
adversarial training with both the classifier discriminator and the
Wasserstein discriminator can improve retrieval performance in
the Aligned dataset. It means that the adversarial strategy can
narrow the modal gap between the query and reference images
when the position shift is not large. The Wasserstein discrimi-
nator has a better performance than the classifier discriminator,
indicating that the Wasserstein adversarial can directly model
the gap between the two modalities and achieve a narrower gap
of features between SAR and optical.

We also conduct retrieval and localization performance analy-
sis on the Cross-Area dataset, as shown in Table IX. The results
indicate that the improvement on nonaligned pairs is smaller

TABLE X
COMPARISON OF DIFFERENT TYPES OF ADVERSARIAL LEARNING ON THE

OS-DATASET

TABLE XI
COMPARISON OF CONNECTION TYPES OF THE GRAPH EDGES ON THE

SAME-AREA DATASET

than on aligned pairs because the difference between query
and reference images includes not only modal discrepancy but
also positional shift. In this setting, the classifier discriminator
occurs accuracy decreases. The possible explanation is that
the classification-based discriminators do not learn the metric
space and are not compatible with the metric-based scheme. The
proposed Wasserstein adversarial learning models the modality
gap in a regression way, which can have an improvement in
performance than the classification-based method. Moreover,
the results also imply that modal-invariant feature extraction is
not enough in this task when position shifts happen, and the
refinement of the coarse retrieval needs to be considered.

We also conduct comparison experiments on OS-Dataset [49]
to evaluate the performance of different adversarial learning
strategies. The experimental results shown in Table X demon-
strate that our proposed Wasserstein adversarial strategy can
achieve better performance than the classification adversarial
one.

2) Graph Representation for Matching Pairs

The refinement module is a crucial part of the proposed
method, which greatly improves the matching performance. We
further explore the optimal configurations for different types of
connections and the number of candidates and edges.

We first explore the edge connection configuration of the
graph and its impact on message transmission and relationship
mining, which can lead to different matching performances.
Hence, we compare our graph construction method with several
inlier prediction methods from the coarse retrieval result in
Table XI.

1) MLP updates the concatenated features to predict the
inlier.

2) Full connect connects all the nodes with the weight of the
edges equal to 1, which ensures that all nodes can equally
propagate messages from all other nodes.
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TABLE XII
COMPARISON OF GRAPH CONFIGURATIONS ON THE SAME-AREA DATASET

3) Position embedding embeds the 2-D location coordinates
into vectors of the same dimension as the node features
using MLP and adds them to the node features.

4) Feature KNN connects Ke nearest neighbors with the
highest inner-product between node features.

Compared with these methods, we connect Ke nearest neigh-
bors (Location KNN) with the closest distance between the GPS
location of candidates in a more natural way.

Compared to the coarse search, the MLP and full connect
settings occur a decrease in accuracy. The results imply that
the MLP cannot learn the relation between nodes, while the Full
connect lost the topology discrimination. Compared to the above
settings, the position embedding setting can improve perfor-
mance by incorporating location information into node features.
However, it does not model the spatial information into a graph
structure, limiting the potential of graph networks. The Feature
KNN can model feature similarity into the graph structure and
improve the matching performance with the graph attention
network. However, this method does not consider the location
information between nodes, leading to a slight improvement in
the coarse search. Our proposed Location KNN further considers
the position relationship and directly models it into the graph
representation, taking full advantage of the graph network. The
results indicate that modeling location information directly into
the graph topology can significantly improve the performance
of the proposed graph refinement module.

We also conduct experiments to determine the optimal number
of graph nodesKn and the optimal number of graph edgesKe of
the refinement module. The number of nodes, Kn, determines
the number of candidates considered on the refinement. More
nodes in the graph mean that more potential true matches are
included, but it can be more challenging for the network to
distinguish between these candidates for the true target. The
number of edges Ke affects the message that the nodes receive
from their neighbors. Increasing the number of edges leads to
more knowledge being gathered into the updating nodes, while
more edges can result in oversmoothing of features. Therefore,
we conducted experiments to explore the optimal setting of Kn

and Ke by evaluating the correspondence precision, as shown
in Table XII.

The experimental results indicate that improving Kn can
significantly improve the matching performance. When the
candidates are not enough (Kn=5), the graph suffers from
insufficient potential inliers, leading to poor matching perfor-
mance. When the graph contains fewer edges (Ke=3) or is fully
connected (Kn=10,Ke=10), it can neither transmit messages

Fig. 7. Wasserstein distance is learned by the discriminator. The figure shows
that utilizing only Ltri can partially minimize the distance but the gap still exists,
and utilizing both Ltri and Lw can eliminate the modal discrepancy.

nor lose structural discrimination, leading to decreased accu-
racy. Increasing the number of candidate connections (Kn =
20,Ke = 10) leads to sample imbalance and makes it difficult
to find positive samples as well as computation costs. In our
experiments, we find out that Kn=20 and Ke=5 can make a
better tradeoff in performance and computation cost.

V. DISCUSSION

A. Wasserstein Adversarial Learning

In the proposed scheme, we design a cross-modal retrieval
module based on adversarial learning with the Wasserstein dis-
criminator. In this module, we assume that the output of the dis-
criminator can represent the Wasserstein discrepancy between
features from different modalities. During the training process,
the embedding network minimizes the modal gap by both triplet
loss and discrepancy loss. The triplet loss minimizes the distance
of positive pairs, which are features from different modalities.
As such, it can also minimize the Wasserstein discrepancy. Lw

directly minimizes the discriminator’s outputs, which reduces
the distances between the two modalities.

To verify this assumption, we compare the Wasserstein dis-
tance, as computed by the discriminator during the training
phase, under various loss functions, as illustrated in Fig. 7. The
minus output of the discriminator −Ldis represents the Wasser-
stein discrepancy between the feature distribution of different
modalities. The triplet loss can slightly reduce this discrepancy
by shortening the distance between positive samples. In contrast,
the Wasserstein loss in adversarial style can directly narrow
the distance. This phenomenon indicates that the Wasserstein
learning strategy is effective in eliminating the gap between dif-
ferent modalities, highlighting the effectiveness of the proposed
method.

B. Graph Representation

We present a visualization of the graph structure samples of
the refinement module to demonstrate how the network learns
knowledge from the graph. Fig. 8 illustrates the graph samples
that can successfully estimate the true inlier. The color of the
nodes represents the feature similarity between the query and
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Fig. 8. Illustration of the graph samples; the green circles indicate the true
positive inliers, while the orange circles indicate the top-1 retrieved item from
the coarse search module. The color of the nodes indicates the feature similarity
of matching pairs.

the corresponding candidate, and the color depth of the edge
is calculated using (13). These graphs are then input into the
attention network to predict one inlier from the nodes, whose
boundary is marked in green.

Our results show that inliers tend to have closer neighbors
than outliers, indicating that inliers have different graph topology
distributions from the outliers. The results demonstrate that the
graph neural network can mine the location relationships from
the graph structure and learn to discriminate the inlier for the
different distributions.

C. Limitations and Future Works

The proposed CMPC method has demonstrated promising
results in the challenging scenario of SAR to optical patch
correspondence. However, we have not yet explored the methods
in optical to SAR correspondence scenarios due to the lack
of sufficient data. Future works will focus on collecting more
diverse and comprehensive datasets that cover a wider range
of scenarios and modalities to comprehensively evaluate the
effectiveness of the methods. Such datasets will enable us to con-
duct rigorous experiments and comparative analysis to establish
the generalizability and robustness of the proposed method in
various cross-modal correspondence scenarios.

In addition, in real-world applications, we may face situations
where optical images and SAR images have very different
resolutions. However, in this work, our primary focus is on
addressing the cross-modal discrepancy challenge in visual lo-
calization, and we have not yet specifically provided a solution
for resolution differences. We make the assumption that during
the visual localization process, the spatial resolution of reference
images close to the query image can be easily satisfied, thus
mitigating the impact of resolution differences. We will investi-
gate the significant resolution differences in our future work.

Finally, while the proposed method achieved promising re-
sults on the Aligned dataset and the Same-Area dataset, the
performance on the Cross-Area dataset is still far from meeting
real-world demands. Therefore, enhancing the robustness and
generalizability of our proposed scheme is imperative for it to
perform well in the wild. This could be achieved by developing
techniques to handle positional shifts on the feature embedding
to account for nonaligned patch pairs. Furthermore, the design
of semisupervised learning for cross-modal methods could be
explored to tackle the challenge of insufficient data.

VI. CONCLUSION

This article presented a novel coarse-to-fine scheme to tackle
the challenging problem of CMPC between optical and SAR im-
ages. The proposed scheme consisted of two modules: The first
of which retrieved candidate patches based on modal-invariant
features, while the second module refined the retrieved candi-
dates to identify the optimal correspondence. To enhance the
cross-modal retrieval performance, we introduced the Wasser-
stein adversarial learning to directly model the gap between the
modal distributions and train the embedding network to learn the
modal-invariant features. In addition, we designed a graph rep-
resentation based on the reference GPS coordinates topology to
model the matching of features from coarse search and propose
graph attention layers to predict the optimal correspondence
from the graph representation. Through extensive experiments
on three SAR-Optical patch correspondence datasets of varying
difficulty levels, we demonstrated the effectiveness and superi-
ority of our proposed method.
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