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Abstract—Robust principal component analysis (RPCA) has
been widely used for processing and interpreting high-dimensional
data in different applications such as data classification, face
recognition, video analytics, and recommendation system design.
However, the advancement of multisensor-based technologies and
the emergence of large datasets have highlighted the limitations
of traditional matrix-based models, which have paved the way
for higher-order extensions such as tensor RPCA (TRPCA) tech-
niques. These techniques can be useful for ground scene esti-
mation (GSE) in synthetic aperture radar (SAR) imagery. GSE
estimates the clutter-plus-noise content in the scene, and therefore,
change detection (CD) methods can benefit, reducing the number
of false alarms. This article presents two new GSE methods for
SAR imagery based on robust PCA techniques. The first proposed
method uses the RPCA via principal component pursuit (PCP)
to obtain the GSE-RPCA. The second method uses TRPCA via
new tensor nuclear norm (TNN) to obtain the GSE-TRPCA. The
methodology allows the GSE to be obtained through a general-
ized regularization parameter. The alternating direction method of
multipliers (ADMM) algorithm is utilized to solve both optimiza-
tion problems. Experimental results are evaluated considering real
SAR imagery from datasets acquired with the CARABAS II and
ALOS PALSAR systems, respectively. Additionally, the proposed
techniques were evaluated under several input characteristics, e.g.,
eight-image stacks and image pairs. Both GSE techniques are more
robust to outliers and missing data when compared to existing
solutions found in the literature. Finally, GSE-TRPCA achieved
a minimum-square error performance of 0.0018 for some of the
evaluated scenarios.
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I. INTRODUCTION

SYNTHETIC aperture radar (SAR) systems are widely used
in remote sensing applications, including the mapping

(or monitoring) of some terrestrial regions of interest to both
civilians and military applications [1]. SAR systems are in-
dispensable for monitoring the Earth’s surface (e.g., climate
forecasts [2]), environmental preservation areas (e.g., forest
areas [3]) and planets in high resolution [4].

It is well known that images obtained from SAR sensors
are sensitive to materials’ geometric structures and dielectric
properties, i.e., any significant change will produce returns at the
receiver. These returns can be mainly associated with targets, i.e.,
objects of interest to the application, such as military vehicles
hidden in forests, oil platforms, and illegal runways. There are
also returns relating to the acquisition environment, such as
ground, sea, and buildings. These returns are generally known
as clutter. Furthermore, the SAR image is strongly affected by
noise, related to the image acquisition process [1]. Removing
the clutter-plus-noise in the SAR image can be a challenge for
change detection (CD) methods (i.e., methods that aim to detect
targets that emerge over time [5], [6], [7]), since the spectral
characteristics, especially of the clutter, are often similar to those
of the target. [8].

To deal with that, ground scene estimation (GSE) methods
can be an interesting approach, as this type of method allows
an estimate of the clutter-plus-noise content of the SAR im-
age. From an accurate GSE, i.e., the clutter-plus-noise content
without the presence of targets, CD methods can obtain a
better performance. In these methods, the reference image is
generally used to suppress the clutter-plus-noise content of the
surveillance image. If there are targets in the reference image,
the targets in the surveillance image tend to be suppressed.
Recently, Ramos et al. [9] showed the performance of the CD
method improved when a GSE [10] scheme is used as reference
image input [11]. In addition, Alves et al. [12] showed that more
accurate clutter-plus-noise statistics reduce FA in an iterative
CD method, consequently achieving better performance. Thus,
GSE methods become even more important as they can enhance
CD methods.
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Since different sources contribute to the formation of the
SAR image, such as clutter, noise, and targets, it is difficult for
nonrobust methods to estimate the GSE. Different approaches
seek to estimate the ground scene in SAR imagery [13], [14].
Some methods aim to characterize the amplitude values of image
pixels through statistical analysis, and most of them require a
priori information about the target or clutter [15], [16], [17].
Palm et al. [18] proposed a preliminary study considering a GSE
based on a single wavelength-resolution (WR) SAR image stack
using an autoregressive model. However, using a time series
model may not be suitable for GSE since the noise in the image
stack is not correlated over time. Recently, Palm et al. [10]
proposed a GSE based on measures of central trends such as
mean, median, and trimmed mean considering WR image stacks.
Significant drawbacks of approaches based on those measures
include sensitivity to noise, missing data, and dependence on the
number of images in the stack.

An efficient strategy to face these issues is through robust
principal component analysis (RPCA) techniques, which have
stood out as a source separation method in different applica-
tions such as biomedical engineering, telecommunications, and
financial data [19], [20]. The most representative formulation
of RPCA, known as principal component pursuit (PCP) [21],
seeks to decompose the input matrix into a low-rank background
matrix (highly coherent) and a sparse matrix that is associated
with a disturbance or outliers [22]. However, there are currently
other formulations of RPCA. Such formulations differ in the loss
functions, optimization problems, or even the solution methods
adopted [22], [23]. In SAR imaging applications, different au-
thors seek to use a relaxed version of the PCP in the context
of ground moving-target indication (GMTI) [24], [25], [26].
Schwartz et al. [27] and Ramos et al. [28] explored the multitem-
poral diversity of the WR SAR images through RPCA via PCP,
aiming to detect stationary military vehicles hidden under the
forest. Furthermore, Gong et al. [29] showed that RPCA could
work as a preprocessing tool in change detection applications,
separating irrelevant features and noise from the SAR image.

Since RPCA looks for the lowest rank of the input matrix,
vectorizing the images becomes an interesting strategy to ex-
plore the temporal diversity of the data, as is the interest of
change detection applications [27], [30]. However, the vector-
ization causes a loss of spatial information since the analysis
is done pixel by pixel. In SAR imagery, exploring spatial in-
formation is interesting since this information is usually related
to the same target or background content. In the face of that,
many recent studies extended the RPCA matrix problem to
tensors RPCA (TRPCA) by taking advantage of the multidimen-
sional structure of the data [31], [32], [33], [34]. For example,
Lu et al. [35] proposed a TRPCA problem based on a new tensor
nuclear norm (TNN) which is induced by the tensor-tensor prod-
uct (T-product). Such generalization showed that it is possible
to perfectly recover the sparse and low-rank tensor with much
better performance than the matrix-based RPCA in optical image
recovery applications and background modeling problems [35].

Currently, there is a need for more robust methods to obtain
the GSE in SAR images. The main challenge is obtaining the
GSE without the presence of targets, which is usually presented

in the SAR imagery. We propose using robust PCA techniques
based on RPCA and TRPCA for GSE in SAR imagery. The first
proposed method uses the RPCA via PCP to obtain the GSE.
In this method, the input SAR images are concatenated into a
matrix of size (number of images, number of rows × number
of columns), allowing us to obtain the low-rank matrix, i.e., the
GSE-RPCA. The second method uses TRPCA via TNN to obtain
the GSE. In this method, the input SAR images are organized
into a third-order tensor of size (number of images, number
of rows, number of columns), allowing to obtain the low-rank
tensor, i.e., the GSE-TRPCA. To solve both problems, we use the
polynomial-time algorithm known as the alternating direction
method of multiplier (ADMM), which is the most widely used
solver for RPCA and its related problems [32].

The GSE scheme proposed was first evaluated in real WR
SAR images obtained with Coherent All RAdio BAnd System II
(CARABAS-II), a Swedish ultrawideband (UWB) very-high
frequency (VHF) SAR system. Furthermore, the GSE scheme
was evaluated in polarimetric SAR images obtained with the ad-
vanced land observing satellite (ALOS) phased arrayed L-band
synthetic aperture radar (PALSAR) system, a Japanese SAR sys-
tem operating at L-band. Thus, the GSE scheme proved to work
for different applications. In summary, the major contributions
are listed as follows.

1) Our GSE in SAR imagery performs better than existing
methods in the literature.

2) The proposed scheme does not depend on the presence of
SAR image stacks, which can often limit the application of
other methods, as obtaining many SAR images is usually
expensive.

3) The GSE obtained is not sensitive to outliers and miss-
ing data, as are traditional methods based on statistical
measures of central tendency.

4) Even generating a GSE for each image of the stack in both
methods, the GSE-RPCA method showed that obtaining a
single clutter-plus-noise image is possible since all GSE-
RPCA are linearly dependent.

5) Our methodology shows that obtaining different GSEs
based on RPCA or TRPCA is possible from a single
regularization parameter.

The rest of this article is organized as follows. Sec-
tion II presents the considered data and its characteristics. In
Sections III-A and III-B, RPCA via PCP and TRPCA via TNN
are described, respectively. Then, the methodology and imple-
mentation aspects are presented in Section III-C. Sections IV-A
and IV-B present and discuss the results considering data refer-
ring to the CARABAS-II and PALSAR systems, respectively.
Section IV-C presents a brief discussion about the characteristics
of the GSE obtained. Finally, Section V concludes the article.

II. DATASETS

The proposed GSE method was tested on two real multitem-
poral SAR datasets. Initially, we evaluated the method with real
WR data (VHF-band, HH-polarization) obtained by the Swedish
Airborne CARABAS-II SAR system. The second dataset con-
sists of polarimetric SAR images (L-band, HH-polarization)
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Fig. 1. Example of magnitude HH-polarized SAR images from the CARABAS-II dataset: (a) Mission 1, Pass 1 (225◦, Stack 1); (b) Mission 2, Pass 2 (135◦,
Stack 2); (c) Mission 3, Pass 6 (230◦, Stack 3); and (d) Mission 4, Pass 6 (230◦, Stack 3). The circles show military vehicles deployed in each mission.

TABLE I
CARABAS-II IMAGES ORGANIZED IN STACKS

obtained from the ALOS PALSAR system. Next, it presents
the two datasets.

A. CARABAS-II Data

CARABAS-II is a VHF UWB SAR system projected by
Swedish National Defence Research Establishment (FOA). It
operates in the 20–90 MHz band and provides imagery with
a spatial resolution in the order of 2.5 m in both azimuth and
range dimensions [36]. In this frequency range, mainly in the
lower VHF, the wavelength of the system is relatively long,
and, therefore, most objects referring to biomass (e.g., foliage
and branches) are in the Rayleigh scattering regime. In this
context, the ability of objects to reflect signals toward the system
receiver is considerably attenuated, allowing penetration into
the vegetation. On the other hand, objects in the order of the
radar signal wavelength (e.g., buildings and vehicles) contribute
significantly to the radar signature, making this system suitable
for detecting targets hidden by biomass and stealth-designed
human-made objects [6], [37], [38]. Due to the resolution of the
system being in the order of the radar signal wavelength, such
systems are named WR SAR systems [39].

In this study, we consider a CARABAS-II data set from the
measurement campaign in northern Sweden in 2002 [40], which
was made publicly available by U.S. Air Force Research Labo-
ratory (AFRL) at the sensor data management system (SDMS)
website [41]. The dataset is formed by 24 magnitude WR SAR
images (calibrated, preprocessed, and geocoded) characterized
by forested areas, lakes, human-made structures, roads, and

transmission lines in an area of 6 km2 (3 km × 2 km). Since
the image sample is 1 m × 1 m, each image can be represented
by a matrix of 3000 × 2000 pixels (rows × columns).

The dataset is divided into four missions (named Mission 1,
2, 3, and 4), where each mission corresponds to the deployment
of 25 military vehicles at a certain location in the SAR scene.
Each mission consists of six platform passes marked by the
numbers 1–6, where two passes are made with a flight heading
of 225◦ (Pass 1 and 3), two with a flight heading of 135◦ (Pass
2 and 4), and two with a flight heading of 230◦ (Pass 5 and
6). In this context, the heading is set to 0◦ pointing north with
increasing heading clockwise [40].

To evaluate the proposed method, WR SAR images are
grouped into different stacks. Each stack is formed by images
with the same flight heading. It is possible to obtain three stacks
with a maximum of eight images, as shown in Table I. Fig. 1
shows examples of WR SAR images from different missions and
different flight headings. It can be seen that the targets (military
vehicles) in Missions 1 and 2 are presented in the upper-left
region, while in Missions 3 and 4, the targets are presented in
the lower-right region.

B. ALOS PALSAR Data

The ALOS PALSAR system was launched in January of
2006 by the Japan Aerospace Exploration Agency (JAXA),
aiming to contribute to the fields of mapping, precise regional
land-coverage observation, disaster monitoring, and resource
surveying [42]. In 2016, global mosaics of ALOS PALSAR
HH and HV polarization data at 25 m spatial resolution and
forest/nonforest maps were released by JAXA using data ac-
quired annually from 2007 to 2010 [43]. The datasets are freely
available to the public on the ALOS website [44].

Fig. 2 presents a sample of backscatter (σ◦) SAR images
in polarizations HH and HV and the forest mapping from the
PALSAR mosaic collected over a port region in southern Brazil
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Fig. 2. Polarimetric and Forest/nonforest PALSAR images collected in 2007
over the Paranagua port in Brazil.

in 2007. As background, the same region can be observed from
a mapping generated by Google Earth in 2022. More details
on preprocessing steps, mosaic generation, and radiometric and
geometric calibration of the polarimetric PALSAR images can
be found in [43], [44], and[45].

In this study, we considered four σ◦ PALSAR images (one
image for each year) in the HH polarization, as shown in Fig. 3.
Each image is given as a 3000 × 2000 matrix and refers to
the region shown in Fig. 2. This region is characterized by
the presence of the Paranaguá port (25◦30’S, 48◦31’W), forest,
buildings, and ships in the ocean. Paranaguá port is one of the
largest exporting ports of agricultural products in Brazil.

III. METHODS AND METHODOLOGY

Principal component analysis (PCA) is a low-rank matrix
factorization method validated as a powerful tool for processing
and interpreting high-dimensional data in different applications
such as data classification, face recognition, video analytics, and
recommendation system design [46], [47], [48]. The problem ad-
dressed by PCA can be defined as the orthogonal projection that
minimizes the mean square error between the original data, X ∈
Rn1×n2 , and its low-rank approximation, L ∈ Rn1×n2 [49]. In
this context, the optimal low-rank approximation of X can be
obtained by solving the following optimization problem:

minimize ||X− L||2F
subject to rank(L) ≤ l (1)

where ‖ · ‖F denote the Frobenius norm. This optimization
problem has the constraint that rank(L)must be at most k, which
is usually fewer than rank(L).

In this approach, PCA can be seen as the Frobenius norm
minimization of an N0 noise term, where X = L+N0. Due to
this formulation, it is observed that PCA is sensitive to outliers,
in which its performance is significantly reduced even in the face
of a few corrupted samples [50]. Furthermore, a single outlier,
i.e., peak value, can cause the main components to be distorted
to fit the outlier, resulting in an inadequate interpretation of the
results [51]. The applicability of PCA is thus limited in our
scenarios.

In theory, classical PCA could be used for decomposing the
images into different subimages. However, PCA, as shown in
many works in the field of source separation [52], is not appro-
priate for performing signal separation. In fact, PCA uniquely
assumes that the retrieved components (in our case, desired
sources) are uncorrelated, and such an assumption is usually not
enough to ensure signal separation. To sum up, the application
of classical PCA, in this case, would be adapted to problems
such as feature extraction preceding classification tasks and data
compression [46].

A. Robust PCA

In recent years, there has been a need to deal with relatively
large and corrupted data by outliers in research areas such
as image processing, computer vision, machine learning, and
bioinformatics. Therefore, techniques to give robustness to PCA
have become increasingly important [46]. The most popular
among those is the idea of decomposing a given data X as
follows:

X = L+ S (2)

where S ∈ Rn1×n2 is a sparse matrix (representing out-
liers) [22].

Since the number of unknowns to be inferred in L and S
is twice the number of unknowns in X, this problem seems
ill-posed at first sight. However, Candès et al. [21] showed that
it is possible to recover a low-rank matrix L with errors in S
of arbitrarily large values through a formulation known as PCP.
PCP seeks to solve the convex optimization problem which is
given by

minimize ‖L‖∗ + λRPCA‖S‖1
subject to L+ S = X

(3)

where ‖L‖∗ =
∑

i σi(X) represents the nuclear norm of L (i.e.,
the sum of singular values, σi) as a low-rank approximation,
‖S‖1 =

∑
ij |Xij | represents the norm l1 (i.e., the sum of abso-

lute values of the entries) as a heuristic to find sparse representa-
tions, and λRPCA > 0 is a regularization parameter which allows
an interesting tradeoff analysis, balancing the content between
L and S [21].

Through this convex problem, PCP converges to a decom-
position that minimizes the weighted combination between the
nuclear norm and the l1 norm at a computational cost that is
not much higher than the classical PCA. Content separation is
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Fig. 3. Example of σ◦ HH-polarization SAR images from the ALOS PALSAR data: (a) 2007; (b) 2008; (c) 2009; and (d) 2010. The circles show selected ships
that can be viewed.

performed during iterations of the algorithm until reaching a
certain measure of sparsity for S. This sparsity value depends
on the choice of λRPCA. According to [21], a good choice is
defining λRPCA as

λRPCA =
1√

max(n1, n2)
(4)

where n1 and n2 denote the number of rows and columns of the
X input matrix, respectively.

There are different ways to solve the optimization problem
presented in (3). Many of these methods are usually based
on the augmented Lagrange multiplier (ALM) method or its
variants [20], [53], [54]. For the RPCA via PCP problem, the
augmented Lagrangian function (L) is defined as follows:

L(L,S,Λ, μ)
.
= ‖L‖∗ + λRPCA‖S‖1

+ 〈Λ,X− L− S〉+ μ

2
‖X− L− S‖2F (5)

where Λ represents the Lagrange multiplier matrix, μ > 0
denotes the incoherence parameter, and the Euclidean inner
product between two matrices A and B is defined as 〈A,B〉 =
trace(A∗B). At each iteration, the classical ALM seeks to solve
the following subproblems:{

L(t+1),S(t+1) = argmin
L,S

L
(
L,S,Λ(t)

)
,

Λ(t+1) = Λ(t) + μ
(
L(t+1) + S(t+1) −X

)
.

(6)

The ALM approach consists of a joint optimization between
the variables L and S. This shows that the classical ALM
considers PCP as a generic problem and ignores its separable
structure [55]. One way to deal with the problem is through
the ADMM. The ADMM performs the optimization alternately,
splitting the minimization problem into two smaller and simpler
sub-problems. Thus, the ADMM method seeks to solve the

following subproblems:⎧⎪⎪⎨
⎪⎪⎩
L(t+1) = argmin

L
L
(
L,S(t),Λ(t)

)
,

S(t+1) = argmin
S

L
(
L(t+1),S,Λ(t)

)
,

Λ(t+1) = Λ(t) + μ
(
L(t+1) + S(t+1) −X

)
.

(7)

The ADMM method can be written by combining the linear
and quadratic terms of the augmented Lagrangian function.
In addition, a stepsize ρ can be considered to increase μ to
μmax aiming to improve the convergence rate of the method
as suggested in [56]. Thus, we can rewrite (7) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(t+1) = argmin
L

{‖L‖∗

+µ(t)

2

∥∥∥L+ S(t) −X+ Λ(t)

µ(t)

∥∥∥2
F

}
,

S(t+1) = argmin
S

{‖S‖1

+µ(t)

2

∥∥∥L(t+1) + S−X+ Λ(t)

µ(t)

∥∥∥2
F

}
,

Λ(t+1) = Λ(t) + μ(t)
(
L(t+1) + S(t+1) −X

)
,

μ(t+1) = min(ρμ(t), μmax).

(8)

Initially, the idea of the ADMM method is to minimize the
Lagrangian function according to L while keeping S fixed. The
next step is to minimize S keeping L fixed and finally Λ and
μ are updated as the residue (X− L− S) and the stepsize,
respectively. The idea above is summarized in Algorithm 1.
According to [21] and [57], these steps can be solved simply
by defining the soft-thresholding operator (Ek) and the singular
value thresholding operator (Dk) as

Ek(x) = sgn(x)max(|x| − k, 0), (9)

Dk(X) = UEk(Σ)V ∗, (10)

X = UΣV ∗. (11)
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Algorithm 1: Solve (3) by ADMM [55].

Input: X, L(0) = S(0) = Λ(0) = 0,
ρ > 1, μmax ≥ μ0 > 0.

Output: L,S.
repeat
L(t+1) = D 1

µ(t)
(X− S(t) + Λ(t)

µ(t) );

S(t+1) = E λRPCA
µ(t)

(X− L(t+1) + Λ(t)

µ(t) );

Λ(t+1) = Λ(t) + μ(t)(S(t+1) + L(t+1) −X).
μ(t+1) = min(ρμ(t), μmax).

until the convergence criterion is met.

B. Tensor Robust PCA

It is known that approaches based on matrix (i.e., 2-D ar-
ray) signal separation are efficient tools for different applica-
tions such as BSS, feature extraction, or even classification of
datasets [58], [59]. However, the advancement of multisensor-
based technologies and the emergence of large datasets have
highlighted the limitations of traditional matrix-based models.
Thus, more versatile data analysis tools, such as higher-order
tensors (i.e., multidimensional arrays) strategies, are encour-
aged [60].

Tensor-based strategies have several advantages over matrix-
based methods ranging from the uniqueness of the optimal
solution to component identification, even when most data is
missing. One of the main advantages of using tensors is to
exploit the multidimensional structure of the data. In fact, this
information is often lost in matrix-based strategies and can
degrade the performance of the method [61].

Recently, Lu et al. [35] proposed to extend the RPCA ma-
trix problem (i.e., X ∈ Rn1×n2 ) to third-order tensors X ∈
Rn1×n2×n3 , where n1, n2, and n3 represents the horizontal,
lateral, and frontal slice of the tensor, respectively. The method
known as TRPCA seeks to decompose a given tensor X as

X = L+ S (12)

where L ∈ Rn1×n2×n3 is a low-rank tensor, and S ∈
Rn1×n2×n3 is a sparse tensor.

In this context, [35] has proven that it is possible to perfectly
obtain L and S with a tight recovery guarantee similar to that of
the matrix RPCA through the following optimization problem:

minimize ‖L‖∗ + λTRPCA‖S‖1
subject to L+ S = X (13)

where ‖L‖∗ is the tensor nuclear norm of L, which can be
computed by the sum of singular values of all the frontal slices

of L, i.e., ‖L‖∗ :=
∑n3

i=1 ‖L
(i)‖∗, where L

(i)
is the ith frontal

slice of L, and L = fft(L, [], 3) [35], [62], [63]. The tensor nu-
clear norm is induced by transforms-based tensor-tensor product
(T-product) [64], which is a generalization of the matrix-matrix
product. More details on the tensor nuclear norm can be found
in [32]. In addition, the sparse content is computed by summing
the absolute values of all entries in S with λTRPCA balancing the
content between L and S. According to [35], the λTRPCA value

Algorithm 2: Solve (13) by ADMM.

Input: X , L(0) = S(0) = Y(0) = 0,
ρ > 1, μmax ≥ μ0 > 0.

Output: L,S
repeat
L(t+1) = T 1

µ(t)
(X − S(t) + Y(t)

µ(t) );

S(t+1) = E λTRPCA
µ(t)

(X −L(t+1) + Y(t)

µ(t) );

Y(t+1) = Y(t) + μ(t)(S(t+1) +L(t+1) −X );
μ(t+1) = min(ρμ(t), μmax).

until the convergence criterion is met.

that exactly recovers L0 and S0 under certain assumptions is
defined by

λTRPCA =
1√

max(n1, n2)× n3

. (14)

It is interesting to note that for n3 = 1, λTRPCA = λRPCA. For
this special case, the TRPCA model (13) reduces to the RPCA
model (Section III-A) with the same recovery guarantee as [21].

Similar to the RPCA model, the TRPCA problem can be
solved by polynomial-time algorithms through the ADMM
method. Thus, (13) solved by ADMM consists of the following
iterations:

L(L,S,Y , μ)
.
= ‖L‖∗ + λTRPCA‖S‖1

+ 〈Y ,X−L− S〉+ μ

2
‖X−L− S‖2F

(15)
where Y represents the Lagrange multiplier tensor [35]. Then,
(15) can be alternatively optimized over one variable while fixing
the others [65]. As result, the TRPCA problem is decomposed
into subproblems as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(t+1) = argmin
L

{‖L‖∗

+ µ(t)

2

∥∥∥L+ S(t) −X + Y(t)

µ(t)

∥∥∥2
F

}
,

S(t+1) = argmin
S

{‖S‖1

+µ(t)

2

∥∥∥L(t+1) + S(t) −X + Y(t)

µ(t)

∥∥∥2
F

}
,

Y(t+1) = Y(t) + μ(t)
(L(t+1) + S(t+1) −X )

,
μ(t+1) = min(ρμ(t), μmax).

(16)

Details of the optimization can be seen in Algorithm 2. Note
that the key step of the algorithm is to compute the tensor singular
value thresholding operator (Tk), which can be performed on
the frontal slices of the tensor in the Fourier domain (See
Algorithm 3 in [35] for more details).

C. Methodology

This section presents the proposed method in detail. Fig. 4
shows the general diagram of the proposed method. Initially, we
consider I as the SAR image stack, which is used for obtaining
the GSE. I is formed by IN ∈ Rn×m, where N is the number of
images in the stack, n, and m represents the rows and columns
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Fig. 4. Simplified diagram for GSE in SAR imagery based on RPCA and TRPCA.

of each image, respectively. Before applying the techniques, it
is necessary to organize the stack accordingly to obtain either X
(for RPCA) and X (for TRPCA).

Let X be the matrix formed by X1, X2, . . . , XN vectors,
which XN represents the concatenation of the image IN. Thus,
the dimension of X is (N, n×m). Considering that X ∈
RN,n×m and n×m 
 N, λRPCA (4) can be approximated by

λRPCA =
1√

max(N, n×m)
=

1√
n×m

. (17)

According to the definition of tensors [60], the SAR image
stack can be represented as a third-order tensor X ∈ RN×n×m.
From this arrangement and considering n 
 N, λTRPCA (14) is
given by

λTRPCA =
1√

max(N, n)×m
=

1√
n×m

. (18)

We can observe that λTRPCA = λRPCA = λ. Thus, the method-
ology allows obtaining the GSE from a generalized λ value,
which depends only on the size of the SAR image. Considering
the 3000 × 2000-sized SAR images presented in Section II, λ is
equal to 4.0825 × 10-4. Furthermore, other parameters must be
defined to obtain the GSE. Following the MATLAB implementa-
tions of the RPCA via PCP [66] and the TRPCA via TNN [67],
methods are initialized with μ0 = 10× λ, μmax = 1010, ρ =
1.1. As stopping criteria, we consider an error (ξ) equal to 10−6

and 500 iterations for both methods. Similar to [21] and [66], ξ
in the GSE-RPCA method is taken from

‖X− Lt − St‖F
‖X‖F

. (19)

As suggested in [35] and [67], ξ in the GSE-TRPCA method is
taken from ∥∥Lt+1 − Lt

∥∥
∞ , (20)∥∥St+1 − St

∥∥
∞ , (21)∥∥Lt+1 + St+1 −X

∥∥
∞ (22)

where ‖ · ‖∞ represents the infinite norm, and the stop criterion
is attended when (20) or (21) or (22) converges to the ξ value.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the GSE results based on RPCA and
TRPCA using the images presented in Section II. The GSE
method is evaluated by considering stacks (N = 8) and pairs
(N = 2) of WR SAR images and a stack (N = 4) of PALSAR
images.

A. GSE Results on WR SAR Images

To demonstrate the effectiveness of the GSE method, visual
and quantitative comparisons are made with the results obtained
in [10], which, to the best of our knowledge, is the work that
presents the best performance related to GSE in WR SAR
image stacks using the CARABAS II dataset. To make a fair
comparison, we used exactly the image stacks (see Table I)
and metrics that have been considered in [18] and [10]. Also,
we evaluate our method through the same interest image used
in [18] and [10]. The interest image is an original image chosen
for analysis. Therefore, the interest image has targets. In this
context, Stacks 1, 2, and 3 are evaluated by interest images from
Mission 1, Pass 1, 2, and 5, respectively. We also limited our
GSE quantitative analysis to Mission 1, which is representative
of all missions due to WR SAR image stability as suggested
in [10] (more details can be found in [68]).

Initially, the GSE can be evaluated visually. Figs. 5 and 6
show the GSE-RPCA and GSE-TRPCA, respectively, using a
WR SAR images with N = 8. In this case, it was possible to
remove all targets from Mission 1 [see Azimuth 500–1000 in
Fig. 1(a)] using the proposed method. In addition, the GSE
provided information regarding linear objects such as fences and
power lines, which significantly contributes to reducing false
alarms in change detection algorithms.

We evaluate the GSE in terms of statistical measures such
as average (x̄), standard deviation (σ), skewness (μ3, measure
of the asymmetry of a distribution), and kurtosis (μ4, measure
of tailedness of a distribution) [69], [70]. These measures are
defined by

x̄ =
1

Q

Q∑
i=1

x[q], (23)
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Fig. 5. GSE-RPCA-1 (i.e., interest image) using a stack of CARABAS-II images (N = 8): (a) Stack 1; (b) Stack 2; and (c) Stack 3.

Fig. 6. GSE-TRPCA-1 (i.e., interest image) using a stack of CARABAS-II images (N = 8): (a) Stack 1; (b) Stack 2; and (c) Stack 3.

σ =

√√√√ 1

Q− 1

Q∑
i=1

(x[q]− x̄)2, (24)

μ3 =
1

Q

Q∑
q=1

(
x[q]− x̄

σ

)3

, (25)

and

μ4 =
1

Q

Q∑
q=1

(
x[q]− x̄

σ

)4

(26)

where Q represents the total number of pixels (n×m) and x[q]
represents the q pixel in the interest image. According to Table II,
our method can reduce metrics sensitive to outliers like x̄ and σ
when compared to [10]. We also obtained a reduction in μ3 and
μ4. Outliers due to non-Gaussian signals (such as targets) have
high values and appear in the tails of the distribution. As a result,
the tails of the distribution are heavier, and μ3 and μ4 assume
high values that destroy the symmetry of the distribution [71]. It
can be concluded that our method is better at replacing targets
of the interest image with clutter-plus-noise content than the
reference method.

Also, we can assess the performance of GSE methods through
numerical error evaluation. The error is calculated by comparing
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TABLE II
x̄, σ, μ3, AND μ4 OF ONE INTEREST IMAGE AND ITS RESPECTIVE GSE USING

IMAGE STACKS FROM THE CARABAS-II SYSTEM

the pixel amplitude of the interest image and the respective
generated GSE. More precisely, the mean square error (MSE),
the mean absolute percentage error (MAPE), and the median
absolute error (MdAE) were considered [72], [73], [74]. These
measures are defined as

MSE =
1

Q

Q∑
q=1

(x[q]− x̂[q])2, (27)

MAPE =
1

Q

Q∑
q=1

|x[q]− x̂[q]|
|x[q]| , (28)

MdAE = Median(|x[q]− x̂[q]|) (29)

where x̂[q] represents the q pixel in the GSE and Median(·)
represents the central value of a set of ordered values.

Table III presents the quantitative analysis results of the GSE
method generated from different stacks, and the best measure-
ments are highlighted. In this analysis, we removed the target
region to evaluate our GSE. The target region considered was
100 pixels in range and azimuth from the most extreme target
location in the deployment. This strategy was also adopted
by [10] and is justified by the fact that the target deployment
should not influence the evaluation of the GSE since this content
is not expected to be in the GSE. Compared with other methods,
the GSE-TRPCA obtains the lowest MSE, MAPE, and MdAE,
which indicates that the GSE obtained by our method has the best
performance regarding predicting the ground scene among the
evaluated techniques. Meanwhile, the GSE-RPCA performed
similarly to the reference method with better performance in
MAPE, which is a more suitable measure to assess the accuracy
of the estimation in different applications [73].

Fig. 7 shows the GSE obtained based on RPCA and TRPCA
using WR SAR with N = 2. In this case, images from different
missions and the same flight heading were considered (Mission

TABLE III
GSE IMAGE QUALITY MEASURES COMPARED TO REFERENCE USING DATA

FROM THE CARABAS-II SYSTEM

1 and 2, Pass 1). The reference methods do not work properly
when no image stacks are present. On the other hand, our method
is able to provide the GSE without the presence of targets, even
with few images.

B. GSE Results on PALSAR SAR Images

Fig. 8 shows the interest image [Fig. 3(a)] and the GSE
obtained from our model on PALSAR images. In this case, we
considered a stack with four images shown in Fig. 3. Based
on visual inspection, we can observe that our method manages
to remove the ships close to the port region even with a stack
formed by only four images, preserving the clutter-plus-noise of
the region.

More details about estimation features can be seen in Figs. 9
and 10. These figures represent two regions from Fig. 8 of size
400× 400m (forest and sea regions). The forest region is located
in the range ∈ [0 m, 400 m] and azimuth ∈ [0 m, 400 m], while
the sea region is located in the range ∈ [1600 m, 2000 m] and
azimuth ∈ [1200 m, 1600 m]. As a result, GSE-TRPCA proved
to be a more sensitive estimation method to texture and shad-
ing effects than GSE-RPCA. This can be justified because the
singular values of tensor data represent important information
for shadows and textures. Given that only four images were
considered, a loss in this type of information is expected.

Table IV displays the statistical characteristics of the GSE
(Fig. 8) in terms of average, standard deviation, skewness, and
kurtosis for an image stack. For full-size images, i.e., 6 million
pixels per image, the GSE statistics, mainly the GSE-TRPCA,
are practically similar to the statistics of the interest image, with
no presence of ships for both methods. When we analyze the
forest and sea regions, i.e., 160 thousand pixels per image,
the methods provided excellent overall performance without
significant changes in the statistics of the interest image.

We also evaluated our GSE methods on the PALSAR images
regarding MSE, MAPE, and MdAE. Since we do not have access
to the ground truth of the targets in the SAR image (e.g., ships
close to the port), we evaluated the method in the forest and
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Fig. 7. GSE using pair of SAR images from CARABAS-II system (N = 2, Mission 1 and 2, Pass 1). (a) Mean [10]; (b) Median [10]; (c) GSE-RPCA-1; and
(d) GSE-TRPCA-1. The areas highlighted by circles in the images represent the regions (two different missions) where the targets are deployed.

Fig. 8. GSE using four PALSAR images (N = 4, Fig. 3). (a) Interest image; (b) GSE-RPCA of (a); (c) GSE-TRPCA of (a).

Fig. 9. Forest region-GSE using four PALSAR images (N = 4, Fig. 3). (a) Interest image; (b) GSE-RPCA of (a); (c) GSE-TRPCA of (a).
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Fig. 10. Sea region-GSE using four PALSAR images (N = 4, Fig. 3). (a) Interest image; (b) GSE-RPCA of (a); (c) GSE-TRPCA of (a).

TABLE IV
AVERAGE, STANDARD DEVIATION, SKEWNESS, AND KURTOSIS OF AN INTEREST

IMAGE, A FOREST REGION, AND A SEA REGION AND THE RESPECTIVE GSE
USING IMAGE STACK FROM THE PALSAR SYSTEM

TABLE V
GSE IMAGE QUALITY MEASURES USING PALSAR DATA

sea clutter-plus-noise regions, previously presented in Figs. 9
and 10, respectively. Table V shows the error measures between
the image of interest and the respective GSE obtained. Similar
to the results presented with WR SAR images, the GSE-TRPCA
method performed better than the GSE-RPCA in the PALSAR
data, confirming the robustness of the method. Furthermore, our
methods proved efficient in predicting the ground in a scene
formed by different types of clutter-plus-noise (e.g., forest and
sea).

C. Discussion

Using λRPCA defined in (4), the rank of L is equal to 1 in
all scenarios, which means that in a stack with N images,
GSE-RPCA provides N GSE’s where all estimation are linearly
dependent. This feature implies that the GSE-RPCA obtains a
single GSE since one GSE is just a linear combination of any
other GSE of the stack. On the other hand, the rank of L is equal
to N in all scenarios. Therefore, the GSE-TRPCA provides N
linearly independent GSE for the stack. Our method shows that
a single GSE can represent very well the clutter-plus-noise of
the whole stack formed by SAR images from the same flight
heading. However, strategies that allow linearly independent
GSEs are more efficient, as observed in Table III.

It is interesting to observe how each method obtains the GSE.
As a matrix solution, the GSE-RPCA has become less sensitive
to texture and shading effects. This is because when vectorizing
each image to organize X, part of the spatial information is lost
while the temporal information is preserved. On the other hand,
GSE-TRPCA, being a tensor method that considers all spatial
information contained in the stack, eliminates the texture and
shadow information from the GSE until a convergence criterion
is reached.

However, since statistical characteristics of the GSE depend
on λ choice, future works may seek to optimize this value,
providing more texture and shadow information to the GSE
and, consequently, increasing the performance of the method.
Another way to improve estimation performance is to increase
the number of images in the stack with noise or targets. If the
noise from the added images behaves similarly to the other noise
already present in the stack, this behavior will help the method
to obtain an accurate estimation. If this noise differs from the
other images, it tends to be represented by the sparse matrix and
not in the GSE. Adding images with outliers will also help the
GSE method, as this type of content is often sparse as a whole
in the data.

Regarding the runtime processing, the methods were imple-
mented on a computer equipped with an Intel Core i7-7700 pro-
cessor with a 3.6 GHz CPU, 16 GB memory, an Intel HD Graph-
ics 630, and the requisite software environment is the MATLAB
R2021a. The average runtime processing and standard deviation
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TABLE VI
RUNNING TIME COMPARISON FOR THE GSE METHODS

of the GSE methods are presented in Table VI. These values were
obtained considering 10 simulations with SAR images of size
3000 × 2000. It is worth noting that the proposed method, either
matrix or tensor solution, does not depend on other steps, such
as a training step, which can significantly reduce the algorithm
runtime processing.

Finally, it is understood that the complexity of the pro-
posed method depends on the optimization process. Based on
the ADMM method, the complexity of the RPCA via PCP
is equal to O(n1n2 min(n1, n2)) [20] and the complexity of
the TRPCA via TNN is equal to O(n1n2n3 log n3 + n1n

2
2n3)

[35]. Considering the GSE methodology, the complexity of the
GSE-RPCA and the GSE-TRPCA is equal to O(N2nm) and
O(N2nm( logm

N + n)), respectively.

V. CONCLUSION

Obtaining the GSE in SAR imagery is a challenge. This
article proposes a GSE method through robust PCA techniques
based on matricial and tensorial formulations. The amount of
information presented in both proposed GSE methods is based
on a single regularization parameter, which depends only on the
dimensions of the input data. In addition, the proposed method
has another attractive characteristic, i.e., it works for any size of
SAR image stack. Experiments based on wavelength-resolution
SAR images from the CARABAS-II system and polarimetric
SAR images from the ALOS PALSAR system showed that the
proposed method provides a good quality GSE for different
scenes. We evaluated the proposed method based on visual
inspection, statistical characteristics, and quality adjustment
measures. In this context, our method produced the most reliable
estimation compared to the state-of-the-art reference method.

Unlike strategies that use pixel-by-pixel analysis, robust PCA
techniques are not sensitive to outliers missing data and do not
require data training steps, which makes GSE solutions based
on robust PCA techniques applicable for different types of SAR
systems. Finally, this article proposes two robust GSE methods
that decompose data into L+S. In future work, other recent
formulations can be investigated [23]. In addition, the GSE prob-
lem can be explored based on other matrix/tensor factorization
techniques, such as nonnegative matrix factorization (NNMF),
among others [75].

TABLE VII
LIST OF ACRONYMS AND ABBREVIATIONS

APPENDIX A
ACRONYMS AND ABBREVIATIONS

In Table VII, we provide a list of acronyms and abbreviations
used in this work.
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