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Abstract—Remote sensing change detection (CD) is used to de-
tect the difference in the state of objects or phenomena by observing
it at different times. CD is widely used in disaster monitoring,
land-use and land-cover change analysis, urban expansion detec-
tion, and other fields. Medium-resolution (MR) remote sensing
imagery can be used for global and regional CD due to the real-time
acquisition, extensive coverage, and historical data advantages.
Therefore, medium-resolution remote sensing imagery change de-
tection (MRCD) is a very important topic. Compared with very
high resolution (VHR) imagery, MR imagery has less texture and
edge information. Besides, the object has a large-scale size in VHR
imagery scene while the same object will only have a small-scale
size in MR imagery scene. To solve the challenge of MRCD, we
propose a joint spatial–spectral–temporal network for MRCD,
named Multiscale Convolution Channel Attention coupling full
convolutional BiLSTM Network (MC2ABNet). The MC2ABNet
consists of multiscale convolutional channel attention (MC2A)
module and fully Convolutional Bidirectional Long Short-Term
Memory (ConvBiLSTM) network. In the encoder, MC2A module
is used to extract multiscale spatial features from multitemporal
imagery at each encoding level by sharing structure, parameters,
and weights. In each MC2A module, the multiscale convolution
extracts multiscale spatial features with different receptive fields,
and then the channel attention is used to ease the information
redundancy during downsampling. The ConvBiLSTM is applied
to calculate the time difference features in both forward and back-
ward directions and utilizes spatial information synergistically to
smooth change noise for obtaining complete time difference fea-
tures. The extensive experiments have been conducted on ONERA
satellite change detection and SpaceNet7 datasets. Compared with
other state-of-the-art methods, our network achieves the highest
accuracy on both datasets.

Index Terms—Change detection (CD), medium-resolution (MR)
imagery, medium-resolution remote sensing imagery change
detection (MRCD), multiscale convolutional channel attentional
(MC2A) module.
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I. INTRODUCTION

R EMOTE sensing imagery can provide spatial and spectral
information about objects on the Earth’s surface; thus, the

shape, size, and color information of objects can be extracted to
study surface change [1]. With the rapid development of Earth
observation technology, more and more remote sensing satellites
are available to provide more multitemporal remote sensing
imagery for change detection (CD) tasks [2], [3], such as GaoFen
[4], Sentinel-2 [5], and Landsat [6]. Singh [7] defined remote
sensing CD as “the process of identifying differences between
imagery at different times.” CD is widely used in disaster moni-
toring [8], land-use and land-cover (LULC) change analysis [9],
and urban expansion detection [10], [11]. Medium-resolution
(MR) remote sensing imagery can provide data support for the
study of large-area CD task [12] due to the advantage of real-time
acquisition, large coverage area, and a large amount of historical
data. Therefore, Medium-Resolution remote sensing imagery
Change Detection (MRCD) is a very important topic.

The most common methods for MRCD are the traditional CD
methods. The traditional CD methods have been carried out for
several decades and have been well developed in these decades.
The traditional CD methods can be divided into three kinds [13]:

1) based on imagery arithmetical methods;
2) based on imagery transformation methods;
3) postclassification methods.
Imagery arithmetical-based methods directly compare the

spectral values of multitemporal imagery and obtain the change
map according to the suitable threshold value. Typical imagery
arithmetical-based methods, such as imagery difference [14],
imagery rationing [15], imagery regression [15], and change
detection analysis [16], are used to distinguish the changed
pixels from the unchanged pixels. Imagery transformation-based
methods transform the spectral combinations of the imagery
into a specific space to get more remarkable feature map, and
then the feature map is segmented to obtain the change map
according to the threshold value. The most important imagery
transformation-based methods are principal component analysis
(PCA) [17], multivariate alteration detection [18], and slow
feature analysis [19]. For example, PCA is used to extract the
data dimension that accounts for the interested change types
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[20], [21]. The postclassification method is the most obvious
quantitative CD method and the most commonly used CD
method because it can provide detailed “from—to” change infor-
mation. The method corrects and classifies imagery that come
from the same space with different times, and then compare
the classification maps to get the change matrix. Many scholars
use postclassification methods to solve practical problems, such
as LULC change analysis [22] and urban sprawl measuring
[23], [24]. However, these traditional methods are difficult to
extract effective high-level feature representation, resulting in
lower accuracy.

In recent years, the rapid rise of big data and the improvement
in computing power have promoted the development of deep
learning. Deep learning has made a remarkable performance in
the remote sensing imagery interpretation, such as classifica-
tion, object detection, and CD [25], [26], [27]. Convolutional
neural networks (CNNs) [28] have strong feature extraction
ability and can extract high-level spatial–spectral features of
objects. Thus, a large number of CD methods based on CNN
have been proposed [29], [30], [31]. For example, Daudt et al.
[32] proposed three models, FC-EF uses UNet structure for
CD task, fully convolutional-Siamese-concatenation (FC-Siam-
Conc) combines Siamese network with UNet structure to extract
spatial features of bitemporal imagery, and fully convolutional-
Siamese-difference (FC-Siam-Diff) uses the difference features
between dual encoding streams for decoding. Li et al. [33]
stacked two imagery as one imagery and then input it into a
multiscale full convolutional network for extracting rich spatial
features. Shi et al. [34] proposed a deeply supervised attention
metric-based network to reduce the pseudochanges and noise
caused by external factors. The above CD methods based on
deep learning are designed for the VHR imagery and focus on
extracting effective VHR imagery spatial features for CD tasks.
However, the spatial feature of VHR imagery is different from
MR imagery. Thus, the method designed for VHR imagery get
terrible performance when applied to the MR imagery.

Taking building as an example, which serves as an important
indicator of urban expansion and researched by many scholars
[35], [36], [37], in the VHR imagery, buildings have rich texture
and regular edge information [38], which is not available in
the MR imagery. In addition, in the VHR imagery, building
scenes with the large-scale size has a lot of detailed spatial
information [39]. However, in the MR imagery, building scenes
with the small-scale size has limited spatial information. More
important, the MR imagery focuses on the change of large
region [40]. If VHR imagery CD methods are directly applied
to the MRCD, the insufficient spatial feature is easy to cause the
loss of small-scale object and incomplete change boundary of
large-scale object. Besides, only using spatial information, such
as shape and texture, is not enough, it is important to introduce
continuous time difference features for MRCD.

In order to tackle the problems mentioned above, this article
proposes a Multiscale Convolution Channel Attention coupling
full convolutional BiLSTM Network (MC2ABNet) that joints
spatial–spectral–temporal features for MRCD. The innovative
multiscale convolutional channel attention (MC2A) module is

designed to extract the multiscale spatial feature of MR imagery.
The MC2A module uses the Inception V2 [41] to extract local
detailed features of small-scale objects in the shallow encoding
level and extract global features of large-scale object in the
deep encoding level. The Inception V2 module can make the
network pay more attention for large region change without
losing small-scale object change in the MR imagery. In the
process of downsampling, the channel number of spatial features
is increasing and will lead to information redundancy. In order to
reduce information redundancy, the MC2A module uses channel
attention to help MC2ABNet focus on channels that contain
important information. For the purpose of extracting complete
time difference features for the MRCD task, this article employs
the fully Convolutional Bidirectional Long Short-Term Memory
(ConvBiLSTM) at the top of each encoding level to extract
multiscale difference features. ConvBiLSTM is enable to extract
difference features in both forward and backward directions by
sharing the structure, parameters, and weights, and combines
spatial information to smooth change noise for getting complete
difference features. Besides, ConvBiLSTM is able to reduce the
multiplication of the high-dimensional matrix while extracting
difference features. All in all, the MC2ABNet uses the Siamese
network to encode the imagery of different times. In each encod-
ing level, the MC2A module is used for extracting effective mul-
tiscale spatial features, then these multitemporal spatial features
are inputted into the ConvBiLSTM to calculate time difference
features. Finally, these time difference features are restored to
the size of the raw imagery by the decoder and then obtain the
change probability map through threshold segmentation.

The main contributions of this article are conducted as fol-
lows.

1) This article presents a joint spatial–spectral–temporal net-
work named MC2ABNet for MRCD, which can extract
abundant multiscale spatial features and complete time
difference features of MR imagery; the MC2ABNet can
also be used to detect the changed area from time-series
remote sensing imagery.

2) The novel MC2A module is designed to extract multiscale
spatial features of MR imagery by the multiscale convo-
lution and the channel attention. The MC2A can extract
local detailed features of small-scale objects in the shallow
encoding level and global features of large-scale objects
in the deep encoding level.

3) The ConvBiLSTM network is used at the top of each
encoding level to calculate the time difference features
between multitemporal imagery. It can extract difference
features in both forward and backward directions, and uti-
lize spatial information synergistically to smooth change
noise for obtaining complete time difference features.

4) To demonstrate the validity of the proposed MC2ABNet,
we have conducted extensive experiments on the MR
dataset ONERA satellite change detection (OSCD) and
time-series dataset SpaceNet7; MC2ABNet achieves good
performance on both datasets and outperforms the state-
of-the-art algorithms, demonstrating the effectiveness and
generalization of the proposed MC2ABNet.
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Fig. 1. Structure of the proposed MC2ABNet. The spatial feature extractor—MC2A module—is used to extract multiscale spatial features. The ConvBiLSTM
uses the forward ConvLSTM and backward ConvLSTM to extract multilevel temporal features. These temporal features with different sizes are restored to the size
of raw imagery in the decoder, finally, using the convolution layer with the kernel size of 1× 1 to generate the final change map.

The rest of this article is organized as follows. Section II
describes the proposed MC2ABNet model in detail. Section III
presents the implementation of the algorithms, evaluation met-
rics, datasets, and their experiments of the proposed network.
Finally, Section IV concludes this article.

II. METHODOLOGY

A. Overview

This article proposes a joint spatial–spectral–temporal net-
work for MRCD, named MC2ABNet. The overall framework
of MC2ABNet is shown in Fig. 1. The network takes some
multitemporal imagery separately input into T parallel encoder
streams to extract spatial features of T temporal imagery in
multiple encoding levels. In each encoding level of the encoding
stream, the spatial extraction module MC2A is used to extract ac-
curately the multiscale spatial features of MR imagery. The mul-
tiscale convolution of MC2A module can extract detailly local
features through convolution with a small kernel size and extract
integrally global features through convolution with a large kernel
size. The channel attention of MC2A module can reconstruct
the optimal representation map according to the contribution of
each channel and alleviate the information redundancy in the
downsampling. Then, multitemporal spatial features are con-
catenated in both forward and backward directions in temporal
dimensionality. The concatenated multitemporal spatial features
are transmitted into ConvBiLSTM to obtain different features
between them. The ConvBiLSTM through forward ConvLSTM
and backward ConvLSTM shares structures, parameters, and
weights to extract temporal difference features. The ConvBiL-
STM extracts temporal difference features in both forward and
backward directions, and utilizes spatial information synergisti-
cally when extracting difference features. Multilevel difference
features extracted by ConvBiLSTM are restored to the size of
raw imagery through the decoder. Finally, the feature map with
the size of H ×W × C is mapped to the size of H ×W × 2

through the convolution layer with a kernel size of 1× 1 and
generates the final change map through threshold segmentation.

B. Spatial Feature Extractor MC2A

The spatial features extractor—MC2A module—as shown in
Fig. 2, is elaborated to focus on the spatial and spectral features.
The InceptionV2 is used to extract multiscale spatial features
with different kernel sizes. Then, the channel attention is used
to explore useful and informative channels. The MC2A module
combines the Inception V2 with channel attention to extract the
accurate spatial features of MR imagery for the CD task.

A pixel in the MR imagery fuses the information of multiple
pixels in the VHR imagery. If the spatial features are extracted
by the method that is designed for the VHR imagery, there
will be some problems, such as missing small target detection
and inaccurate change boundary. The Inception V2 module can
extract the detailed local features and integrally global features
through convolution layers with different kernel sizes. Thus, the
Inception V2 module can extract rich multiscale spatial features
for the MRCD task.

1) Inception V2 module: The inception V2 module uses four
parallel convolution cubes with different kernel sizes to
extract multiscale spatial features. In the first branch, the
kernel size of convolution layer is 1× 1 and padding
is 0. It is mainly used to extract spatial features in the
small receptive fields so that the features of one pixel
can be extracted as far as possible without considering
the influence of surrounding pixels. In the second branch,
the kernel size of convolution layer is 3× 3 and padding
is 1, and the convolution layer in the second branch is
used to reduce the number of parameters and calculation.
In the third branch, the receptive field of convolution
layer is 5× 5, but the convolution layer with a kernel
size of 5× 5 has many parameters. In order to reduce
the number of parameters, inception V2 module uses two
convolution layers with a kernel size of 3× 3 to replace
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Fig. 2. Structure of the MC2A module, the left half of the MC2A is the inception V2 module, while the right half is the channel attention.

Fig. 3. Structure of the convolution cube in the Inception V2 module. (a) is
the convolution cube with the kernel size of convolution layer of 1× 1. (b) is
the convolution cube with the kernel size of 3× 3. (c) is the structure of the last
branch in the Inception V2 module, which is composed of the MaxPool layer
and the convolution cube, the kernel size of the MaxPool layer is 3× 3, the
padding is 1, and the stride is 1. (d) is the structure of the MLP.

one convolution layer with a kernel size of 5× 5. In
the last branch, there is a MaxPool layer with a kernel
size of 3× 3. It is mainly used to extract spatial features
with strong characteristics. It should be mentioned that
BatchNorm layer and ReLU activation function are added
behind each convolution layer to form the convolution
cube, as shown in Fig. 3(a) and (b). The structure of
last branch with MaxPool layer is shown in Fig. 3(c).
Finally, the multiscale spatial extracted by four branches
is concatenated in the channelwise and then as the input of
next step. The concatenation of multiscale spatial features
not only can increase the width of the network but also can
improve the adaptability of the network to different scales
spatial features.

In the process of downsampling, with the increase of encoding
level, the number of feature channels is also increasing. In the
deep encoding level, the number of concatenated multiscale
feature channels can reach up to hundreds. Since different feature
channels have different contributions in the CD task, it is nec-
essary to assign different weights to each channel by increasing
the weight of important channels and suppressing the weight of
unimportant channels to reduce the information redundancy of
spatial features. Specifically, the channel attention automatically
learns the weight of each channel and reconstructs the feature
map.

2) Channel Attention: The structure of the channel attention
that is used in the MC2A module is shown in Fig. 2.
Specifically, the multiscale feature with the size of C ×
H ×W is input into AvgPool and MaxPoolto generate
two aggregated vectors with a size of C × 1× 1. Then,
the weight-sharing multilayer perception (MLP) with the
channel reduction ratio r is used to assign weights to each
channel. The structure of MLP is shown in Fig. 3(d). MLP
consists of two convolution layers with a kernel size of
1× 1, the first layer reduces the number of input feature
channels to 1/r of number of original feature channels, and
the second layer restores the number of feature channels to
the number of original feature channels; the BatchNorm
layer is placed behind the convolution layer to prevent
overfitting. The first BatchNorm layer is followed by the
ReLU activation function. After the second BatchNorm
layer, the weights of channels obtained by two branches
are added and then passed into the sigmoid activation
function to produce final weights of channels. Finally, the
weights are multiplied by the original features to get new
feature maps. The calculation of the new feature map can
be expressed by the following formula:

C (x) = σ (MLP (AvgPool (x))+MLP (MaxPool (x)))
(1)
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Fig. 4. Multiscale spatial features extracted by the MC2A module. (a) is
obtained by convolution layer with a receptive field of 1× 1. (b) is obtained by
convolution layer with receptive field of 3× 3. (c) is obtained by convolution
layer with a receptive of 5× 5. (d) is obtained by the MaxPool layer with a
kernel size of 3× 3.

where C(x) is the features reconstructed through the channel at-
tention, xis the multiscale feature of sizeC ×H ×W , AvgPool
and MaxPool represent the average pooling layer and the global
max pooling layer, MLP is the MLP module that consists of the
convolution layer, and σ is the sigmoid activation function.

Compared with the method that only uses the convolution
layer with a kernel size of 3× 3 to extract spatial features,
this article designs a spatial feature extractor for MR imagery.
Inception V2 module in MC2A is used to extract rich multiscale
spatial features by using four parallel branches composed of
convolution layer with different kernel sizes, then uses chan-
nel attention to reconstruct the optimal feature representation
according to the contribution of each channel. The multiscale
spatial features extracted by the MC2A module are shown in
Fig. 4.

C. ConvBiLSTM

This article uses the ConvBiLSTM at the top of each en-
coding level to extract time difference features between multi-
temporal imagery. The ConvBiLSTM is composed of forward
ConvLSTM and backward ConvLSTM that share the same
structure, parameters, and weights. Compared with RNN, the
ConvBiLSTM, such as LSTM, can solve the problem of gradient
vanishing and gradient explosion. Compared with LSTM, the
ConvBiLSTM can extract temporal features and utilize spatial
information synergistically; thus, the ConvBiLSTM not only
detects spectral difference between multitemporal imagery but
also detects spatial difference between them. The ConvBiLSTM
can also reduce the multiplication of high-dimensional matrices
through the weights and bias matrix, which replace the convolu-
tion layer. Compared with ConvLSTM, the ConvBiLSTM can
extract difference features in both forward and backward direc-
tions to obtain more accurate and reliable difference features.

The ConvBiLSTM uses forget gate, input gate, cell state, and
output gate to forget unimportant information at long distance
and emphasizes important information at short distance. The
weights matrix and bias matrix in four gates are replaced by
the convolution layer. Specifically, four gates can be defined as
follows.

1) Forget gate ft: It is used to control information that
should be forgotten in the hidden state and cell state of
the previous step

ft = σ (Wf · [Ct−1, ht−1, xt] + bf ) . (2)

2) Input gate it: It is used to control new information that
should be added to the network

it = σ (Wi · [Ct−1, ht−1, xt] + bi) . (3)

3) Cell state Ct: It is used to control the information retained
in the current cell state that comes from the previous
cell state. Specifically, the network creates the new cell
state by forgetting irrelevant features and keeping valuable
features obtained from the previous cell state

ct = tanh (Wc · [ht−1, xt] + bc) (4)

Ct = ft � Ct−1 + it � Ct. (5)

4) Output gate ot: It is used to control the features that will
be output from the ConvBiLSTM unit

ot = σ (Wo · [Ct, ht−1, xt] + bo) (6)

ht = ot ⊗ tanh (Ct) . (7)

In the above formulae, Wf ,Wi,Wc, and Wo are the weight
matrices; and bf , bi, bc, and bo are the bias matrices of four
gates ft, it, Ct, and ot, which can be calculated by convolu-
tion layer with a kernel size of 3× 3. The weight matrices
Wf ,Wi,Wc, and Wo and bias matrices bf , bi, bc, and bo are
shared at all time steps. The forget gate ft, the input gate it, and
the output gate ot can be obtained by sigmoid activation function
σ. The cell state Ct can be obtained by hyperbolic tangent
activation function tanh. The above two activation functions can
be defined as follows:

σ (x) = 1/
(
1 + e−x

)
(8)

tanh (x) =
sinh (x)
cosh (x)

=
ex − e−x

ex + e−x
. (9)

Because the forward ConvLSTM and backward ConvLSTM
share the structure, parameters, and weights, this paragraph will
mainly introduce the forward ConvLSTM (as shown in the first
row of Fig. 5). At first, the hidden state obtained at time t− 1
is concatenated with the imagery of time t as the ConvLSTM
input of time t. Second, the ConvLSTM input of time t is inputted
into four parallel convolutions with a kernel size of 3× 3 and
their activation function to obtain forget gate, input gate, and cell
state output gate. Third, cell state of time t− 1 is multiplied with
forget gate, and input gate is multiplied with cell gate, adding
the above two results to calculate the cell state of time t. Cell
state is the orange rectangle in Fig. 5. Fourth, the cell state is
obtained through the tanh activation function and then multiplied
by the output to obtain the hidden state of time t. Hidden state
is the red rectangle in Fig. 5. The key of ConvLSTM is cell
state and hidden state that can transmit information between
multitemporal imagery. Four gates in ConvLSTM are calculated
by convolution layer; thus, ConvLSTM can reduce the multi-
plication of high-dimensional matrix and combine difference
features with spatial features.

The structure of ConvBiLSTM is shown in Fig. 5. The first
row is the forward ConvLSTM, where sequence multitemporal
imagery I = [I1, I2, . . . , IT ] is input into the forward ConvBiL-
STM to obtain the final forward hidden state hseq

T by formula (7).
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Fig. 5. Structure of the ConvBiLSTM. The first row is the forward ConvLSTM, and the second row is the backward ConvLSTM.

Fig. 6. Structure of the decoder.

The second row is the backward ConvLSTM, where reversed
multitemporal imagery I rev = [IT , IT−1, . . . , I1] is input into
the backward ConvLSTM to obtained the final backward hidden
state I rev

0 by formula (7) as well. Then, the hidden states of for-
ward ConvLSTM and backward ConvLSTM are concatenated
in channelwise to obtain the final difference features between
multitemporal imagery.

D. Decoder

Decoder is used to restore multilevel difference features to
the size of the raw imagery. As shown in the Fig. 6 at first,
difference features with the size of H

2 × W
2 × C are inputted

into the transposed convolution to obtain new difference
features with the size of H ×W × C. Second, new difference
features are concatenated with difference features with size of
H ×W × C in channelwise to obtain concatenated difference
features. Third, concatenated difference features are input into
three convolution layers to make the difference features map
complete and smooth. Repeat the above steps until difference
features are restored to the size of raw imagery.

E. Loss Function

The cross-entropy loss function is used to measure the dif-
ference between the distribution learned by the network and
the ground truth. As a commonly used loss function in classi-
fication task, the cross-entropy loss function can also be used
for distinguishing the change pixels from the unchanged pixels.
However, the CD task has the problem of sample imbalance.
Generally, unchanged pixels account for the majority of the
samples, while changed pixels only account for a small part.
The network tends to predict the pixel to the unchanged class
so that one can obtain the small loss, but it will lead to poor
performance. Thus, this article uses the weighted cross-entropy
loss to optimize the model

L = −
N∑

n=0

R · ys,n · log (ps,n) (10)

where L represents the calculated weighted cross-entropy loss.
N is the number of change classes, including changed and un-
changed. ys,n is a binary indicator of whether ground truth n is
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the correct answer to the predicted s, and ps,n is the probability
of the predicted s belonging to the ground truth n. R is the
weight of each class sample. Specifically, the weight of change
samples can be calculated by R = 1− c

a , where c is the number
of changed samples and a is the number of all samples.

III. EXPERIMENTAL RESULTS AND ANALYSIS

To test the effectiveness of the proposed method on MRCD,
extensive medium and time-series experiments have been con-
ducted. In this section, the description of datasets is first pre-
sented. Next, the details of the experimental setting are given.
Then, the analyses of the experimental result tested on medium
and time-series imagery are exhibited, respectively.

A. Datasets and Implementation Details

In this article, we use two public CD datasets, the MR imagery
dataset called OSCD dataset and the time-series imagery dataset
called SpaceNet7, to evaluate the proposed method. It should be
noticed that, for all datasets, the CD task is performed using two
classes: changed and unchanged.

1) OSCD dataset: The first dataset is OSCD. OSCD dataset
was created using the multispectral imagery taken by
Sentinel-2 satellites of places with different levels of ur-
banization in several different countries that have expe-
rienced urban growth and changes. Labeling as changed
only urban growth and changes, ignoring natural changes,
such as vegetation growth. OSCD dataset depicts changes
in 24 different cities of the world where urbanization was
evident, such as Chongqing, China, Hongkong, China,
and Paris, France. Each imagery pair with original file
format tiff has 13 bands with resolutions between 10 and
60 m, with bit depth of 16. Our experimental setup is the
same as the official requirements, with 14 imagery pairs
for training and 10 for testing. Because the percentage of
the change pixels for OSCD dataset only is 2.3%, some
data augmentation techniques are used to avoid overfitting
during training. The training imagery is augmented by
using all possible flips and rotations multiple of 90°. In
Fig. 7, this article has illustrated some imagery and ground
truth of OSCD dataset.

In the training process of the OSCD dataset, the imagery
has been clipped as the patch with the size of 128× 128 and
the stride is 64. There are about 1500 patches containing both
changed and unchanged pixels, about 1200 of which are used
for training the network and about 300 are used for validation
purposes. For the MC2ABNet, the Adam optimizer was adopted
with the initial learning rate of 0.001 on OSCD dataset, a batch
size of 8 sample pairs was utilized to accelerate the convergence
of the model, the L2 regularization coefficient is 0.001, and the
reduction ratio r in the channel attention is 8. It should be noted
that in the experiment, this article utilized four bands (red band,
blue band, green band, and near infrared with a resolution of
10 m) of the Sentinel-2 satellite for comparison and ablation
experiments.

2) SpaceNet7 dataset: The second dataset is SpaceNet7.
SpaceNet7 dataset was recently released for

Fig. 7. Imagery of OSCD dataset, the first and second columns are visible
light imagery obtained at different times, and the third column is the ground
truth of the corresponding imagery pair. (a) 01/2016. (b) 03/2018. (c) Ground
truth. (d) 12/2016. (e) 03/2018. (f) Ground truth.

multitemporal building detection in the NeuraIPS 2020
challenges. This dataset contains 100 locations distributed
around the globe and comprises over 40 000 km2, where
buildings have been changed, but only 60 data cubes
provide building labels. Each data cube contains about
24 imagery at different times acquired in 2018, 2019,
and 2020. Each imagery of data cubes has four spectra:
red band, blue band, green band, and near-infrared band;
the original file format is tiff, the size of each imagery is
approximately 1024×1024, the resolution is 4 m, and the
bit depth is 32. Our experimental setup is based on 60 data
cubes that provide ground truth of which 48 data cubes
are used for training and 12 data cubes for verification
and testing. Since the SpaceNet7 dataset is a semantical
segmentation dataset, there are some data cubes that have
very few changes. When randomly dividing the training
and testing data, do not divide data cubes that have very
little change into testing. Because the label provided by
SpaceNet7 dataset is the buildings segmentation for each
imagery, the building segmentation of the first imagery
and the last imagery is used to obtain the building change
map during the period. In Fig. 8, this article has illustrated
some imagery and ground truth of the SpaceNet7 dataset.

In the training process of the SpaceNet7 dataset, the imagery
has been clipped as the patch with a size of 256× 256 and the
stride of 128. There are about 3000 patches containing both
changed and unchanged pixels, about 2400 patches are used
for training the model and about 600 patches for verifying and
testing the model. For the MC2ABNet, the Adam optimizer was
also used during the optimization, the initial learning rate is
0.0003, the batch size is 8 for bitemporal imagery and 2 for time-
series imagery, and the L2 regularization is also used for avoiding
overfitting. In the experiment, all bands are used for bitemporal
imagery and time-series imagery comparison experiments. It
should be noticed that all our experiments are conducted on the
GeForce RTX 3090Ti GPU to train the model.



9742 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 8. Time-series imagery of SpaceNet7 dataset. Each imagery cube has many imagery from different times, and this article has shown five imagery of them.
From the first column to the fifth column are the time-series imagery, and the last column is the ground truth. (a) 01/2018. (b) 07/2018. (c) 01/2019. (d) 07/2019.
(e) 01/2020. (f) Ground truth. (g) 07/2017. (h) 02/2018. (i) 07/2018. (j) 03/2019. (k) 09/2019. (l) Ground truth. (m) 01/2018. (n) 07/2018. (o) 01/2019. (p) 07/2019.
(q) 01/2020. (r) Ground truth.

B. Evaluation Metrics

In order to evaluate the performance of the proposed network,
this article calculates six evaluation metrics to compare the
predicted results obtained by the proposed MC2ABNet and
other state-of-the-art CD networks. These evaluation metrics are
overall accuracy (OA), precision (Pre), recall (Rec), F1-score
(F1), Kappa coefficient (Kappa), and Mean Intersection over
Union (MIoU). In the CD task, Pre is the proportion of the
number of correctly predicted positive pixels to the total pre-
dicted positive pixels, and higher Pre represents the lower false
detection rate. Rec is the proportion of the number of correctly
predicted positive pixels to the total labeled positive pixels, and
higher Rec means the lower missed detection rate. Because
Pre and Rec are contradictory, the harmonic average of two
indicators is used for comprehensive evaluation. OA, F1, Kappa,
and MIoU are comprehensive evaluation indices and they can
judge the quality of model, with the higher value, the better the
performance of model. Note that Kappa is more important for
the assessment of CD task because of the imbalance between
changed and unchanged samples.

C. Comparison Method

1) FC-Siam-Conc [32]: Fc-Siam-Conc was proposed on the
basis of FC-EF and combined the Siamese structure with
the UNet network. The Siamese encoding stream with
sharing weights is used to extract the features of bitempo-
ral imagery. In the decoding stage, the bitemporal features
are concatenated to the decoder as a skip connection to fuse
the different scale features.

2) FC-Siam-diff [32]: FC-Siam-diff was proposed at the
same time as FC-Siam-Conc. It is also a network that
combines Siamese structure with the UNet network. The
difference is that, in the decoding stage, the difference
between bitemporal features is input to the decoder as a
skip connection to fuse the features of different scales.

3) UNet-like architecture (L-UNet) [12]: L-UNet was pro-
posed for urban CD and combined the fully convolutional
network and recurrent networks (LSTM). In the decoding
stage, LSTM is used to extract the temporal relationship
between multitemporal imagery and input into the network
as a skip connection to fuse the features of different scales.

4) SNUNet-CD [29]: It is a densely connected Siamese net-
work used to alleviate the loss of deep localization in-
formation through the compact information transmission
between encoder and decoder, and between decoder and
decoder.

5) Difference enhancement and spatial–spectral nonlocal
network (DESSN) [42]: DESSN designs a difference mod-
ule that can learn the difference representation between
foreground and background, and a spatial–spectral nonlo-
cal module that can strengthen edge integrity and internal
tightness of changed objects by learning long-range cor-
relation.

D. Experimental Results and Analysis

In this section, we evaluate the performance of the proposed
MC2ABNet and other state-of-the-art CD approaches, as intro-
duced in Section III-C. To benchmark their performance, we
report results on OSCD and SpaceNet7 datasets. Because there
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Fig. 9. Bitemporal imagery, ground truth, and binary change maps obtained by the proposed MC2ABNet and comparison methods on OSCD dataset. (a) t1
imagery. (b) t2 imagery. (c) Ground truth. (d) FC-Siam-Conc. (e) FC-Siam-diff. (f) L-UNet. (g) SNUNet. (h) DESSN. (i) MC2ABNet.

are time-series imagery in each imagery cube of SpaceNet7
dataset, we set up two sets of experiments for SpaceNet7 dataset:
bitemporal and time-series experiments.

The bitemporal imagery, the ground truth, and the binary
change map obtained by MC2ABNet and other comparison
methods on OSCD dataset are shown in Fig. 9. In the first
example, we can see that the results of FC-Siam-Conc are un-
satisfactory, and there are many changed pixels that are detected
as unchanged pixels and many unchanged pixels are falsely
detected as changed pixels. FC-Siam-diff reduced false detection
by considering the difference between bitemporal imagery. But
there are still many changed pixels detected as unchanged pixels.
The binary change map obtained by L-UNet is visually compact,
and the falsely detected pixels are tightly joined together. But
there are still many changed pixels detected as unchanged pixels.
Because SNUNet is a densely connected network that takes the
shallow features into account, the result obtained by SNUNet
is better than L-UNet. Compared with the previous methods,
the binary change map obtained by DESSN greatly reduced the
number of omitted changed pixels. The proposed MC2ABNet
takes the advantage of the multiscale convolution to extract local
detail features in shallow encoding levels and global features in
deep encoding levels. Then, the ConvBiLSTM is used to capture
the time correlation between bitemporal imagery in both forward
and backward directions. The result shows that the proposed
method achieves the best performance with fewer false and
omitted pixels and correctly detected changed areas.

In the second example, the area is changed from grassland
to bare land. The FC-Siam-Conc, FC-Siam-diff, and L-UNet
have omitted these grass changes, while SNUNet and DESSN
obtained better binary change maps with correctly detected some
change pixels. The MC2ABNet presented the best performance
and correctly detected most changed pixels. In the third example,
compared with other methods, our method can balance precision
and recall better and obtain the best accuracy. It is worth mention-
ing that, in the first and third examples, there are some pixels that

TABLE I
ACCURACY ASSESSMENT ON CD RESULTS OBTAINED BY DIFFERENT

METHODS ON OSCD DATASET

have been changed from other kinds to roads and all methods
can detect this kind of change. It means that MC2ABNet has
good performance in road detection.

The accuracy assessments of CD results on the OSCD dataset
based on six evaluation criteria, as described in Section III-B,
are displayed in Table I. The maximum value is marked in bold,
and the second-best value is underlined. The quantitative results
are similar to the qualitative results, FC-Siam-Conc and FC-
Siam-diff have lower accuracy with OA of 0.9541 and 0.9548,
Kappa of 0.5413 and 5482, F1 of 0.5655 and 0.5721, and MIoU
of 0.6734 and 0.6770. L-UNet captures the time correction
between bitemporal imagery. SNUNet combines the shallow
features and deep features through dense connection. DESSN
strengthens the edge integrity and the internal tightness of
changed objects. So, L-UNet, SNUNet, and DESSN have better
accuracy than FC-Siam-Conc and FC-Siam-Diff. MC2ABNet
achieves the best result with OA of 0.9602, Kappa of 0.5887, F1
of 0.6097, and MIoU of 0.6987. Compared with FC-Siam-Conc,
the proposed MC2ABNet increased OA, Kappa, F1, and MIoU
by 0.61%, 4.74%, 4.42%, and 2.53%, respectively. It means
that the proposed MC2ABNet can effectively extract the spatial
feature by novel MC2A module and capture time correction
between bitemporal in both forward and backward directions
by ConvBiLSTM.
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Fig. 10. Bitemporal imagery, ground truth, and binary change maps obtained by the proposed MC2ABNet and comparison methods on SpaceNet7 dataset with
bitemporal imagery. (a) t1 imagery. (b) t2 imagery. (c) Ground truth. (d) FC-Siam-Conc. (e) FC-Siam-diff. (f) L-UNet. (g) DESSN. (h) SNUNet. (i) MC2ABNet.

Because SpaceNet7 is a dataset of time-series imagery, we
design two sets of experiments for the SpaceNet7 dataset. The
first set of experiments selects the first and the last imagery
of time-series imagery to detect changed pixels, and the sec-
ond set of experiments selects time-series imagery to verify
the improving accuracy ability of time-series imagery. Fig. 10
shows CD results obtained by the proposed MC2ABNet and
comparison methods on the SpaceNet7 dataset with bitemporal
imagery. Similar to the qualitative results on OSCD dataset, in
the first example, the misclassification and noise in the binary
change maps obtained by FC-Siam-Conc and FC-Siam-Diff are
obvious. There are many changed pixels detected as unchanged
pixels and some unchanged pixels falsely detected as changed
pixels. But for FC-Siam-Diff, the false detection has been eased.
For L-UNet and DESSN, due to the superiority of framework,
their results are better than those obtained by FC-Siam-Conc
and FC-Siam-Diff. These two results have fewer false detec-
tion pixels than the above two results. The results obtained
by SNUNet are much clearer visually, and it has fewer false
detection pixels than previously mentioned methods but it has
many missed detected pixels as much as FC-Siam-Conc and
FC-Siam-Diff. Once again, the proposed MC2ABNet generates
better qualitative results. Because SpaceNet7 is a dataset about
building segmentation and CD, the changed pixels focus on
the building object. Compared with other methods, the binary
change map obtained by the proposed MC2ABNet has more
regular boundary range for change areas and the interior of the
changed object is tighter. There are almost no missed pixels and
fewer false pixels than the other methods.

The building object in the second example is smaller than
in the first example. The results obtained by FC-Siam-Conc
are unsatisfactory and there are many falsely detected pixels.
Compared with FC-Siam-Conc, the results obtained by FC-
Siam-Diff, L-UNet, DESSN, and SNUNet are much clearer. The
binary change map obtained by the proposed MC2ABNet once
again performs the best, especially on small objects.

The accuracy assessments of CD results on SpaceNet7 dataset
of bitemporal imagery based on six evaluation criteria are

TABLE II
ACCURACY ASSESSMENT ON CD RESULTS OBTAINED BY DIFFERENT

METHODS ON SPACENET7 DATASET OF BI-TEMPORAL IMAGERY

displayed in Table II. Starting from FC-Siam-Conc, it gets the
best recall score, but precision is only 0.4777, so accuracy is not
very good with OA of 0.9814 and Kappa of 0.5614. FC-Siam-
Diff uses differences between imagery to balance precision and
recall, so it performs better than FC-Siam-Conc. L-UNet uses
the Siamese network to extract the spatial features of bitemporal
imagery and capture the temporal correlation between them.
Kappa is 0.5961, which increased by 2.83% compared with the
FC-Siam-diff. The accuracy of DESSN and SNUNet is next
to the proposed MC2ABNet due to accurate and rich features.
It should be noticed that the accuracy of results obtained by
DESSN is better than SNUNet on OSCD dataset, but the ac-
curacy of results obtained by SNUNet is better than DESSN on
SpaceNet7 dataset with bitemporal imagery. Because SpaceNet7
dataset has a large number of small building objects, SNUNet
performs better than DESSN by taking account of local details
through dense connections. Finally, the proposed MC2ABNet
achieves the highest accuracy with OA of 0.9822, Kappa of
0.6380, F1 of 0.6440, and MIoU of 0.7315, which proves the
effectiveness of the proposed network in CD task once again.

Because SpaceNet7 dataset has time-series imagery in each
imagery cube, L-UNet and proposed MC2ABNet can be used for
time-series imagery CD task, so we designed a set of experiments
to verify the effectiveness of time-series imagery in the CD task
by comparing bitemporal and time-series imagery. In the time-
series imagery experiments, we evenly selected ten imagery,
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Fig. 11. First and the last imagery of time-series imagery, ground truth, and binary change maps obtained by the proposed multi-MC2ABNet and comparison
methods on SpaceNet7 dataset with time-series imagery. (a) t1 imagery. (b) tT imagery. (c) Ground truth. (d) L-UNet. (e) MC2ABNet. (f) Multi-L-UNet. (g)
Multi-MC2ABNet.

TABLE III
ACCURACY ASSESSMENT ON CD RESULTS OBTAINED BY DIFFERENT

METHODS ON SPACENET7 DATASET OF TIME-SERIES IMAGERY

including the first imagery and the last imagery, to train the
model.

Fig. 11 shows CD results obtained by the proposed multi-
MC2ABNet and comparison methods on SpaceNet7 dataset with
time-series imagery. In the first example, L-UNet has many
falsely detected pixels, but it has been eased in the proposed
MC2ABNet. For the multi-L-UNet, there are fewer false detec-
tion pixels on large objects but more false detection pixels on
small objects. Compared with L-UNet, multi-L-UNet has fewer
missed pixels. Compared with other methods, multi-MC2ABNet
performs the best and detects building boundaries with little
noise. A more obvious comparison can be seen in the second
and third examples. The proposed multi-MC2ABNet accurately
detects changed objects that comparison methods fail to detect,
verifying the superiority of time-series imagery in change task.

The accuracy assessments of CD results on SpaceNet7 dataset
with time-series imagery based on six evaluation criteria are
displayed in Table III. Starting with L-UNet, it has the lowest
accuracy with OA of 0.9863, Kappa of 0.5961, F1 of 0.6031, and
MIoU of 0.7090. By extracting the time correlation between the
features of time-series imagery, multi-L-UNet achieves a higher
accuracy with OA of 0.9865 and Kappa of 0.6186. The proposed
MC2ABNet with the OA of 0.9882 and Kappa of 0.6380 is
higher than the corresponding OA and Kappa of multi-L-UNet,

which indicates that the improvement of accuracy mainly de-
pends on the structure of the model. Finally, the accuracy of
multi-MC2ABNet is the highest with OA of 0.9884, Kappa of
0.6491, F1 of 0.6550, and MIoU of 0.7376. Compared with
MC2ABNet, they are improved by 0.02%, 1.11%, 1.10%, and
0.61%, respectively, which proved the validity of time-series
imagery in CD task. It should be noticed that multi-MC2ABNet
takes four times as long as MC2ABNet to train the network.

E. Ablation Experiment

On the basis of metric learning, MC2ABNet integrates the
MC2A module and ConvBiLSTM for accurate CD. Therefore,
we design ablation experiments on MC2ABNet to verify the
validity of the MC2A module and ConvBiLSTM. In the fol-
lowing experiment, the “B” represents the base model, which
combines the UNet network with the Siamese network for the
CD task, and the structure of “B” is similar to the structure of
FC-Siam-Conc. “M” represents the multiscale convolution, “A”
represents the channel attention, “C” represents the ConvBiL-
STM, and “M+A” represents the MC2A module. “�” represents
adding this module to the base model.

The accuracy assessments of ablation experiments on OSCD
dataset based on five evaluation criteria are displayed in
Table IV. As can be seen from Table IV, the combination of the
MC2A module and ConvBiLSTM can improve the performance
of the model. More specifically, the results obtained by the base
model have the lowest accuracy with OA of 0.9514, Kappa of
0.5383, and F1 of 0.5639, and the quantitative results are similar
to those of FC-Siam-Conc in Table I. After adding multiscale
convolution, OA, Kappa, and F1 increased by 0.38%, 2.32%,
and 2.13%, respectively, on OSCD dataset. It shows that mul-
tiscale convolution does extract more efficient spatial features
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Fig. 12. Bitemporal imagery, ground truth, and binary change maps obtained by the ablation experiments on OSCD dataset. (a) t1 imagery. (b) t2 imagery. (c)
Ground truth. (d) B. (e) B+M. (f) B+A. (g) B+C. (h) B+M+A. (i) B+M+C. (j) B+A+C. (k) MC2ABNet.

TABLE IV
ACCURACY ASSESSMENT ON CD RESULTS OBTAINED BY ABLATION

EXPERIMENT ON OSCD DATASET

for CD task. After adding channel attention, OA, Kappa, and F1
increased by 0.11%, 2.11%, and 2.04%, respectively. It shows
that channel attention does reduce the information redundancy
during downsampling. On the basis of the base model, add the
MC2A module, composed of multiscale and channel attention.
OA, Kappa, and F1 increased by 0.57%, 3.35%, and 3.05%,
respectively, in the dataset. The results show that the MC2A mod-
ule can improve the performance of the model. After adding the
ConvBiLSTM, OA, Kappa, and F1 increased by 0.72%, 3.54%,
and 3.16%, respectively. This indicates that ConvBiLSTM does
extract richer temporal difference features and made substantial
contributions for the CD task. We also designed experiments
combined inception V2 with ConvBiLSTM and channel at-
tention with ConvBiLSTM to prove the contribution of each
module. Notably, MC2ABNet integrated the MC2A module and
ConvBiLSTM obtained the accuracy with OA of 0.9602, Kappa
of 0.5887, and F1 of 0.6097 on OSCD dataset. Compared with
the base model, MC2ABNet increased OA, Kappa, and F1 by
0.88%, 5.04%, and 4.58%, respectively. The great improvement
of MC2ABNet further demonstrates not only the effectiveness
of the MC2A module and ConvBiLSTM but also the gain results
of their combination.

Fig. 12 shows CD results obtained by the ablation experiments
on OSCD dataset. Compared with the base model, the binary
change map obtained by MC2ABNet is much clearer visually
and has less false and missed alarms. Therefore, MC2ABNet

combined with the MC2A module with ConvBiLSTM can
greatly improve the edge integrity and the internal tightness
of change areas, which further verifies that MC2A module
can extract effective spatial features and ConvBiLSTM can
extract richer temporal difference features for CD task. Thus, the
MC2ABNet can obtain the accurate change maps for MRCD.

IV. CONCLUSION

In this article, a new joint spatial–spectral–temporal CD net-
work applicable for MR imagery and time-series imagery is
proposed, which is called MC2ABNet. MC2ABNet consists of
MC2A module and ConvBiLSTM. The MC2A module is used
to extract multiscale spatial features of MR imagery. The MC2A
module can extract local detailed features of small-scale objects
in the shallow encoding level and extract global features of large-
scale object in the deep encoding level. The channel attention of
MC2A increases the weight of important channels and decreases
the weight of unimportant channels for reducing the information
redundancy of spatial features during downsampling. The Con-
vBiLSTM calculates difference in both forward and backward
directions for obtaining more accurate temporal difference fea-
tures and replaces the fully connected layer with the convolution
layer to utilize spatial information synergistically, which smooth
the noise of final CD map and obtain complete difference fea-
tures. Qualitative and quantitative results in MR OSCD dataset
and time-series SpaceNet7 dataset demonstrate that MC2ABNet
outperforms the widely used CD methods. Especially compared
with another five prediction methods based on deep learn-
ing, the proposed MC2ABNet obtained better overall accuracy,
Kappa coefficient, F1 score, and MIoU. The results demonstrate
the effectiveness of joint spatial–spectral–temporal MC2ABNet
in MRCD.

MR imagery has the advantage of real-time acquisition and
extensive coverage. Thus, there are many time-series imagery
that can be used for CD task. But time-series imagery contains
three changes, including intra-annual, interannual, and abrupt
changes. In the following study, we will focus on detecting the
accurate abrupt change in time-series MR imagery.



LI et al.: MULTISCALE CD NETWORK BASED ON CHANNEL ATTENTION AND FULLY CONVOLUTIONAL BiLSTM 9747

REFERENCES

[1] A. Goswami et al., “Change detection in remote sensing image data
comparing algebraic and machine learning methods,” Electronics, vol. 11,
no. 3, Jan. 2022, Art. no. 431, doi: 10.3390/electronics11030431.

[2] C. Han, C. Wu, H. Guo, M. Hu, and H. Chen, “HANet: A hierarchi-
cal attention network for change detection with bitemporal very-high-
resolution remote sensing images,” IEEE J. Sel. Topics Appl. Earth Ob-
serv. Remote Sens., vol. 16, pp. 3867–3878, Apr. 2023, doi: 10.1109/JS-
TARS.2023.3264802.

[3] M. Hu, C. Wu, B. Du, and L. Zhang, “Binary change guided hyperspec-
tral multiclass change detection,” IEEE Trans. Image Process., vol. 32,
pp. 791–806, Jan. 2023, doi: 10.1109/TIP.2022.3233187.

[4] J. Luo, Q. Chu, C. Sun, Y. Wang, and D. Sun, “Staple crop
mapping with Chinese Gaofen-1 and Gaofen-6 satellite images: A
case study in Yanshou County, Heilongjiang Province, China,” in
Proc. IEEE Int. Geosci. Remote Sens. Symp., 2021, pp. 6769–6772,
doi: 10.1109/IGARSS47720.2021.9553921.

[5] M. K. Vanderhoof, L. Alexander, J. Christensen, K. Solvik, P. Nieuwlandt,
and M. Sagehorn, “High-frequency time series comparison of Sentinel-1
and Sentinel-2 satellites for mapping open and vegetated water across the
United States (2017–2021),” Remote Sens. Environ., vol. 288, Apr. 2023,
Art. no. 113498, doi: 10.1016/j.rse.2023.113498.

[6] X. Xu et al., “Long-term analysis of the urban heat island effect using
multisource Landsat images considering inter-class differences in land
surface temperature products,” Sci. Total Environ., vol. 858, Feb. 2023,
Art. no. 159777, doi: 10.1016/j.scitotenv.2022.159777.

[7] A. Singh, “Review article digital change detection techniques using
remotely-sensed data,” Int. J. Remote Sens., vol. 10, no. 6, pp. 989–1003,
Jun. 1989, doi: 10.1080/01431168908903939.

[8] A. Koltunov and S. L. Ustin, “Early fire detection using non-linear multi-
temporal prediction of thermal imagery,” Remote Sens. Environ., vol. 110,
no. 1, pp. 18–28, Sep. 2007, doi: 10.1016/j.rse.2007.02.010.

[9] G. Xian, C. Homer, and J. Fry, “Updating the 2001 national land cover
database land cover classification to 2006 by using Landsat imagery change
detection methods,” Remote Sens. Environ., vol. 113, no. 6, pp. 1133–1147,
Jun. 2009, doi: 10.1016/j.rse.2009.02.004.

[10] H. Luo, C. Liu, C. Wu, and X. Guo, “Urban change detection based
on Dempster–Shafer theory for multitemporal very high-resolution
imagery,” Remote Sens., vol. 10, no. 7, Jun. 2018, Art. no. 980,
doi: 10.3390/rs10070980.

[11] M. E. Zelinski, J. Henderson, and M. Smith, “Use of Landsat 5 for change
detection at 1998 Indian and Pakistani nuclear test sites,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 8, pp. 3453–3460,
Aug. 2014, doi: 10.1109/JSTARS.2013.2294322.

[12] M. Papadomanolaki, M. Vakalopoulou, and K. Karantzalos, “A deep
multitask learning framework coupling semantic segmentation and fully
convolutional LSTM networks for urban change detection,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 9, pp. 7651–7668, Sep. 2021,
doi: 10.1109/TGRS.2021.3055584.

[13] M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley, “Change de-
tection from remotely sensed images: From pixel-based to object-based
approaches,” ISPRS J. Photogramm. Remote Sens., vol. 80, pp. 91–106,
Jun. 2013, doi: 10.1016/j.isprsjprs.2013.03.006.

[14] R. D. Jackson, “Spectral indices in N-space,” Remote
Sens. Environ., vol. 13, no. 5, pp. 409–421, Nov. 1983,
doi: 10.1016/0034-4257(83)90010-X.

[15] W. J. Todd, “Urban and regional land use change detected by using Landsat
data,” J. Res. U.S. Geol. Surv., vol. 5, no. 5, pp. 529–534, 1977.

[16] L. Bruzzone and D. F. Prieto, “Automatic analysis of the difference
image for unsupervised change detection,” IEEE Trans. Geosci. Re-
mote Sens., vol. 38, no. 3, pp. 1171–1182, May 2000, doi: 10.1109/
36.843009.

[17] L. I. Kuncheva and W. J. Faithfull, “PCA feature extraction for
change detection in multidimensional unlabeled data,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 25, no. 1, pp. 69–80, Jan. 2014,
doi: 10.1109/TNNLS.2013.2248094.

[18] A. A. Nielsen, K. Conradsen, and J. J. Simpson, “Multivariate al-
teration detection (MAD) and MAF postprocessing in multispectral,
bitemporal image data: New approaches to change detection stud-
ies,” Remote Sens. Environ., vol. 64, no. 1, pp. 1–19, Apr. 1998,
doi: 10.1016/S0034-4257(97)00162-4.

[19] C. Wu, B. Du, and L. Zhang, “Slow feature analysis for change detection in
multispectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5,
pp. 2858–2874, May 2014, doi: 10.1109/TGRS.2013.2266673.

[20] T. Celik, “Unsupervised change detection in satellite images us-
ing principal component analysis and k-means clustering,” IEEE
Geosci. Remote Sens. Lett., vol. 6, no. 4, pp. 772–776, Oct. 2009,
doi: 10.1109/LGRS.2009.2025059.

[21] J. S. Deng, K. Wang, Y. H. Deng, and G. J. Qi, “PCA-based land-use
change detection and analysis using multitemporal and multisensor satel-
lite data,” Int. J. Remote Sens., vol. 29, no. 16, pp. 4823–4838, Aug. 2008,
doi: 10.1080/01431160801950162.

[22] A. Ghosh, N. S. Mishra, and S. Ghosh, “Fuzzy clustering algorithms
for unsupervised change detection in remote sensing images,” Inf. Sci.,
vol. 181, no. 4, pp. 699–715, Feb. 2011, doi: 10.1016/j.ins.2010.10.016.

[23] M. Bouziani, K. Goïta, and D.-C. He, “Automatic change detection
of buildings in urban environment from very high spatial resolution
images using existing geodatabase and prior knowledge,” ISPRS J.
Photogramm. Remote Sens., vol. 65, no. 1, pp. 143–153, Jan. 2010,
doi: 10.1016/j.isprsjprs.2009.10.002.

[24] W. Ji, J. Ma, R. W. Twibell, and K. Underhill, “Characterizing urban
sprawl using multi-stage remote sensing images and landscape metrics,”
Comput. Environ. Urban Syst., vol. 30, no. 6, pp. 861–879, Nov. 2006,
doi: 10.1016/j.compenvurbsys.2005.09.002.

[25] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Fully convo-
lutional neural networks for remote sensing image classification,” in
Proc. IEEE Int. Geosci. Remote Sens. Symp., 2016, pp. 5071–5074,
doi: 10.1109/IGARSS.2016.7730322.

[26] Q. Shi et al., “Domain adaption for fine-grained urban village extraction
from satellite images,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 8,
pp. 1430–1434, Aug. 2020, doi: 10.1109/LGRS.2019.2947473.

[27] M. Hu, C. Wu, L. Zhang, and B. Du, “Hyperspectral anomaly change
detection based on autoencoder,” IEEE J. Sel. Topics Appl. Earth Ob-
serv. Remote Sens., vol. 14, pp. 3750–3762, Mar. 2021, doi: 10.1109/JS-
TARS.2021.3066508.

[28] D. Marmanis, M. Datcu, T. Esch, and U. Stilla, “Deep learning Earth
observation classification using ImageNet pretrained networks,” IEEE
Geosci. Remote Sens. Lett., vol. 13, no. 1, pp. 105–109, Jan. 2016,
doi: 10.1109/LGRS.2015.2499239.

[29] S. Fang, K. Li, J. Shao, and Z. Li, “SNUNet-CD: A densely
connected Siamese network for change detection of VHR images,”
IEEE Geosci. Remote Sens. Lett., vol. 19, 2022, Art. no. 8007805,
doi: 10.1109/LGRS.2021.3056416.

[30] H. Chen, C. Wu, B. Du, L. Zhang, and L. Wang, “Change detection in
multisource VHR images via deep Siamese convolutional multiple-layers
recurrent neural network,” IEEE Trans. Geosci. Remote Sens., vol. 58,
no. 4, pp. 2848–2864, Apr. 2020, doi: 10.1109/TGRS.2019.2956756.

[31] D. Wang, X. Chen, M. Jiang, S. Du, B. Xu, and J. Wang, “ADS-Net:
An attention-based deeply supervised network for remote sensing image
change detection,” Int. J. Appl. Earth Observ. Geoinf., vol. 101, Sep. 2021,
Art. no. 102348, doi: 10.1016/j.jag.2021.102348.

[32] R. C. Daudt, B. Le Saux, and A. Boulch, “Fully convolutional Siamese
networks for change detection,” in Proc. IEEE 25th Int. Conf. Image
Process., 2018, pp. 4063–4067, doi: 10.1109/ICIP.2018.8451652.

[33] X. Li, M. He, H. Li, and H. Shen, “A combined loss-based multiscale
fully convolutional network for high-resolution remote sensing image
change detection,” IEEE Geosci. Remote Sens. Lett., vol. 19, 2022,
Art. no. 8017505, doi: 10.1109/LGRS.2021.3098774.

[34] Q. Shi, M. Liu, S. Li, X. Liu, F. Wang, and L. Zhang, “A deeply supervised
attention metric-based network and an open aerial image dataset for remote
sensing change detection,” IEEE Trans. Geosci. Remote Sens., vol. 60,
2022, Art. no. 5604816, doi: 10.1109/TGRS.2021.3085870.

[35] S. Wei, T. Zhang, S. Ji, M. Luo, and J. Gong, “BuildMapper: A fully
learnable framework for vectorized building contour extraction,” IS-
PRS J. Photogramm. Remote Sens., vol. 197, pp. 87–104, Mar. 2023,
doi: 10.1016/j.isprsjprs.2023.01.015.

[36] S. Chen, Y. Ogawa, C. Zhao, and Y. Sekimoto, “Large-scale
individual building extraction from open-source satellite imagery
via super-resolution-based instance segmentation approach,” ISPRS
J. Photogramm. Remote Sens., vol. 195, pp. 129–152, Jan. 2023,
doi: 10.1016/j.isprsjprs.2022.11.006.

[37] B. Xu, J. Xu, N. Xue, and G.-S. Xia, “HiSup: Accurate polygonal
mapping of buildings in satellite imagery with hierarchical supervision,”
ISPRS J. Photogramm. Remote Sens., vol. 198, pp. 284–296, Apr. 2023,
doi: 10.1016/j.isprsjprs.2023.03.006.

[38] H. Guo, B. Du, L. Zhang, and X. Su, “A coarse-to-fine boundary refinement
network for building footprint extraction from remote sensing imagery,”
ISPRS J. Photogramm. Remote Sens., vol. 183, pp. 240–252, Jan. 2022,
doi: 10.1016/j.isprsjprs.2021.11.005.

https://dx.doi.org/10.3390/electronics11030431
https://dx.doi.org/10.1109/JSTARS.2023.3264802
https://dx.doi.org/10.1109/JSTARS.2023.3264802
https://dx.doi.org/10.1109/TIP.2022.3233187
https://dx.doi.org/10.1109/IGARSS47720.2021.9553921
https://dx.doi.org/10.1016/j.rse.2023.113498
https://dx.doi.org/10.1016/j.scitotenv.2022.159777
https://dx.doi.org/10.1080/01431168908903939
https://dx.doi.org/10.1016/j.rse.2007.02.010
https://dx.doi.org/10.1016/j.rse.2009.02.004
https://dx.doi.org/10.3390/rs10070980
https://dx.doi.org/10.1109/JSTARS.2013.2294322
https://dx.doi.org/10.1109/TGRS.2021.3055584
https://dx.doi.org/10.1016/j.isprsjprs.2013.03.006
https://dx.doi.org/10.1016/0034-4257(83)90010-X
https://dx.doi.org/10.1109/36.843009
https://dx.doi.org/10.1109/36.843009
https://dx.doi.org/10.1109/TNNLS.2013.2248094
https://dx.doi.org/10.1016/S0034-4257(97)00162-4
https://dx.doi.org/10.1109/TGRS.2013.2266673
https://dx.doi.org/10.1109/LGRS.2009.2025059
https://dx.doi.org/10.1080/01431160801950162
https://dx.doi.org/10.1016/j.ins.2010.10.016
https://dx.doi.org/10.1016/j.isprsjprs.2009.10.002
https://dx.doi.org/10.1016/j.compenvurbsys.2005.09.002
https://dx.doi.org/10.1109/IGARSS.2016.7730322
https://dx.doi.org/10.1109/LGRS.2019.2947473
https://dx.doi.org/10.1109/JSTARS.2021.3066508
https://dx.doi.org/10.1109/JSTARS.2021.3066508
https://dx.doi.org/10.1109/LGRS.2015.2499239
https://dx.doi.org/10.1109/LGRS.2021.3056416
https://dx.doi.org/10.1109/TGRS.2019.2956756
https://dx.doi.org/10.1016/j.jag.2021.102348
https://dx.doi.org/10.1109/ICIP.2018.8451652
https://dx.doi.org/10.1109/LGRS.2021.3098774
https://dx.doi.org/10.1109/TGRS.2021.3085870
https://dx.doi.org/10.1016/j.isprsjprs.2023.01.015
https://dx.doi.org/10.1016/j.isprsjprs.2022.11.006
https://dx.doi.org/10.1016/j.isprsjprs.2023.03.006
https://dx.doi.org/10.1016/j.isprsjprs.2021.11.005


9748 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

[39] F. Fang et al., “Spatial context-aware method for urban land use classi-
fication using street view images,” ISPRS J. Photogramm. Remote Sens.,
vol. 192, pp. 1–12, Oct. 2022, doi: 10.1016/j.isprsjprs.2022.07.020.

[40] B. Chai and P. Li, “An ensemble method for monitoring land cover
changes in urban areas using dense Landsat time series data,” IS-
PRS J. Photogramm. Remote Sens., vol. 195, pp. 29–42, Jan. 2023,
doi: 10.1016/j.isprsjprs.2022.11.002.

[41] C. Szegedy et al., “Going deeper with convolutions,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9,
doi: 10.1109/CVPR.2015.7298594.

[42] T. Lei et al., “Difference enhancement and spatial–spectral nonlo-
cal network for change detection in VHR remote sensing images,”
IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 4507013,
doi: 10.1109/TGRS.2021.3134691.

Jialu Li (Graduate Student Member, IEEE) received
the B.S. degree in surveying and mapping engineering
from the Taiyuan University of Technology, Taiyuan,
China, in 2019, and the M.E. degree in resource and
environment in 2023 from the State Key Laboratory of
Information Engineering in Surveying, Mapping and
Remote Sensing, Wuhan University, Wuhan, China,
where she is currently working toward the Ph.D.
degree in photogrammetry and remote sensing.

Her research interests include deep learning and
remote sensing image change detection.

Meiqi Hu (Graduate Student Member, IEEE) re-
ceived the B.S. degree in surveying and mapping
engineering from the School of Geoscience and Info-
Physics, Central South University, Changsha, China,
in 2019. She is currently working toward the Ph.D.
degree with the State Key Laboratory of Informa-
tion Engineering in Surveying, Mapping, and Remote
sensing, Wuhan University, Wuhan, China.

Her research interests include deep learning, mul-
titemporal remote sensing image change detection
and unmixing. More information can be found by

https://meiqihu.github.io/.

Chen Wu (Member, IEEE) received the B.S. degree
in surveying and mapping engineering from South-
east University, Nanjing, China, in 2010, and the
Ph.D. degree in photogrammetry and remote sensing
from the State Key Lab of Information Engineering
in Surveying, Mapping and Remote Sensing, Wuhan
University, Wuhan, China, in 2015.

He is currently a Professor with the State Key
Laboratory of Information Engineering in Surveying,
Mapping and Remote Sensing, Wuhan University,
Wuhan, China. His research interests include mul-

titemporal remote sensing image change detection and analysis in multispectral
and hyperspectral images.

https://dx.doi.org/10.1016/j.isprsjprs.2022.07.020
https://dx.doi.org/10.1016/j.isprsjprs.2022.11.002
https://dx.doi.org/10.1109/CVPR.2015.7298594
https://dx.doi.org/10.1109/TGRS.2021.3134691
https://meiqihu.github.io/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


