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Context-Guided Reverse Attention Network With
Multiscale Aggregation for Infrared Small

Target Detection
Shunshun Zhong , Fan Zhang , and Ji’an Duan

Abstract—Infrared small target detection is one of the vital tasks
in various infrared detection applications and has some typical
challenges, such as small and dim target, background noise, and
complex scenes. To address the problem, a context-guided reverse
attention network is proposed to detect infrared small target by
introducing context-guided module (CGM), multiscale aggregation
block (MAB), and reverse attention module (RAM). The CGM is
designed to capture the inherent property of semantic information
from multiscale encode layer in pixel-level recognition. In order to
eliminate the impact of low-level feature on computational com-
plexity and ensure the detection performance, we design the MAB
to aggregate multiscale feature. The RAM is integrated in decoder
layer to combine the features from MAB and CGM for fusing the
localization information and multiscale structural information. Ex-
tensive experiments on infrared small target datasets demonstrate
that our method can achieve high detection accuracy and low false
alarm rate compared with some state-of-the-art model-driven and
data-driven methods.

Index Terms—Deep learning, infrared image, neural network,
target detection.

I. INTRODUCTION

INFRARED segmentation small target detection (ISTD)
plays a vital role in civil, industry, and military applications,

such as autodriving, fire warning, leakage measurement, defect
inspection, early warning system, missile tracking, and maritime
surveillance [1]. Due to the long distance between target and
detector, infrared small target often occupies a few pixels in a
captured image, resulting in lacking shape and textures’ fea-
tures [2]. In addition, owing to complex background turbulence,
detector thermal noise disturbance, and optical scattering and
diffraction interference, infrared image has low signal-to-noise
ratio and low contrast between target and background, leading
to targets easily to be overwhelmed by complex circumstance
scenes [3]. Hereby, the ISTD is still a challenging task in the
infrared search and tracking system.
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Traditional methods to detect infrared small targets, for ex-
ample, filter-based methods [4], local information-based meth-
ods [5], and data structure-based methods [6], often design
handcrafted features to build filters or models fully based on
prior knowledge. Therefore, this type of method has serious
missed detections and is not feasible for all kinds of specific
scenes.

Recently, deep learning methods divided into detection-based
methods and segmentation-based methods have been developed
for ISTD due to its powerful ability in feature extraction and
feature representation [7], [8], [9]; this type of methods takes
an infrared image as input and directly learns the small target
features without introducing artificial prior and can be widely
applied in the complex circumstance. However, the infrared
dim and small targets are easy missed by multiple convolutions
in deep learning framework, resulting in low target detection
accuracy, especially for large field of view [10]. The atten-
tion mechanism can effectively employ information transferred
from feature maps for identifying salient features [11] and
is expected to preserve small target features in deep learning
architecture.

In this study, an effective deep learning framework,
context-guided reverse attention network (CgraNet), is pro-
posed to detect infrared small target in complex background.
The main contributions in this study are summarized as
follows.

1) A CgraNet with multiscale aggregation is proposed to
detect infrared small target in complex background.

2) The CGM, MAB, and RAM are introduced in our frame-
work to capture local feature, surround context, and global
context information, and aggregate localization informa-
tion and multiscale structural information.

3) Comprehensive experiments on the public datasets show
that our method can achieve high detection accuracy and
low false alarm rate compared with some state-of-the-art
methods.

II. RELATED WORK

Recently, all kinds of methods have been proposed to de-
tect infrared small targets in various backgrounds, and the
mainstream methods can be divided into the traditional and
deep learning methods according to whether artificial prior is
adopted.
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A. Traditional Methods

The filter-based methods, such as Top-Hat filter [12],
Mexican-Hat filter [13], and bilateral filter [14], seek to estimate
the background and enhance the target assuming that the targets
are unrelated to the surrounding background and are treated as
high-frequency components. However, in heterogeneous scenes,
such as complex cluster and ground background, the high-
frequency features of the target are no longer salient.

The local information-based methods, for example, local con-
trast measure (LCM) [15], human visual local contrast mecha-
nism [16], and derivative dissimilarity measure [17], make full
use of the local pixel difference of the target and surrounding
background. However, for extremely faint small targets in highly
complex real-world scenarios with considerable background
interference, these local information-based methods may en-
counter serious misdetection, originating from the small contrast
difference between the targets and background.

The data structure-based methods, for instance, infrared
patch-image (IPI) model [18], total variation weighted low-rank
constraint method [19], and kernel robust principal component
analysis model [20], distinguish infrared targets from back-
ground according to their different structural features, such
as the sparsity of the target and low rank of the background.
Zhang et al. [21] designed a model based on the nonconvex
rank approximation minimization (NRAM) joint norm to im-
prove the detection ability of infrared small targets in complex
background. Liu et al. [22] put a nonconvex tensor low-rank
approximation method considering that different singular values
have different importance and should be treated discriminatively.
Nevertheless, the high computational overhead and the sensitiv-
ity of hyperparameters to changes in image scenes limit their
applications in infrared tracking and searching.

B. Deep Learning Methods

The detection-based deep learning methods, such as regions
with convolutional neural network (R-CNN) [23], faster R-CNN
[24], single-shot multibox detector (SSD) [25], and you only
look once (YOLO) [7], predict infrared small targets with anchor
by employing the feature representation of convolutional neural
network (CNN). Sommer et al. [26] designed faster R-CNN
embedded region proposal network to form candidate regions for
classifying and determining the infrared targets. Ding et al. [27]
reconstructed SSD-based network by reducing low-resolution
layers and enhancing high-resolution layer for further dropping
the false alarm rate and increasing the precision. Mou et al. [28]
improved YOLO model according to feature reassembly sam-
pling for decreasing the loss of target features.

The segmentation-based deep learning methods for infrared
small target detection can output pixel-level classification and
target localization, which help deal with the model loss caused
by the targets’ small size. Wang et al. [29] used a conditional
generative adversarial network (MDvsFA) within two generators
and one discriminator to obtain high detection accuracy and
low false alarm rate. Dai et al. [30] designed an asymmetric
contextual modulation (ACM) framework to detect infrared

Fig. 1. Overview of the proposed framework CgraNet for infrared small target
detection. CGM: context-guided module, RAM: reverse attention module, and
MAB: multiscale aggregation block.

small targets and embedded top-down and bottom-up mod-
ulation strategy for fusing high-level and low-level features.
Huang et al. [31] established multiple local similarity pyramid
modules (LSPMs) by leveraging attention mechanism to extract
the multiscale features. Zhang et al. [32] present an attention-
guided pyramid context network to compute local and global
associations between the semantics of infrared small targets.
Chuang et al. [33] designed a multiscale local contrast learning
(MLCL) network to generate local contrast feature for infrared
small target detection. Wang et al. [34] proposed a coarse-to-fine
interior attention-aware network (IAAN) to detect infrared small
target by considering that pixels from targets or backgrounds are
correlated with each other. Li et al. [35] proposed a dense nested
attention network to reduce the loss of targets by pooling layers
in CNN. Wu et al. [36] constructed a single U-Net in U-Net
framework with powerful generalization performance to learn
the multilevel and multiscale feature representation. Wu et al.
[37] developed a multilevel TransUNet (MTU) to adaptively
extract long-distance features for space-based infrared detection.
Pan et al. [38] proposed an attention with bilinear correlation
network, including convolution linear fusion transformer, to
enhance target feature and suppress noise. Kou et al. [39] devel-
oped a lightweight encoding and decoding structure to balance
the computational efficiency and model accuracy for separating
infrared small targets. Sun et al. [40] proposed a receptive-field
and direction-induced attention network (RDIAN) to solve the
interclass imbalance between targets and background by using
the characteristics of target size and grayscale.

III. METHODOLOGY

A. Architecture Overview

Fig. 1 exhibits the architecture of designed CgraNet, which in-
cludes feature extraction stage, context-guided module (CGM),
reverse attention module (RAM), multiscale aggregation block
(MAB), and upsampling stage. The feature extraction stage,
including Res1, Res2, Res3, and Res4 downsampling layers,
is utilized to obtain the multiscale features of the infrared im-
age and employs Res2Net [41] pretrained on ImageNet as the
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Fig. 2. Architecture of the CGM. PReLU: Parametric ReLU, GAP: global
average pooling, MLP: multilayer perceptron. flocal: local feature extractor,
fsurround: surround context extractor, fjoint: joint feature extractor, fglobal:
global context extractor, and �: elementwise multiplication. The orange, red,
and blue regions in infrared image correspond to local feature, surround context,
and global context, respectively.

backbone of the CgraNet. The obtained multiscale feature maps
from Res2, Res3, and Res4 layers are aggregated in high-level
layers by using MAB to combine the contextual information
and generate a global map as the initial guidance area for the
subsequent upsampling stages. The CGM captures the essential
property of semantic information in downsampling stages to
learn the local feature and surrounding context. The RAM is
designed to mine the boundary cues for building the relationship
between target around areas and boundary cues. The low-level
and high-level features are integrated into upsampling stages
through RAM to accurately detect infrared small targets. Finally,
a binary map of predicted target locations, whose size is the same
as the input infrared image, is outputted from the end-to-end
network CgraNet.

B. Context-Guided Module

The CGM is designed to capture the inherent property of
semantic information from multiscale encode layer in pixel-level
recognition based on human visual mechanism [42]. As shown
in Fig. 2, it is difficult to categorize the infrared small target
in complex background when the designed network only pays
attention to the orange region within local information. If both
the local information and the red region within the surround
context information are considered, it is easier to distinguish
target location from the background due to the fact that surround
context with a larger area contains more useful information
compared with the local region. Furthermore, the blue region
contains the global context of the image scene, which can
provide the global representation to recognize every pixel in
the scene. Accordingly, the local feature, surround context,
and global context may be considered in attention model to
effectively improve the detection accuracy.

Hereby, the CGM is introduced in our framework to cap-
ture different region information and contains a local feature
extractor (flocal), a surround context extractor (fsurround), a joint
feature extractor (fjoint), and a global context extractor (fglobal),
as exhibited in Fig. 2. A 1×1 convolutional layer with slide of 1
is used at the entrance of CGM for reducing channel number to 1.
flocal is constructed by a 3×3 standard convolutional layer with
slide of 1 to learn the local feature from the eight neighboring
feature vectors, which corresponds to the orange region. While,
fsurround is constructed by a 3×3 dilated convolutional layer with

Fig. 3. Architecture of the MAB. Up: upsampling, C_up: conv_upsampling,
�: elementwise multiplication, and ©: concatenation.

dilation rate of 3 and a slide of 1 for obtaining a larger receptive
field to learn the surround context, which corresponds to red
region. fjoint is designed by a concatenation layer (Concat), the
batch normalization (BN), and the Parametric ReLU (PReLU)
operators to combine the local feature and surround context from
the output of flocal and fsurround. In order to reinforce useful
information and weaken useless ones in joint features, the global
context can be treated as a weighted vector and channelwisely
employed on the output of fjoint. Therefore, fglobal is built by a
global average pooling (GAP) layer and a multilayer perceptron
(MLP) to aggregate and refine the global context in blue region of
image. Finally, a scale layer is adopted to reweight the obtained
global context on the joint feature.

C. Multiscale Aggregation Block

The encoder in the end-to-end framework can provide multi-
level deep features, including high-level semantic feature and
low-level spatial detail feature. The decoder combines these
multilevel deep features to generate the accurate infrared small
target feature maps. However, compared with high-level feature,
the low-level feature contributes less to the detection perfor-
mance of the framework. In addition, the low-level feature with
large resolutions is integrated with high-level feature, resulting
in increasing the computational complexity. Therefore, in order
to eliminate the impact of low-level feature on computational
complexity and ensure the detection performance, we designed
a MAB in Fig. 3 to combine low-level and high-level contextual
information. The original image with size of H×W×C (H, W,
and C represent the height, width, and channel, respectively)
is inputted into Res2Net to generate different level features fi
(i = 1, 2, 3, 4), as shown in Fig. 1. The high-level features {f1,
f2, f3} are fed into the MAB with a paralleled connection [43] to
acquire a global map as the initial guidance area for the decoder.

D. Reverse Attention Module

The global map from the MAB can roughly locate the position
of infrared target, while the CGM extracts multiscale feature
within structural detail from the encoder layer. To aggregate the
localization information and multiscale structural information,
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Fig. 4. Architecture of the RAM. ⊗: element vector–tensor multiplication and
⊕: element addition.

Fig. 5. Qualitative detection performance comparisons of our method with
some state-of-the-art methods on NUST-SIRST dataset.

the RAM is designed to fuse convolutional feature and upsam-
pled feature, as displayed in Fig. 4. The inputs of the RAM are
multiscale feature target localization feature from the CGM and
the MAB, respectively. The convolutional feature is inputted into
a self-attention module to help learning global relationships. The
attention operation maps a query and a set of key–value pairs as
follows:

attention (Q,K, V ) = Softmax

(
QKT

√
dK

)
(1)

where Q, K, V, and dK represent the query, key, value, and
dimension of key, respectively. Nevertheless, the self-attention
may introduce huge computation complexity [44], especially

Fig. 6. Qualitative detection performance comparisons of our method with
some state-of-the-art methods on NUDT-SIRST dataset.

for large spatial dimension input image. Hereby, the two-
dimensional (2-D) attention is transformed into 1-D attention
along the height and width axes to form height attention and
width attention. In addition, the upsampled feature is treated
by sigmoid activation function and reverse operation to erase
the existing estimated regions, which refine the imprecise and
coarse estimation into the accurate and complete prediction map.
Therefore, the output of RAM is obtained by multiplying the
output feature from self-attention module and reverse attention
with residual upsampled feature [44], which is benefit for se-
quentially mining complementary regions and details.

E. Loss Function

In order to accurately calculate the global and local losses
for model training, the intersection over union (IoU) (LIoU) and
binary cross entropy (BCE) (LBCE) are weighted in unite loss
function (Lunite), which can be written as [46] follows:

Lunite = λ1LIoU + λ2LBCE + λ3L2 (2)

LIoU = 1− |P × GT|
|P |+ |GT| − |P × GT| (3)
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TABLE I
QUANTITATIVE PERFORMANCE COMPARISONS OF OUR METHOD WITH SOME STATE-OF-THE-ART METHODS ON NUST-SIRST DATASET

LBCE = − 1

N

N∑
j = 1

(GTj log (Pj) + (1−GTj) log (1− Pj))

(4)

where P is the predicted result, and GT is the ground truth. N
is the number of pixels in an image, and j represents the pixel
index of the image. L2 is the regularization term. λ1, λ2, and λ3

are the learning hyperparameters. It is empirically set as λ1 = 2,
λ2 = 7, and λ3 = 1.

IV. EXPERIMENTS

A. Experimental Setting

The datasets used in the experiment are the public datasets
NUST-SIRST [29] and NUDT-SIRST [35] to successively se-
lect 10 000 images for training and 200 images for testing.
Considering that the dramatic scene changes in infrared small
target detection, the testing images partly are selected from
NUAA-SIRST dataset [30], which can well demonstrate model’s
generalization. For infrared small target detection in our re-
search, applying conventional bounding box regression requires
setting a low IoU threshold, which will increase the false alarm
rate and position errors. Hence, we treat the detection task as a
semantic segmentation to accurately estimate the performance
of designed network and some other models. The experiment is
conducted on a computer with 12G NVIDIA RTX 3060 GPU
by using Python and PyTorch. The size of the input infrared
image is 128×128, and the batch size is set to 12. The Adam
optimizer with L2 regularization and the “poly” learning rate
policy with an initial learning rate of 10−4 and a power of 0.9

TABLE II
QUANTITATIVE PERFORMANCE COMPARISONS OF OUR METHOD WITH SOME

STATE-OF-THE-ART METHODS ON NUDT-SIRST DATASET

are employed. The receiver operating characteristic (ROC) and
precision–recall (PR) curves are used to directly show detection
performance. The evaluating metrics in the experiments are the
area under the ROC curve (AUC), the IoU, and the F measure,
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which can be deduced as follows [47]:

IoU =
|P × GT|

|P |+ |GT| − |P × GT| (5)

F =
(β2 + 1) ∗ Pd ∗ Fa

β2 ∗ (Pd + Fa)
(6)

where P and GT are the predicted result and ground truth,
respectively. Pd and Fa are successively the detection probability
and false alarm rate, and parameter β is set to 1.

B. Comparison to State-of-the-Art Methods

For qualitatively comparing segmentation performance, some
representative infrared small target detection results of our de-
signed network and some other models are exhibited in Figs. 5
and 6. The first and second rows successively correspond to
the input images and ground truth, and the third to ninth rows
represent the predicted results of LCM, IPI, NRAM, IAAN,
ACM, LSPM, DNA, MLCL, MTU, RDIAN, and our method,
respectively.

It can be seen in the second column of Fig. 5 that most methods
fail to detect the dim small targets, specifically, the LCM, IPI,
and ACM methods mistakenly detect two targets with incorrect
locations due to the interference of cloudy clutter backgrounds.
When facing general obstacles, such as high buildings with
high brightness in the last column, our model can also locate
small targets with accurate gray values. In addition, when de-
tecting small targets with a low signal-to-clutter ratio in the first,
third, and fifth columns, most methods have a high false alarm
rate, and it is difficult to detect real targets with accurate quantity
and brightness. Our model has achieved high detection accuracy
and low false alarm rate in such challenging scenes, which is
mainly attributed to the multiscale contextual feature fusion by
the proposed MAB. It can be seen in the fourth column that
our method can handle the input image with high boundary
contrast of background and obtain a clearer target with exact
contour. This is mainly due to the long-range global interactions
of features built by the RAM and MAB, resulting in discrimi-
nating the spatial contours of small targets and edge information
of the background [48]. When detecting multiple targets in
the seventh column, our model can also process the situation
with high detection accuracy compared with other methods. It
can be seen in the eighth column that our method misses one
target at the edge of the input image, which is the same to
other methods. Therefore, the single-frame detection methods
are often difficult to discriminate targets within edge region,
and the multiframe detection methods may address the prob-
lem. Furthermore, compared with other methods, our method
can produce output with precise target localization and shape
segmentation under very low false alarm rate on NUDT-SIRST
dataset in Fig. 6, which demonstrates the generalization of our
method.

Figs. 7 and 8 illustrate the 3-D visual detection results on
NUST-SIRST and NUDT-SIRST datasets for different methods
and express that our method is more robust to these complex
backgrounds. For example, in the fifth column of Fig. 7, the two
targets are close to each other, which mistakes some models

Fig. 7. Three-dimensional gray-level distributions of detection results of our
method and some state-of-the-art methods on NUST-SIRST dataset.

learning. However, our model can segment the targets well
without introducing false alarm.

Tables I and II list the quantitative estimation on NUST-
SIRST and NUDT-SIRST datasets of our network and some
other models, namely, contrast mechanism-based method LCM,
low-rank sparse decomposition method IPI and NRAM, and
typical data-driven methods, including IAAN, ACM, LSPM,
DNA, MLCL, MTU, and RDIAN. It can be seen that our method
has an obvious increase in AUC, IoU, and F compared with
the conventional model-driven methods. This is because the
conventional methods rely heavily on handcrafted features and
have difficulty in adapting the variations of targets in complex
backgrounds. Furthermore, compared with the data-driven deep
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Fig. 8. Three-dimensional gray-level distributions of detection results of our
method and some state-of-the-art methods on NUDT-SIRST dataset.

learning methods ACM, LSPM, MLCL, IAAN, DNA, MTU,
and RDIAN, our method on NUST-SIRST dataset apparently
increases the IoU value by 6.8%, 9.5%, 7.7%, 0.6%, 2.9%,
3.0%, and 14.4%, and increases the F value by 1.8%, 6.8%,
1.1%, 1.2%, 5.4%, 2.4%, and 12.3%, respectively. Our method
also behaves competitive performance in AUC with value of
0.9510 for NUST-SIRST dataset compared with other deep
learning methods. The metrics of AUC, IoU, and F for our
method on NUDT-SIRST dataset reach 0.9534, 0.6245, and
0.7654, which are better than those of the compared methods.
In addition, our model achieves high detection probability Pd

and low false alarm rate Fa for both NUST-SIRST and NUDT-
SIRST. These experimental results show that our network can

TABLE III
EXPERIMENTAL RESULTS OF THE ABLATION STUDY FOR DIFFERENT LOSS

FUNCTIONS ON NUST-SIRST DATASET

Fig. 9. (a) ROC and (b) PR curves of our method and some state-of-the-art
methods on NUST-SIRST dataset.

preferably detect infrared small targets in complex backgrounds
and segment targets more accurately than some other models.
This is mainly attributed to the designed framework being able to
adapt well to various challenges, such as cluttered background,
target location, and small target, and thus achieving better
performance.

Additionally, although the CGM, RAM, and MAB are added
in our framework, the overall network parameter number is
26.12 M, which is less than that of the LSPM method. The
interference time on the GPU of our method is only 12.12 s
for testing 200 images, which is superior to that of most deep
learning methods under the same device. Therefore, our method
with high detection accuracy and high efficiency can be well
applied in infrared guiding and tracking.

We further evaluate our framework and other models by
using receiver operating characteristic (ROC) and PR met-
rics on NUST-SIRST dataset, as shown in Fig. 9. The ROC
curve of our method is the closest to the top-left corner of
Fig. 9(a). Compared with other methods, our method has a
larger AUC, which expresses its high detection accuracy and
low false alarm rate. Namely, our model can accurately seg-
ment infrared small targets and better suppress complex back-
grounds simultaneously. The PR curve in Fig. 9(b) illustrates



9732 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE IV
EXPERIMENTAL RESULTS OF THE ABLATION STUDY FOR DIFFERENT MODULES IN THE PROPOSED FRAMEWORK ON NUST-SIRST DATASET

that our method can focus on the target location in challenging
scenarios for obtaining high precision and low recall, which
is possibly due to the multiscale feature fusion following the
attention mechanism for precisely capturing small targets in our
framework.

C. Ablation Study

To verify the effectiveness of the designed unite loss function,
IoU loss, Dice loss, focal loss, BCE loss, and their combina-
tions are used as loss functions in the ablation experiment, and
the experimental results on NUST-SIRST dataset are listed in
Table III. Apparently, the IoU loss function can help the network
achieve higher IoU values of 0.4580, while the network obtains
lower AUC and F with values of 0.9098 and 0.5410. The IoU
loss drives the maximal overlap between the ground truth and
the predicted results, and jointly regresses all the segmentation
variables as a whole unit, which avoids the issue of inaccurate
measurement of pixel accuracy in the case of category imbalance
between small target and background [49]. Therefore, more
accurate predication and faster training convergence can be
achieved by using the IoU loss. However, the IoU loss spreads
more attention to the similarity of intersection areas between the
predicted results and the ground truth, and easily confuses the
small target in a complex background, which leads to a low F
value. In addition, our network can obtain higher F values of
0.6474 when the focal loss function is used. Due to assigning
greater weights to hard-to-classify examples compared with the
easy-to-classify examples, the focal loss can well balance the
small target and background during model training by setting a
dynamic weight to adapt with learning accuracy. It can pay more
attention on the small targets, which are easily misclassified due
to class imbalance. When BCE loss is used to train our model,
the highest AUC with value of 0.9713 is achieved since the
BCE loss can minimize the oversmoothing impact of pixel loss
while maintaining good deblurring effect [50]. Therefore, the
unite loss function combining the IoU loss and BCE loss can
acquire higher IoU and F values reaching 0.4766 and 0.6909,
respectively.

To verify the validity of the CGM, RAM, and MAB in
our proposed model, ablation experiments on NUST-SIRST
dataset are conducted, and the corresponding results are listed in
Table IV. CGM1, CGM2, and CGM3 guide the features from
low level to high level in Fig. 1, and the same representation
refers to RAM1, RAM2, and RAM3. Res2Net 50 is used as
the baseline and obtains 0.8575 in AUC, 0.2436 in IoU, and
0.4357 in F. When the RAM1 module is added to the baseline,
the AUC, IoU, and F values are obviously improved, which
originates from the fusion of spatial details and semantic infor-
mation to detect targets. When the CGM is added to the baseline
with RAM, the segmentation performance further improves.
Specifically, the AUC, IoU, and F values successively reach
0.9211, 0.4093, and 0.5647, as CGM1 and CGM2 are integrated
into the Res2 and Res3 layers with RAM1 and RAM2. The
better results are obtained by integrating all CGM and RAM
into our framework and boost the segmentation performance by
10.7% in AUC, 69.5% in IoU, and 42.8% in F compared with
the baseline. Finally, when all CGMs and RAMs with MAB
are added to the framework, the best performance is achieved
with the values of 0.951, 0.4766, and 0.6909 for AUC, IoU,
and F, respectively. It is due to this that the target features of
the downsampling operation can be enhanced by aggregating
localization information and multiscale structural information
[51].

The visual feature evolution is also illustrated in Fig. 10 to
explore the effects of the CGM, RAM, and MAB. It can be
observed that the feature maps from Res2 can focus on the
target and edge background, which will cause interference to
accurately learn small targets [51]. The CGM relaxes the edge
background and maintains the small target, which improves
the target detection performance. The feature maps from MAB
behave the accurate target location, originating from the com-
bination of low-level and high-level contextual information.
The RAM aggregates the localization information and multi-
scale structural information from MAB and CGM, resulting in
the feature map of RAM1 being close to the ground truth of
the input image. The model’s discrimination ability between
targets and distractors possibly comes from capturing the global
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Fig. 10. Visualization of the feature maps from different modules in the
proposed framework on NUST-SIRST dataset.

and local features and perceiving contextual information by the
MAB and RAM.

V. CONCLUSION

An effective deep learning framework decoupled with priors
is proposed to detect infrared small targets and mainly contains
CGM, MAB, and RAM. The CGM is integrated into multilevel
features to enable the framework to capture local features,
surround context, and global context information. The MAB
exchanges multiscale context of low level and high level to
richly decode semantic information and spatial details of small
targets. The RAM is designed to combine the features from
MAB and CGM for aggregating the localization information
and multiscale structural information. The unite loss function
consisting of BCE loss and IoU loss is used to weigh the positive
and negative classes. Extensive experiments demonstrate that
our designed framework has higher detection accuracy and lower
false alarm rate on infrared small target detection in complex
backgrounds compared with some other models. The AUC, IoU,
and F values of our model are evaluated to 0.9510, 0.4766, and
0.6909 on NUST-SIRST dataset, and the interference time is
12.12 s for dealing with 200 images. The metrics of AUC, IoU,
and F for our model on NUDT-SIRST dataset reach 0.9534,
0.6245, and 0.7654. The proposed robust and effective data-
driven method may shed light on infrared searching and tracking
applications.

However, there are some limitations to the proposed method.
Our framework makes it difficult to discriminate the targets
within edge regions of the input image. In the future, we will
develop a multiframe detection method by synthesizing spatial
and temporal features of infrared small target videos.
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