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Abstract—Vehicle recognition is a fundamentale problem in
synthetic aperture radar (SAR) image interpretation. However,
robustly recognizing vehicle targets is a challenging task in SAR
due to the large intraclass variations and small interclass variations.
In addition, the lack of large datasets further complicates the
task. Inspired by the analysis of target signature variations and
deep learning explainability, this article proposes a novel domain
alignment framework, named the hierarchical disentanglement-
alignment network (HDANet), to achieve robustness under var-
ious operating conditions. Concisely, HDANet integrates feature
disentanglement and alignment into a unified framework with
three modules: domain data generation; multitask-assisted mask
disentanglement; and the domain alignment of target features.
The first module generates diverse data for alignment, and three
simple but effective data augmentation methods are designed to
simulate target signature variations. The second module disen-
tangles the target features from background clutter using the
multitask-assisted mask to prevent clutter from interfering with
subsequent alignment. The third module employs a contrastive loss
for domain alignment to extract robust target features from gener-
ated diverse data and disentangled features. Finally, the proposed
method demonstrates impressive robustness across nine operating
conditions in the MSTAR dataset, and extensive qualitative and
quantitative analyses validate the effectiveness of our framework.

Index Terms—Automatic target recognition (ATR), deep
learning, domain alignment, robustness, synthetic aperture radar
(SAR).

I. INTRODUCTION

THANKS to its attractive imaging capabilities in nearly all
weather and illumination conditions, synthetic aperture

radar (SAR) has become an indispensable means of informa-
tion acquisition in Earth observation. In recent years, SAR
imaging techniques [1], [2] have been rapidly developing, and
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high-resolution SAR images can be accessed more easily than
before, enabling a wide field of applications. As a result, the
amount of SAR image data is growing rapidly, which requires the
development of intelligent SAR image interpretation techniques.
As a fundamental problem in SAR image interpretation, SAR
vehicle recognition [3], [4] aims to classify a vehicle into one
of the predefined categories. It has various civilian and military
applications, including transportation management, automatic
driving, concealment detection, and military reconnaissance [5],
[6], [7], [8], [9]. Therefore, it has been an active area for several
decades.

Through decades of effort, SAR automatic target recognition
(ATR) has witnessed significant progress. Especially in the past
several years, deep learning has injected a new vitality in this
field and brought great success [3], [4]. For instance, many
existing methods have achieved over 99% accuracy [10], [11],
[12], [13] on the widely used moving and stationary target
acquisition and recognition (MSTAR) [14] dataset with ten
categories of ground vehicles under standard conditions. Despite
several decades’ research in SAR ATR, most approaches have
not been, however, capable of performing at a level sufficient
for open, real-world applications [3], [4], [15], [16]. Robust
SAR vehicle recognition for practical applications is still far
from being solved. What makes the problem of robust SAR
vehicle recognition in the open world so challenging? The main
fundamental challenges of robust SAR vehicle recognition are
summarized in Fig. 1 and discussed briefly in the following.

1) High robustness to large intraclass variations: As shown
in Fig. 1, challenges [3], [4], [15], [16] in achieving high
recognition accuracy stem from: 1) the vast range of
natural and adversary-induced difficult deployment condi-
tions; and 2) the interclass ambiguities between potential
fine-grained target categories. Natural intraclass variations
include at least three types (see Fig. 1): sensor operating
conditions; target operating conditions; and environmental
operating conditions. The scatter characteristics of the
SAR target are highly sensitive to the aforementioned
operating conditions, and therefore, robust SAR ATR re-
quires features that are highly robust to numerous possible
operating conditions.

2) High distinctiveness to small interclass variations: The
interclass ambiguities of some target categories, especially
fine-grained target categories, demand great discrimina-
tion power from the features to distinguish between subtly
different interclass variations.
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Fig. 1. Main challenges of robust SAR vehicle recognition. (a) Provides a taxonomy of these challenges brought by intraclass variations, interclass variations,
and data collection. The right subfigure illustrates typical variations with SAR images in the MSTAR dataset. On the right, (b1), (b2), and (b3) show large intraclass
variations due to the sensitivity to operating conditions. (b1) Contains target signatures and shadow variations in the red dashed line with different depression
angles. (b2) Displays the variation of target partial structures in the red dashed line with azimuth angles, such as the T-72 tank gun barrel is most visible in the
vertical line-of-sight direction. (b3) Illustrates that the intensity variation of different background clutter affects the adjacent target signatures. Therefore, SAR
images of the same category have a large intraclass variation across operating conditions. (b4) Showcases small interclass variations between fine-grained vehicle
target categories. Visual differences in SAR target signatures are much smaller than in natural images. The SAR images appear similar but are three different target
categories. (a) Main Challenges of Robust SAR Vehicle Recognition. (b) The changes in SAR target signatures with variations in operating conditions.

3) Lack of large target datasets: It is highly difficult to obtain
SAR images over a large set of operating conditions from
real sensors, and collecting and annotating large-scale
SAR vehicle datasets is clearly more timeconsuming and
costly than in the natural images. Currently, methods for
SAR vehicle recognition are mainly evaluated on the
small MSTAR dataset collected under very constrained
operating conditions. Many ATR methods have achieved
near-perfect accuracy on MSTAR, suggesting the presence
of strong bias in a small dataset. Therefore, the lack of
large benchmark SAR vehicle datasets limits the power of
deep learning methods requiring large amounts of training
data and greatly impedes the development of SAR ATR
technique.

Early recognition systems utilized template matching [17] and
model-based [18] methods, relying on numerous samples or ac-
curate electromagnetic (EM)-scattering models. Another tech-
nique based on machine learning depended on expert-designed
features and suitable classifiers [4]. In recent years, deep learning
methods have shown their superiority over traditional methods
by learning features in a data-driven manner [3], [4], [16]. How-
ever, the small dataset hampers the potential of deep learning,
and many data augmentation methods [19], [20], [21] have been
employed to increase the richness of the dataset and enhance
the robustness to extra specific operating conditions. Based
on data augmentation, domain alignment methods [22], [23]

were introduced to enhance features’ invariance to intraclass
variations further.

However, the potential of deep learning still needs to be more
adequately exploited under the aforementioned fundamental
challenges. Specifically, data biases, such as background cor-
relation, [3] in a small dataset interfere with domain alignment
and data-driven models. This problem results in the model using
background clutter for recognition and reduced robustness [24].
Training and test set shifts due to SAR imaging sensitivities
are complex and do not satisfy the independent and identically
distributed assumption. These issues need domain alignment to
achieve robust recognition under different operating conditions
on single-domain datasets (i.e., the training sets often contain a
small number of operating conditions with data bias).

In this article, to alleviate these challenges, a novel do-
main alignment framework, named the HDANet, is proposed to
achieve robust SAR vehicle recognition under various operating
conditions. The novelty of our framework stands on careful con-
sideration of the complex variation in target signatures and the
clutter interference hidden by small data, and HDANet performs
feature disentanglement and alignment through three steps. First,
three data augmentation methods are designed considering com-
plex variations in target local signatures, which generate diverse
domain data for alignment. Second, the multitask-assisted mask
disentanglement module separates target and clutter regions
at the feature layer because our previous work [24] on the
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explainability of deep learning illustrated that deep learning
overfits background clutter to reduce training errors. To enhance
the target region weight in the mask, the segmentation task
and l1 regularization are applied as auxiliaries to add target
location and sparse constraints. Third, the robustness is in-
creased under various operating conditions. We treat operating
conditions as domains and improve robustness by performing
domain alignment of target features (DATF). A contrastive loss
and corresponding designed structures achieve domain align-
ment. In the end, HDANet shows impressive robustness under
MSTAR’s nine operating conditions, and extensive qualitative
and quantitative analyses demonstrate the effectiveness of our
method. Moreover, the limitations of the proposed method are
discussed.

The main contributions of this article are summarized as
follows.

1) A novel domain alignment framework named HDANet is
proposed to achieve robust recognition under various oper-
ating conditions. To better evaluate robustness, we design
nine operating conditions, including a scene variation that
has not been previously discussed.

2) Inspired by analysis of deep learning explainability and
target signature variations, HDANet integrates feature
disentanglement and alignment into a unified framework
with three significant modules. The disentanglement sup-
presses clutter and ensures correct feature representation,
and the alignment further enhances the robustness of deep
learning features.

3) Compared with existing attention mechanisms, HDANet
achieves feature disentanglement under data bias by
adding priori constraints and improving the computational
approach. Compared with existing domain alignment
methods, HDANet increases the diversity of domain data
generation (DDG) and considers the background clutter
interference to achieve robust recognition under various
operating conditions.

The rest of this article is organized as follows. Section II
introduces related studies in SAR vehicle recognition. Section III
introduces the framework of HDANet. Section IV conducts
extensive experiments to demonstrate the robustness of our
method, and numerous qualitative and quantitative analyses
discuss the advantages and limitations of our framework. Finally,
Section V concludes this article.

II. RELATED WORK

This section reviews key issues in SAR ATR and focuses on
robust recognition and deep learning-based approaches related
to our work. Furthermore, considering our work draws on do-
main alignment, we briefly review this topic.

A. Key Issues in SAR ATR

Depending on the granularity of the target category, ATR can
be divided into dimensions [25], such as detection (distinguish-
ing between targets and clutter), classification (determining the
type of target, e.g., tank), and identification (determining the
specific type of target, e.g., T72). Studies based on MSTAR

focus on identification, which is the fine-grained classification
of targets, and we review the related work on the robustness,
accuracy, efficiency, and explainability of SAR ATR [3], [15],
[16] as follows.

1) Robustness: The main experimental settings for SAR ve-
hicle target recognition based on the MSTAR dataset, include
standard operating conditions (SOCs) and extended operating
conditions (EOCs) [3]. The former is in a similar distribution
and includes three or ten classes. The latter includes different
variations for operating conditions. The popular EOC settings
are the depression angle, configuration, and version variants in
the [10]. In addition, other articles add noise [12], [26], occlu-
sion [13], and other variations to this benchmark. Variations in
operating conditions lead to complex shifts in the distribution
between training and test sets, which leads to the task of ro-
bust recognition, i.e., achieving a high and stable classification
performance in these cases. Early SAR ATR systems, included
template-matching, model-based, and machine learning-based
approaches [3], [4], [16]. In recent years, deep learning methods
have also been widely applied in SAR vehicle recognition.

Template-matching methods: Collecting many samples can
create a template library, and recognition depends on designed
features and matching criteria. Ikeuchi et al. [17] used de-
formable template matching based on the invariant histogram.
Tan et al. [27] applied the components of the target outline as
matching templates.

Model-based methods: These methods generate different im-
ages from 3-D EM scattering or computer-aided design (CAD)
models [18], and the recognition relies on accurate models and
efficiency calculation. Ma et al. [28] matched the EM model
predicted scattering centers with the test image scattering points’
location and intensity. Ding [29] designed three similarity de-
grees to synthetically evaluate the similarity between the test
image and the 3-D scattering center model.

Machine learning-based methods: These methods include
some key parts, such as feature extraction and classifier. Previous
work proposed many valuable methods, including geometric
structure features [30], EM-scattering features [31], local de-
scriptors [32], and sparse representations [33]. Classifiers, such
as support vector machines and random forests, have also been
absorbed into SAR vehicle recognition [4]. In recent years, deep
learning-based methods have adopted an end-to-end approach
to complete feature extraction and classification.

Deep learning-based methods: These methods can better
learn correlations in a dataset but require large amounts of
diverse samples. For example, Chen et al. [10] proposed an
all-convolutional network (A-ConvNet) with random cropping.
A-ConvNet shows a high accuracy under depression angle,
configuration, and version variations but is not robust to random
noise. Therefore, researchers are exploring various strategies
to extracting robustness features. It is worth noting that the
following methods can be combined to tackle the challenges
in robust SAR vehicle recognition.

1) Data augmentation: It is a technique used to increase
the size and diversity of a training dataset artificially.
Many data augmentation approaches have been used to
enhance deep learning’s robustness to specific operating
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conditions. Popular data augmentation in SAR vehi-
cle recognition, includes translation [21], random crop-
ping [10], affine transformation [34], elastic distor-
tion [34], power transformation [19], rotation [19], [21],
flipping [19], multiresolution [35], occlusion [35], and
noise adding [19], [20], [21], [22], [35]. By creating
augmented images, the training dataset becomes larger
and more diverse, helping the model better generalize and
handle intraclass variations. Therefore, we designed three
data augmentation methods to simulate partial changes
and overcome the drawback of a small dataset.

2) Clutter suppression: Due to background correlation inter-
fering with the recognition, Zhou et al. [36] used masks
to separate clutter and designed a large-margin Soft-
max batch-normalization (BN) convolution neural net-
work (CNN). Heiligers and Huizing [37] employed CAD
projection to separate target regions in input images for
recognition and found that removing clutter in a similar
scene may decrease the recognition rate. However, these
methods are sensitive to hyperparameters or require the
3-D structure of the target and imaging parameters. Some
researchers integrated segmentation methods with deep
learning optimization. Li et al. [20] trained a fully con-
nected (FC) codec with an input layer mask and sparse
constraint to separate the target from the clutter. Ren
et al. [11] proposed an extended convolutional capsule
network (ECCNet) with a convolutional block attention
module (CBAM) to suppress clutter. Moreover, channel
attention was also used to address the effects of clut-
ter [38]. Wang et al. [39] employed a multiscale CBAM
for feature fusion. Therefore, the attention mechanism
has been widely used in SAR target recognition. How-
ever, the question is whether the bias of a small dataset
affects the attention mechanism. Our experiments found
that CBAM enhances clutter in some MSTAR images to
exploit background correlation better. Consequently, we
use target location and sparse constraints to enhance the
weight of target regions in masks.

3) Feature extraction: These methods that capture robust
features with special structures are also being explored.
Many works extract low-level and high-level features of
vehicle targets. Lin et al. [40] increased the depth and
width of the model using two convolutional highway lay-
ers with different kernel sizes. Shang et al. [41] developed
a two-stage deep memory CNN to learn samples’ spatial
features. Ai et al. [42] used multikernel (MK) fusion to
enhance the feature representation of CNN. Deformable
convolution kernel [43], [44] was also applied to extract
the scattering and morphological characteristics of the
target. Inspired by the above work, we used multiscale
feature maps and capsule networks to enhance the fea-
ture representation of deep learning. The hybrid feature
is another popular strategy using traditionally designed
features to improve the robustness of auto-extracted deep
learning features. Zhang et al. [45] combined the designed
multiorientation spatial features with a bidirectional long
short-term memory network. Zhang et al. [12] proposed a

lightweight modified VGG16 [46] (MVGGNet) with pre-
trained weights and combined this model with attributed
scattering centers (ASC). Feng et al. [13] further used the
physical features of ASC to constrain the deep learning
features. Our approach addresses the shortcomings of deep
learning features in SAR ATR, which can be used to
improve the robustness of the deep learning modules in
these hybrid methods.

4) Transfer learning: It has been applied to enhance ro-
bustness in small datasets due to the better diversity of
large-scale datasets. In SAR vehicle recognition, transfer
learning [47] involves leveraging pretrained models from
other sensors or tasks, such as natural images or other
remote sensing datasets, and adapting them to SAR vehicle
recognition. The pretrained models capture generic mi-
dlevel features from large datasets, which can be beneficial
in addressing downstream tasks [47].

5) Domain alignment: In SAR ATR, domain alignment ad-
dresses the differences between simulated and real data or
extracts domain-invariant features for particular operating
conditions. Wang et al. [48] integrated metalearning and
adversarial learning for cross-domain and cross-task trans-
fer learning from simulated to real data. Lewis et al. [49]
filled the gap between simulated and real data through
generative adversarial networks. Kwak et al. [22] pro-
posed a speckle-noise-invariant network (SNINet) with
l2 regularization to align CNN feature maps after data
augmentation. He et al. [23] applied a task-driven domain
adaptation (TDDA) way to align the FC layer features
of the simulated and real data by multikernel maximum
mean discrepancy for the large depression variation. Two
methods are similar to our work: SNINet [22] with l2 con-
trastive loss and TDDA [23] with MK-MDD. However,
these domain alignment approaches do not consider clut-
ter interfering with feature robustness. We draw lessons
from traditional detection and recognition processes to
disentangle the target and clutter at the feature layer before
domain alignment and recognition. Moreover, we consider
partial changes in target signatures under various operat-
ing conditions rather than invariance to specific operating
conditions.

2) Accuracy: In addition to a high-accuracy rate under large
intraclass variations, another high accuracy requirement is for
small interclass variations. Therefore, in addition to a high accu-
racy for existing fine-grained target categories, outlier rejection
for various unknown target categories is also a concern task,
including false alarm rate [10] and open-set recognition [50].
Chen et al. [10] set the confuser rejection rule of deep learning
and tested operating characteristic curves with two confuser
targets. Ma et al. [50] solved the open-set recognition prob-
lem by generative adversarial networks with classification and
abnormal detection tasks.

3) Efficiency: SAR ATR systems need to consider develop-
ment and deployment costs, such as data collection, training
costs, and hardware resources [4], [15], [16]. In addition to the
data augmentation and transfer learning described above, meth-
ods for efficiency problems also include data generation [51],
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EM simulation [23], [48], few-shot learning [8], and model
compression [52].

4) Explainability: Because of the black box problem,
whether deep learning learns the correct feature representation
in SAR ATR is an open question that deserves investigation. Pre-
vious explainability studies [24], [37], [53], [54] used posthoc
methods to reveal the effect of target, clutter, and shadow regions
on recognition, and the ablation studies [36], [54] discussed
the influence of background clutter on the recognition rate. The
above studies show that deep learning relies not only on target
signatures but also on background clutter. This phenomenon is
due to the bias in the small samples of the MSTAR dataset [24].
Since the data were collected under specific operating condi-
tions, the background clutter and target categories are correlated.
Therefore, we perform feature disentanglement to suppress
background clutter and extract correct feature representations.

B. Domain Alignment

Since we consider operating conditions as domains, out-of-
distribution generalization under different operating conditions
is a domain generalization problem. Domain generalization [55]
aims to generalize out-of-distribution using only source data,
while the target domain may be difficult to obtain or even
unknown. Let X be the input (feature) space and Y the output
(label) space. A domain S is associated with a joint distribution
P on X × Y . Given K train (source) domain S train = {Sk}Kk=1

with different joint distributionsPk �= Pk′ , 1 ≤ k �= k′ ≤ K, the
goal of domain generalization is to learn a model f from S train

to generalize on unseen test (target) domain S test[55] (i.e., S test

is not included in S train and P test �= P train)

min
f

E(x,y)∈S test [L(f(x), y)] (1)

where E is the expectation and L(·, ·) is the loss function.
Domain alignment [55] is one of the common methods to

solve the domain generalization problem. This method mini-
mizes differences between different source domains and extracts
domain-invariant features

min
f

E(x,y)∈S train [L(f(x), y) + λH
(
PX
k , PX

k′
)
] (2)

where λ is the tradeoff parameter to prevent a trivial solution,
H(·, ·) is domain distance metrics, andPX is the marginal distri-
bution. A common assumption is that the posterior distribution
PY |X remains stable, while domain shifts occur in the marginal
distribution PX . The domain distance measures [55] include
moments, contrastive loss, Kullback–Leibler divergence, maxi-
mum mean discrepancy distance, and adversarial learning. This
article assumes that domain shifts occur in PX and use the
contrastive loss with cosine similarity. The different source
domain data are generated by data augmentation.

Moreover, from a causal perspective [56], only the alignment
of target features is meaningful. Mahajan et al. [57] selected
images of the same objects for domain generalization by a causal
matching algorithm. Lv et al. [58] designed a causality-inspired
representation learning algorithm, including amplitude interven-
tion, factorization, and adversarial mask modules, to suppress

noncausal factors, such as background, style, and viewpoint. Our
work is also inspired by the causal domain alignment method
in computer vision and proposes feature disentanglement and
alignment for SAR recognition. Due to target features changing
with operating conditions, both the causality and robustness of
features are critical.

III. METHODOLOGY

This section introduces our method for robust SAR vehicle
recognition. The main inspirations for designing a domain align-
ment framework for SAR are described in Section III-A. The
holistic framework of HDANet is present in Section III-B, and
its three modules are depicted in Sections III-C, III-D, and III-E,
respectively.

A. Motivation

Feature disentanglement and alignment are our main concerns
in adapting deep learning with domain knowledge for applica-
tion to robust SAR vehicle recognition.

1) Feature disentanglement: The training data in SAR vehi-
cle recognition are collected under restricted conditions, and
the clutter of each target class has different strengths [24].
So deep learning can use these differences to reduce training
errors. Generally speaking, clutter amplitudes in diverse scenes
obey different statistical distributions. The strong randomness
of clutter can lead to an instability of the extracted features.
Therefore, the target and clutter features must be disentangled
before domain alignment. Motivated by the traditional constant
false alarm rate detector (CFAR) algorithm [59], we can enhance
the causality of a deep learning model in SAR with an input
image mask to distinguish between targets and clutter. However,
deep learning models may focus on the mask’s hard edges [37].
Moreover, the discontinuous strong clutter scattering point in
SAR images increases learning difficulty. The input image mask
learned by FC layers [20] detected strong clutter points at a
5 dB signal-to-clutter ratio. Therefore, a soft constraint mask
at the middle feature layer is more suitable for deep learning
in SAR. A deep network can filter noise when compressing
information [60], and middle-layer features are generic for dif-
ferent categories [61]. Therefore, we extract masks at the feature
layer to avoid noise points in the input image and to exploit
the difference in middle patterns. This approach is similar to
the attention mechanism. Nevertheless, deep learning models
cannot suppress the correlation of clutter in MSTAR without
prior constraints. The attention module [11] may overfit the
background clutter, as shown in Fig. 2. Furthermore, its sigmoid
activation function maps the background region’s smaller values
to around 0.5. Besides, the image reconstruction task [11], [20]
needs to reconstruct both the target and clutter in the SAR
image, which enhances the impact of clutter as well. Therefore,
implementing feature disentanglement in SAR vehicle recog-
nition, i.e., separating target and background clutter, requires
constraints on the mask to overcome the adverse effects of
inconspicuous target signatures and a small dataset.

In addition to the mask, another common preprocessing
method is center cropping to remove background clutter. This
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Fig. 2. Attention module results of CBAM. The spatial attention mechanism
(SAM) in CBAM generates masks based on the pooling results of feature maps.
SAM mask shows that the background clutter has more weight than the target,
which indicates that data bias can affect mask learning.

way requires a priori knowledge of the target size. Our analysis
in Table V gives that even cropping to a quarter of the original
image size does not eliminate background clutter interference
because the center cropping retains the background clutter near
the target.

2) Feature alignment: Since SAR image properties are sen-
sitive to operating conditions, the robustness of features un-
der different operating conditions is critical for SAR target
recognition. Extracting invariant target features under different
operating conditions by domain alignment has a very attractive
prospect for improving feature robustness. However, implement-
ing domain alignment in SAR needs to address the following
issues. Feature disentanglement solves the problem of extracting
target features, and another question is how to generate domain
data under different operating conditions. The training set in
MSTAR only contains several constrained operating conditions
(e.g., different azimuth angles) due to the high cost of obtaining
target data under various operating conditions. Therefore, data
augmentation is applied to generate domain data effectively. The
proposed DDG is designed based on the assumption of local
perturbations in target signatures [62]. Specifically, the overall
structure of the target does not change significantly with imaging
parameters, but the position and magnitude of a few scattering
points change. Therefore, various operating conditions lead
to partial changes in the target pixel points of SAR images.
Local perturbations of target signatures in different domains are
assumed to be changes in image pixel points’ position, relative
value, and absolute value. Based on this assumption, we simulate
different domain data with three data augmentation methods. In
addition, the feature representation used for domain alignment
needs to be modified according to SAR image properties.

Shortly, the feature disentanglement aims to suppress clutter
and extract target features for alignment, and feature alignment
extract invariant target features across operating conditions. In-
spired by the above two principles, we designed a novel domain
alignment framework based on SAR image properties to achieve
robust recognition in various operating conditions.

B. Overall Framework of HDANet

The overall framework of our method is shown in Fig. 3,
and HDANet has three modules to achieve robust recognition
through feature disentanglement and alignment.

1) Domain data generation: It consists of three approaches:
rotation, noise perturbation, and random replacement. More-
over, these augmentation methods are applied with different
parameters and probabilities to simulate complex variations. A
pair of images (x′

1 and x′
2) can be obtained by sampling the set

T of data augmentation methods twice (t1 and t2) for domain
alignment. This module generates diverse domain data from the
MSATR single-domain training set.

2) Multitask-assisted mask disentanglement (MMD): It in-
cludes an encoder and a decoder. The encoder consisting of
ConvBlock1 extracts the target mask zm and concatenated fea-
ture maps zc, and the target mask and feature maps multiply
to obtain the target features for alignment and recognition. The
auxiliary multitask of the mask uses the segmentation task and
sparse loss to suppress clutter effectively. The segmentation
task is introduced by a decoder consisting of ConvBlock2 and
Conv3 with automatic pseudolabels and binary cross-entropy
loss, and the sparsity constraint is added to the target mask
with l1 loss. The ConvBlock1, ConvBlock2, and Conv3 are
depicted in Fig. 3(b). With extra prior constraints, this module
can disentangle the target from clutter for subsequent domain
alignment and recognition.

3) Domain Alignment of Target Features: After disentan-
gling the target from clutter, the model needs to be robust to
the local perturbations in target features. We convert target
feature maps to capsule vectors [63]. The capsule vector u is
applied as the final feature expression for domain alignment and
classification because spatial relationships between features can
be expressed through cosine similarity between capsule vectors.
The domain alignment uses cosine similarity as the contrastive
loss, and applying SimSiam [64] mitigates the conflict between
the contrastive loss and classification. Consequently, with a
carefully designed domain alignment module further enhancing
the invariance of capsule vectors, our framework achieves robust
recognition under various operating conditions.

For clarity, we briefly describe the training process of
HDANet in Algorithm 1. The total loss L is in (3), including
the classification loss lcls of the capsule vectors, the contrastive
loss lcon with the cosine similarity, the segmentation loss lseg

with binary crossentropy, and the sparse constraint lspa with l1
the regularization of the target mask. In the test phase, the DDG
is removed, and the classification result is obtained by inputting
an SAR image

L = lcls + lcon + α · lseg + β · lspa. (3)

C. Domain Data Generation

Since clutter in different scenes obeys various distributions
without stable correlation with target categories, we use data
augmentation to simulate target signatures rather than back-
ground clutter variations. For simplicity, we apply data augmen-
tation to the whole image area and use the mask to separate the
target region so that the clutter region does not affect the discrim-
ination and robustness of target features. The DDG module has
three methods to simulate the variations in SAR image pixels:
position, relative value, and absolute value.
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Fig. 3. Overall framework of HDANet. (a) Provides its framework with three modules: domain data generation (DDG), multitask-assisted mask disentanglement,
and domain alignment of target features. Three data augmentation methods are used in DDG. Mask disentanglement includes an encoder and decoder. The feature
maps and the target mask are multiplied to get target features, and the disentangled target features are used for classification and domain alignment. We use the
segmentation task and the l1 loss to assist with the target mask. In the domain alignment module, target feature maps are converted to capsule vectors, and then the
contrastive loss with cosine similarity, which SimSiam calculates, is used to enhance feature robustness. The parameters and structure are the same on both sides.
Right-hand side subfigure illustrates the details of (b) Convblocks (BN is batch normalization). (c) Symbols list.

Algorithm 1: HDANet: Hierarchical Disentanglement-Alignment Network.
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1) Rotation: The position is simulated by rotating at different
angles θ. It is worth mentioning that SAR imaging causes
target shadows in the line-of-sight direction and the shadow
above the target in the MSTAR dataset. The amplitude of the
scattering point remains stable in real situations only under small
viewing angle changes as well. Therefore, the rotation operation
is performed within a small angle range to maintain this imaging
relationship.

2) Noise Perturbation: The shift degree of the target’s strong
and weak scattering points is not the same across operating
conditions, so noise perturbation adds Gaussian white noise
N(μ, σ) to the original image to simulate relative value changes

x′
n = xn + xwgn, xwgn ∼ A ·N (μ, σ) (4)

where x′
n is the nth pixel point after augmentation, xn is the nth

pixel point before augmentation, j iterates over all pixel points
of the image, A, μ, and σ are the magnitude, mean, and standard
deviation (STD) of the Gaussian distribution, respectively.

3) Random replacement: It simulates absolute value changes
by replacing a different proportion p of pixel points with a
uniform distribution U(0, 1)

x′
n = xuni, xuni ∼ U (0, 1) (5)

where n iterates over the p-proportion pixel points of the image.
Since the single point’s amplitude in an SAR image is unstable
across operating conditions, the random replacement prevents
the model from being sensitive to the intensity of a single pixel
point.

Based on the DDG consisting of the above three data aug-
mentation methods, we generate a pair of image pairs (x′

1 and
x′
2) from the input image x for domain alignment.

D. Multitask-Assisted Mask Disentanglement

This module includes an encoder and a decoder. The codec
skeleton is the U-shaped structure of U-Net [65], commonly used
in small sample tasks. As shown in Fig. 3, different modules are
the variants of the U-net basic module, and we tuned the layers
and parameters of the original U-Net to fit the picture size of
the MSTAR dataset. In the encoder, a soft target mask zm is
extracted at the middle layer and multiplied with concatenated
feature maps zc that have multiscale details. The decoder is
used to perform the segmentation task. Then, we introduce the
multitask setting of this module. In order to successfully learn
the target mask in a small SAR dataset, the segmentation task
and sparsity constraint are auxiliary tasks to introduce position
and sparse priors.

1) Segmentation task: This provides information on the tar-
get location compared with the reconstruction task, making
it necessary for the model to distinguish between the spatial
regions of the target and clutter. We use the decoder to apply
the auxiliary segmentation task and increase the discrepancy be-
tween targets and clutter in different layers through the U-shaped
structure. The segmentation loss lseg is the binary crossentropy,
and pseudolabels yseg are multiple class saliency maps1 [67] of

1Multiple class saliency map is a variant of GradCam [66] to eliminate
category information.

the pretrained model VGG16 [46]. Moreover, we use Smooth-
Grad [68] to average saliency maps and remove strong clutter
points. To achieve a balance between accuracy and efficiency,
we design this method of automatically generating segmentation
pseudolabels, but other ways to generate pseudolabels are also
feasible to provide target region information.

2) Sparsity constraint: The sparsity constraint of the target
mask is due to the sparsity property of the target pixel compared
with the whole image pixel. In the MSTAR dataset, the vehicle
range in size from 4.1 to 9.5 m long and from 2.3 to 3.6 m wide,
and the image is 128× 128 pixels (38.4 m× 38.4 m). Moreover,
the target region is small under airborne or satellite-based SAR
platforms. The l1 constraint is added to the target mask as the
sparse loss lspa to help remove clutter further. Moreover, we use
ReLU to generate a truncated Tanh activation function so that
the zero value of the background region maps to zero instead of
0.5 in the sigmoid function.

We achieve feature disentanglement by the target mask with
the above two auxiliary tasks, and this module enhances feature
robustness by preventing clutter from being used for recognition
and domain alignment.

E. Domain Alignment of Target Features

Multitask-assisted mask disentanglement module extracts tar-
get features and suppresses clutter. However, not all target
features are robust under different SAR operating conditions.
Therefore, we use the DATF to extract invariant features. As
shown in Fig. 3, the target feature maps are converted to capsule
vectors for classification and domain alignment. Specifically, we
consider the robust feature representation (e.g., capsule vectors)
with domain alignment in SAR target recognition.

1) Feature representation: The previous domain alignment
methods used CNN feature maps [22] or FC layer features [23].
Other work showed that using capsule vector is more robust in
EOCs [11] than CNN and FC. Considering the target’s overall
structural information is more stable under the local target
perturbation, we use the capsule vector [11], [63] to preserve
the spatial information between features. The target feature map
is converted to a capsule vector u, whose magnitude repre-
sents the probability and direction represents spatial information
(i.e., cosine similarity between features). The digit capsules
perform recognition based on the magnitude and direction of
the classification vectors v in Fig. 3. The classification loss lcls

is the margin loss lmar in [63] with consistent hyperparameters
(w+ = 0.9, w− = 0.1, η = 0.5)

lmar =
∑

k

Tk · max
(
0, w+ − ‖vj,k‖

)2

+ η(1− Tk) · max
(
0, ‖vj,k − w−‖

)2
(6)

lcls =

1,2∑

j

lmar
(
vj , y

cls
)

(7)

where the first term of lmar encourages correct prediction prob-
ability over w+, the second term of lmar penalizes incorrect pre-
diction probability higher than w−, vj,k is the kth classification
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vector of vj , Tk = 1 if the classification label ycls is class k, and
η prevents the initial learning from shrinking the magnitude of
all digit capsules.

2) Domain alignment: Correspondingly, the domain align-
ment module uses the cosine similarity as contrastive loss and
SimSiam [64] structure. According to the SimSiam structure,
the contrastive loss lcon is shown below:

D (m,n) =
1

2
− 1

2

m

‖m‖2
· n

‖n‖2
(8)

lcon = D (stopgrad(m1),n2) +D (stopgrad(m2),n1)
(9)

where m and n are the projection and prediction vectors in
Fig. 3, respectively. The stopping gradient and asymmetric
structure of SimSiam increase the interclass distance and avoid
trivial constant solutions impairing discrimination. Other meth-
ods used the hyperparameter tradeoff [22], [23] or negative
samples [55] to solve the problem of identical representation
in domain alignment.

As discussed above, we designed a robust feature represen-
tation with domain alignment. Eventually, with the aforemen-
tioned DDG and mask disentanglement modules, robust features
under various operating conditions are obtained by the DATF. In
the proposed integrated framework of feature disentanglement
and alignment, we mainly address the two problems in SAR ve-
hicle recognition methods: the existing mask methods overfit the
background clutter, and the current domain alignment methods
achieve recognition for several specific operating conditions.

IV. EXPERIMENTS

In this section, we evaluated the robustness of the proposed
method on the MSTAR dataset and analyzed the strengths and
weaknesses of HDANet. We first described the experimental
setting and implementation details in Sections IV-A and IV-B.
The robustness of HDANet is evaluated in the MSTAR dataset’s
nine operating conditions compared with other methods in
Section IV-C. We then performed extensive quantitative and
qualitative analyses in Section IV-D to demonstrate the effec-
tiveness of our method. Ultimately, we explored the limitations
in Section IV-E.

A. Dataset and Experimental Settings

1) Dataset description: Sandia National Laboratory col-
lected and released the popular MSTAR dataset [14] with a
10-GHz X-band spotlight SAR sensor. This dataset contains ten
categories of ground military targets: infantry vehicle (BMP2),
patrol car (BRDM2), personnel carrier (BTR60, BTR70), tank
(T62, T72), howitzer (2S1), bulldozer (D7), truck (ZIL131), and
anti-aircraft (ZSU234). The resolution of each SAR image is
0.3 m × 0.3 m, and MSTAR data are acquired at full azimuth
angles from 0◦ to 360◦. However, only some targets have dif-
ferent depression angles (e.g., 15◦, 17◦, and 30◦) and scenes
(grasslands in New Mexico, Northern Florida, and Northern
Alabama [15]). We used the official tool to convert original
SAR data into JPEG format with 128 × 128 pixels by linear
transformation and automatic contrast enhancement.

2) Experimental settings: We discussed nine operating con-
ditions based on the MSTAR dataset in Table I to evaluate
the performance of our method comprehensively. The standard
operating condition means that the imaging conditions of the
training and test sets are similar. In EOCs, different operating
conditions lead to complex variations in target signature and
background clutter [15], [16]. We built an extensive EOC setting,
including sensor (depression angle, azimuth angle, and noise
level), target (configuration and version), and environment (oc-
clusion and scene). The EOC-Gaussion/random/occlusion are
simulation settings, and others are measured data. The detailed
settings are discussed below.

3) Standard Operating Condition: The difference between
the training and test sets is minor under SOC, and the main
challenge is the small interclass differences. As given in Table I,
the training set’s depression angle under SOC is 17Â°, and the
test set is 15Â°. Ten categories of targets, include BMP2 (C21,
9563, 9566), BRDM2, BTR60, BTR70, T62, T72 (132, 812,
S7), 2S1, D7, ZIL131, and ZSU234.

4) EOC-Depression (Depression Angle Variation): The in-
tensity of pixel points in SAR images is related to the depression
angle, and a large depression angle can change target signa-
tures and enhance background clutter. Therefore, robustness
to depression angle variation is critical to the sensor setup.
Following the setting in [10], four targets are selected to discuss
the performance from 17Â° to 30Â° in Table I. These targets
include BRDM2, T72 (A64), 2S1, and ZSU234.

5) EOC-Azimuth (Azimuth Angle Variation): Due to the
anisotropic scattering of the different structures in targets, local
signatures vary at different azimuth angles. Since the SAR
images of the MSTAR dataset are collected at different az-
imuth angles, the robustness to azimuth angle variation is tested
by reducing training data from 90% to 10% under SOC in
Table I.

6) EOC-Gaussion (Gaussian Noise Corruption): Sensor
noise can significantly affect the properties of the measured SAR
images, but additive noise in MSTAR is below −30 dB, which
is far from realistic situations. As given in Table I, the signal-to-
noise ratio (SNR) of additive Gaussian white noise [12], [26] is
from 10 to −10 dB based on the SOC setting.

7) EOC-Random (Random Noise Corruption): Another
noise setting is randomly replacing the original pixel values with
a uniform distribution noise [10], [27]. This approach simulates
the degree of random strong clutter point interference. Based on
the SOC setting, random noise given in Table I has a replacement
rate of 5%–25%.

8) EOC-Configuration (Configuration Variant): The vehicle
configurations often change depending on different actual needs,
such as fuel containers and other accessories fixed to the vehicle.
Following the setting in [10], the configuration variant has BMP2
(9563), BRDM2, BTR70, and T72 (132) as training set, and T72
(A32, A62, A63, A64, S7) as five test variants.

9) EOC-Version (Version Variant): Similar to the configura-
tion variant, various vehicle versions are produced for different
needs with a similar global structure and different local details.
Following the setting in [10], the configuration variant has BMP2
(9563), BRDM2, BTR70, and T72 (132) as the training set. The
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TABLE I
EXPERIMENTAL SETTING UNDER SOC AND EOCS OF MSTAR

TABLE II
DATA AUGMENTATION DETAILS

BMP2 (9566, C21) and T72 (A04, A05, A07, A10, 812) are
seven test variants.

10) EOC-Occlusion (Occlusion Interference): Objects be-
tween the target and sensor, such as trees and buildings, can
obscure or attenuate the signal strength reflected from the target.
Therefore, occlusion can severely eliminate or diminish some of
the target signatures. According to Feng et al.[13], the square of
different pixel sizes (5 × 5, 10 × 10, and 15 × 15) in the target
and the adjacent area (64 × 64 at picture center) are randomly
set to zero in Table I.

11) EOC Scene (Scene Variation): Background clutter in
different scenes can vary significantly and affect the scattering
points of adjacent target parts. Although the scenes in MSTAR
are all flat grassland from different locations, the grass’s height,
sparsity, and water content affect its EM scattering [69], [70].
BRDM2, T72 (A64), and ZSU234 in Grass 1 are the training
set. ZSU234 in Grass 2 and BRDM2 and T72 (A64) in Grass 3
are the test data in Table I.

B. Implementation Details

1) Hyperparameter settings: Data augmentation details in
this article are given in Table II. The data augmentation meth-
ods used different probabilities so that the results have a 50%
of being the original image. Noise perturbation was adjusted
to A ·N(0, 0.8), A ∼ U(0, 1) under EOC-Gaussion. The loss
hyperparameter α was 1e-1 as an auxiliary task, and β was 1e-2
to control mask sparsity. NAdam algorithm [72] was employed
as the optimizer with an initial learning rate of 3e-4, weight
decay of 5e-4, and an exponential learning rate decline of 0.98.
The batch size was 64, and the epoch was 100. Notably, we used

Fig. 4. Feature maps of different padding methods (feature maps on the left
are MVGGNet [12] with zero padding, and on the right are feature maps of
HDANet (ours) with mirror padding; input from the top is an MSTAR image,
and from the bottom is an all-zero image). Models with zero padding produce
target-independent edge and center artifacts in the left feature maps [71].

mirror padding instead of zero padding to eliminate feature-map
artifacts in Fig. 4.

2) Compared Methods: We used A-ConvNet [10], ECC-
Net [11], MVGGNet [12], SNINet [22], and TDDA [23] as
compared methods. A-ConvNet is one of the classical deep
learning methods successfully applied to recognizing SAR ve-
hicles. An ECCNet is a method that uses the capsule network
and the attention module. We combined CFAR with them to
verify the effectiveness of traditional mask methods. MVGGNet
with pretraining weight has a good feature extraction ability
by transfer learning. SNINet and TDDA are similar domain
alignment methods in SAR vehicle recognition. All methods
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TABLE III
PERFORMANCES OF DIFFERENT METHODS UNDER DIFFERENT OPERATING CONDITIONS

Fig. 5. Radar charts of experimental results (see Table III for detailed num-
bers). Our method performs more robustly than others under various operating
conditions.

used the same data augmentation methods. Five repetitions of
experiments were used to calculate the overall accuracy (OA)
and the STD.

C. Results Under SOC and EOCs

In this section, we evaluated the robustness of HDANet in
the nine operating conditions of MSTAR compared with other
methods. The recognition results of these methods are given in
Table III and Fig. 5, and the detailed results are given as follows.

1) Result Under SOC: Because of a little difference between
training and test set distribution under SOC, deep learning-based
approaches effectively learn correlations in the dataset, nearing
saturation performance. Removing clutter and shadows from
input images by CFAR causes a slight decrease in the accu-
racy rate (3.21% for A-ConvNet and 2.07% for ECCNet). The
decline is due to the background correlation [3], [24] in the
MSTAR dataset and the shadows containing the target’s struc-
tural properties [24], [54], [73]. Previous work [37] pointed out
that using a hard constraint mask for segmented images causes

deep learning to pay attention to boundaries rather than target
signatures, so a soft learnable constraint mask was developed
for our deep learning-based framework. Good performance can
also be achieved under SOC with transfer learning (98.34% for
MVGGNet), demonstrating the generality of deep learning’s un-
derlying feature extraction. CNN feature maps used by SNINet
(95.69%) perform lower than other methods (98.64% for TDDA
and 99.64% for HDANet), which indicates the l2 loss ignores the
2-D structural information in the feature maps. Therefore, we use
capsule vectors to represent feature structure information with
99.64% performance. The corresponding cosine similarity and
SimSiam structure mitigate domain alignment to impair feature
discrimination.

2) Result Under EOC-Depression: The increased depression
angle changes the target signature and enhances the clutter, so
accuracy rates improve (4.05% for A-ConvNet and 0.27% for
ECCNet) with CFAR. Transfer learning cannot handle distribu-
tion shifts in a small dataset, achieving 91.04% for MVGGNet.
Domain alignment relies on a powerful encoder, with SNINet
(88.41%) and TDDA (93.05%) performing below ECCNet
(94.07%). Therefore, we apply domain alignment to an encoder
consisting of CNN and capsule layers to achieve a performance
of 96.26%.

3) Result Under EOC-Azimuth: Reducing the training set
data loses some target signatures under partial azimuth. As
shown in Fig. 6, the design of a powerful encoder and do-
main alignment alone cannot solve the robustness problem of
azimuth variations. A powerful encoder (A-ConvNet, ECCNet,
and MVGGNet) can overfit small data, reducing generalization
performance. Domain alignment (SNINet and TDDA) may
learn the same feature representation more easily with fewer
data, reducing feature representation discrepancy. Data aug-
mentation simulates local perturbations and are not effective
with large variations in very few samples. However, domain
alignment (TDDA, HDANet) can improve the effectiveness of
data augmentation for EOC-Azimuth. HDANet strikes a balance
between robustness and feature discrepancy. HDANet extracts
robustness target features by domain alignment. Moreover, the
SimSiam structure reduces domain alignment impairment on
feature discrepancy.

4) Result Under EOC-Gaussion: Additive Gaussian noise
weakens target signatures and changes the relative values of the
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Fig. 6. Experimental results of different parameters under EOC-azimuth, EOC-Gaussion, EOC-random, and EOC-occlusion. The accuracy decreases as the
perturbation intensity increases, and our method maintains better robustness under different parameters than others.

strong and weak scattering points. Fig. 6 shows that the curve
decreases slowly after removing clutter with CFAR because it
extracts the target region blurred by noise. On the other hand,
domain alignment (TDDA) is also better than other methods at
low SNR. Our method combines mask and domain alignment
with the best 92.72% accuracy, using mask disentanglement
to extract target features and domain alignment to enhance
robustness. However, target feature extraction is difficult at low
SNR (–10 dB), and data augmentation parameters need to be
adjusted for the learnable target mask. It can be found that
our method becomes significantly degraded below −5 dB. The
CFAR method also has this problem in region extraction, but we
used the masks of CFAR from the original images for simplicity
under any SNR, and therefore, the trend of the CFAR method is
more stable below −5 dB.

5) Result Under EOC-Random: Random noise simulates a
different proportion of strong clutter point interference. As
shown in Fig. 6, CFAR can effectively reduce clutter inter-
ference. ECCNet performs well at low proportions, but when
interference increases, the attention module in ECCNet cannot
effectively remove a large proportion of strong clutter. The use
of FC layers with domain alignment (TDDA) can also reduce
this interference. However, using domain alignment with CNN
features (SNINet) is more likely to receive strong clutter point
interference, which may be because multilayer CNNs have an
aggregated information from larger receptive fields with strong
clutter points from different locations. MVGGNet also has this

problem. Our method suppresses clutter and extracts robust
target features with the best performance.

6) Result Under EOC-Configuration: Although the T-72
configuration in the test set differs from the training set, the
impact of this variant on deep learning is small at a resolution of
0.3 m, and almost all methods achieve over 95% accuracy. How-
ever, the performances of A-ConvNet and ECCNetet decrease
after extracting the target region by CFAR due to removing
the T-72 gun barrel signature in the shadow. Therefore, we use
a soft-constrained mask and enhance robustness with domain
alignment to achieve an accuracy of 98.49%. The learned mask
can extract shadow edge information (see Fig. 10).

7) Result Under EOC-Version: Version variants impact
recognition similarly to configuration variants. Therefore, the
analysis for such variants is similar to the configuration variants.
However, there is a 3.69% decrease in the accuracy of ECCNet,
which may be due to the attention module in ECCNet misfitting
the unstable background correlation. The scene of four T72
variants in the test set has a small different from the training
set.

8) Result Under EOC-Occlusion: The occlusion setting af-
fects the pixel values of the target signature and adjacent regions.
As shown in Fig. 6, the occlusion of sizes from five to 15
impacts target signatures significantly due to the small vehicle
target size. Convolutional features (A-ConvNet and SNINet)
are susceptible to occlusion, while the FC layer (MVGGNet) is
less susceptible. The least is using a capsule network (ECCNet)
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for classification. Therefore, we use the capsule network as a
classifier and design a corresponding domain alignment method,
achieving 86.51% accuracy. This article [13] used EM scattering
features to enhance the deep learning features with an 82.39%
accuracy under a single look in the same setting. Our proposed
method improves the robustness of deep learning to occlusion
as well. However, it is challenging to achieve robust recognition
algorithms with heavily obscured target signatures. We argue
that using multiple-look images is a more effective way to deal
with this interference since the occlusion is closely related to the
relative positions of the target and the sensor.

9) Result Under EOC Scene: The clutter in different back-
grounds significantly differs and affects the adjacent target sig-
nature. Data-driven models, such as deep learning, have the
potential to misuse the features of strong clutter. Compared
with the simulated noise setting, EOC scene used the measured
data from different scenes to further research this problem. As
given in Table III, the robustness to target signature changes
of A-ConvNet and ECCNet after removing clutter needs im-
provement. Pretraining model MVGGNet also cannot handle the
data bias and distribution shifts in this downstream task. Other
domain alignment methods cannot address this problem since
they ignore background clutter interfering with the final features.
Our method performs the DATF with mask disentanglement.
Therefore, our approach achieves robustness under this new
experimental setting with a 94.78% accuracy.

As discussed above, our method has significant robustness
than other methods across various experimental settings given
in Table III and Figs. 5 and 6. Compared with deep learning
models (A-ConvNet and ECCNet) with CFAR or transfer learn-
ing (MVGGNet), our approach improves robustness through the
DATF. We achieve feature disentanglement and design a novel
domain alignment framework for SAR recognition compared
with other domain alignment methods (SNINet and TDDA).

D. Analysis

In this section, we conducted numerous qualitative and quan-
titative analyses to validate the effectiveness of our approach
in robust recognition and clutter suppression. These analyses
encompassed the ablation study, qualitative research, and the
analysis of the clutter effect.

1) Ablation Study: Since the target signature and the back-
ground clutter change significantly under EOC scene, we per-
formed the ablation study and hyperparameter discussion under
EOC scene given in Table IV and Fig. 7.

Baseline: It used a modified CNN encoder of U-Net and a
capsule classifier, and its performance is 86.61%. Compared
with ECCNet, we removed the attention module and image
reconstruction task to avoid enhancing the overfitting for back-
ground clutter. The baseline improvement illustrates the need for
successful modules in natural images to be refined for challenges
in SAR images. However, the large STD (7.31%) indicates that
deep learning still overfits the background clutter.

Effects of DDG: With data augmentation on the baseline
in Table IV, the accuracy is improved to an 87.13% with a
smaller STD (4.10%). Then, we discussed the detailed effect of

TABLE IV
ABLATION STUDY UNDER EOC SCENE

different data augmentation methods with other modules under
EOC scene in Fig 7. Specifically, different data augmentation
methods improve domain alignment, but the high probability
rate can cause alignment centers to deviate from the original
image, which reduces recognition accuracy. We advise setting
each probability to [0.1, 0.4] and the total probability close to
0.5 for domain alignment. To the best of authors knowledge,
atleast ten data augmentation methods have been proposed for
SAR vehicle target recognition, and our method aims to simulate
the local variations of target signatures for domain alignment.
Although we validated the effectiveness of the proposed method
under various experimental settings, it is still worth exploring
how to use data augmentation and generation more effectively
for complex operating conditions and small datasets.

Effects of MMD: We used the multitask setting to extract the
feature layer mask, which further suppresses clutter and achieves
an accuracy of 92.29% ± 2.46 in Table IV. The learnable masks
can be better integrated with deep learning and exploit the
good properties of the middle layer [61], which avoids strong
clutter points in the input image. Moreover, the multitask setting
introduces the target location and sparse priors to solve the
background correlation in a small dataset. As shown in Fig 7, we
discussed the hyperparameter setting of mask disentanglement
under EOC scene. Specifically, α and β control the impact
of the segmentation task and sparse loss, respectively. We ad-
vise setting α and β to [1e-1, 1e-3]. Hyperparameters below
these ranges reduce the auxiliary task effect, and above these
ranges impair the primary recognition task and discrimination
of the target features. The background interference in small
SAR vehicle datasets is more severe compared to large datasets
in computer vision because SAR images are collected under
specific operating conditions. Therefore, this module achieves
feature disentanglement to ensure correct feature representation.

Effects of DATF: Considering the connection between causal-
ity and invariance [56], HDANet uses DATF further enhance the
robustness of features. Its performance is impressive, reaching
94.78% with the smallest STD (0.65%). In the domain alignment
module, we used capsule vectors to preserve feature space
information and cosine similarity as the contrastive loss. The
SimSiam structure increases interclass distance and mitigates
the conflict between contrastive loss and classification loss. By
realizing feature disentanglement and alignment through the
above three modules, we established a new domain alignment
framework for robust SAR target recognition, which ensures the
causality and robustness of feature representations.
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Fig. 7. Impacts of the hyperparameters under EOC scene. From top to bottom
are the probabilities of the three data augmentation methods (rotation, noise
perturbation, and random replacement) in domain generation and the hyperpa-
rameters of the two auxiliary tasks (segmentation task and sparse loss) in mask
disentanglement. These methods are not highly sensitive to hyperparameters and
are effective in relatively large intervals.

2) Qualitative Research: We illustrated the effectiveness of
our proposed method with visualization results and methods,
including feature separability, intermediate results, and segmen-
tation results.

Feature separability: Using the EOC scene as an example,
we visualized the features of the penultimate layer of different

Fig. 8. Visualization of feature separability across models under EOC scene.
We used uniform manifold approximation and projection [74] to visualize the
penultimate layer features of each model. We can see that the domain alignment
(SNINet and TDDA) method has a good clustering effect than ECCNet in the
training set, and our method further improves the robustness of domain alignment
methods to distribution shifts in SAR using feature disentanglement.

models by uniform manifold approximation and projection [74].
From Fig. 8, we can see that the domain alignment (SNINet and
TDDA) methods produce good clustering results than ECCNet,
resulting in larger interclass distances for improved robustness.
However, the features extracted by the domain alignment meth-
ods contain unstable clutter due to background interference in
the SAR images, which reduces the robustness of these methods
to complex distribution shifts in SAR. As a result, these domain
alignment methods yielded large interclass distances, but in-
correct feature representations resulted in lower accuracy than
ECCNet. Our method extracts target features by mask disentan-
glement, suppressing unstable clutter from interfering with the
final features and improving the robustness using DATF. Despite
the success of our framework, the feature shift in BRDM2
visualization results shows that there are still opportunities for
further enhancements.

Intermediate masks of different methods in Fig. 9 show
that our methods solved the problem of background overfitting
caused by data bias. Threshold methods, such as CFAR, are sus-
ceptible to strong clutter interference in the input image, failing
to detect the target in the strong clutter region. Furthermore,
existing threshold methods [36], [73] combine morphological
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Fig. 9. Intermediate masks of different methods. We can observe that the
feature layer mask avoids strong clutter interference in the input image, while
our method solves the problem of SAM overfitting background clutter.

Fig. 10. Intermediate results visualization. We can observe that the target
masks of the feature layer in the second column ignore the background clutter
that occupies most of the images and the segmentation results in the third column
also separate the target from the clutter. Our results and pseudolabels retain some
shadow edges that reflect the target signatures.

operations to eliminate strong clutter points but blur fine target
contours. The attention mechanism extracts the target mask
at the feature layer to avoid the interference of strong clutter
points. However, the spatial attention mechanism masks do not
effectively suppress the background clutter due to data bias and
activation function. In contrast, our method suppresses the back-
ground correlation by adding priori constraints and improves the
computation of the target mask.

Fig. 11. Segmentation results (from left to right are SAR vehicle images in
MSTAR [14], ground segmentation results, SAR ship images under complex
backgrounds [75], and sea segmentation results). HDANet distinguishes targets
from different ground/sea clutter.

Intermediate results in Fig. 10 show that our target mask in the
feature layer separates the target region from the background,
and the edge information of the target shadow is contained
above the target region in the mask. Our method suppresses
clutter better than CBAM’s masks in Fig. 2. The segmenta-
tion results also illustrate the effectiveness of our method in
clutter suppression. Our way of generating pseudolabels bal-
ances accuracy and efficiency. The weight of random clut-
ter is reduced in the saliency maps by two averaging opera-
tions of multiple class saliency maps and SmoothGrad, and
our pseudolabels extract the valuable targets and shadow re-
gions for recognition. Since the target mask is in the middle
feature layer, the automatically generated coarse labels are
sufficient for the segmentation task to play an auxiliary role
with l1 loss, allowing the mask to distinguish between back-
ground and target discrepancies and obtain the correct feature
representation.

Segmentation results on different datasets: The segmentation
task was used as an auxiliary task to improve the robustness of
the recognition task. Therefore, we used pseudolabels and did
not pursue precise segmentation results, which balance accuracy
and efficiency. Although not as accurate as manual annotation,
the rough labels allow the model to learn the difference between
the target and the background. In Fig. 11, we trained an HDANet
on the MSTAR dataset and visualized the segmentation results
of vehicles and ships [75]. Our method identifies target regions
in ground/sea clutter, demonstrating its segmentation ability
to generalize to different environments. Although the MSTAR
dataset targets are all centrally placed, HDANet distinguishes
between targets and clutter in multitarget SAR ship slices with
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Fig. 12. Saliency maps of each model (from left to right are the SAR images and saliency maps of A-ConvNet, ECCNet, MVGGNet, SNINet, TDDA, and
HDANet). The clutter intensity of the input image decreases in order from the top to the bottom. Saliency maps reflect the dependency of a model for each pixel
point during recognition. From a visual perspective, our method focuses more on the target region, and others may use clutter.

256 × 256 pixels. However, the pseudolabel with the saliency
map makes HDANet focus on the structural edges of targets,
similar to edge detection [76], causing large scene edges pre-
served in Fig. 11.

3) Analysis of the Clutter Effect on Deep Learning: Clutter
suppression is important for robust SAR vehicle recognition due
to blurry target signatures. Therefore, it is necessary to analyze
whether deep learning uses the correct features for recognition,
i.e., using only the target signatures rather than clutter corre-
lations. However, it is difficult to capture the negative impact
of overfitting clutter on accuracy in experiments with similar
backgrounds. Consequently, we used saliency maps and the
Shapley value below to qualitatively and quantitatively analyze
the degree of deep learning overfitting background clutter, i.e.,
the feature causality.

Saliency maps: We first qualitatively analyzed causality
through the saliency map [77]. The results of different upsam-
pling saliency maps are shown in Fig. 12. We can find that
the models (A-ConvNet, ECCNet, and SNINet) using images
with different input sizes overfit the background clutter around
the target, so the center cropping does not solve the problem
of clutter interference. ECCNet, with image reconstruction and
attention module, focuses on clutter. Other domain alignment
methods also contain some clutter regions. These results indicate
that the methods successfully applied in natural images need to
be improved in SAR images. Due to our novelty improvement
for mask and domain alignment methods in SAR, our method
focuses more on the target region than background clutter. Since
the saliency map calculates the importance of a single image at

the pixel level, it only responds qualitatively to causality and
lacks the quantitative statistical metrics of the whole region. We
next used the Shapley value as the quantitative metric of the
clutter effect.

Shapley value is the unique solution satisfying the four prop-
erties and calculates the contribution to the cooperative game
fairly [78]. According to our previous research [24], we seg-
ment the target and clutter regions in the input image based on
CFAR as two players {0, 1} and estimate their contribution to
recognition based on the Shapley value

Shi =
∑

S⊆I\{i}

|S|! · (|I| − |S| − 1)!

|I|! [f(S ∪ {i})− f(S)]

(10)

where Shi is the Shapley value of ith player, I is a set of all
players, | · | is the number of elements in the set, and f(·)
is classification score corresponding to the true class before
softmax. The baseline values of the inputs are set to 0. We
average the Shapley values for all the images and calculate the
proportions of clutter Shapley values for different models to
roughly estimate the degree of the overfitting for clutter.

As given in Table V, due to the texture bias of CNN [79],
the texture of the clutter region is exploited by models with
varying degrees. Nevertheless, our method has the least clutter
effect (15.41%) due to feature disentanglement and alignment.
Comparing the different image sizes, center cropping can at-
tenuate the effect of clutter but cannot solve this overfitting.
Although ECCNet uses the smallest image size (64× 64), image
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TABLE V
CLUTTER CONTRIBUTION RATIO OF DIFFERENT MODELS UNDER EOC SCENE

reconstruction significantly increases clutter impact (46.71%),
and its attention module does not solve the problem. Clutter
has the greatest effect on MVGGNet (55.71%).2 This number
also shows that the complex model (16.81 M) is more likely
to overfit clutter than A-ConvNet (0.30 M and 27.69%). Other
domain alignment methods also cannot overcome overfitting
clutter (25.99% for SNINet and 34.45% for TDDA), resulting in
domain alignment instability with clutter interference. Although
the Shapley value is a rough estimate for the effect of clutter on
recognition, our analysis is sufficient to show that domain align-
ment in SAR needs to disentangle targets and clutter features.

E. Limitations

While our method demonstrates satisfactory performance
across a wide range of operating conditions, it is important
to acknowledge its limitations. In this section, we present the
limitations along with proposed solutions. Our method refers
to the traditional detection and recognition process, treating
the target and background clutter as separate entities solved
by two different modules. While this separation reduces task
difficulty, further integrating these two tasks has the potential to
improve robustness and eliminate the current reliance on pseu-
dolabels and hyperparameters. In addition, our approach heavily
relies on data augmentation methods to expand the diversity of
the single-domain dataset. However, the insufficient data still
poses a constraint on our approach. To address this limitation,
considering the increasing number of data from different SAR
sensors, we plan to leverage a self-supervised learning approach
to effectively extract features from a large volume of real-world
SAR data. This way would enable us to mitigate the issues
related to data bias and distribution shifts in small datasets.

V. CONCLUSION

This article proposes a novel domain alignment framework,
named HDANet, for robust SAR vehicle recognition. Its primary
objective is to achieve robust recognition with feature disen-
tanglement and alignment, and the framework comprises three
essential modules: DDG, MMD, and the DATF. Extensive ex-
perimental results conducted on the MSTAR dataset substantiate

2Pretraining helps MVGGNet, and clutter contribution without pretraining is
65.35%.

the effectiveness of the proposed approach in achieving robust
recognition. The advantages and limitations of this approach are
thoroughly discussed through comprehensive quantitative and
qualitative analyses. Furthermore, future research directions in-
volve investigating self-supervised learning with large amounts
of SAR data from open sources to extract powerful features and
address downstream task problems.
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