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An Improved Hyperspectral Unmixing Approach
Based on a Spatial–Spectral Adaptive Nonlinear

Unmixing Network
Xiao Chen , Xianfeng Zhang , Miao Ren, Bo Zhou , Ziyuan Feng, and Junyi Cheng

Abstract—The autoencoder (AE) framework is usually adopted
as a baseline network for hyperspectral unmixing. Totally an AE
performs well in hyperspectral unmixing through automatically
learning low-dimensional embedding and reconstructing data.
However, most available AE-based hyperspectral unmixing net-
works do not fully consider the spatial and spectral information
of different ground features in hyperspectral images and output
relatively fixed ratios of linear and nonlinear photon scattering
effects under different scenarios. Therefore, these methods have
poor generalization abilities across different ground features and
scenarios. Here, inspired by the two-stream network structure, we
propose a spatial–spectral adaptive nonlinear unmixing network
(SSANU-Net) in which the spatial–spectral information of hyper-
spectral imagery is effectively learned using the two-stream en-
coder, followed by the simulation of the linear–nonlinear scattering
component of photons using a two-stream decoder. Additionally, we
adopt a combination of spatial–spectral and linear–nonlinear com-
ponents using the optimized adaptive weighting strategy of learn-
able parameters. Experiments with several hyperspectral image
datasets (i.e., Samson, Jasper Ridge, and Urban) showed that the
proposed SSANU-Net network had higher unmixing accuracy and
generalization performance compared with several conventional
methods. This demonstrates that SSANU-Net represents a novel
method for hyperspectral unmixing analysis.

Index Terms—Adaptive weighting, autoencoder (AE), hyper-
spectral imagery, nonlinear mixing, spatial–spectral adaptive
nonlinear unmixing network (SSANU-Net).

I. INTRODUCTION

HYPERSPECTRAL imaging (HSI) technology collects in-
formation across the electromagnetic spectrum and has

recently seen great advances and received increasing attention.
Hyperspectral image data provide high spectral resolutions, and
this rich spectral information can be used to identify ground
features in monitored areas [1]. Therefore, HSI has become a
widely used remote sensing technology for various applications,
including land cover classification [2], data fusion [3], [4],
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anomaly detection [5], [6], and precision agriculture [7]. How-
ever, the usefulness of hyperspectral images has been limited
by their low spatial resolution and the complicated distribution
of ground features. Single pixels in a hyperspectral image often
represent several ground features in the image scene, also known
as mixed pixels, which seriously affect the interpretability of
hyperspectral remote sensing data [8]. For this reason, hy-
perspectral unmixing (HU) has been developed and examined
extensively. HU aims to separate the spectra of single pixels
into a set of spectrally pure features, called endmembers, and
subsequently, determine the abundance fraction associated with
each endmember.

Among the various HU methods reported to date, the linear
mixing model (LMM) is the most widely applied [9]. This
type of model assumes that incident light is reflected only
once by each ground feature in the scene before it is collected
by the sensor, which would mean that the observed spectrum
is a linear combination of the component endmembers in the
pixel scene. This hypothesis makes the physical interpretation
of pixels relatively clear and simple. Therefore, based on LMM,
various HU methods have been proposed, including the N-finder
algorithm (N-FINDR) [10], vertex component analysis (VCA)
algorithm [11], non-negative matrix decomposition (NMF) [12],
and sparse learning method [13].

However, the assumption of the LMM is not always valid due
to the presence of spectral variability (SV) [14] and nonlinear
interactions [15]. SV refers to a certain degree of difference
among endmember spectra due to illumination or atmospheric
conditions [16], [17]. To solve this problem, some researchers
modified the LMM with additional parameters to simulate SV,
such as the augmented LMM (ALMM) [18]. Notably, nonlinear
mixing models (NLMM) have been developed and applied for
SV enhancement. These models consider multiple interactions
among photons of multiple ground features and have achieved
good unmixing performance in specific cases [19], [20], [21]. In
practical applications, however, these methods usually utilize a
priori knowledge of nonlinear interactions to build HU models
and lack sufficient generalizability [22].

On the other hand, due to its extraordinary learning and data
fitting capabilities, deep learning approaches have become in-
creasingly common in modeling studies, and indeed deep learn-
ing has been successfully applied in HU [23], [24]. Furthermore,
unmixing of hyperspectral images using a classifier model, based
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on a supervised learning HU method, has been proposed [25],
[26]. The drawback of this class of methods is that they require a
training set with known abundances. Unfortunately, it is difficult
to obtain accurate abundances in practical scenarios, and thus,
some other HU methods have to be utilized to generate the
abundance sample set. Consequently, this reduces the usefulness
of this class of methods.

This problem can be solved by using an autoencoder (AE)
framework as a baseline network for self-supervised HU [22].
An AE usually consists of an encoder and a decoder, where
the encoder is responsible for feature extraction and represen-
tation from input data and the decoder is responsible for data
reconstruction from feature representation. Typically, the non-
negative constraint (ANC) and sum-to-one constraint (ASC)
for abundance retrieval are imposed on feature representations
so that the AE can be effectively trained by minimizing the
reconstruction errors [27]. As a result, the AE is widely applied
in HU and many improvements have been made to the basic AE
to suit different functional requirements. To address the problem
of relatively low signal-to-noise ratio (SNR) in hyperspectral
images, non-negative sparse, and denoising, AEs have been
applied in HU, achieving excellent unmixing performance in
high noise environments [28], [29], [30]. Su et al. [31] intro-
duced a two-stage AE methodology that uses a stacked AE
to eliminate outliers, followed by another AE designed with
non-negative sparse constraints to perform robust hypothesis
testing. Vijayashekhar et al. [32] proposed a two-stage fully
connected self-supervised deep learning network to alleviate
these practical issues when performing blind HU. Ozkan et al.
[33] proposed EndNet, which replaced the inner product of
the encoder with spectral angular distance, and improved the
sparsity of the estimated abundance by adding an additional
penalty term. Wesley et al. [34] combined a generative adver-
sarial network (GAN) and AE, employing a GAN joint training
objective to condition the decoder to generalize to previously
unseen abundance mixtures. In [35], Markov random fields and
AE were combined to extract endmembers and estimate their
abundances, using an inhomogeneous Gaussian Markov random
field (IGMRF) as a regularized prior to produce more accurate
unmixing results. These methods achieved good unmixing accu-
racy on both real and synthetic datasets, demonstrating the great
potential of AE in the field of HU. However, these methods
have focused more on modeling the spectral information of
hyperspectral images, but the spatial relationship between a
target pixel and its neighbors in an image has not yet been fully
utilized.

Furthermore, to make full use of the spatial information of
hyperspectral images, convolutional neural networks (CNNs)
have also been applied in HU, and AEs combined with CNNs
have achieved even higher unmixing accuracies [8], [36], [37],
[38]. Zhang et al. [26] used the CNN to achieve good HU results
for the first time, demonstrating its great potential in the field of
spectral unmixing, but the algorithm utilized requires training
samples, which limits its application potential. Palsson et al.
[39] proposed a CNN-based blind spectral unmixing method
that combines the CNN and AE for the first time. Hong et al. [8]
proposed the EGU-Net and showed that, with similar network

structures, networks using convolutional operators have better
HU performance. However, the simple 2-D-CNN method inde-
pendently performs cross-band analyses of hyperspectral images
and ignores the spectral properties of the data. To address this,
some researchers have divided images into cubic patches and
used 3-D-CNN to jointly learn spatial and spectral features [40],
[41], but the size of the cube will affect the accuracy of the HU
drastically.

In addition, by combining high-order nonlinear interaction
of photons with AE, additional methods have been developed
[41], [42], [43] to simulate the nonlinear mixture of pho-
tons when incident to ground features. For example, Dhaini
et al. [44] replaced linear layers with convolutional layers to
simulate the nonlinear effects of photons and achieved good
results.

Despite the aforementioned advances, the characterization
of the high-order nonlinear effect of photons is still relatively
crude, and most existing methods simply superimpose linear
and nonlinear components. However, the ratio of linear and
nonlinear photon interactions may vary in different practical
scenarios. Furthermore, the contributions of spatial and spectral
features to HU will also be quite different for various ground
features in practical scenarios. Hence, only the effective com-
bination of spatial and spectral information from hyperspectral
images can achieve accurate HU results. Conventional AE-based
HU methods also tend to focus only on either the spatial or
spectral features of hyperspectral images. Although a few of
studies have considered the spatial–spectral features in the net-
works, they adopt 3-D-CNN networks to learn spectral and
spatial information simultaneously. Unfortunately, the complex
implementation and structure of 3-D-CNN leads to relatively
shallow learning and confusion of the spatial–spectral features.
These problems also limit the potential for improvement in the
accuracy of HU.

In the two-stream networks for the classification of hyperspec-
tral images [36], [37], [38], one stream network is used to learn
spatial features and the other stream network learns spectral fea-
tures; the learned spatial and spectral features are fused together
[36]. Inspired by this, we propose an AE-based spatial–spectral
adaptive nonlinear unmixing network (SSANU-Net) to resolve
the aforementioned problems. The contributions of this study
are as follows.

1) The encoder of the SSANU-Net comprises a spatial–
spectral two-stream network that learns spatial and spec-
tral features of the images separately, and effectively dis-
tinguishes among different ground features through the
adaptive weighting of learned spatial and spectral features.

2) The decoder of the SSANU-Net comprises two-stream
network that models the linear and nonlinear components
of interphoton interactions separately. The network can be
applied to different scenarios due to its adaptive weight-
ing strategy, which uses learnable parameters to simulate
linear and nonlinear components.

3) The rectified linear unit (ReLU) function and a newly
designed loss function are used to satisfy the ANC and
ASC to improve HU performance compared to using the
original Softmax function.



9682 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 1. Structure of the proposed SSANU-Net, including an encoder for unmixing and a decoder for reconstruction.

II. FRAMEWORK AND METHODS

The mathematical expression of HU is introduced in this
section followed by a novel solution that improves the unmixing
performance.

A. Problem Formulation

Assume the observed hyperspectral image pixel x ∈
RB , where B is the number of spectral bands. M =
[m1,m2, . . . ,mR] represents the (B ∗ R) endmember matrix,
where each column component mi refers to the spectrum of the
ith endmember, and R refers to the number of endmembers.
a = [a1, a2, . . . , aR]

� ∈ RR denotes the abundance compo-
nent of each pixel.

A typical LMM model usually assumes that each observed
pixel is obtained by the linear combination of abundance-
weighted endmember spectra

x = M× a+ ε (1)

where ε ∈ RB refers to the noise component.
Since the abundance represents the proportion of pixels oc-

cupied by each ground feature, ai shall satisfy both ANC and
ASC as

∀i : ai ≥ 0 (2)

R∑
i

ai = 1. (3)

As mentioned previously, in complex scenes, there is non-
linear scattering of photons, and oftentimes, the more complex
the scene the more severe the nonlinear scattering of photons.
In such cases, the LMM assumption will not hold. Therefore, a
nonlinear component and adaptive weights were introduced to

(1) to obtain

x = wd1 ×M× a+ wd2 ×Ψ(M,a)+ε (4)

where ψ refers to the nonlinear component, and wd1 and wd2

are adaptive weights that vary with different scenarios.

B. General Framework for SSANU-Net

The proposed framework is an AE-based two-stream end-
to-end network comprising one encoder and one decoder (see
Fig. 1). The encoder fE compresses the input hyperspectral
image X into a low-dimensional representation of H ∈ RR∗N

as

H = fE (X) (5)

fE : RB×N → RR×N (6)

where H refers to the abundance matrix; B refers to the number
of bands; N denotes the number of pixels; and R is the number
of endmembers. Notably, R is known in this study and R < B.
Decoder fD is responsible for the decompression of H and raw
data reconstruction

X̂ = fD (H) (7)

fD : RR×N → RB×N . (8)

The detailed structure of the network is described in
Sections II-C and D.

C. Encoder

A two-stream spatial–spectral adaptive weighted encoder is
proposed in this study. The encoder contains spatial and spectral
streams, each consisting of three blocks (see Table I).
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TABLE I
NETWORK CONFIGURATION FOR EACH LAYER OF THE PROPOSED ENCODER

STRUCTURE

TABLE II
NETWORK CONFIGURATION FOR EACH LAYER OF THE PROPOSED DECODER

STRUCTURE

In order to fully utilize the network capacity and reduce infor-
mation loss, no specific constraint is imposed on the encoder and
a stride strategy is used to compress the data instead of a pooling
layer to reduce the size of the features. The same activation
function is used for each layer, i.e., the ReLU function. The
proposed encoder has spatial and spectral streams to learn spatial
and spectral features, respectively, and compress the original
hyperspectral image X into the abundance matrix H as

Lspa = fEspa (X) (9)

Lspe = fEspe (X) (10)

H = we1 × Lspa + we2 × Lspe (11)

where we1 and we2 ∈ [0, 1] are learnable parameters that can
achieve the adaptive weighted fusion of spatial and spectral
features.

D. Decoder

A two-stream linear–nonlinear adaptive weighted decoder is
proposed. The decoder contains linear and nonlinear streams,
each consisting of one block, as shown in Table II.

The proposed decoder considers of both the linear compo-
nent X̂lin and nonlinear component X̂nlin of photon interactions
when reconstructing input signal X̂. Studies have shown that
three-layer neural networks can represent arbitrary nonlinear
relationships among inputs [9]. The proposed method uses one
1∗1 convolutional layer to simulate the linear interaction com-
ponents of photons among different endmembers and three 1∗1
convolutional layers to simulate the higher order nonlinear in-
teraction components of photons among different endmembers.
To ensure acceptable unmixing performance, the endmember
spectra are used to initialize the first convolutional layers of
the linear and nonlinear decoders. Since endmember spectra are

relatively easy to obtain (e.g., using algorithms such as VCA or
field measurements), this does not affect the practicality of the
proposed method.

It has been shown that, in simple scenarios, photons with
high-order nonlinear interactions are typically exposed to weak
interactions [9], while the nonlinear interactions induced by the
multiple scattering of photons intensify as the complexity of the
reaction environment increases [8]. Hence, reconstructed input
images can be obtained by the adaptive weighted fusion of linear
and nonlinear components

X̂ = fD (H) = wd1 × X̂lin + wd2 × X̂nlin (12)

where X̂ is the reconstructed input images, and wd1 and wd2 ∈
[0, 1] are learnable parameters for controlling the weights of
linear and nonlinear components. The unmixing becomes a
question to minimize the difference between the input imagery
and the reconstructed imagery.

E. Loss Function

The loss function of the proposed AE network consists of
multiple components. The proposed unmixing network is trained
by minimizing the mean square error (MSE) between the input
component x and the reconstruction component x̂:

Lre =
1

N
×

N∑
i=1

(x̂i − xi)
2 (13)

where N refers to the number of pixels.
The unmixing process applies ANC and ASC to the abun-

dance component. In some cases [8], [45], Softmax has been
employed to directly force the network output to meet the re-
quirements of ANC and ASC. However, this approach has a slow
convergence rate because the Softmax function only considers
the relative probabilities between different categories, which
does not produce sparse outputs, reducing the convergence
accuracy [22]. In our work, the ReLU activation function was
employed to ensure the non-negativity of abundance component
a, and a loss function was employed to ensure the ASC

Lsum =

N∑
i=1

‖1−
R∑

j=1

αji‖1 (14)

where αji refers to the elements in row j and column i of the
abundance matrix; and R refers to the number of endmembers.

The endmember and abundance in the self-supervised decom-
position of mixing pixels are unknown, this makes unmixing
difficult and generally requires reasonable a priori information
to constrain the problem [9]. In our study, considering that
unmixing is a sparsity problem, nuclear norm was used for the
sparse constraint of abundance matrix H

Lspa = ‖H‖∗. (15)

The final loss function of the network can be expressed as

L = Lre + λ × Lsum + γ × Lspa (16)

where λ and γ are two superparameters to control the intensities
of the two loss functions.
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Fig. 2. True color synthesis images of the three hyperspectral datasets used in
the experiment. (a) Jasper Ridge dataset. (b) Samson dataset. (c) Urban dataset.

F. Evaluation Metrics

The spectral angel distance (SAD) and root mean square error
(RMSE) were employed in our work to assess the unmixing
results

SAD = cos−1

(
mT × m̂

‖m‖×‖m̂‖
)

(17)

RMSE =

√
1

N
×
∑N

i=i
‖αi − α̂i‖22 (18)

where m and m̂ refer to the practical endmember and the
endmember extracted by the model, respectively, which are
obtained by averaging the spectra of pixels with abundances
greater than 0.9; andαi and α̂i represent the practical abundance
and estimated abundance, respectively.

III. EXPERIMENTS AND RESULTS

In order to evaluate the performance of the proposed network,
one synthetic and three real hyperspectral image datasets were
used in the experiments. The true color synthesis images of the
three real hyperspectral image datasets are shown in Fig. 2. The
random seed was set as 0. The experiments in this section were
implemented on a Windows Server in the Python 3.6, Pytorch
1.8.1, and sklearn environments (CPU: Intel Xeon Silver 4116
at 2.1 GHz; RAM: 128 GB; GPU: GPU: NVIDIA RTX 1080TI).

Four typical and state-of-the-art HU methods were used for
comparison, including the sequential maximum angle convex
cone (SMACC) [46], the cycle-consistency unmixing network
by learning cascaded autoencoders (CyCU-Net) [22], the sparse
convolutional unmixing network (SUnCNN) [47], and the 3-D-
CNN unmixing frame considering SV (3DCNN-var) [40]. The
CyCU-net and SUnCNN methods were implemented using the
source code demos provided by the authors, while the other
methods were implemented using in-house-created code since
the authors did not provide the source code.

A. Data Description

1) Synthetic dataset: The Matern Gaussian field synthetic
dataset [48] comprises of five endmembers with 431 bands
from the United States Geological Survey (USGS) spectral
library as endmember spectra (see Fig. 3). These end-
member spectra were used to generate a simulated dataset
in the wavelength range of 0.39 ∼ 2.56 μm using the
hyperspectral images synthesis (HYDRA) toolbox. The

Fig. 3. Endmember spectra of the synthetic dataset.

resulting abundances satisfy the ANC and ASC, and the
image was 128 × 128 pixels in size. The dataset also
incorporated SNR values ranging from 0 to 40 dB, which
were used to verify the robustness of the model.

2) Samson dataset: Obtained by the Samson sensor [43]
and one of the most widely used hyperspectral datasets
for HU. The original image was 952 × 952 pixels in
size and had 156 bands and a wavelength range of 0.401
∼ 0.889 μm. The adopted scene was an image cropped
from the original image of 95 × 95 pixels. In this study,
three main endmembers were studied, i.e., #1 soil, #2
tree, and #3 water. The dataset contains hyperspectral
images, endmember spectra, and abundance reference
data.

3) Jasper Ridge dataset: Acquired by the Jet Propulsion
Laboratory (JPL) airborne visible/infrared imaging spec-
trometer (AVIRIS). The original image size was 512×614
pixels, distributed over 224 bands from 0.38 ∼ 2.50 μm
[49]. The adopted scene was a popular region of interest
(ROI) of 100 × 100 pixels, wherein 198 bands were
retained after removing the water vapor and atmospheric
influence channels. Four main materials were investigated
in this scene: #1 water, #2 soil, #3 tree, and #4 roads. The
dataset also contains hyperspectral images, endmember
spectra, and abundance references.

4) Urban dataset: Obtained by the Hyperspectral Digital
Image Collection Experiment (HYDICE) sensor [50] and
one of the most widely used hyperspectral datasets used in
the HU field [36], [51]. The image was 307 × 307 pixels
in size and had 210 recorded bands covering the 400 ∼
2500 nm wavelength range. However, several channels
(i.e., 1–4, 76, 87, and 101–111, 136–153, and 198–210)
were removed due to water-vapor absorption and atmo-
spheric effects. The dataset comprises four constituent
materials: asphalt (#1), grass (#2), tree (#3), and roof (#4).
Additionally, the dataset includes hyperspectral images,
endmember spectra, and abundance references.
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Fig. 4. Robustness assessment of the synthetic dataset under different SNRs. (a) RMSE; (b) Mean SAD.

TABLE III
UNMIXING OF THE SAMSON WITH THE BEST RESULTS HIGHLIGHTED IN BOLD

B. Noise Robustness Analysis With the Synthetic Dataset

To investigate the robustness of the proposed method, dif-
ferent SNRs from 20 to 40 dB were added into the synthetic
experiment.

Experiments were conducted with the datasets of 0-, 20-,
and 40-dB noise, respectively. The adaptive moment estimation
(Adam) [52] optimizer was adopted, and the initial learning
rate was set as 1× 10−3. The number of training epochs was
set as 500. The initial values of we1 and we2 were set as 0.7
and 0.3, the initial values of wd1 and wd2 were set as 0.8
and 0.2, λ was set as 1× 10−7, and γ was set as 1× 10−5.
Fig. 4 shows the quantitative results obtained using the synthetic
dataset under different SNR values in terms of the RMSE and
mean SAD. Deep learning-based unmixing methods typically
achieve better unmixing results than traditional methods such
as SMACC. This is because the powerful fitting and learning
capabilities of deep learning methods enable the network to
better learn image features and obtain more accurate unmixing
results. Compared with the existing typical and state-of-the-art
approaches, the proposed SSANU-Net achieved the best RMSE
and mean SAD results, demonstrating its robustness and ability
to more accurately extract endmember and abundance results.

C. Experiment With the Samson Dataset

For the dataset, the adaptive moment estimation (Adam)
Adam optimizer was used. In extreme cases, a large learning rate
may lead to fluctuations in the model accuracy during training,
and a small learning rate may result in an inability of model
fitting. In this study, the optimal initial learning rate was set as
1× 10−2. The number of training epochs was assigned as 500.

Appropriate initial values of we1, we2, wd1, and wd2 will
make the model converge more easily. Through experimenta-
tion, the optimal values in Samson dataset were determined to
be 0.01, 0.99, 0.9, and 0.1, respectively.

The values of λ and γ can control the intensities of different
loss functions. It is deduced that λ=1× 10−5 and γ=1× 10−5

lead to the best results in the Samson dataset.
Fig. 5 and Table III show the quantitative results and abun-

dance plots of the Samson dataset using the proposed method
and comparative methods. As observed, the proposed method
obtained the best results, in terms of both RMSE and mean SAD,
which demonstrated the effectiveness of the proposed network.
Indeed, as shown in Table III, the unmixing method based on
deep learning obtained the smallest RMSE results. Additionally,
3DCNN-var, which is similar to the proposed model in that it
integrates the spatial–spectral features of hyperspectral images
and the linear and nonlinear effects of photons, also obtained a
high unmixing accuracy. However, the proposed method adopts
a two-stream network structure that better learned the spatial–
spectral features of the hyperspectral images and obtained the
highest unmixing accuracy. Fig. 6 shows a comparison of the
endmember spectra and ground truth values extracted with dif-
ferent methods. Although SUnCNN obtained the best results for
the tree endmember spectra, the proposed network performed
best overall in endmember spectra precision.

D. Experimental With the Jasper Ridge Dataset

In the experiment, the Adam optimizer was used, and the
initial learning rate was set as 1× 10−3. The number of training
epochs was as to 500. The initial values of we1 and we2 were
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Fig. 5. Abundances of water, tree, and soil in the Samson dataset obtained by different methods.

assigned as 0.6 and 0.4, respectively, the initial values of wd1

and wd2 were assigned as 0.9 and 0.1, respectively, λ was set as
1× 10−7, and γ was set as 1× 10−5.

These hyperparameters were determined as the optimal values
through experimentation. Table IV quantifies the experimental
results of the proposed method and other comparative meth-
ods on Jasper Ridge dataset; the corresponding abundances
are shown in Fig. 7. Theoretically, the differences in spectral

features between trees and soils are relatively pronounced, so
the unmixing of these two ground features should be relatively
easy. However, the SADs of tree and soil obtained by most
existing methods are relatively high (see Table IV). As shown in
Fig. 7, the tree and soil abundances extracted by the existing
methods also exhibited some confusion, possibly due to the
complexity of the scene. The scene contains areas where soil and
trees are mixed together, so there may be nonlinear scattering,
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Fig. 6. Endmembers extracted by different methods and practical endmembers in the Samson dataset (“true” represents the measured endmember spectra and
“abu” represents the modeled endmember spectra).

TABLE IV
UNMIXING OF THE JASPER RIDGE DATASET WITH THE BEST RESULTS HIGHLIGHTED IN BOLD

which results in the failure for most of the existing methods
to obtain good unmixing performances. The proposed method,
due to its comprehensive consideration of spatial–spectral and
linear–nonlinear scattering factors, can distinguish well between
mixed trees and soils, which is further demonstrated in the
ablation study in Section III-D. Fig. 8 shows the endmember
spectra extracted by different methods and the ground-truth

values. Overall, the proposed network achieved the best results
in terms of both RMSE and mean SAD, which demonstrated its
effectiveness.

In summary, because the proposed SSANU-Net can better
learn the nonlinear components in spectral mixing and fully ex-
ploit the spatial and spectral features of the image, it achieved the
best unmixing performance in the aforementioned experiments.
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Fig. 7. Abundances of water, trees, soil, and roads in the Jasper Ridge dataset extracted by different methods.

E. Experiment With the Urban Dataset

In the experiment, the Adam optimizer was used, and the
initial learning rate was set as 1× 10−4. The number of training
epochs was set as 500. The initial values of we1 and we2 were
assigned as 0.7 and 0.3, respectively, the initial values of wd1

and wd2 were assigned as 0.8 and 0.2, respectively, λ was set
as 1× 10−7, and γ was set as 1× 10−5. These hyperparameters

were determined as the optimal values through experimentation.
The Urban dataset has a larger scale and more complex environ-
ment compared to the previous two real datasets. Table V quan-
tifies the experimental results of the proposed method and the
comparative methods on the Urban dataset; the corresponding
abundances are shown in Fig. 9. The environment of the Urban
dataset is complex and the spectral characteristics of different
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Fig. 8. Endmembers extracted by different methods and practical endmembers in the Jasper Ridge dataset (“true” denotes the measured endmember spectra and
“abu” denotes the modeled endmember spectra).

TABLE V
UNMIXING OF THE URBAN DATASET WITH THE BEST RESULTS HIGHLIGHTED IN BOLD

endmembers can be quite similar, which makes the HU task
more difficult. The traditional HU methods such as SMACC
were almost completely unable to obtain correct abundance and
endmember spectral results. Furthermore, HU methods based
on traditional 2DCNNs, such as CyCU-net and SUnCNN, were
unable to effectively learn the spatial–spectral features of the
image, making it difficult to distinguish among easily confused
endmembers, such as “tree” and “grass.” The SSANU-Net

method achieved good results for difficult-to-distinguish end-
members like “roof.” This demonstrates the effectiveness of the
proposed method in real complex scenes and also confirms its
enormous potential for practical applications. Fig. 10 shows
the endmember spectra extracted by different methods and the
ground truth values. Overall, the proposed network achieved
the best results in terms of both RMSE and mean SAD, which
demonstrated its effectiveness.
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Fig. 9. Abundances of asphalt, tree, grass, and roof in the Urban dataset extracted by different methods.

F. Ablation Study

The proposed SSANU-Net model contains one spatial–
spectral encoder and one linear–nonlinear decoder, which in-
tegrate the spatial–spectral features of hyperspectral images and
the linear and nonlinear scattering of photons, thus it achieved
better separating of the mixed pixels in the three real datasets
and the synthetic dataset. To verify the effect of the network
module on the unmixing results, we conducted ablation tests
on the Samson dataset and Jasper Ridge dataset. The unmixing

performances of the different modules in the SSANU-Net are
summarized in Tables VI and VII.

As shown in Tables VI and VII, the best unmixing perfor-
mance was achieved by the proposed SSANU-Net, which has
all four modules. As shown in Table VI, the spectral module had
the greatest impact on the unmixing performance of the Samson
database, which was due to the simplicity of the data scene, the
independent distribution of ground features, and the significant
differences among the spectral features of water bodies, trees,
and soils.
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Fig. 10. Endmembers extracted by different methods and practical endmembers in the Urban dataset (“true” denotes the measured endmember spectra and “abu”
denotes the modeled endmember spectra).

As shown in Table VII, the nonlinear module contributed
much on the unmixing performance of the Jasper Ridge dataset.
This was in line with our previous hypothesis that, when the
scene is complex and trees and soil are heavily mixed, there
is a certain degree of nonlinear scattering, which explained
why the proposed method outperformed the compared methods.
Moreover, the spatial module had greater contribution than the
spectral module on the unmixing performance of the Jasper
Ridge dataset. This is because the spectral features of land covers
in the Jasper Ridge dataset present certain similarities, such as
the soil and roads. Consequently, the unmixing performance is
less effective when relying solely on spectral information.

The results of the ablation study on both datasets further
demonstrated the effectiveness of the proposed SSANU-Net for
mixed pixel decomposition problems in practical scenarios.

IV. DISCUSSION

A. Assessment of theUnmixing Method

In this section, we aim to utilize the proposed SSANU-Net
for spectral unmixing on some complex real-world scenarios,
such as minerals, and evaluate the metrics of the unmixing
methods. The HSI used was the well-known AVIRIS Cuprite
with a size of 250 × 190 pixels in size and had 188 bands
after removing the bands affected by the water vapor and low
SNR [53]. This scene is quite complicated and contains multiple
minerals. Based on the studies of [30] and [22], we selected 12
mineral end members. The endmember spectra and abundance
maps extracted by the proposed SSANU-Net are shown in
Fig. 11. The result demonstrated the potential application of
the proposed SSANU-Net network in highly complex scenes.
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Fig. 11. Estimated endmembers (in orange) along with the references from the USGS library (in green) and their corresponding abundance maps obtained
from the Cuprite mineral scene by the proposed SSANU-Net. The endmembers are labeled as follows. (a) Alunite. (b) Buddingtonite. (c) Chalcedony. (d) Desert
Vanish. (e) Dumortierite. (f) Kaolin/SmectKLF506. (g) Kaolin/Smect H89-FR-5. (h) Kaolinite KGa-1 (wxyl). (i) Kaolinite KGa-2 (pxyl). (j) Montmorillonite.
(k) Muscovite. (l) Nontronite.

Fig. 12. Loss function curve for the Samson dataset. The sum to one loss and
sparse loss were both weighted by hyperparameters λ and γ to balance their
intensities.

TABLE VI
ABLATION TEST ON THE SAMSON DATASET

TABLE VII
ABLATION TEST ON THE JASPER RIDGE DATASET

Additionally, we have found that some methods excel in
endmember spectral extraction but exhibit relatively poor per-
formance in abundance extraction (see Figs. 5 and 6). We believe
that the appearance of this phenomenon is due to the existence of
spectral variability, which results in the ground-truth endmember
spectra provided by the dataset may not be able to reflect the
comprehensive spectral characteristics of the objects. Therefore,
excessively pure endmembers may not necessarily yield better
abundance results. Hence, a single metric cannot fully explain
the effectiveness of a method.

Besides, we believe that in practical unmixing tasks, abun-
dance is more crucial than endmember spectra. Endmember
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Fig. 13. Abundance maps of the Samson dataset using different abundance
constraints (“Softmax” denotes the abundance with Softmax function and “Sum
to one loss” denotes the abundance of the proposed method).

spectra can be obtained through field measurements and similar
means, whereas obtaining accurate abundance information is
relatively more challenging. In consequence, we consider met-
rics like RMSE for assessing abundances and the visual repre-
sentation of abundance maps to be more important than the SAD
metric, which evaluates endmember spectra. And across multi-
ple datasets, considering various metrics, the proposed method
undoubtedly emerges as the optimal approach. Specifically, it
outperforms all the compared methods in terms of extracting
abundances.

B. Contribution of the Loss Function

As shown in (16), the loss function of the proposed SSAUN-
net consists of three components: the reconstruction loss, the
sparse loss, and the sum to one loss function. The learning curves
of the multiple loss functions and the overall loss function on
the Samson dataset are shown in Fig. 12. Compared to the sum-
to-one loss, the sparse loss had more difficulty in converging.
Therefore, it is necessary to appropriately increase the strength
of the sparse loss.

In this study, the sum to one loss and the ReLU function were
used instead of the Softmax function to satisfy the ANC and
ASC of abundance. To investigate the performance of different
abundance constraints, the Softmax function was adopted for
comparison. Fig. 13 shows the abundances when these two
strategies were used on the Samson dataset. Compared with the
Softmax function, the proposed method yielded more discrete
and significant abundance results. This was because when the
input values were small, the variation in the Softmax function
output was small (see Fig. 14) and the loss function could not
be effectively updated, which led to a slower convergence in
the model and increased the training difficulty. Additionally, the
Softmax function greatly compresses the input value distribution,

Fig. 14. Output of Softmax function with an input value range of [−10, 10].

TABLE VIII
COMPUTATIONAL COST OF ALL DEEP LEARNING METHODS ON DIFFERENT

DATASETS IN TERMS OF FLOPS

making it difficult to obtain a sparse abundance matrix using the
Softmax function as the abundance constraint.

C. Computation Cost

We evaluated the computational cost of the proposed method
based on floating point operations (FLOPs) on the Samson
and Urban datasets. The results are shown in Table VIII. The
computational cost of the proposed method mainly depends on
the size of the dataset and the number of bands. Overall, the
computational cost of the proposed method could be considered
acceptable.

D. Applicability

Hyperspectral images have both spatial and spectral features,
and because real land surfaces are often complex, there is both
linear and nonlinear scattering of photons in the imaging process.
The existing HU algorithms often rely on deep learning networks
to learn in isolation, and do not take full advantage of the inherent
properties of hyperspectral images. In this study, we developed
a novel AE network that adopts a two-stream network to obtain
the abundance learned from the original image features using a
two-stream encoder for spatial–spectral features, and then, trans-
forms the obtained abundance map into hyperspectral images
using a two-stream decoder for linear–nonlinear interactions
of photons to simulate the photon scattering process. Addi-
tionally, this study introduces learnable parameters as weights
for the weighted fusion of spatial–spectral features and linear–
nonlinear photon scattering components, respectively, which is
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more suitable for spectral unmixing under practical scenarios.
The aforementioned mechanism enables the proposed method
to achieve good unmixing performance in complex scenes, such
as the Urban dataset, where there is a high level of photon
nonlinear scattering and different land cover categories with
similar spectral characteristics. This undoubtedly contributes to
the further practical applications of the proposed method.

V. CONCLUSION

This article presents an autoencoder-based self-supervised
HU network SSANU-Net. The proposed model uses a two-
stream spatial–spectral network as the encoder, a two-stream
linear–nonlinear network as the decoder, and learnable param-
eters as weights for the adaptive weighted fusion of spatial–
spectral features and linear–nonlinear scattering components.
Compared with conventional self-supervised HU methods, the
proposed method is superior in terms of network structure and
can better learn spatial–spectral features from hyperspectral
images and linear–nonlinear photon scattering component under
simulated scenarios. Experiments were conducted on four real
hyperspectral datasets and a comparative study was performed
between the proposed SSANU-Net and four typical and state-
of-the-art HU methods. As indicated, the proposed method
achieved the best RMSE and mean SAD, especially for complex
environments (e.g., where vegetation and soil were mixed).
Additionally, the noise robustness of the proposed method was
verified with the synthetic datasets under different SNRs.

To the best of our knowledge, this is the first study to apply
the idea of a two-stream network to HU analysis. The results
demonstrated the strong potential of using two-stream networks
in learning hyperspectral spatial–spectral features and simulat-
ing the linear–nonlinear scattering of photons, which can be
useful in further practical applications of HU analysis. To further
improve the performance of the proposed study, future work will
integrate the attention mechanism into the network.
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