9448

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Hybrid-Driven High-Resolution Prestack
Seismic Inversion

Jian Zhang ¥, Xiaoyan Zhao

Abstract—Prestack seismic inversion is considered among the
most frequently utilized techniques for reservoir characterization.
However, the resolution of the inverted parameters, such as P-,
S-wave velocity, and density, is low due to the limited bandwidth
and side-lobe interference of the seismic wavelet. To address this
issue, a hybrid two-step strategy that combines data-driven and
model-driven methods is proposed to enable higher resolution and
accuracy of the inverted results. We first construct a three-layer
fully connected network to implement the mapping of seismic data
to reflection coefficients. The method does not require exact seismic
wavelet to be known and intensive human-computer interaction. It
estimates reflectivity based on the extracted features from training
data, which gives more accurate results compared with traditional
sparse inversion methods. Then, the model-driven method (i.e., am-
plitude variation with offset/angle inversion method) is adopted to
reconstruct P-wave velocity, S-wave velocity, and density from the
estimated reflection coefficients. The performance of the hybrid-
driven strategy is checked using synthetic model and real data.
The results indicate that the proposed method provides more ac-
curate and higher resolution inversion results for seismic reservoir
characterization.

Index Terms—Data-driven, model-driven, prestack inversion,
reservoir characterization.

I. INTRODUCTION

HE accuracy of reservoir characterization usually relies
T on the analysis of subsurface attributes (e.g., velocity,
density, and impedance). Amplitude-variation-with-offset/angle
inversion is a frequent methodology to obtain velocity and
density from recorded seismogram [1], [2], [3], [4]. Due to the
advantage of low cost, the convolutional model is still the most
widely used method in the oil or gas industry, i.e., the seismic
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record is represented by convolving the reflection coefficient
with seismic wavelet [5]. The relationship between the elastic
parameters and the reflection coefficient can be characterized
by the Zoeppritz equation [6]. However, the nonlinearity of
the equation leads to some difficulties in applications such as
interpretation and inversion [7]. Therefore, in the past decades,
many scholars have developed various linear approximations
[8], [9]. Although reflection coefficients provide important in-
formation on subsurface parameters, the band-limited wavelet
and observation noise increase the difficulty of predicting elastic
parameters using observed seismic data.

Improving the resolution of inversion results has long been
a focus and difficult area of research in reservoir characteriza-
tion. Stochastic inversion and sparsely constrained deterministic
inversion are the most commonly used methods to recover
high-resolution results from seismic data. Stochastic inversion
methods can produce high resolution inversion results, however,
the expensive computational costs limit their use in practice [2],
[10],[11],[12]. Deterministic inversion methods based on sparse
constraints are widely adopted in practical applications as an
alternative to provide high-resolution inversion results due to the
low cost. The sparse constraints including Cauchy regulariza-
tion, L; norm regularization, and differential Laplace regulariza-
tion are often integrated into inversion algorithm to reconstruct
high-resolution elastic parameters directly from measured data
[13], [14], [15], [16]. However, it is clear from the logging
data that the true subsurface parameter is continuous and not
sparse-spike [17]. Besides, it is difficult to remove the bandwidth
limitation effects of the wavelet when calculating elastic parame-
ters directly from seismic data. Well-bore-dependent reflectivity
analysis shows that the main strata units are associated with
sparse reflection coefficients [18]. Moreover, as shown by the
exact Zoeppritz equation and its approximations, the elastic
parameter is directly related to the reflection coefficient.

The sparse-spike deconvolution technique reconstructs the
reflection coefficients by attempting to circumvent the defects
of seismic wavelet on the recorded seismograms [19], [20], [21].
Least square (LS) algorithms with L; norm regularization are
widely used to recover sparse results [22], [23]. However, the
method has demanding requirements for the seismic wavelet,
i.e., a small deviation between the input wavelet and the actual
wavelet will lead to a large deviation between the prediction and
the actual value. Besides, the method requires extensive human-
computer interaction for the adjustment of hyper-parameters to
obtain the best prediction results. These problems greatly limit
the application of the method in practice and make it more
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difficult to apply. As computational power and its corresponding
algorithms continue to improve, data-driven methods, including
machine learning or deep learning, are being implemented suc-
cessfully in diverse fields, especially computer vision and image
processing [24]. Data-driven methods are also widely used in
certain geosciences, such as denoising [25], [26], [27], seismic
inversion [28], [29], [30], resolution enhancement [31], fault
detection [32], lithology prediction [33], [34], [35], and horizon
picking [36]. The method deals with inverse problems by learn-
ing and mining valid information from massive training datasets
based on statistical technologies. However, data-driven seismic
inversion is difficult as there are such a limited amount of known
wells. In contrast, the reflection coefficients can be represented
using random sequences, so it is easy to construct training data.
In addition, once the network training is completed, its prediction
takes much less time than those by the LS-based approach.

In this article, we develop a hybrid-driven inversion strategy to
improve the estimation of P-, S-wave velocity, and density. The
data-driven method (i.e., fully connected neural network-FCN)
is first performed to reconstruct the reflectivity from recorded
seismograms. Then, a model-driven inversion algorithm based
on the Aki-Richard formula is adopted to calculate elastic pa-
rameters from the reconstructed reflectivity. The combination
of these two methods overcomes, to some extent, the drawbacks
when either method is used alone. We demonstrate the advan-
tages of the proposed algorithm by implementing it on synthetic
data sets and a field case. The results demonstrate that the
proposed approach provides more accurate and higher resolution
inversion results than the conventional seismic inversion.

II. METHOD
A. Reflectivity Inversion

To date, the convolutional model is still the most frequently
used method in the oil and gas business, i.e., the seismogram is
obtained by convolving the reflection coefficient with seismic
wavelet. Using the matrix notation, the angle gather can be
denoted as follows:

d(@b) ZWF(91)+G(9l), 1=1,2,---,n ()

where d(6;) denotes the seismogram associated with the iy,
angle of incidence ;, W denotes the wavelet convolutional ma-
trix, r(6; ) denotes the reflectivity associated with the i, angle of
incidence 0;, e(6;) denotes the random noise in the observation,
and n denotes the number of angles. The objective of reflectivity
inversion is to reconstruct the reflection coefficients r(6;) for
given seismic data d(6;). However, the inversion is usually
ill-posed due to the negative effects (e.g., limited bandwidth and
side-lobe disturbances) of seismic wavelet W and noise e(6;).

B. Data-Driven Algorithm

Deep neural network (DNN), as a data-driven approach, is
effective for solving the inverse problem. The method deals with
inverse problems by learning and mining valid information from
massive training datasets using a human-like brain neuronal
behavior. For data-driven reflectivity inversion (DDRI), some
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Fig. 1. Schematic representation of the adopted neural network framework.
The input consist of a tensor of size 31 x 1. The corresponding output is actual
reflection coefficient of size 1 x 1. The intermediate rectangles indicate the key
layers of the network.

samples of the reflection coefficients r (i.e., labels) and the
measured seismic records d (i.e., inputs) are offered to obtain a
mapping function, which is then used to implement the converter
of seismic data to reflection coefficients. The objective function
of DDRI is expressed as follows:

J =|Ir - Ge(d)l3 @

where Gg represents the mapping function that converts the
seismic data d into reflection coefficients r, and © represents
the ensemble of parameters including weights and biases that
need to be optimized during the training process. There are
two key factors to consider for a data-driven approach to
be successful. One is the network framework and the other is
the training dataset.

A DNN usually has an input layer and an output layer with
multiple hidden layers in between. In this article, we build a
reliable DNN framework through a trial-and-error strategy. By
adjusting the number of network layers and the corresponding
number of neurons, the relative optimal network is obtained
by considering the balance between cost and performance. The
network is called a fully connected neural network (FCN) and
contains three fully connected layers except for the input and
output layers. Fig. 1 shows the details of network architecture
used for reflectivity inversion. The samples of input consist of
a tensor of size 31 x 1, the size of which is variable in terms
of the dominant frequency of seismic data. The choice of size
will be explained in more detail during the construction of the
training data. The three fully connected layers have 200, 100,
and 50 neuron units, respectively. The output is the reflectivity
value of dimension 1 x 1. There is a dropout layer behind each
fully connected layer to prevent overfitting. After each layer
(except for the last one), we use the tanh activation function.
Since the reflectivity inversion is a regression problem, the
adaptive moment estimation (ADAM) method is employed to
minimize the mean square error (MSE) between the predicted
values and the labels in order to obtain optimal network pa-
rameters ©. We set the batch size and epochs to 16 and 1000,
respectively. During the training process, 16.7% of the input
datasets are utilized as the validation datasets.
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An effective training dataset is another important factor in the
success of data-driven approaches. One can use any existing or
synthetic dataset as a training dataset for data-driven methods, if
these training datasets are well-representative of the distribution
of the observed data. In this article, a total of 5000 reflectivity
models are generated randomly. In each reflectivity model, there
are three reflectors with different amplitudes and positions. A
possible reflectivity model is shown on the right in Fig. 2, i.e., the
output of the training. Then, the corresponding seismic record
is obtained by convolving with the zero-phase Ricker wavelet.
The central frequency of wavelet for the synthetic dataset is
26-34 Hz. For field data sets, different seismic wavelets are
obtained using Hampson—Russell software (HRS). Meanwhile,
different degrees of Gaussian white noise are mixed to obtain
the training input (the left of Fig. 2). A sampling window of a
specific size (31 points with 2 ms intervals) is used to split the
training input (the left of Fig. 2) to form the small patches (red
dots in the left of Fig. 2), thus obtaining the input to the network.
The output of the network corresponding to a small patch is the
reflectivity (the right of Fig. 2) at its center. A small patch and its
corresponding reflectivity form a training pair. By scanning the
sampling window in turn, we can generate many training pairs
(Fig. 2). Since the minimum central frequency of the wavelet
in our experiments is 26 Hz, the small patch obtained with a
sampling window of 31 points (62 ms >40 ms) is sufficient to
characterize a complete wavelet.

Compared with data-driven algorithms, the objective function
of model-driven reflectivity inversion (MDRI) is expressed as
follows:

J = |d — Wr|[3 + A[[r]], 3)
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where || - [|3, || - ||; represent Ly norm and L; norm regular-
ization, respectively. The Lo norm leads to stable and smooth
solutions. However, the L1 norm facilitates sparse solutions as
opposed to the Ly norm. A is a non-negative regularization
parameter that trade-off the data matching and sparsity of the
inversion results. As can be seen from (3), the model-driven
inversion method requires known seismic wavelet W and ap-
propriate parameter A. However, both the seismic wavelet W and
the regularization parameter A are difficult to be to be accurately
obtained in practice.

C. Single-Step Model-Driven Inversion (SSMI) for Three
Parameters

The reflection coefficient is related to the properties of the
subsurface material (e.g., Vp, Vs, and density). Under the weak
contrast assumption, the dependence of the reflection coefficient
on the elastic parameters can be expressed as follows [8]:

AVs

0)=a(0)— +b(0)—=— 0)——. 4
1) =)L O T O @
And,
1 Vs? sec?d
a(6) 2( —4‘7—;025111 9),()(9)— 5
7 o2
c(f) = — 4;—;2sin20,

Vp=(Vp1 +Vp2)/2, Vs = (Vs1 + Vsa)/2,
p=(p1+p2)/2,
AVp=Vps —Vpy, AVs=Vsy —Vsy, Ap=ps — p1,
0= (01+6)/2 3)

where 0, 05 represent the angle of incidence and transmission
of P-wave, respectively. V1, Ve, Vsi, Vsa, p1, pa represent
the P-wave velocity, S-wave velocity, and density in the two
layers above and below the interface.

Based on Taylor’s formula, the single-interface reflection
coefficient in (4) can be rewritten as follows:

r(t,6) = a(6) L n(p(t)) + b(6) 2 n(Vp(t))

ot ot
0
+ c(&)a In(Vs(t)). (6)
In matrix notation, (6) can be expressed as follows:
r=FDm =Gm @)

where F is a sparse matrix that contains a(6), b(6), ¢(6). D
represents the derivative matrix.

The objective function based on model-driven to predict the
elastic parameters is expressed as follows:

1
J =5 (lld = WGm|3 + A|jm — mol[3) ®)

where mg represents the low-frequency model of the three
parameters from well-logs data. However, the negative effects
(e.g., limited bandwidth and side-lobe disturbances) of
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wavelet W reduces the resolution and accuracy of the inverted
elastic parameters. A is a non-negative regularization parameter.

Combining DDRI and SSMI, the objective function for pre-
dicting the elastic parameters based on the hybrid-driven strategy
(HDS) is expressed as follows:

1
J = 5(lIGe(d) = Gml[5 + A[jm — mo3) 9

where Gg represents the trained DNN used to eliminate the neg-
ative effects (e.g., limited bandwidth and side-lobe disturbances)
of seismic wavelet. X is a non-negative regularization parameter.

The derivatives of the objective function (9) with respect to
the model parameters are obtained

97— GT(Go(d) ~ Gm) + A(m — mo).

Solving for the minima of the objective function is equiva-
lent to making its derivative equal to zero, which leads to the
following equation:

m = (GTG - AI) (GTGe(d) — Amyg)

(10)

(1)

where I represents the identity matrix.

III. APPLICATION

In this subsection, we validate the proposed methodology
using synthetic model and actual data. In the subsequent exper-
iments, the DDRI is referred to as DDRI, the MDRI is referred
to as MDRI. The single-step model-driven seismic inversion is
denoted as SSMI, and the proposed hybrid-driven strategy for
elastic parameter prediction is denoted as HDS. The method
of taking DDRI-based results as input is noted as DHDS and
the method of taking MDRI-based results as input is noted
as MHDS. We first demonstrate the advantages of the DDRI
approach over MDRI using synthetic data, and then the results
obtained based on DDRI are used for the prediction of elastic
parameters. Finally, the proposed methodology is implemented
on actual data to further verify the effectiveness of the proposed
method.

A. Synthetic Data Example

To prove the validity of the proposed method, we first gen-
erate a single trace reflectivity model containing four reflectors
as well as two wedge models. Our experiments focus on the
signal-to-noise ratio (SNR), the error of seismic wavelet, and the
tuning thickness to demonstrate the advantages of DDRI over
MDRI. The single trace reflectivity model is shown in Fig. 3
and is used to verify the effect of noise and wavelet errors on
the performance of the methods. Fig. 4(a) shows the effect of
noise on the inversion results of DDRI and MDRI. As the SNR
increases, the performance of the inversion results of the two
methods gradually increases, and when the SNR reaches 10, the
performance of the two methods is comparable. However, the
performance of DDRI is significantly better than that of MDRI at
low SNRs. Fig. 4(b) shows the effect of wavelet on the inversion
results of DDRI and MDRI. It can be seen that the traditional
reflectivity inversion method (i.e., MDRI) relies heavily on
the accuracy of wavelet, whereas the data-driven method (i.e.,
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Fig. 5. Tests of wedge models with one horizontal layer. (a) Two reflectors

of wedge model with positive values. (b) Two reflectors of wedge model, one
positive and one negative. (c) and (d) Synthetic seismic records are obtained
by convolving a given source wavelet and the reflectivity shown in (a) and (b),
respectively. (e) and (f) Inverted reflectivity using MDRI, respectively. (g) and
(h) Inverted reflectivity using DDRI, respectively.

DDRI) is less affected by wavelet. In this context, the relative
error refers to the difference of the dominant-frequency between
the wavelet used and the true wavelet.

Furthermore, the wedge model is used to test the predictability
of both methods for thin layers. Fig. 5 shows inverted reflectivity
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using DDRI and MDRI. In this example, two wedge models
are included, namely, two reflection coefficients that are both
positive [Fig. 5(a)] and two reflection coefficients that are one
positive and one negative [Fig. 5(b)]. Also, we have added a
horizontal layer to the wedge model to analyze the effect of
the wedge model on it during the inversion. A zeros-phase
Ricker wavelet with a central frequency of 30 Hz is used as
the source. The synthetic seismic records [Fig. 5(c) and (d)] are
then obtained by convolving the reflectivity [Fig. 5(a) and (b)]
with the known source.

The inverted results of reflectivity using MDRI are shown
in Fig. 5(e) and (f). In Fig. 5(e), the thin layer (red box) is not
well-identified. In Fig. 5(f), the inverted reflectivity gives a good
indication of the thin layer, but the position is wrong. And, it
affects the inversion results of the overlying layers. The inverted
results [Fig. 5(g) and (h)] of reflectivity using DDRI show better
accuracy than those of MDRI. For further comparison, we show
the peak amplitudes of the different inversion results, as shown in
Fig. 6. Fig. 6(a) shows the comparison of the peak amplitudes for
the even reflectivity pairs, while a zoomed-in view is displayed
in Fig. 6(b). Fig. 6(c) displays the comparison of the peak
amplitudes for the odd reflectivity pairs, while a zoomed-in view
is shown in Fig. 6(d). Overall, the inversion results of DDRI are
in better agreement with the true values than those of MDRI.

The BP model [Fig. 7(a)—(c)] is adopted as an example for
inversion of elastic parameters. The corresponding 5°, 15°, and
25° profiles (SNR = 5) are shown in Fig. 7(d)—(f). The wavelet
used here is the same as the one used in the previous example.
The low frequency models of Vp, Vs, and density are displayed
in Fig. 8(a)—(c).

Fig. 8(d)—(f) display the inverted Vp, Vs, and density of
SSMI. Although the inverted results of SSMI reveal the general
architecture of the strata, the layer boundaries as well as the thin
layers are blurred. The inversion results of MHDS [Fig. 9(a)—(c)]
and DHDS [Fig. 9(d)—(f)] show higher resolution compared
with the results of SSMI, but the results of DHDS are optimal.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Amplitude

Tlme(s)

Vp (m/s)
6000
03 4500
3000
1500
Vs (m/s)
3500
03 2600
1700
Rho (kg/m®) / Amplitude
2850 \ 1
; 0.5
03 2550 R e/ A
N Aviard e 0
2250 S Ao
0.5
1950 g -1

150 250 50 150 250 350
Trace number Trace number

(©) ()

Tlme(s)

Tlme(s)

Fig.7. BP models of (a) P-wave velocity, (b) S-wave velocity, and (c) density.
And, the angle gathers from the BP model with SNR = 5 of (d) 5°, (e) 15°, and
(f) 25°.

Vp (m/s)

6000
(a)
0.1 .
03 A
B A
0.5
(b)

0.1

Time(s)

Time(s)

0.3

Time(s)

B | - 2250

0.5

50 150 250 350 50 150 250 350

Trace number Trace number

(¢) (O]

Fig. 8. Low frequency models of (a) Vp, (b) Vs, and (c) density. And, the
inverted results derived using SSMI. (d) Vp, (e) Vs, and (f) density.

This is consistent with the conclusion of our previous tests,
i.e., the DDRI obtains better results compared with MDRI. The
root-mean-square error (RMSE) is introduced to quantitatively
assess the results. Table I shows the RMSE between the true and
the inverted results of the three methodologies for the full BP
model. In agreement with our previously obtained conclusions,
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TABLE I
RMSE BETWEEN THE TRUE AND THE INVERTED RESULTS OBTAINED FROM
SSMI, MHDS, AND DHDS FOR THE FULL BP MODEL (SNR = 5)

Vp Vs Rho

SSMI 272.44 157.29 44.32

MHDS 179.27 103.50 36.30
DHDS 79.19 45.72 9.30

the HDS methods produce better inversion results, but DHDS
is optimal. The magnitudes of RMSE for Vp, Vs, and density
varies depending on the range of values they take.

In order to compare the differences between the inverted of
the three methods in further detail, a comparative view of a
single-trace is shown in Fig. 10. The results of SSMI (the orange
dotted lines with solid dot) are agreement with the tendency
of the true values, but the parameter values are incorrectly
estimated within some layers and the boundaries of the layers are
not well-characterized. The results of MHDS (the blue dashed
lines) deviate from the true values at some locations due to
the limited accuracy of the reflection coefficients obtained from
MDRI, but match the true values more closely and characterize
the layer boundaries more accurately. The inversion results (the
green dashed-dotted lines) of DHDS match the reference model
better than the other two methods, resulting in a more reliable
inversion profile [Fig. 9(d)—(f)]. In addition, a comparison of the
RMSE of the results recorded in Table II shows that DHDS has
the smallest RMSE.

B. Real Data Example

Encouraged by the synthesized experimental numerical re-
sults, a trial is conducted utilizing field data from north-western
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MHDS, and DHDS. (b) Inverted Vs using SSMI, MHDS, and DHDS. (c) Inverted
density using SSMI, MHDS, and DHDS.

TABLE II
RMSE BETWEEN THE TRUE AND THE INVERTED RESULTS OBTAINED FROM
SSMI, MHDS, AND DHDS FOR THE SINGLE-TRACE DATA

Vp Vs Rho
SSMI 308.33 178.01 49.87
MHDS 139.67 80.64 29.48
DHDS 73.55 42.46 7.52

China. The selected crossing-well section comprises 401 traces
and 200 samples sampled at an interval of 0.002 s and the
target zone is defined from 1.7 to 2.1 s. Fig. 11(a)—(c) show the
partially stacked profiles, denoted as small, middle, and large
angle gathers with angle from 0°-10°, 10°-20°, and 20°-30°,
respectively. Frequency spectrum analysis shows that the dom-
inant frequency of the seismic data in the study area is about
25 Hz and the effective frequency band is 5-55 Hz. Although
this real data has been preprocessed using de-noising, static
correction, and amplitude compensation, the partially stacked
profiles still have noise as well as limited resolution due to the
complexity of the surface undulations. One well is available in
the selected crossing-well section to validate the trustworthiness
of the inversion. The well-location (blue line) is also projected in
Fig. 11. The low frequency initial models of Vp, Vs, and density
(Fig. 12) are built from the real data using the initial model
building module of the HRS. From the angle gathers (Fig. 11)
and the initial models (Fig. 12), it can be seen that there is a
significant change around 1.8 s.

Fig. 13(a)—(c) display the inverted results of Vp, Vs, and
density using SSMI. It can be seen that the resolution is improved
compared with the initial model, which can reveal stratigraphic
changes. However, the resolution is still very low at the top as
well as in the middle, and the layer boundaries are blurred, which
does not reflect the details of the subsurface stratigraphy and
makes the explanation that follows difficult. Figs. 14 and 15 dis-
play the inverted Vp, Vs, and density using MHDS and DHDS,
respectively. From the inversion results (Figs. 14 and 15), we
can clearly notice that the hybrid-driven strategy can remarkably
boost the resolution of the inversion. Compared with the results
(Fig. 15) of the DHDS, however, the limitations of MDRI lead
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Fig. 11.
The blue line marks the position of the well-logs.
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Real case test (a) small-angle gathers in the range 0°-10°, (b) middle-angle gathers in the range 10°-20°, and (c) large-angle gathers in the range 20°-30°.
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Fig. 12. Initial models of (a) Vp, (b) Vs, and (c) density.
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Fig. 13.  Inverted results of SSMI (a) Vp, (b) Vs, and (c) density.

to the inverted Vp, Vs, and density of MHDS (Fig. 14) with
low resolution and poor stability. This is in accordance with the
summary drawn from the synthetic tests. Furthermore, we depict
a comparison (Fig. 16) between the well-logs and the inversion
results. The red solid lines represent the reference values, the
black solid lines with solid dot represent the initial model,
the orange dotted lines with solid dot represent the inverted
results of SSMI, the blue dashed lines represent the inverted
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results of MHDS, the green dashed-dotted lines represent the
inverted results of DHDS. The inversion results of all three
methods can roughly match the well-logs data, but the inversion
results of DHDS are the best match to the well-logs data. Table III
lists the RMSE between the blind well-logs and the inverted Vp,
Vs, and density of SSMI, MHDS, and DHDS. It is clear that the
RMSEs between the reference values and the inversion results of
DHDS are the smallest. Overall, a sequence of experiments has
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Fig. 14.  Inverted results of MHDS (a) Vp, (b) Vs, and (c) density.
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Fig. 15. Inverted results of DHDS (a) Vp, (b) Vs, and (c) density.
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Fig. 16. Comparison of inversion results with true data at the well-site. (a)

Inverted Vp using SSMI, MHDS, and DHDS. (b) Inverted Vs using SSMI,
MHDS, and DHDS. (c) Inverted density using SSMI, MHDS, and DHDS.

TABLE III
RMSE BETWEEN THE TRUE AND THE INVERTED RESULTS OBTAINED FROM
SSMI, MHDS, AND DHDS FOR THE BLIND WELL-LOGS DATA

Vp Vs Rho
SSMI 731.35 234.71 82.95
MHDS 649.72 205.59 72.32
DHDS 582.56 185.43 64.48

qualitatively and quantitatively demonstrated that DHDS has the
best performance.

IV. DISCUSSION

Poor robustness of the 2D profiles derived from combin-
ing trace-by-trace inversion results in the presence of noise
(e.g., noisy or lateral discontinuity), which can prevent many
details from being revealed and make interpretation difficult.
Transforming the reflectivity to elastic parameters will amplify
the lateral discontinuity linked to the different precisions of
the reflectivity for different traces. In this article, we perform the
inversion trace-by-trace, and the inverted results of HDS depend
heavily on the accuracy of the reflectivity. The more accurate
the predicted reflectivity, the more stable the predicted Vp, Vs,
and density will be. Although DHDS gives more stable results
than MHDS, it does not completely solve the problem of lateral
discontinuity. Multitrace inversion [37] and edge-preserving
smoothing [38] may be good options for further improving the
transversal continuity of the inversion while maintaining the
resolution of the inversion results.

The stochastic inversion method is another good strategy to
enhance the resolution of the inverted results. Figs. 17 and 18
show the inversion results using the stochastic inversion method
(i.e., MCMC) and the proposed method, respectively. In the
noise-free case, both methods obtain similar results and match
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Fig. 17.  Inverted results obtained using MCMC.
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Fig. 18.  Inverted results obtained using the proposed method.

well with the true. However, the proposed method is mini-
mally influenced by wavelet compared with the MCMC method.
Furthermore, the time cost difference between MCMC (1.5 s)
and the proposed (18 ms) is significant. This work provides
a good alternative for the prediction of high-resolution elastic
parameters.

V. CONCLUSION

The proposed method combines the advantages of data-driven
and model-driven methods to produce high-resolution and sta-
ble inversion results of elastic parameters. We demonstrate the
proposed methodology on synthetic model and field data. SSMI

Impedance (km/s*g/cms)
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is adversely affected by wavelet, and the inversion results have
low resolution, and the layer boundaries are blurred, which
makes subsequent interpretation difficult. The limitations of the
MDRI (e.g., strong wavelet dependence) lead to poor stability
and low accuracy of the reflectivity, the inverted elastic param-
eters (i.e., Vp, Vs, and density) of MHDS thus become less
accurate and unstable. The DDRI method obtains more reliable
reflectivity, allowing the reconstructed elastic parameters of
DHDS to match better with the true model. A series of both
qualitative and quantitative comparing the inversion results of
the SSMI, MHDS, and DHDS show that DHDS outperforms
SSMI and MHDS. The inversion results of DHDS provide a
more reliable evidence for the subsequent interpretation.
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