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Extraction of Pig Farms From GaoFen Satellite
Images Based on Deep Learning

Jielin Guan , Le Li , Zurui Ao , Kefei Zhao , Yaozhong Pan , and Weifeng Ma

Abstract—Accurate information on the spatial distribution and
area of pig farms is essential for pig breeding monitoring, pork pro-
duction estimation, and environmental governance of pig breeding.
Governmental regulatory departments mostly rely on field surveys
to obtain pig farm information, and there are few studies that focus
on the extraction of pig farm information using remote sensing data.
As the buildings on pig farms are small-scale and have scattered
distributions, pig farm identification using high-resolution data
and deep learning algorithms is worth exploring. In this article,
a method of identifying pig farms with a deep learning algorithm
and multiple sources of GaoFen (GF) image data was proposed.
The experiments were conducted with different combinations of
multiple sources of GaoFen satellite images (GF-2, GF-5, and GF-7)
to determine the suitability of these images for pig farm extraction.
The results illustrated that the average overall accuracy of the pig
farm identification was above 80% using all of the different combi-
nations of GaoFen sourced images. The spatial detail information
provided by the GF-2 satellite improved the pig farm identification
accuracy more than did the spectral detail information provided
by the hyperspectral data from the GF-5 satellite and the digital
surface model from the GF-7 satellite. The deep learning algorithm
performed well in identifying pig farms with a greater number of
patches and a higher aggregation index, and had lower accuracy
in extracting pig farms distribution with a high edge density and
patch density.

Index Terms—Building extraction, deep learning, pig farms,
satellite images.

I. INTRODUCTION

CHINA is the world’s largest pork producer and consumer
[1]. The pig industry is an important part of the mod-

ern agricultural system and leads other industries in animal
husbandry in China [2]. With the development of modern an-
imal husbandry, pig breeding has changed from a small-scale
(individual households) to an intensive and large-scale (large
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farms) industry [3], [4]. These changes have included the move-
ment away from free-range breeding and the transfer of pigs
from pens to farms [5], [6]. Large-scale breeding has improved
the quality of the industrial supply, but it has introduced monitor-
ing challenges. Accurate information on the spatial distribution
and area of pig farms is essential for pig breeding monitoring,
pork production estimation, and environmental governance of
pig breeding [7], [8]. These data provide support for govern-
mental decision making for pig breeding management from the
perspective of spatial information.

In the past, governmental regulatory departments mostly re-
lied on field surveys to obtain pig farm information [9]. Although
the pig breeding industry is moving toward aggregation, the
spatial distribution of pig farms is still scattered [10]. Thus,
field surveys on pig farms are time consuming and labor in-
tensive. After African swine fever and other epidemics, on-site
investigations have been increasingly restricted by farm own-
ers due to breeding safety considerations, making pig breed-
ing investigations increasingly difficult. With the development
of satellite remote sensing technology, high-resolution remote
sensing images have been widely used to provide large-scale and
rapid Earth observations [11]. High-resolution remote sensing
images are widely used in the extraction of different types of
land uses [12]. Pig farms include functional buildings where
humans raise piglets and grow them into adult pigs [13]. In the
past two decades, the rapid development of computer technology
and satellite remote sensing technology has made tremendous
progress in building extraction-related research [14].

Traditional building extraction methods mainly rely on the
artificial creation of building features, including spectral, shape,
and texture features [15], [16], [17], [18]. There are some
spectral indices specifically proposed for architectural features,
such as the normalized building index (NDBI) [19], index based
built-up index (IBI) [20], and morphological building index
(MBI) [21]. Then, with the help of machine learning classifiers,
automatic identification of buildings can be achieved. The main
machine learning classifiers used are decision trees [22], random
forests [23], and support vector machines, [24], [25] and with
the continuous improvement of classifiers, the efficiency and
accuracy of building extraction have been greatly improved.
However, machine learning methods still require manual partic-
ipation in feature design and cannot adaptively extract the most
relevant features for classification tasks. Artificially designed
features rely on expert knowledge, and there are certain defects
in their robustness and generalization ability. When the imaging
conditions and shooting angles of the images change, these
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features become unreliable and accurate good classification
results cannot be obtained.

Deep learning is making great progress in the computer vision
field in recent years and is widely used in the classification,
recognition and retrieval of remote sensing images [26], [27],
[28]. The advantage of deep learning is that, on the one hand,
it can automatically learn different levels of features by just
training the dataset, without having to manually define the
features for the task [29]. On the other hand, deep learning
has better generalization ability and can satisfy other tasks by
fine tuning the original neural network without redesigning the
features for different datasets, and it has better noise immunity
[30], [31]. Deep learning is more accurate in image recogni-
tion than human interpretation, which means that automatically
identifying pig farms from remotely sensed images can achieve
reasonable results based on deep learning [32]. Despite previous
researchers have utilized deep learning in land use classification
and surface object detection, there is still relatively limited
researches specifically focused on deep learning methods for
the identification of functional buildings, such as pig farms
[33], [34], [35]. Unlike typical functional buildings, the pig
farming facilities are usually arranged in a linear and array-like
distribution in order to accommodate pig breeding in large scale,
and they are always built with simpler roofing materials than
residential buildings [36], [37]. The spectral differences of these
distinct morphology and material features in remote sensing
imagery make it worthwhile to explore deep learning networks
and their applicability for pig farm identification.

Many deep learning networks have been developed, among
which the convolutional neural network (CNN) is one of the
most widely used network in the field of remote sensing. CNNs
have strong image processing capabilities and are superior in
extracting high-level and distinguishing features. For building
extraction, there are many networks designed specifically based
on CNN structures, such as fully convolutional networks (FCNs)
[38], deep CNNs (DCNNs) [39], deep deconvolutional neural
networks (DeCNNs) [40], and object-oriented CNNs (OCNNs)
[41]. All these methods validate the effectiveness of the CNN in
building extraction. However, CNNs mainly utilize high-level
feature maps for pixel classification and pay less attention to
low-level features containing rich detail, which is detrimental
to the extraction of small buildings. To solve this problem,
semantic segmentation methods based on excellent networks
have been promoted, such as U-Net, ENet, and SegNet [42],
[43], [44]. These networks retain both rich spatial information
and fine detail and are more suitable for small building targets
in remote sensing images with complex backgrounds. Among
deep learning networks, U-Net has a simple network structure
and is highly resistant to interference [45], [46], [47]. As a
representative of lightweight deep learning networks, it has been
applied in objects identification with small training set and has
a good detection ability in short amount of time [48], [49].
However, its performance in pig farm extraction has rarely been
investigated.

In the past decade, China has independently launched
and operated various GaoFen satellites, such as the GF-
1/GF-2 multispectral satellites, GF-3 radar satellite, GF-5

hyperspectral satellite, and GF-7 satellite, to fulfil ground mon-
itoring needs. Among these, the GF-2 satellite provides high-
resolution images, the GF-5 satellite offers high-spectral res-
olution images, and the GF-7 satellite provides stereo image
pairs that can be used to extract DSM. The combined use of
these GaoFen data sources creates new opportunities for farm
extraction, and it is imperative to study their effectiveness in this
context. Thus, in this study, the U-Net model is used to extract
pig farms and obtain a spatial distribution map of pig farms on
a regional scale. Based on this, the main objectives of this study
are as follows:

1) validate the effectiveness of deep learning for pig farm
extraction;

2) compare the accuracy of Gaofen multispectral images,
hyperspectral images, and the DSM combination strategy
on pig farm extraction;

3) compare the identification accuracy of pig farms with
different morphological characteristics.

II. STUDY AREA AND MATERIALS

A. Study Area Description

We selected four counties in Shandong as study area. Shan-
dong is on the North China Plain, with a flat terrain and a
temperate monsoon climate. It is the fourth largest pig breeding
province and an important province for pig transfer in China,
bearing the heavy burden of pork supply in northern China
[50]. The number of registered live pigs in Shandong is more
than 28 million, and more than 50 million pigs are slaughtered
annually, with pork production reaching more than 4 million
tons, accounting for 7% of the national pork production and 4%
of the world’s pork production each year.1 Studying the spatial
distribution of pig farms in Shandong is of strategic importance
to promote stable and healthy development of the pig industry
in China. In recent years, the industrial organization of pig
farming in Shandong has been optimized, and the pig industry
has been strategically adjusted. At present, Shandong focuses
on the development of large-scale pig farming, and it contains
many large-scale pig farms. In addition, Shandong is in northern
China, which is less affected by clouds and rain throughout the
year, thus there is sufficient remote sensing earth observation
data from this region. In this article, the pig breeding scale in
Shandong Province was divided into four classes according to
the 2020 pig breeding capacity of each county in the province,
from which four counties were selected as the study area. These
four counties were Jiyang County (116°52′-117°27′E, 36°41′-
37°15′N), with an annual pig breeding capacity <200000;
Zouping County (117°18′-117°57′E, 36°41′-37°08′N), with an
annual pig breeding capacity <20 0000 and >500 000; Laixi
County (120°12′-120°40′E, 36°34′-37°09′N), with an annual
pig breeding capacity <1 000 000 and >500 000; and Cao
County (115°08′-115°53′E, 34°33′-35°03′N), with an annual pig
breeding capacity >1 000 000.

1[Online]. Available: http://www.stats.gov.cn/sj/ndsj/

http://www.stats.gov.cn/sj/ndsj/
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Fig. 1. Distribution of pig farms in the study area.

B. Field Survey Data

A field survey was carried out from December 2021 to May
2022 to collect geographical location information for pig farm
identification. A total of 134 pig farms were included in the
field survey. Among them, 39 are medium-sized farms and 95
are large farms. The medium-sized pig farms refers to the pig
farms with annual pig rearing capacity greater than 500 and
less than 5000, while the large-sized pig farms refers to the pig
farms with annual pig rearing capacity greater than 5000. Here,
annual rearing capacity equals the sum of year-end pig stock
and annual pig slaughtering capacity. Among all the collected
pig farms, there were 80 pig farms in Laixi, 37 pig farms in
Zouping, 9 pig farms in Jiyang, and 8 pig farms in Caoxian (see
Fig. 1).

C. Remote Sensing Data Sources and Preprocessing

The GaoFen family is a series of Chinese remote sensing
satellites developed by the China High-definition Earth Obser-
vation System (CHEOS) for civilian purposes. Three GaoFen
satellites, including GF-2 (with multispectral images), GF-5
(with hyperspectral images), and GF-7 (with stereo images),
were selected (see Table I). The GF-2 satellite can provide
observation products with a spatial resolution of better than
1 m, which is configured with four multispectral 3.2-m bands
and one panchromatic 0.8-m band. It has an efficient revisit
frequency of five days [51]. The GF-5 satellite carries six pay-
loads: two hyperspectral/multispectral payloads for terrestrial
Earth observation and four atmospheric observation payloads
[52]. The product generated from the Advanced Hyperspectral
Imager (AHSI) has a 330-channel imaging spectrometer with
a spectral range of 0.4–2.5 µm, covering visible to shortwave
infrared bands. The spatial resolution of its products is 30 m, and
the swath width is 60 km [53]. The revisit frequency is 51 days.
GF-7 is a high-resolution stereo mapping satellite equipped
with double-line cameras (DLCs) that are capable of capturing
backwards images of 0.65-m resolutions and forwards images of
0.8-m resolutions, which can be processed to provide elevation
information. The revisit frequency of stereo mapping observa-
tions is 60 days. The level 1A GF-2 and GF-7 products and

TABLE I
SPECIFICATIONS FOR GF-2, GF-5, AND GF-7

TABLE II
DETAILS OF THE EMPLOYED GF-2, GF-5, AND GF-7 SATELLITE DATA

the level 1 GF-5 product with cloud coverage of less than 10%
were downloaded from the China Resource Satellite Application
Center (http://www.cresda.com/CN/).

The available data included 37 scenes from GF-2, 7 scenes
from GF-5, and 25 scenes from GF-7 (see Table II). The GF satel-
lite data volume covering the pig farms in the study area is shown

http://www.cresda.com/CN/
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Fig. 2. Datasets used in this study. (a) Coverage of multiple GaoFen satellite
data source. (b) Example of pig farm.

in Fig. 2. Ortho-rectification and fusion with Gram Schmidt
(GS) fusion were implemented on GF-2 MUX images and GF-2
PAN images. The GF-2 products were resampled to 0.8 m.
Redundant bands, including noisy bands due to atmospheric
water absorption (band: 192–203; 246–267; and 314–316), over-
lapping bands between visible and near-infrared (VNIR) and
shortwave infrared (SWIR) bands (band: 151–154) and bands
with low signal-to-noise ratios (bands: 325–330), were removed
from the GF-5 AHSI. Furthermore, the remaining 284 bands
were preprocessed with radiometric calibration and atmospheric
correction in the Fast Line-of-Sight Atmospheric Analysis of
Spectral Hypercubes model (FLAASH), and dimensionality
reduction was performed using the principal component analysis
(PCA) method. A digital surface model (DSM) with a resolution
of 0.8 m was extracted from GF-7 forwards and backwards
images. Finally, both the hyperspectral image from GF-5 and
the DSM from GF-7 were registered with GF-2 as a reference.

III. MATERIALS AND METHODS

A. Sample Selection

In this study, the ground-truthed binary maps of the pig farms
were manually labeled on GF-2, GF-5, and GF-7 by visual
interpretation to create deep learning samples. The labels on the
samples included the area of the pig farms and their ancillary
facilities. If parts of the pig farms were covered by branches
and cloud shadows, the boundaries of those pig farms were
determined by the visible area on orthophoto images. Since there
were only 62 pig farms that could be simultaneously covered
by GF-2, GF-5, and GF-7, to ensure the comparability of the

TABLE III
EXPERIMENTAL DESIGN WITH GF-2, GF-5, AND GF-7

results of different subsequent experimental schemes, only those
62 pig farms were used to create the samples. All the samples
were clipped into 224∗224 pixel images, with a moving window
step of 112 pixels. The samples were randomly divided into
training and test sets at a 9:1 ratio for tenfold cross validation.
Flipping and rotation were used to expand the training sample
volume. Each training sample was rotated by 90°, 180°, and 270°
and flipped vertically and horizontally. Finally, 13 122 training
samples in total were generated from the three GaoFen satellites
with 224∗224 pixel sizes.

B. Experimental Design and Operational Process

To verify the applicability of multiple sources of GaoFen
satellite images for pig farm extraction, we designed our exper-
iments with different combinations of GaoFen satellite image
sources, including three different satellites, GF-2, GF-5, and
GF-7. The four groups of experiments are shown in Table III,
with multispectral data from GF-2 in group A, hyperspectral
data from GF-5 in group B, a combination of multispectral data
from GF-2 and hyperspectral data from GF-5 in group C, and a
combination of multispectral data from GF-2 and stereo images
from GF-7 in group D. To exclude the effect of the spatial
resolution on identification accuracy, the GF-5 hyperspectral
data were fused with the GF-2 panchromatic images during data
preprocessing, and the fused GF-5 spatial resolution was 0.8 m.

C. Pig Farm Extraction Based on the U-Net Model

The U-Net deep learning network was trained on the pig farm
features in the GaoFen image series, and the trained U-Net was
implemented to identify the spatial distribution of pig farms. The
trained U-Net was designed to include an encoder that extracted
semantic information and a decoder that was symmetrical to
the encoder. They were implemented in the downsampling and
upsampling processes, respectively. The detailed architecture
of U-Net is shown in Fig. 3. The structure of the encoder is
typical of a CNN, composed of stacked convolutional and max
pooling layers designed to extract maps of the features, such as
the boundaries, positions, colors, and shapes, from the pig farm
images. By comparison, the decoder upsamples and deconvo-
lutes the feature maps several times, which can help restore the
feature images to their original size. In the upsampling path in
the decoder, the decoder fuses with the corresponding feature
map in the encoder with skip connections, providing much of
the low-level information for upsampling or deconvolution and
recovering the details of the image.
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Fig. 3. Workflow for pig farm extraction.

After several training and testing validations, the key initial
parameters were set with an initial learning rate of 5 × 10-
4, a learning rate decay rate of 0.8, a step size of 20 and a
gradient update weight momentum of 0.9. To avoid overfitting,
the weight decay was set to 1 × 10-6. The model optimizer
algorithm was set to Adam. The epoch was set to 200. The same
model structure and the same parameters were used in the four
groups of experiments.

D. Deep Learning Model Evaluation

Four indicators, including precision, recall, overall accuracy
(OA), and the F1-score, were used to evaluate the extraction
results for each experimental group. Precision was defined as
the ratio of the correctly extracted pig farms in all the positive
pig farm samples, while recall was defined as the ratio of the
correctly extracted pig farms in all the positive pig farm samples
in the ground surveys. The OA indicated the accuracy of the
extraction results being consistent with the ground surveys. The
F1-score was a harmonic average of the two evaluation methods
and could be used to comprehensively evaluate the commission
and omission errors. These indicators were defined as follows:

Precision = TP/ (TP + FP) (1)

Recall = TP/ (TP + FN) (2)

OA = (TP + TN) / (TP +TN + FP + FN) (3)

F1− score = 2× Recall × Precision/ (Recall + Precision) .
(4)

Here, TP refers to the number of pixels in the pig farms that
were correctly extracted, TN refers to the number of pixels
without pig farms that were correctly extracted, FP denotes
the number of nonpig farm pixels that were misclassified as
buildings, and FN denotes the number of pig farm pixels that
were not identified.

IV. RESULTS

A. Extraction Accuracy With Different Combinations of
GaoFen Satellite Data

The pig farms were identified with considerable accuracy in
experiments A, C, and D, while the accuracy of experiment B
was relatively lower (see Fig. 4). The average OA using GF-2,

Fig. 4. Comparison of pig farm extraction results of four experimental groups.
(a) GF-2 image. (b) Ground survey. (c) Group A. (d) Group B. (e) Group C. (f)
Group D. Green indicates true positive (TP), red indicates false positive (FP),
and blue indicates false negative (FN) results. TP denotes correctly classified
pixels of pig farms. FP and FN denote incorrectly classified pixels of pig farms
and incorrectly classified pixels of nonpig farms, respectively.

the combination of GF-2 and GF-7, the combination of GF-2
and GF-5, and GF-5 were 94.97%, 94.49%, 93.6%, and 88.37%,
respectively (see Fig. 5).

Generally, most pixels within the farms could be identified
based on GF-2 multispectral images, especially the pixels lo-
cated at the boundary of the farms, which could also be extracted.
These features made the results look like regular patches even
though there were still some pixels that were identified as
non-pig farm pixels. More pig farm pixels were misidentified
based on GF-5 hyperspectral satellite images. The results based
on the combination of GF-2 and GF-5 were better than the results
using only GF-5 data, but there was still some misidentification
using that combination than with the use of only GF-2 data. The
results based on the combination of GF-2 and GF-7 had clearer
boundaries, more regular patches, and less salt-and-pepper noise
caused by misidentification.

The pixels containing small-scale pig farms had a higher
possibility of being undetected. The pixels containing large-
scale farms could be extracted in more regular patches with
evident boundaries, although a small proportion of them were
not identified.

For each experimental group, the average OA for ten times
was above 80%. The recall, OA and F1-score were consistent
between these four groups (see Fig. 5). In general, identifi-
cation was highly accurate using GF-2 multispectral images
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Fig. 5. Boxplots of precision, recall, OA, and F1-score in the tenfold cross
validation for four experimental groups. The solid black lines indicate the
medians.

independently, with precision, recall, and overall accuracy val-
ues of 90.96%, 85.22%, and 94.97%, respectively. Compared
with group A, the identifications in group C and group D were
improved by 0.4% and 0.1%, respectively, with the increase in
precision, with the ancillary support of hyperspectral images
sourced from GF-5 and DSM sourced from GF-7. The results
of using the combination of GF-2 and GF-5 achieved a higher
average precision with a higher stability and a lower variance,
even though the recall result showed a relatively lower average
than did the use of the GF-2 and GF-7 combination. This indi-
cated that the combination of GF-2 and GF-7 presented a slight
advantage in identifying more farm pixels correctly. There was
more omission error with a recall of 59.91% when identification
was based on hyperspectral images from only GF-5.

B. Extraction Accuracy of Pig Farms With Different
Morphological Characteristics

The pig farms examined in this study exhibited high levels of
aggregation and density. To describe the morphological charac-
teristics of the pig farms, six landscape pattern indices, number
of patches (NP), aggregation index (AI), edge density (ED),
splitting index (SPLIT), patch density (PD), and length-to-width
ratio (LWR), were selected. Specifically, the NP of 70% of pig
farms was less than 15, and the AI of all pig farms was between
94 and 99. Pig farms with an ED of greater than 200 and a PD
of greater than 100 each accounted for more than 80% of all pig
farms. The distribution of SPLIT was relatively scattered. For
all pig farms, the average LWR of their patches was greater than
1, and for 70% of them, the ratios were greater than 3, indicating
that the majority of the pig farms had an elongated rectangular
shape (see Fig. 6).

Overall, deep learning had a higher accuracy in extracting pig
farms with large NPs and a high AI, and a lower accuracy in

Fig. 6. Histogram of pig farm landscape pattern indices at the patch scale.

extracting pig farms with high ED and PD values (see Fig. 7).
The relationship between OA and morphological characteristics
indicated that the NP and the AI showed a relatively obviously
positive correlation with OA. The ED and PD were negatively
correlated with OA. There was a slight difference in the identi-
fication accuracy of farms with different SPLIT and LWR.

V. DISCUSSION

Four groups of experiments were designed to verify the effec-
tiveness of GaoFen images for pig farm extraction. Among these
experiments, the error was mainly caused by omission, while
commission errors occasionally appeared. Some information
was found by comparing the pig farm identification accuracies
of different combinations of GF images.

1) The spatial detail information provided by high spatial
resolution data play a more important role in improving the
pig farm identification accuracy than did the spectral detail
information provided by the hyperspectral data. Pig farm
extraction based on high-resolution multispectral data
could obtain identification results with the best precision.
The recall, accuracy, and F1-score were higher and more
stable using these data than those of the other three groups,
with fewer false detections and missed detections.

2) Although the GF-5 hyperspectral data provided more
spectral information of pig farms than did the GF-2 mul-
tispectral data, its lower spatial resolution constrained its
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Fig. 7. Percentile plots of pig farm landscape pattern indices and scatter plots
of the overall accuracy of pig farm extraction.

ability to identify small architectural structures. Because
lower spatial resolution data resulted in the poor identi-
fication of small buildings, large areas of small buildings
were missed. The four accuracy evaluation indicators per-
formed the worst with GF-5 data.

3) The registration error caused by spatially different resolu-
tions between GF-5 and GF-2 was the reason for the lower
accuracy when using GF-5. The identification accuracy
based on the combination of GF-2 multispectral data and
GF-5 hyperspectral data was higher than that based on
GF-5 data alone but lower than that based on GF-2 data
alone.

4) The DSM derived from GF-7 helped improve pig farm
identification by reducing omission errors. When the
building roofs were obscured by shadows or decorated
with other materials, this led to abnormal spectra on
GF-2 data. Thus, combining GF-2 and GF-7 provides an
effective solution to achieve better results, although the
registration errors of GF-2 and GF-7 cannot be ignored.

In addition to the registration errors caused by the different
data sources, the temporal differences between the different data
sources can also introduce certain errors in pig farm identifica-
tion using deep learning algorithms. Because different sensors
have different revisit cycles, it is difficult to obtain data from
different sources on the same dates at the same locations. Con-
sidering China’s statistical surveys on pig farming are conducted
once a year, efforts should still be made to ensure that a year is
not skipped in the acquisition of data from different sources,
even though pig farm buildings do not change much within a
year in general. If the government issues temporary restrictions

Fig. 8. Boxplots of precision, recall, OA, and F1-score in the tenfold cross
validation for four deep learning models.

or bans on pig farming in a particular year due to urban planning,
the time intervals between different data sources need to be
more frequent. To evaluate the effectiveness of different deep
learning networks on pig farm identification, Attention U-Net,
Enet, and SegNet were applied to GF-2 dataset for pig farm
identification [43], [44], [54]. Each experiment was repeated
ten times, and the results were compared with those of U-Net
(see Fig. 8). The comparison results on four evaluation met-
rics demonstrate the effectiveness of deep learning methods
on pig farm identification. The average OA for ten times with
Attention U-Net, Enet, and SegNet are all above 90% with
94.35%, 93.84%, and 91.57%, respectively, while that of U-Net
is 94.97%. The results also revealed that the network architecture
had impact on pig farm identification. The performance of U-Net
was slightly better than the other networks with significantly
faster computation speed. It may because our dataset is relatively
small compared to traditional computer vision datasets, which
may not fully reflect the differences between networks.

Although this study achieved considerable results in identify-
ing pig farms based on deep learning, it still has some limitations.
First, due to the scattered distribution of the pig farm samples,
sample collection is difficult, and the number of training samples
used in this study was less than that used for object recognition
in the computer vision field [55], [56]. Because of the small
sample size, tenfold cross validation was employed for accuracy
evaluation. In addition, the limited number of samples made it
difficult to fully cover various forms of pig farms and obtain
sufficiently representative samples. In future studies, collecting
more diverse samples from pig farms will improve the complete-
ness and representativeness of the samples. Second, whether
pig farms can be effectively distinguished from residential and
industrial areas is a subject that requires further experimentation
and exploration. In this study, there are no typically industrial
facilities or residential buildings around pig farms, because the
site selection for pig farms in China takes into consideration
environmental concerns such as the disposal of pig excrement
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and the spread of diseases. However, there are office buildings
near pig farming facilities, which are labeled and recognized
as nonfarms in this study. The results and accuracy evaluation
reflects that the methods proposed in this study can effectively
identify pig farms and other buildings. Third, although deep
learning networks have been shown to have good transferability,
the model in this study has not yet been applied to identify more
regions and small-scale pig farms. Fourth, techniques in the field
of machine learning, such as semisupervised [57], one-class
classification [58], and few-shot [59] learning techniques, may
be helpful to train the U-Net model with a small amount of
labelled data and a large amount of unlabeled data, which can
promote the generalization ability of the model.

Pig farms are generally composed of some elongated build-
ings, but the shape and distribution of the buildings can vary.
For large-scale pig farms, buildings are generally relatively large
and similar in appearance, with a large NP, high AI, and high
extraction accuracy. Small pig farms have smaller buildings
with inconsistent appearances. These pig farms generally have a
higher ED and patch density (PD) and a lower extraction accu-
racy. To improve pig farm identification, future research should
focus on small pig farms and develop identification methods that
account for the architectural characteristics of these farms.

At present, deep learning methods are being applied in various
fields related to pig farming, such as pig counting [60], pig
posture detection [61], and pig behavior recognition [62]. This
study focuses on the automatic extraction of spatial distribution
information on pig farms, which enriches the research on deep
learning in the field of pig farming and has significant impli-
cations for improving the management of pig farms and pork
production estimates.

VI. CONCLUSION

Accurate information on the spatial distribution and area of
pig farms is crucial for pig farming management, environmental
governance, and disease prevention and control. However, the
relevant governmental regulatory departments currently rely on
field surveys, which are not very efficient, and few studies have
focused on extracting spatial information on pig farms using
remote sensing data. This study proposed a method to under-
stand the spatial distribution of pig farms using the U-Net deep
learning model. A series of experiments were conducted based
on different GaoFen satellite image combinations to illustrate the
applicability of multisource GaoFen satellite images for pig farm
extraction and the impact of the morphological features of the
farms on their identification accuracy. The results demonstrated
that pig farms could be effectively identified by the U-Net model
using different combinations of GaoFen data, with an average
OA of over 80%. The high identification accuracy achieved
using GF-2 multispectral imagery indicated that high spatial
resolution data played an essential role in ensuring pig farm
identification accuracy. Hyperspectral information from GF-5
and DSM information from GF-7 helped improve pig farm
identification, with clearer boundaries, more regular patches,
less salt and pepper noise, and fewer missed detections, but
their lower spatial resolutions and registration errors may re-
strain their ability to identify small architectural structures. In
addition, the deep learning algorithm showed a higher accuracy

in extracting pig farms with a greater NP and a higher AI, and it
presented a lower accuracy in identifying pig farms with a higher
ED and higher PD. Although there are still some limitations to
address, for example, by improving the deep learning networks
model and enlarging the sample pool for various sizes of pig
farms, this study enriches the research on the use of deep learning
for pig farm identification and provides a scientific reference for
governmental decision-making on pig breeding management.

REFERENCES

[1] S. Shimokawa, “Sustainable meat consumption in China,” J. Integra-
tive Agriculture, vol. 14, no. 6, pp. 1023–1032, 2015, doi: 10.1016/
s2095-3119(14)60986-2.

[2] Y. N. He, X. G. Yang, J. Xia, L. Y. Zhao, and Y. X. Yang, “Consumption
of meat and dairy products in China: A review,” Proc. Nutr. Soc., vol. 75,
no. 3, pp. 385–391, Aug. 2016, doi: 10.1017/s0029665116000641.

[3] X. T. Zhou et al., “Emergence of African swine fever in China, 2018,”
Transboundary Emerg. Dis., vol. 65, no. 6, pp. 1482–1484, Dec. 2018,
doi: 10.1111/tbed.12989.

[4] E. Mighell and M. P. Ward, “African swine fever spread across Asia,
2018–2019,” Transboundary Emerg. Dis., vol. 68, no. 5, pp. 2722–2732,
Sep. 2021, doi: 10.1111/tbed.14039.

[5] X. H. Zhang et al., “Changing structure and sustainable development for
China’s hog sector,” Sustainability, vol. 9, no. 1, pp. 69–83, Jan. 2017,
doi: 10.3390/su9010069.

[6] M. X. Han, W. S. Yu, and F. Clora, “Boom and bust in China’s pig sector
during 2018-2021: Recent recovery from the ASF shocks and longer-term
sustainability considerations,” Sustainability, vol. 14, no. 11, Jun. 2022,
Art. no. 6784, doi: 10.3390/su14116784.

[7] F. Zhang and F. Wang, “Prediction of pork supply via the calcula-
tion of pig population based on population prediction model,” Int.
J. Agricultural Biol. Eng., vol. 13, no. 2, pp. 208–217, Mar. 2020,
doi: 10.25165/j.ijabe.20201302.5303.

[8] G. Machado, J. A. Galvis, F. P. N. Lopes, J. Voges, A. A. R. Medeiros, and
N. C. Cardenas, “Quantifying the dynamics of pig movements improves
targeted disease surveillance and control plans,” Transboundary Emerg.
Dis., vol. 68, no. 3, pp. 1663–1675, May 2021, doi: 10.1111/tbed.13841.

[9] M. Weiss, F. Jacob, and G. Duveiller, “Remote sensing for agricultural
applications: A meta-review,” Remote Sens. Environ., vol. 236, Jan. 2020,
Art. no. 111402, doi: 10.1016/j.rse.2019.111402.

[10] S. K. Lowder, J. Skoet, and T. Raney, “The number, size, and distribution of
farms, smallholder farms, and family farms worldwide,” World Develop.,
vol. 87, pp. 16–29, Nov. 2016, doi: 10.1016/j.worlddev.2015.10.041.

[11] R. P. Sishodia, R. L. Ray, and S. K. Singh, “Applications of remote
sensing in precision agriculture: A review,” Remote Sens., vol. 12, no. 19,
Oct. 2020, Art. no. 3136, doi: 10.3390/rs12193136.

[12] N. Zang, Y. Cao, Y. Wang, B. Huang, L. Zhang, and P. T. Mathiopoulos,
“Land-use mapping for high-spatial resolution remote sensing image via
deep learning: A review,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 14, pp. 5372–5391, 2021, doi: 10.1109/jstars.2021.3078631.

[13] C. Zheng, Y. Liu, B. Bluemling, A. P. J. Mol, and J. Chen, “Environ-
mental potentials of policy instruments to mitigate nutrient emissions in
Chinese livestock production,” Sci. Total Environ., vol. 502, pp. 149–156,
Jan. 2015, doi: 10.1016/j.scitotenv.2014.09.004.

[14] J. Li, X. Huang, L. Tu, T. Zhang, and L. Wang, “A review of building
detection from very high resolution optical remote sensing images,”
GIScience Remote Sens., vol. 59, no. 1, pp. 1199–1225, Dec. 2022,
doi: 10.1080/15481603.2022.2101727.

[15] A. K. Shackelford and C. H. Davis, “A combined fuzzy pixel-based and
object-based approach for classification of high-resolution multispectral
data over urban areas,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 10,
pp. 2354–2363, Oct. 2003, doi: 10.1109/tgrs.2003.815972.

[16] M. Pesaresi et al., “A global human settlement layer from optical HR/VHR
RS data: Concept and first results,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 6, no. 5, pp. 2102–2131, Oct. 2013, doi: 10.1109/js-
tars.2013.2271445.

[17] M. K. Firozjaei, A. Sedighi, M. Kiavarz, S. Qureshi, D. Haase, and S. K.
Alavipanah, “Automated built-up extraction index: A new technique for
mapping surface built-up areas using LANDSAT 8 OLI imagery,” Remote
Sens., vol. 11, no. 17, Sep. 2019, Art. no. 1966, doi: 10.3390/rs11171966.

[18] H. M. Rizeei, B. Pradhan, and M. A. Saharkhiz, “Urban object extraction
using Dempster Shafer feature-based image analysis from worldview-3
satellite imagery,” Int. J. Remote Sens., vol. 40, no. 3, pp. 1092–1119,
Feb. 2019, doi: 10.1080/01431161.2018.1524173.

https://dx.doi.org/10.1016/s2095-3119(14)60986-2.
https://dx.doi.org/10.1016/s2095-3119(14)60986-2.
https://dx.doi.org/10.1017/s0029665116000641.
https://dx.doi.org/10.1111/tbed.12989.
https://dx.doi.org/10.1111/tbed.14039.
https://dx.doi.org/10.3390/su9010069
https://dx.doi.org/10.3390/su14116784.
https://dx.doi.org/10.25165/j.ijabe.20201302.5303.
https://dx.doi.org/10.1111/tbed.13841.
https://dx.doi.org/10.1016/j.rse.2019.111402.
https://dx.doi.org/10.1016/j.worlddev.2015.10.041.
https://dx.doi.org/10.3390/rs12193136.
https://dx.doi.org/10.1109/jstars.2021.3078631.
https://dx.doi.org/10.1016/j.scitotenv.2014.09.004.
https://dx.doi.org/10.1080/15481603.2022.2101727.
https://dx.doi.org/10.1109/tgrs.2003.815972.
https://dx.doi.org/10.1109/jstars.2013.2271445.
https://dx.doi.org/10.1109/jstars.2013.2271445.
https://dx.doi.org/10.3390/rs11171966.
https://dx.doi.org/10.1080/01431161.2018.1524173.


9630 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

[19] A. Varshney, “Improved NDBI differencing algorithm for built-up re-
gions change detection from remote-sensing data: An automated ap-
proach,” Remote Sens. Lett., vol. 4, no. 5, pp. 504–512, May 2013,
doi: 10.1080/2150704x.2013.763297.

[20] H. Xu, “A new index for delineating built-up land features in satellite
imagery,” Int. J. Remote Sens., vol. 29, no. 14, pp. 4269–4276, 2008,
doi: 10.1080/01431160802039957.

[21] X. Huang and L. Zhang, “Morphological building/shadow index for build-
ing extraction from high-resolution imagery over urban areas,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 1, pp. 161–172,
Feb. 2012, doi: 10.1109/jstars.2011.2168195.

[22] J. Abellan and S. Moral, “Building classification trees using the total
uncertainty criterion,” Int. J. Intell. Syst., vol. 18, no. 12, pp. 1215–1225,
Dec. 2003, doi: org/10.1002/int.10143.

[23] J. Niemeyer, F. Rottensteiner, and U. Soergel, “Contextual classifica-
tion of lidar data and building object detection in urban areas,” IS-
PRS J. Photogrammetry Remote Sens., vol. 87, pp. 152–165, Jan. 2014,
doi: 10.1016/j.isprsjprs.2013.11.001.

[24] X. Huang and L. P. Zhang, “An SVM ensemble approach combining
spectral, structural, and semantic features for the classification of high-
resolution remotely sensed imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 51, no. 1, pp. 257–272, Jan. 2013, doi: 10.1109/tgrs.2012.2202912.

[25] M. Turker and D. Koc-San, “Building extraction from high-resolution
optical spaceborne images using the integration of support vector ma-
chine (SVM) classification, Hough transformation and perceptual group-
ing,” Int. J. Appl. Earth Observ. Geoinf., vol. 34, pp. 58–69, Feb. 2015,
doi: 10.1016/j.jag.2014.06.016.

[26] X. X. Zhu et al., “Deep learning in remote sensing,” IEEE
Geosci. Remote Sens. Mag., vol. 5, no. 4, pp. 8–36, Dec. 2017,
doi: 10.1109/mgrs.2017.2762307.

[27] A. Kamilaris and F. X. Prenafeta-Boldu, “A review of the use of convolu-
tional neural networks in agriculture,” J. Agricultural Sci., vol. 156, no. 3,
pp. 312–322, Apr. 2018, doi: 10.1017/s0021859618000436.

[28] J. Y. Li, X. Huang, and J. Y. Gong, “Deep neural network for remote-
sensing image interpretation: Status and perspectives,” Nat. Sci. Rev.,
vol. 6, no. 6, pp. 1082–1086, Nov. 2019, doi: 10.1093/nsr/nwz058.

[29] J. X. Gu et al., “Recent advances in convolutional neural
networks,” Pattern Recognit., vol. 77, pp. 354–377, May 2018,
doi: 10.1016/j.patcog.2017.10.013.

[30] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep
learning for computer vision: A brief review,” Comput. Intell. Neurosci.,
vol. 2018, pp. 1–13, Feb. 2018, doi: 10.1155/2018/7068349.

[31] G. Cheng, X. Xie, J. Han, L. Guo, and G.-S. Xia, “Remote sensing image
scene classification meets deep learning: Challenges, methods, bench-
marks, and opportunities,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 13, pp. 3735–3756, 2020, doi: 10.1109/jstars.2020.3005403.

[32] K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in Proc.
IEEE Int. Conf. Comput. Vis., 2015, pp. 1026–1034.

[33] J. Zhang, T. Fukuda, and N. Yabuki, “Development of a city-scale approach
for façade color measurement with building functional classification using
deep learning and street view images,” Int. Soc. Photogrammetry Remote
Sens. Int. J. Geo-Inf., vol. 10, no. 8, p. 551–571, 2021.

[34] Y. Xu, Z. He, X. Xie, Z. Xie, J. Luo, and H. Xie, “Building function
classification in Nanjing, China, using deep learning,” Trans. Geographic
Inf. Syst., vol. 26, no. 5, pp. 2145–2165, 2022.

[35] Y. Ma, S. Liu, G. Xue, and D. Gong, “Soft sensor with deep learning
for functional region detection in urban environments,” Sensors, vol. 20,
no. 12, pp. 33–48, 2020.

[36] Z. Bai, J. Zhao, Z. Wei, X. Jin, and L. Ma, “Socio-economic drivers of pig
production and their effects on achieving sustainable development goals
in China,” J. Integrative Environ. Sci., vol. 16, no. 1, pp. 141–155, 2019.

[37] H. Van de Weerd and S. Ison, “Providing effective environmental enrich-
ment to pigs: How far have we come?,” Animals, vol. 9, no. 5, p. 254–275,
2019.

[38] S. Shrestha and L. Vanneschi, “Improved fully convolutional network with
conditional random fields for building extraction,” Remote Sens., vol. 10,
no. 7, Jul. 2018, Art. no. 1135, doi: 10.3390/rs10071135.

[39] E. Maltezos, N. Doulamis, A. Doulamis, and C. Ioannidis, “Deep convo-
lutional neural networks for building extraction from orthoimages and
dense image matching point clouds,” J. Appl. Remote Sens., vol. 11,
pp. 042620–042620, Dec. 2017, doi: 10.1117/1.Jrs.11.042620.

[40] K. Men et al., “Deep deconvolutional neural network for target
segmentation of nasopharyngeal cancer in planning computed to-
mography images,” Front. Oncol., vol. 7, p. 315–323, Dec. 2017,
doi: 10.3389/fonc.2017.00315.

[41] C. Zhang et al., “An object-based convolutional neural network (OCNN)
for urban land use classification,” Remote Sens. Environ., vol. 216,
pp. 57–70, Oct. 2018, doi: 10.1016/j.rse.2018.06.034.

[42] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI 2015 (Lec-
ture Notes in Computer Science). Cham, Switzerland: Springer, 2015,
pp. 234–241.

[43] A. Paszke, A. Chaurasia, S. Kim, and E. J. Culurciello, “Enet: A deep
neural network architecture for real-time semantic segmentation,” p. 10,
Jun. 2016, arXiv: 1606.02147.

[44] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep convolu-
tional encoder-decoder architecture for image segmentation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017,
doi: 10.1109/tpami.2016.2644615.

[45] Z. Zhang, Q. Liu, and Y. Wang, “Road extraction by deep residual U-Net,”
IEEE Geosci. Remote Sens. Lett., vol. 15, no. 5, pp. 749–753, May 2018,
doi: 10.1109/lgrs.2018.2802944.

[46] Z. Q. Liu, Y. W. Cao, Y. Z. Wang, and W. Wang, “Computer vision-
based concrete crack detection using U-net fully convolutional net-
works,” Automat. Construction, vol. 104, pp. 129–139, Aug. 2019,
doi: 10.1016/j.autcon.2019.04.005.

[47] N. Ibtehaz and M. S. Rahman, “MultiResUNet : Rethinking the U-Net ar-
chitecture for multimodal biomedical image segmentation,” Neural Netw.,
vol. 121, pp. 74–87, Jan. 2020, doi: 10.1016/j.neunet.2019.08.025.

[48] Y. Zheng, Q. Shen, M. Wang, M. Yang, J. Huang, and C. Feng, “Se-
mantic segmentation sample augmentation based on simulated scene
generation-case study on dock extraction from high spatial resolu-
tion imagery,” Int. J. Remote Sens., vol. 42, no. 13, pp. 4961–4984,
2021.

[49] F. Liu and L. Wang, “UNet-based model for crack detection integrating
visual explanations,” Construction Building Mater., vol. 322, pp. 126–265,
2022.

[50] B. J. Yan, J. J. Yan, W. J. Shi, and Y. X. Li, “Study on the comprehensive
comparative advantages of pig production and development in China
based on geographic information system,” Clean Technol. Environ. Policy,
vol. 22, no. 1, pp. 105–117, Jan. 2020, doi: 10.1007/s10098-019-01772-3.

[51] D. Li, M. Wang, and J. Jiang, “China’s high-resolution optical remote sens-
ing satellites and their mapping applications,” Geo-Spatial Inf. Sci., vol. 24,
no. 1, pp. 85–94, Jan. 2021, doi: 10.1080/10095020.2020.1838957.

[52] Y.-N. Liu et al., “The advanced hyperspectral imager aboard China’s
GaoFen-5 satellite,” IEEE Geosci. Remote Sens. Mag., vol. 7, no. 4,
pp. 23–32, Dec. 2019, doi: 10.1109/mgrs.2019.2927687.

[53] Y. Sun et al., “GF-5 satellite: Overview and application prospects,” Space-
craft Recovery Remote Sens., vol. 39, no. 3, pp. 1–13, 2018.

[54] O. Oktay et al., “Attention U-net: Learning where to look for the pancreas,”
Apr. 2018, arXiv:1804.03999.

[55] I. Demir et al., “DeepGlobe 2018: A challenge to parse the earth through
satellite images,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. Workshops, 2018, pp. 172–181.

[56] S. Ji, S. Wei, and M. Lu, “Fully convolutional networks for multisource
building extraction from an open aerial and satellite imagery data set,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 574–586, Jan. 2019,
doi: 10.1109/tgrs.2018.2858817.

[57] D. H. Lee, “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks,” in Proc. Int. Conf.
Mach. Learn. Workshop: Challenges Representation Learn., 2013,
pp. 1–6.

[58] J. Munoz-Mari, F. Bovolo, L. Gomez-Chova, L. Bruzzone, and G. Camps-
Valls, “Semisupervised one-class support vector machines for classifica-
tion of remote sensing data,” IEEE Trans. Geosci. Remote Sens., vol. 48,
no. 8, pp. 3188–3197, Aug. 2010, doi: 10.1109/tgrs.2010.2045764.

[59] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” Assoc. Comput. Machinery
Comput. Surv., vol. 53, no. 3, pp. 1–34, Jun. 2020, doi: 10.1145/3386252.

[60] M. X. Tian, H. Guo, H. Chen, Q. Wang, C. J. Long, and Y. H. Ma, “Auto-
mated pig counting using deep learning,” Comput. Electron. Agriculture,
vol. 163, Aug. 2019, Art. no. 104840, doi: 10.1016/j.compag.2019.05.049.

[61] M. Riekert, A. Klein, F. Adrion, C. Hoffmann, and E. Gallmann, “Au-
tomatically detecting pig position and posture by 2D camera imaging
and deep learning,” Comput. Electron. Agriculture, vol. 174, Jul. 2020,
Art. no. 105391, doi: 10.1016/j.compag.2020.105391.

[62] A. Alameer, I. Kyriazakis, H. A. Dalton, A. L. Miller, and J. Bac-
ardit, “Automatic recognition of feeding and foraging behaviour in pigs
using deep learning,” Biosyst. Eng., vol. 197, pp. 91–104, Sep. 2020,
doi: 10.1016/j.biosystemseng.2020.06.013.

https://dx.doi.org/10.1080/2150704x.2013.763297.
https://dx.doi.org/10.1080/01431160802039957.
https://dx.doi.org/10.1109/jstars.2011.2168195.
https://dx.doi.org/org/10.1002/int.10143.
https://dx.doi.org/10.1016/j.isprsjprs.2013.11.001.
https://dx.doi.org/10.1109/tgrs.2012.2202912.
https://dx.doi.org/10.1016/j.jag.2014.06.016.
https://dx.doi.org/10.1109/mgrs.2017.2762307
https://dx.doi.org/10.1017/s0021859618000436
https://dx.doi.org/10.1093/nsr/nwz058
https://dx.doi.org/10.1016/j.patcog.2017.10.013
https://dx.doi.org/10.1155/2018/7068349
https://dx.doi.org/10.1109/jstars.2020.3005403
https://dx.doi.org/10.3390/rs10071135
https://dx.doi.org/10.1117/1.Jrs.11.042620
https://dx.doi.org/10.3389/fonc.2017.00315
https://dx.doi.org/10.1016/j.rse.2018.06.034
https://dx.doi.org/10.1109/tpami.2016.2644615
https://dx.doi.org/10.1109/lgrs.2018.2802944
https://dx.doi.org/10.1016/j.autcon.2019.04.005
https://dx.doi.org/10.1016/j.neunet.2019.08.025
https://dx.doi.org/10.1007/s10098-019-01772-3
https://dx.doi.org/10.1080/10095020.2020.1838957
https://dx.doi.org/10.1109/mgrs.2019.2927687
https://dx.doi.org/10.1109/tgrs.2018.2858817
https://dx.doi.org/10.1109/tgrs.2010.2045764
https://dx.doi.org/10.1145/3386252
https://dx.doi.org/10.1016/j.compag.2019.05.049
https://dx.doi.org/10.1016/j.compag.2020.105391
https://dx.doi.org/10.1016/j.biosystemseng.2020.06.013


GUAN et al.: EXTRACTION OF PIG FARMS FROM GAOFEN SATELLITE IMAGES BASED ON DEEP LEARNING 9631

Jielin Guan received the master’s degree in pub-
lic administration from the School of Management,
Guangdong University of Technology, Guangzhou,
China, in 2023.

Her research interests include remote sensing ap-
plication in agriculture and deep learning in remote
sensing images.

Le Li received the B.S. degree in sciences and tech-
niques of remote sensing from Wuhan University,
Wuhan, China, in 2007, and the Ph.D. degree in
cartography and geographic information system from
Beijing Normal University, Beijing, China, in 2012.

She is currently an Associate Professor with the
School of Management, Guangdong University of
Technology, Guangzhou, China. Her research inter-
ests include remote sensing application in agriculture
and land resource management, including deep learn-
ing in remote sensing images.

Zurui Ao received the M.S. and Ph.D. degrees in
cartography and geographical information systems
from Capital Normal University, Beijing, China, in
2014 and 2018, respectively.

He was a Postdoctoral Researcher with Sun Yat-sen
University, Guangzhou, China, from 2018 to 2021.
He is currently an Associate Researcher with the
Beidou Research Institute, Faculty of Engineering,
South China Normal University, Guangzhou. His re-
search interests include light detection and ranging
(LiDAR), deep learning in remote sensing images,

and spatiotemporal fusion.

Kefei Zhao received the B.S. degree in geography
information system from Henan University, Kaifeng,
China, in 2011, the M.S. degree in cartography and
geography information system from Sun Yat-sen Uni-
versity, Guangzhou, China, in 2013, and the Ph.D.
degree in cartography and geography information
system from Sun Yat-sen University, Guangzhou,
China, in 2017.

He is currently a Lecturer with School of Man-
agement, Guangdong University of Technology,
Guangzhou, China. His research interests include

application of remote sensing and land use modeling.

Yaozhong Pan received the M.S. and the Ph.D. de-
grees in physical geography from Beijing Normal
University, Beijing, China, in 1994 and 1997, respec-
tively.

He is currently a Professor with Beijing Normal
University. His main research interests include deep
learning in remote sensing images, including remote
sensing applications in agriculture statistics and dis-
aster risk assessment.

Weifeng Ma received the Ph.D. degree in cartography
and geographic information system from the School
of Resources, Beijing Normal University, Beijing,
China, in 2011.

He is currently the Director of Smart Agricul-
ture Division, PIESAT Information Technology Com-
pany, Ltd., Beijing. His main research interests in-
clude agricultural remote sensing, including remote
sensing monitoring of agricultural resources and agri-
cultural production process.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


