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Self-Supervised Interactive Dual-Stream Network
for Pansharpening

Qing Guo

Abstract—Pansharpening is crucial for obtaining high-
resolution multispectral images. Existing deep learning-based
pansharpening networks rely on supervised learning with external
reference labels. Due to the lack of actual fusion results for
labeling, simulated degraded data is used with the original
multispectral image as the fusion result label. These process
steps are cumbersome, which also leads to the problem of scale
degradation, and the fusion relationship between data before and
after the degradation cannot represent the real fusion relationship.
To address these limitations, we propose a self-supervised
interactive dual-stream network for pansharpening using real
training datasets. Our approach incorporates a dual-stream
network architecture, comprising a spatial scale enhancement
stream and a spectral channel attention stream. Spatial and
spectral features essential for fusion are extracted from the
original panchromatic and multispectral images, respectively.
Through interconnection at different levels, the network expands
the search range in the feature space, enabling continuous
interaction between spatial and spectral information during
feature extraction and transmission. This ensures the injection of
spatial features of varying scales into corresponding-scale spectral
features, enhancing complementarity between features. Moreover,
we introduce a novel joint spatial-spectral loss function, leveraging
the original panchromatic and multispectral images themselves
as self-supervised labels. Experimental results on diverse satellite
datasets demonstrate the outstanding fusion performance of our
method, as assessed through both subjective qualitative evaluation
and objective quantitative evaluation. Furthermore, our proposed
method exhibits exceptional generalization performance for
full-scale remote sensing images, showcasing its practical value.

Index Terms—Image fusion, pansharpening, remote sensing,
self-supervised learning, two-stream interaction.

I. INTRODUCTION

HERE are certain differences and complementarities be-
tween multispectral (MS) and panchromatic (PAN) im-
ages: MS images maintain high-resolution characteristics in
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the spectral domain, while PAN images have high-resolution
characteristics in the spatial domain. However, due to the lim-
itation of data transmission bandwidth and physical conditions
of sensors, optical remote sensing images acquired from the
same satellite can only maintain high-resolution characteristics
in a single domain of space or spectrum, which prevents us
from directly acquiring MS images with high spatial resolution
(HRMS) characteristics. Pansharpening can solve this problem
well. By integrating the spatial structure information of PAN
images with high spatial resolution and the spectral information
of MS images with high spectral resolution, it can fully combine
the complementary information to overcome the defect of insuf-
ficient information in a single image, so that the fused image can
depict more detailed spatial details while retaining the original
spectral information as much as possible.

Traditional pansharpening methods are mainly divided into
three categories: component substitution (CS) [1], [2], [3],
multiresolution analysis (MRA) [4], [5], and variational opti-
mization (VO) [6], [7], [8] methods. Among these, the CS and
MRA approaches typically have two components: the first is
the extraction of spatial information from PAN images, and
the second is the injection of the extracted information into
the up-sampled MS images. Intensity-Hue-Saturation (IHS) [9]
and principal component analysis (PCA) [10] methods are the
initial CS algorithms. The adaptive GS (Adaptive GS, GSA)
[11] realizes the fusion of PAN and MS information through the
combination of guided filter and Schmidt (Gram-Schmidt, GS)
transformation. Then, by modeling the pixel values of each chan-
nel of PAN and MS, a partial replacement adaptive CS (PRACS)
[12] is proposed. The fusion results obtained by the CS method
usually have good spatial detail information, but due to the local
nonsimilarity between PAN and MS images, the fusion results
often face serious spectral distortion problems. Currently, com-
mon MRA methods include the smoothing filter-based intensity
modulation (SFIM) [13], the generalized Laplacian pyramid
(GLP) [14], and the additive wavelet luminance proportional
(AWLP) [15]. Compared with the CS method, the MRA method
is capable of multiscale decomposition and generally achieves
better spectral quality.

The VO method is also called the model-based algorithm.
P+XS [16] is the first application of the VO method in the field
of pansharpening. Subsequently, Fasbender et al. [17] have pro-
posed a Bayesian adaptive fusion method based on the statistical
relationship between MS bands and PAN bands. Li and Yang
[18] use the basis pursuit (BP) algorithm to reconstruct the fusion
model through sparse representation, thus realizing the fusion
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of PAN images and low-resolution MS images. Wu et al. [19]
introduce a nonconvex regularization model (NC-FSRM) for
pansharpening. Moreover, Wu et al. [20] innovatively apply the
low-rank tensor completion-based framework to pansharpening,
presenting LRTCPan. The VO method relies more on prior con-
ditions, and requires a large number of iterative operations when
solving functions, and its practicability needs to be improved.

In recent years, deep learning (DL) methods have sprung up
due to their super nonlinear fitting ability and abstract feature
extraction ability. At present, the pansharpening network based
on DL mainly includes the network based on residual connection
(detail injection-based CNN, DiCNN) [21], the network based
on densely connection (multilevel dense connection network
with feedback connections, MDCwFB) [22], based on genera-
tive adversarial network (generative adversarial network for Pan-
sharpening, PSGAN) [23] and the transformer-based network
(HyperTransformer) [24]. In the latest study, Zhou et al. [25]
introduce a novel pansharpening network using cross-modality
jointlearning. Yan et al. [26] consider the pansharpening process
as an alternating iterative reverse filtering procedure and design a
straightforward and efficient network architecture. Most of the
above-mentioned methods use a single-stream network archi-
tecture. Liu et al. [27] are inspired by the two-stream network
[28]. Considering the information difference between MS and
PAN, they have proposed a two-stream fusion network (TFNet).
The dual-branch architecture is used to capture the feature infor-
mation of MS and PAN, respectively, and then the features are
spliced together to reconstruct the fusion results. Fang et al. [29]
have proposed a parallel pyramid convolutional neural network
(PPN) to achieve pansharpening. The network uses different
branches to process spatial details and spectral details. In the
two detail branches, the pyramid network structure is introduced
to solve the weak correlation problem caused by scale differ-
ences. He et al. [30] propose a multiscale dual-domain guidance
network (MSDDN) by fully exploring and utilizing the differ-
entiated information in the spatial and frequency domains. In
addition, bidirectional networks are also used in pansharpening.
Zhou et al. [31] integrate pansharpening and degradation model-
ing using an invertible neural network, achieving two-directional
closed-loop learning for low-resolution MS pan-sharpening and
HRMS degradation.

The above-mentioned DL-based fusion methods mostly use
supervised learning methods with external reference labels for
training. Due to the lack of real HRMS images as reference la-
bels, the simulated degraded datasets must be produced accord-
ing to the Wald protocol [32]. Although this approach guarantees
the ability of the model to describe spatial and spectral informa-
tion to a certain extent, it also has the following disadvantages:
1) Reference labels need to be manually produced, the steps
are cumbersome, and the scale disparity between simulated data
and real data is ignored; 2) The degradation process in the Wald
protocol is difficult to simulate the degradation process of real
data, and the downsampling operation in the protocol is easy to
cause the loss of spatial information of the PAN image.

To alleviate the problems in supervised learning, the authors in
[33] and [34] have proposed the no-reference-based pansharpen-
ing method, respectively. Ni et al. [35] propose a self-supervised
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network based on learnable degradation processes (LDPNet).
The spatial and spectral consistency is achieved by introducing
the degenerate fuzzy process and the hybrid loss function. More-
over, Guo et al. [36] have presented a dual spatial-spectral fusion
network (DSSN), which introduces gradient features as prior
knowledge on the basis of a dual-branch architecture, thereby
guiding the backbone network to extract richer spatial informa-
tion. Inspired by these, this article proposes a self-supervised
pansharpening algorithm that no longer requires fusion result
labels, which uses a dual-stream network architecture to design
the corresponding spectral channel attention stream and spatial
scale enhancement stream for MS and PAN, respectively, to
extract the spectral features and spatial features of both. In each
stream, in order to improve the efficiency of feature extraction
and enhance the complementarity between features, the trans-
mission and multiplexing of features are realized in the form
of level interconnection. In each level, the dense connection is
used to encode and decode the input data, and the spatial features
at different scales obtained from the encoding are injected into
the spectral features at the corresponding scales to achieve the
fusion of feature levels. In designing the loss function, this
article introduces the spectral angle mapping function and KL
divergence function, and establishes the joint spatial-spectral
loss function with certain weight assignment rules to ensure
that the original MS spectral features and the original PAN
spatial features required for fusion are learned directly in the
self-supervised mode. The contributions of this article are as
follows.

1) We introduce a pivotal self-supervised pansharpening
framework that harnesses the original images for training,
eliminating the need for artificial labels. Our method not
only dispenses with preprocessing but also effectively
addresses the limitations of fusion frameworks reliant on
simulated datasets. This method bridges the gap between
simulation and real-world applications, ensuring that fu-
sion outcomes align more closely with actual scenarios.

2) The self-supervised interactive dual-stream pansharpen-
ing (SIDP) network proposed in this article is based on two
parallel streams—the spatial scale enhancement stream
and the spectral channel attention stream, which process
the spatial and spectral information, respectively. The
concatenated multiplexing of features in streams and the
continuous interaction of information between streams
are realized by using the level interconnection, which
improves the interaction efficiency of spatial and spectral
information through a new information interaction mode,
hence to reconstruct HRMS results.

3) In the process of network optimization, the joint spatial-
spectral loss function consisting of the spatial constraint
function and the spectral constraint function, is designed
to get rid of the dependence of the network model on
the reference label, and greatly reduce the workload of
labeling while improving the fusion performance. The
superiority of the proposed method in this article is effec-
tively verified by using five different satellite sensor image
data of GaoFen-1, GaoFen-2, WorldView-2, Worl View-3,
and Pleiades to test and generalize the model.
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denotes the activation function.

The rest of this article is organized as follows. Section II
introduces the specific implementation details of the SIDP model
and the construction of the loss function. Section III comprehen-
sively evaluates the SIDP method with the traditional and DL
fusion methods, and gives the test and generalization results
on different datasets. Section IV is the discussion of the SIDP
method. Finally, Section V concludes this article.

II. PROPOSED METHOD

At first, the representation symbols of the data variables used
in this article are unified. M € R™*™*¢ and P € RM*N are
used to represent the original MS image and the original PAN im-
age, respectively, where m and n represent the width and height
of the low spatial resolution MS image, M and N represent the
width and height of the high spatial resolution PAN image, c rep-
resents the channel number of MS. M 1= RM>N>¢ represents
the MS after up-sampling according to the size of the PAN image.
M € RM*Nxcrepresents the fusion result HRMS. The spatial
resolution scaling factor of MS and PAN is » = M/m = N/n.

A. Network Architecture

The architecture of the SIDP network proposed in this ar-
ticle is shown in Fig. 1. The network consists of two parts:
the spatial scale enhancement stream and the spectral channel
attention stream. The spatial stream contains two modules—the
dense multiscale feature enhancement (D-MSFE) and the dense
feature restore (DFR). The spectral stream includes another two
modules—the dense channel attention enhancement (D-CAE)
and the dense channel restore (DCR). The spatial stream and the
spectral stream are used to extract spatial features and spectral
features required for fusion, respectively. Moreover, in order
to enhance the feature extraction capability of the network, a
level interconnection method is used to promote the flow and
transmission of features, and to enhance information exchange
between two streams of network while realizing feature multi-
plexing.

=

@ Concatenation

U;i and I; Feature Map

Architecture of the proposed SIDP network. Stack denotes the expansion along channel dimension. Conv denotes the convolution operation. PReLU

The SIDP model can be expressed as follows:

M= f(M1t,P;0) (1)

where f(.) represents the dual-stream fusion framework, and
O represents the weight parameters of the model. First, the
original P and M are used as the network inputs which are,
respectively, input into two streams independently. P is stacked
c times along the channel dimension to obtain P € RM*N>xc,
M is interpolated by the bicubic interpolation operation to
obtain M 1. Aftergvard, through the D-MSFE module and the
D-CAE module, P and M 1 are, respectively, mapped to the
high-dimensional feature space. The high-frequency spatial in-
formation contained in P and the spectral feature information
contained in M 1 are extracted. The extracted spatial informa-
tion is injected into the corresponding spectral information to
complete the information interaction. Then, through the DFR
module and the DCR module, the dimensionality reduction
operation is performed on the spatial features and the spectral
features, to realize the low-dimensional reconstruction of the two
features, and get the input for the next level. After N-layer feature
iteration, the search range of network in the feature space can be
effectively expanded, thereby improving the fusion accuracy and
efficiency of spatial and spectral information, and completing the
HRMS reconstruction operation.

B. Implementation of the SIDP Framework

1) Dense Connectivity: The backbone network of the SIDP
model is the dense connectivity block [37], which uses the cross-
channel stitching to establish connections between the features
of all previous layers and the current convolutional layer. This
means that there is a path between any two layers, which is
conducive to the feature transfer. Assuming that the current layer
is the ith convolutional layer, the feature map of this layer is

@)

herein, [z, 21, . .., 2;_1] denotes the stitching of features in the
0,...,(I = 1)th layers, and H;(-) denotes the convolution and

;= Hy([wo,21,...,2-1])
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nonlinear mapping operations in the /th layer. This structure can
effectively capture the nonlinear relationship in the original data
and improve the information flow between convolutional layers.
In order to comprehensively map the complex spectral and
texture details in MS and PAN to the feature space, this article
introduces the densely connected blocks in the feature extraction
operation, which drives the spatial and spectral information to
be freely propagated in the network, also enables the network
to consider the complex relationship between multiple features
at the same time, thus effectively fusing the shallow and deep
features.

2) Spatial Enhancement and Channel Attention: In view of
the different characteristics of spectral information and spatial
information in the fusion process, after designing the backbone
framework, it is necessary to use different feature mapping
methods to represent them. This article introduces the large
kernel attention (LKA) [38] mechanism to enhance the spatial
feature extraction ability of the network, which is expressed as
follows:

Attention = Convyx1(Convsc—p(Convse(Fn)))  (3)

F,u = Attention ® F}, 4)

where Convgc(-) denotes the separable convolution,
Convsc-p(-)denotes the separable dilated convolution,
and Conuviyxq(-) denotes the 1 x 1 channel convolution.
Different from traditional convolution forms, this module
combines the convolution operation with the self-attention
mechanism, which helps to expand the network’s perceptual
field of view and realize long-term dependency correlation
between features. Then, the module is used in the spatial
stream, which can effectively improve the extraction efficiency
of local information and long-distance information of spatial
features, and enhance the network’s ability to express multiscale
spatial information.

Unlike the spatial information, the representation of spectral
information is very dependent on the relationship between fea-
ture channel bands. Therefore, a spatial-pooling squeeze-and-
excitation (SSE) channel attention module is proposed to further
enhance the channel correlation and self-adaptation between
spectral features in the spectral stream. The module allows the
network to automatically learn the importance weights of each
channel and thus adaptively implements the feature selection.
By adjusting the channel importance, the network focuses on
the useful spectral information for the task and suppresses the
irrelevant and redundant information. In addition, this module
upgrades the 1 x 1 average pooling in the original squeeze-
and-excitation (SE) [39] channel attention to the 4 x 4 aver-
age pooling, which ensures the spatial structure information
is preserved while extracting spectral features. In addition, in
order to avoid the feature fading between different layers in the
network, the residual structure is introduced into the module,
which can effectively improve the efficiency of feature extraction
in network and restrain the gradient degradation problem that is
prone to occur in deep networks.

3) Restore Mechanism: Dense connections are helpful for
the transfer of feature information and the flow of gradients, but
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the feature splicing and dimension-up operations in the module
greatly increase the number of network parameters. In addition,
this article uses the level interconnection to realize continuous
interaction and adaptive search of features.

Although this operation can extract information from different
feature spaces well, it is easy to cause the problem of linear
increase in the number of network parameters. To alleviate the
problem of parameter number increasing, the dense restore mod-
ule is proposed, which is also implemented using the densely
connected block. However, unlike the usual densely connected
operation, the channel dimension of the output feature is reduced
exponentially with each convolutional layer of this restore block.
This approach can preserve the main information as much
as possible while reducing the feature dimension. Afterward,
the dimensionality reduction features are used for information
extraction and fusion at subsequent levels, thereby enhancing
the fusion performance and improving the fusion efficiency of
the network. The specific implementation details of each module
in the network are shown in Fig. 2.

Specifically, in the spatial scale enhancement stream, the
D-MSFE module consists of densely connected blocks and
LKA modules. First, dense connections are used to map PAN
into a high-dimensional feature space. The spatial structure
information of PAN is extracted from high-dimensional features
of different scales as much as possible. Then the extracted
spatial features are sent to the LKA module for integration,
so that the adaptive searchability of the network is enhanced
in high-dimensional space. The DFR module includes two
parts of dense restoration and channel averaging, to achieve
dimensionality reduction while retaining the original spatial
characteristics. Afterward, the D-MSFE module and the DFR
module are connected in series to control the parameters of
the network while extracting multiscale spatial features. This
module can be expressed as follows:

P = fpr(Fp) + Pioq, (i > 1) )
Fb = fpre(Piq), (i > 1). (6)

In (5) and (6), fpre(-) denotes the D-MSFE module,
fpr(-)denotes the DFR module, F, denotes the spatial structure
features extracted by the ith layer module in the spatial extraction
stream, and P;_; and P; denote the spatial mapping of the /th
layer input and output, respectively. When¢ > 1, P;_; represents
the mapped PAN image generated by the model. When ¢ = 1,
P;_; represents the original PAN image.

Correspondingly, in the spectral channel attention stream,
the D-CAE module is designed for spectral feature extraction,
and the DCR module is designed for feature integration and
feature dimensionality reduction. The D-CAE module consists
of the dense connection and SSE. SSE serves to guide the
learning objectives of D-CAE and directs the objectives of the
module to the learning of spectral features. Then the dense
connection block in the D-CAE module is replaced with the
dense restore block to generate the DCR module, which can
adaptively integrate the spatial features obtained from the spatial
scale enhancement stream with the spectral features obtained in
this module according to its own needs. The calculation process
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of the spectral channel attention stream is expressed as follows:

r(Fyy + F}) i=1
! {fMR(FJZM—cat+F;§) i>1 ™
Fiy = fucs(M],),i=1 (3)

FJiVI—caz :fMCE(fRefconv(Cat(Miv MzT: T :sz1)))vi>1 )

where fy;cg(-) denotes the D-CAE module, fy/r(-) denotes
the DCR module, and F}; is the spatial information extracted
from the corresponding layer in the spatial scale enhancement
stream, see (6). fre—conv(-) denotes the cascade operation of
activation and convolution, which is used to integrate the in-
termediate results collected from the different layers. Fj, and
Fi, .. represent the spectral feature information extracted by
different layer modules in the spectral channel attention stream.
M ,represents the mapped up- sampled MS image input by

1—

the /th layer. Correspondingly, M]

,_1 represents the original up-

sampled MS image whent = 0, M, J is the high-resolution fusion

result HRMS output by the network when ¢ = N and M, ZT =M
at this time. The algorithm flow is given in Algorithm 1.

C. Loss Function

To realize the fusion requirement in the self-supervised mode,
a joint spatial-spectral loss function is designed in this article.
Considering that the spectral information and spatial informa-
tion of the fusion result come from MS and PAN, respectively,
the spectral angle mapping (SAM) [40] function is introduced
as the spectral metric function of the network, and the KL
divergence function [41] is introduced as the spatial metric
function. Then the spatial loss and spectral loss are combined
to achieve the purpose of directly learning PAN spatial features
and MS spectral features. The construction process of the loss
function is shown in Fig. 3.

Algorithm 1: SIDP.

Input: MS: M € R™*"*¢ PAN: P € RM*N
Output: The Pansharpening HRMS: M € RMx*Nxe
Begin:
for epoch = 1 — epochs do
The M is up-sampled by the bicubic interpolation.
fori =1— Ndo
Copy P along the channel dimension.
Extract spatial features by (6).
Extract spectral features by (8)—(9).
Use (7) to complete the interaction of information.
end for
0. MM e
1: End

]R]\/IxNxc

e~ SRR AN AN el > A e

SAM is a widely used spectral evaluation index to assess the
spectral loss between HRMS and MS and indicate the difference
in spectral angle between the two. It is given by the following:

(10)

< 21,29 >
SAM (z,22) = arccos <z1,22>

[ z1ll » [ 222

The SAM value calculated in (10) is the spectral angle of a
single pixel inimage, < -, - > is the vector inner product symbol,
| - ||2 represents the Iy norm, arccos(-)represents the arcsine
function, z; € RY*¢ and 2z, € R *“represent the spectral
vector at the specified pixel coordinates.

KL divergence is an indicator function to calculate the mag-
nitude of similarity. The more similar the two probability distri-
butions are, the smaller the KL scatter is. It is defined as follows:

N

Dg1(P|Q) :Z

i=1

(x;)log p(;) — p(x;)log q(x;)) (11)
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Loss

(a)

Fig. 3.

where p(z) is the probability distribution function of the real
information, and ¢(z) is the probability distribution function of
the fitted information. By calculating the information entropy of
the probability distribution of both, the information difference
degree can be measured in a quantitative way.

1) Spectral Loss Function: The up-sampled MS and the orig-
inal MS can be considered to contain the same spectral features.
Spectral features are mapped into vector directions between
image bands. Through minimizing the SAM value between
HRMS and up-sampled MS, the spectral loss of the network
can be controlled. The spectral loss function is expressed as
follows:

Lapectrat = SAM (M, M %). (12)

2) Spatial Loss Function: Unlike the establishment process
of spectral constraints, the connection between the predicted
HRMS and the original PAN image cannot be directly estab-
lished. However, the KL divergence function is used as the
spectral loss function in the learnable degradation processes pan-
sharpening (LDPNet) [35]. Inspired by this, this article designs
the spatial loss based on the following three-point conventions:
1) The PAN image can be obtained by degrading the MS image of
the same resolution; 2) The degraded grayscale image contains
the spatial texture information of the source image; 3) The
difference between MS and PAN images at different spatial
resolutions should have a similar distribution. Thus, according
to the establishment process of the loss function in LDPNet,
the MS is degenerated into the grayscale image. The residual
probability distribution map between the MS image and the
grayscale image is established using the softmax function. The
residual probability distribution between HRMS and PAN is
fitted according to the above-mentioned residual probability
distribution. After that, the KL divergence value between two

v
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Realization of the loss function. (a) Loss function construction diagram. (b) Grayscale degradation network.

probability distributions is minimized to constrain the spatial
loss. The establishment process of the spatial loss is as follows:

Mg = fa(M 1) (13)
resyt = soft max(M + —Mcg) (14)
resy; = soft max(]\/i - P) (15)
Lspatial = DKL (TesMTv 7“687\/[\) (16)

where fq(.) represents the grayscale degradation network,
Mg € RM*N*¢ ig the grayscale image generated by the up-
sampled MS through the degradation network, and resry rep-
resents the probability distribution of the difference between
the up-sampled MS image and the degraded grayscale image.
P € RM»xNx¢ is expanded from PAN along the channel di-
mension. resz; represents the probability distribution of the
difference between the fusion result HRMS and the original
PAN.

3) Joint Spatial-Spectral Loss Function: The spectral loss
function and the spatial loss function are weighted to construct
the joint spatial-spectral loss function, which is expressed as
follows:

L=a x Lspectral+6 X Lspaliala (a+6:1§a >0; 3 >O> (17)

where « and /3 are empirical values obtained through a large
number of experimental tests. Unlike the general model that only
uses a single loss function such as MSE or MAE, the joint loss
function is more conducive to improve the learning efficiency of
the network. The SAM function and KL function for controlling
the spectral loss and spatial loss of the network, respectively,
are used to guide the optimization process of the network ac-
curately and effectively, thereby improving the overall fusion
performance of the model.
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TABLE I
BAND AND RESOLUTION PARAMETER OF REMOTE SENSING SATELLITE IMAGE

Satellite Number of bands Spatial resolution/(m)
(PAN+MS bands) MS PAN
GaoFen-1 1+4 8 2
GaoFen-2 1+4 4 1
Pleiades 1+4 2 0.5
WorldView-2 1+8 1.6 0.4
WorldView-3 1+8 1.24 0.31

III. METHOD DATA AND RESULTS
A. Experiment Datasets

In order to evaluate the performance of the proposed SIDP
method, different remote sensing satellite images are used to
make training and testing data sets. Five satellite sensor images,
GaoFen-1, GaoFen-2, Pleiades, and WordView-2 are used for
experiments. The number of MS image bands from GaoFen-
1, GaoFen-2, and Pleiades sensors is 4 (blue, green, red, and
near-infrared). The number of MS bands from WorldView-2
and WorldView-3 sensors is 8 (blue, red edge, coast, green, red,
yellow, near infrared 1, and near infrared 2). These data cover
a rich variety of ground features, including housing buildings,
trees, farmland, rivers, lakes, etc. The specific band and spatial
resolution information are shown in Table I.

In real datasets, MS and PAN are cropped into image pairs
with sizes of 64 x 64 and 256 x 256, respectively. Training
datasets and verification datasets according to the ratio of 9:1 are
randomly assigned. In order to compared with other methods that
require simulated datasets, the corresponding simulated datasets
are generated according to the Wald protocol. First, the Gaussian
low-pass filter is used to filter the MS and PAN image pair.
Then the PAN is down-sampled by bicubic interpolation. Finally,
the corresponding MS image is first down-sampled and then
up-sampled. Hence, the degraded MS and PAN image pair is
obtained. The dimensions of MS and PAN of the test datasets
are 128 x 128 and 512 x 512.

B. Experiment Details

The methods used in this article are all completed under the
Linux system whose processor is Intel(R) Xeon(R) Gold 6278C
CPU @2.60 GHz. Traditional methods use default parameters,
while DL methods uniformly set hyperparameters. The DL
training and testing use GPU acceleration, and the graphics card
is GeForce RTX 3090. The batch size of the training is 16. Adam
is selected as the optimizer of the network. The initial learning
rate is set to 0.0005, and the training epochs are 100 rounds. In
order to eliminate the variability of pixel value ranges between
different satellite data, the preprocessing operation is performed
on the input data. MS and PAN are normalized using a linear
stretching method, which uniformly normalizes the pixel values
to 0-1 for each band of the MS and PAN.

C. Experiment Results

Experimental results of the proposed method are compared
with other three kinds of fusion results including the CS
method—PCA [42] and GS [43], the MRA method—SFIM
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[13] and MTF_GLP [44], the VO method—NC-FSRM [19], the
DL method—DRPNN [45], DiCNN [21], TFNet [27], LAG-
Conv [46], MSDDN [30], and LDPNet [35]. Among these DL
methods, LDPNet is the latest self-supervised method, while
the remaining methods are all supervised approaches. In order
to ensure that the compared DL methods achieve their optimal
performance, we faithfully reproduced each method using its
respective original training framework, without making any
modifications to their training architectures. Both the subjective
visual evaluation and the no-reference quantitative evaluation
also are evaluated. The no-reference evaluation indicators in-
clude D;,D,, and QNR. D, index is used to quantify the degree
of spectral distortion of the fusion result.D, index is used to
determine whether the fusion result has the same spatial infor-
mation as the original PAN. QNR is used to evaluate the overall
quality of the fusion result, which is a comprehensive evaluation
index including spectral evaluation and spatial evaluation.

1) Test results on WorldView-2 satellite data: The visual
fusion comparison results of WorldView-2 are shown in Fig. 4.
In order to verify the performance and highlight the advantages
of the proposed method in this article, complex feature areas con-
taining house buildings, trees, and greenery are selected for ex-
periments. Overall, the spatial improvement of fusion results is
very good, especially for DL methods. In the traditional method,
the results of PCA not only have spectral distortion in the forest
area, but also have blurred spatial texture compared with the
original PAN image. Similarly, the results of MTF_GLP have
information distortion with serious edge artifacts. It can be seen
from the enlarged area that the results of NC-FSRM, DRPNN,
DiCNN, and TFNet also have a little color difference compared
with MS. In contrast, the proposed SIDP method in this article
retains the original MS spectral information, while maximizing
the spatial texture details of houses, vehicles, roads, and trees,
which effectively improves the overall quality of image.

In order to effectively display the spatial details contained
in the fusion result at the pixel level, the Laplace operator is
used to obtain the gradient of the fusion result. The gradient
effect diagram is shown in Fig. 5. It can be seen from Fig. 5
that GS, as a traditional CS method, improves the spatial perfor-
mance of fusion results. TFNet and LAGConv DL methods also
have ability to express spatial detail information. In the local
enlarged image, only the gradient results of the NC-FSRM,
MSDDN, and the proposed methods are consistent with the
gradient result of the original PAN, and other methods have
different degrees of spatial information loss. This is due to the
dual-stream interaction strategy of the proposed SIDP method,
which can better extract spatial features from the original PAN
images and continuously inject information into the spectral
stream during the forward feature extraction and transmission
to complete information interaction.

In this article, 22 MS and PAN image pairs from the
WorldView-2 satellite sensor are selected as the test dataset.
The performance of each method is evaluated by calculating
the average value of evaluation indicators such as AG, SCC,
SSIM, ERGAS, D;, D,, and QNR. AG, SCC, and D, are used
to evaluate the spatial fidelity of fusion results, while SSIM,
ERGAS, and D, are used to evaluate the spectral quality of
fusion results. The results of each index are shown in Table II.
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Fig. 4. Subjective visual comparison of fusion results on WorldView-2. (a) PAN. (b) MS. (c) PCA. (d) GS. (e) SFIM. (f) MTF_GLP. (g) NC-FSRM. (h) DRPNN.
(i) DICNN. (j) TENet. (k) LAGConv. (I) MSDDN. (m) LDPNet. (n) Proposed.

Fig. 5. Gradient comparison of fusion results using the Laplace operator on WorldView-2. (a) PAN. (b) MS. (¢) PCA. (d) GS. (e) SFIM. (f) MTF_GLP.
(g) NC-FSRM. (h) DRPNN. (i) DiCNN. (j) TFNet. (k) LAGConv. (1) MSDDN. (m) LDPNet. (n) Proposed.

TABLE II
RESULTS OF OBJECTIVE EVALUATION METRICS ON THE WORLDVIEW-2 DATASET

Method AGT SCCT  SSIM! _ ERGASL D, | D, L QNRT

PCA 249908  0.8430  0.8601 59949  0.0963  0.1150 0.8065

GS 23.0659  0.8806 09212 64964  0.0321  0.0582 0.9121

I SFIM 252744 08383 09210 67591  0.0485  0.0512 0.9047

MTF _GLP 24.3972 0.8737 0.9288 5.6941 0.0338 0.0392 0.9283
NC-FSRM 25.9863 0.8614 0.9127 5.5903 0.0309 0.0425 0.9279
DRPNN 22.9181 0.8825 0.8846 5.7526 0.0370 0.0831 0.8832
DiCNN 23.2194 0.8721 0.8911 5.1144 0.0456 0.0772 0.8811
1I TFNet 23.8901 0.8917 0.9149 6.5144 0.0176 0.0521 0.9314
LAGConv 26.4613 0.9101 0.9322 5.7438 0.0439 0.0326 0.9249
MSDDN 26.9833 0.9402 0.9574 3.0165 0.0126 0.0381 0.9498
LDPNet 25.9008 0.9326 0.9569 3.2375 0.0163 0.0376 0.9467
Proposed 27.5454 0.9568 0.9680 2.9039 0.0070 0.0314 0.9618
I Traditional methods II Supervised methods 111 Self-supervised methods
The optimal values are highlighted in bold.

1II
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Fig. 6.
(i) DiCNN. (j) TFNet. (k) LAGConv. (1) MSDDN. (m) LDPNet. (n) Proposed.

0 (i o ®)

Gradient comparison of fusion results using the Laplace operator on GaoFen-1. (a) PAN. (b) MS. (c) PCA. (d) GS. (e) SFIM. (f) MTF_GLP. (g) NC-FSRM.

Fig.7.

Subjective visual comparison of fusion results on GaoFen-1. (a) PAN. (b) MS. (c) PCA. (d) GS. (e) SFIM. (f) MTF_GLP. (g) NC-FSRM. (h) DRPNN.

) (m) T )

(h) DRPNN. (i) DiCNN. (j) TFNet. (k) LAGConv. (1) MSDDN. (m) LDPNet. (n) Proposed.

Opverall, the index value of the DL method is better than that of
the traditional method. For example, LAGConv, MSDDN, LDP-
Net, and the proposed SIDP method have excellent performance
in the AG, SSIM, and QNR indicators. These methods not only
enable the learning of spatial structural information required for
fusion, but also effectively preserve the spectral information in
the original MS data. However, traditional methods generally
perform poorly in SCC, ERGAS, and D, . For instance, in PCA
and SFIM methods, the range of SCC values falls between
0.8383 and 0.8430. However, the SIDP method has the optimal
value of 0.9568 for this metric. The gap of performance is
obvious. Compared with the PCA and DRPNN methods, the
proposed method improves the SCC index by nearly 11.8%, and
the QNR index by nearly 8.1%, which also objectively verifies
the powerful spatial detail expression ability and stable spectral
information retention ability of the SIDP method.

2) Testresults on GaoFen-1 satellite data: Afterward, we use
the GaoFen-1 satellite dataset to train and test the network. The
fusion results of different methods are shown in Fig. 6. Different
from the fusion results of WorldView-2 data, the fusion results

of GaoFen-1 data have large differences in spectral preservation.
Traditional methods such as PCA and GS suffer from the severe
spectral distortion, which is difficult to apply to practical remote
sensing applications. The overall spectral fidelity performance of
DL methods such as Fig. 6(h)—(n) is better than that of traditional
methods. In terms of spatial details, both SFIM and LDPNet
methods have artifacts. In the partially enlarged area, it can be
observed that the spatial details of Fig. 6(h) and (i) are blurred,
and difficult to recognize the specific contour information of
mountains and roads. Nevertheless, the proposed SIDP method
has clear ground textures in the enlarged area.

The gradient map of the GaoFen-1 fusion result is shown
in Fig. 7. It can be seen that the fusion result of each method
contains rich gradient texture information. By enlarging the
red-boxed area in the upper-left corner, Fig. 7(d)—(h) all exhibit
good gradient details. Similarly, the gradient result of the SIDP
method is basically consistent with those of PAN, which shows
the result of the proposed method has good spatial detail clarity.
In general, compared with other methods, the SIDP method has
better spectral preservation performance and also fully combines
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TABLE III
RESULTS OF OBJECTIVE EVALUATION METRICS ON THE GAOFEN-1 DATASET

Method AGT SCCT  SSIMT  ERGAS! D, D, | QNRT

PCA 134531 09378  0.8479  3.1571  0.1053  0.0512 0.8494

GS 18.6060  0.9441  0.8677 20751  0.0877  0.0465 0.8699

I SFIM 172206 0.9479  0.9328 1.9383  0.0330  0.0360 0.9324
MTF GLP  12.9302 09297  0.9263 14907 00701  0.0636 0.8715
NC-FSRM  17.2465  0.9103  0.9336 1.3421 0.0414  0.0531 0.9077
DRPNN 14.0274 09316  0.9543 13069  0.0285  0.0704 0.9032
DiCNN 132270 09335  0.9574 11838 0.0282  0.0662 0.9076

I TFNet 18.1336 09362  0.9644 0998  0.0276  0.0361 0.9374
LAGConv  17.9990 09412  0.9524 13356 0.0269  0.0401 0.9341
MSDDN 18.3283  0.9471  0.9615 09397  0.0242  0.0336 0.9430

m LDPNet 15.1526 09099  0.9141 12580  0.0365  0.0371 0.9278
Proposed 197751  0.9526  0.9780  0.8461  0.0162  0.0277 0.9565

I Traditional methods

11 Supervised methods

111 Self-supervised methods

The optimal values are highlighted in bold.

Fig. 8.

Subjective visual comparison of fusion results on WorldView-3 Full Data. (a) PAN. (b) MS. (c) PCA. (d) GS. (e) SFIM. (f) MTE_GLP. (g) NC-FSRM.

(h) DRPNN. (i) DiCNN. (j) TFNet. (k) LAGConv. (1) MSDDN. (m) LDPNet. (n) Proposed.

the spatial details of the PAN image, which helps to improve the
recognition accuracy of different ground objects such as houses,
mountains, and roads in the image.

Similarly, we select 22 MS and PAN image pairs on the
GaoFen-1 satellite sensor as the test dataset for objective eval-
uation and quantitative analysis. The index comparison results
are shown in Table III. The proposed method has achieved the
best results in all index values. The SCC index values of all
methods have reached above 0.9, which is basically consistent
with the results shown in the above-mentioned gradient graph.
This means that all the comparison methods in this article can
effectively extract the spatial texture information of the original
PAN image. But for spectral information, PCA and GS methods
perform poorly in SSIM, ERGAS, and D, indicators, indicating
that the spectral retention performance of these two approaches
is insufficient. However, the DL method can well overcome the
spectral distortion problem of GaoFen-1 results. For example,
the index values of SSIM and ERGAS of the DL method are all
greater than those of the traditional methods. In addition, the AG
value of the proposed method is improved by 6.28% compared
with the GS with the second highest performance, and the
ERGAS is reduced by 15.3% compared with the TFNet with the

second highest performance, which objectively verifies the supe-
rior performance of the SIDP method on the GaoFen-1 dataset.

3) Test results on WorldView-3 satellite data: We introduce
the public WorldView-3 dataset [47] provided by Deng et al.
for training and testing to enrich our experiments. Given that
this training dataset is simulated data, both our method and the
LDPNet method as the self-supervised framework, only use the
input data for network training without using the corresponding
labels. The other DL methods followed the originally specified
training approach. Subsequently, we conducted tests using 20
full-resolution images provided by Deng et al. The test results
and metrics are shown in Fig. 8 and Table IV, respectively.

From Fig. 8, it can be observed that PCA and GS exhibit re-
markable visual performance. While SFIM and NCFSRM excel
in the spectral fidelity, they tend to lose significant spatial infor-
mation. LDPNet has spatial artifacts in the architectural region.
LAGConv, MSDDN and SIDP methods effectively reconstruct
the high-frequency edge region, presenting better spatial details
and excellent spectral fidelity.

In addition, the quantitative metrics in Table IV align with
the visual performance depicted in Fig. 8. Among traditional
methods, GS demonstrates higher performance in metrics such



9938

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE IV

RESULTS OF OBJECTIVE EVALUATION METRICS ON WORLDVIEW-3 FULL DATA

Method AGT SCCT SSIMT ERGAS! D, 1 Ds 1 QNRT

PCA 42.4721 0.8916 0.9047 4.0633 0.0493 0.0516 0.9016

GS 43.5380 0.9122 0.9031 4.0883 0.0467 0.0369 0.9181

I SFIM 38.6139 0.8924 0.8817 2.9526 0.0313 0.0687 0.9021
MTF_GLP 40.2854 0.8890 0.9024 2.9754 0.0278 0.0785 0.8958
NC-FSRM 38.7452 0.8673 0.8774 3.0956 0.0415 0.0845 0.8775
DRPNN 41.8296 0.9193 0.8976 4.6951 0.0372 0.0563 0.9085
DiCNN 43.5471 0.8937 0.9122 4.9842 0.0435 0.0471 09114

II TFNet 40.7100 0.8815 0.8995 5.0932 0.0458 0.0579 0.8989
LAGConv 43.7525 0.9253 0.9236 4.2210 0.0277 0.0554 0.9184
MSDDN 45.0711 0.9387 0.9325 3.0811 0.0224 0.0392 0.9393

i LDPNet 45.8969 0.9332 0.9289 2.9732 0.0219 0.0438 0.9352
Proposed 46.9511 0.9471 0.9432 2.8954 0.0146 0.0394 0.9465

1 Traditional methods

11 Supervised methods

111 Self-supervised methods

The optimal values are highlighted in bold.

Fig. 9.
(h) LDPNet. (i) DSSN. (j) Proposed.

as AG and SCC, while SFIM and MTF_GLP excel in spectral
fidelity evaluation indicators such as ERGAS and D, . DRPNN
and DiCNN, as DL methods, achieve a better balance between
spectral and spatial aspects, displaying relatively stable overall
performance. Notably, despite being trained on simulated data,
our SIDP method still performs remarkably well across various
metrics tests. This is mainly attributed to our model’s ability to
adaptively extract and interact information according to different
inputs, thus effectively adapting to different data.

4) Pleiades and GaoFen-2 satellite data generalization re-
sults: In order to verify the generalization performance of the
proposed SIDP method, the generalization experiment results
are compared. The training completed network model on the
WorldView-2 dataset is generalized directly to Pleiades and
GaoFen-2 data for image fusion. The generalization results of
various comparative methods of GaoFen-2 and Pleiades are

Subjective visual comparison of generalization results on GaoFen-2. (a) PAN. (b) MS. (c) DRPNN. (d) DiCNN. (e) TENet. (f) LAGConv. (g) MSDDN.

shown in Figs. 9 and 10. Among the comparison methods,
LDPNet and DSSN are the latest self-supervised methods.

Fig. 9 shows the fusion results of buildings, riversides, lakes,
and other areas captured by the GaoFen-2 satellite sensor. The
displayed area of the Pleiades satellite in Fig. 10 covers farmland,
roads, shrubs, and other areas. Among the DL methods, the
TFNet method has a serious problem of spectral distortion,
which leads to the misjudgment of ground objects, and directly
affects the accuracy of subsequent applications such as change
detection and crop classification. Both LDPNet and DSSN also
exhibit slight spectral distortion issues. On the contrary, the
proposed method still shows excellent robust performance and
visual effects in the face of complex land objects from het-
erogeneous satellite data, and no spatial distortion and spectral
aberration are found in the presentation results of both GaoFen-2
and Pleaides images. This is mainly because the proposed model
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Fig. 10.
(h) LDPNet. (i) DSSN. (j) Proposed.

Subjective visual comparison of generalization results on Pleiades. (a) PAN. (b) MS. (c) DRPNN. (d) DiCNN. (e) TFNet. (f) LAGConv. (g) MSDDN.

TABLE V
KL AND SAM VALUES ON THE TRAINING DATASET OF WORLDVIEW-2 FOR DIFFERENT C AND N CASES

KL SAM
N=2 4 6 8 10 N=2 4 6 8 10
C=8 0.3780 0.3859 0.3443 0.3842 03776 | C=8 2.1966 2.2207 2.0287 2.1389 2.1981
16 0.3220 0.3156 0.3338 0.3618 0.3182 16 1.5392 2.0687 19563 2.0229 2.0156
32 0.3221 0.2935 0.3248 0.3165 0.2901 32 1.8078 1.8808 1.8829 1.9571 1.8446
64 0.2753  0.2496 0.3060 0.2849 0.3298 64 1.8496 0.9107 1.8045 1.2442 1.7435
128 0.2776 0.2864 0.3129 0.3321 0.3492 128 1.7165 1.0224 1.8694 1.8930 1.9218
The optimal values are highlighted in bold.
in this article is based on real data for information extraction, TABLE VI

and both spectral features and spatial features are derived from
the original MS and PAN. The interaction between two features
is enhanced by the feature reuse method of multilayer cascade,
so that the network adaptively performs feature extraction and
reorganization in each layer. Moreover, the learning target of
the network is clarified in the loss function, so that the network
purposefully learns and still has stable fusion performance with
optimal robustness even on untrained image data.

D. Effect of Variable Parameters

1) The Effect of Depth and Width: There are two variable
parameters in the network structure of this article: the number
of feature channels C' and the depth of layers N. Both parameters
play the important role in the model and affect the performance
of the network. Consequently, these two parameters are com-
pared in Table V, listing the KL and SAM values of the network
on the training dataset under different C' and N conditions. In
Table V, fixing a = 0.5 and 8 = 0.5, set C to 8, 16, 32, 64,
and 128, respectively, and then set N to 2, 4, 6, 8, and 10
in sequence each time C' is set. The results indicate that the
increase in the number of network layers and channels does not
imply an improvement in network performance. Because deeper

NO-REFERENCE EVALUATION VALUES UNDER DIFFERENT o AND /3 WEIGHTS

Loss weight WorldView-2
a Y] D, D, QNR
0.1 0.9 0.1014 0.0572 0.8478
0.2 0.8 0.0825 0.0514 0.8708
0.3 0.7 0.0685 0.0495 0.8858
0.4 0.6 0.0663 0.0502 0.8872
0.5 0.5 0.0617 0.0475 0.8940
0.6 0.4 0.0730 0.0511 0.8300
0.7 0.3 0.0576 0.0522 0.8936
0.8 0.2 0.0642 0.0524 0.8873
0.9 0.1 0.0665 0.0507 0.8868

The optimal values are highlighted in bold.

and wider network models tend to bring more parameters to be
trained, thus affecting the convergence speed of the network,
increasing the training difficulty of the network, and making it
difficult to obtain the optimal solution for the model. According
to Table V, C at 64 and N at 4 are fixed.

2) Allocation of Loss Weights: Correspondingly, the weight
distribution exponents « and /3 in the loss function reflect the
proportion of spectral loss and spatial loss in the overall network
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Fig. 11. Relationship between numbers of parameters, FLOPS and QNR
performance metrics in models. (a) Numbers of parameters. (b) FLOPS. The
higher positions in the graph are, the better performance of the model is.
Meanwhile, positions further to the left indicate lower parameter count or faster
computational speed.

loss. In order to make the network better balance the spectral
quality and spatial quality during the fusion process, after fixing
Cand N,setato0.1,0.2, ...,0.9, respectively, and 3 t0 0.9, 0.8,
..., 0.1 accordingly. Table VI lists the average QNR indicator
values calculated from training dataset under different C' and
N. According to the optimal value in Table VI, the spectral loss
weight is @ = 0.5, and the spatial loss weight is 5 = 0.5 in this
article.

E. Calculation of Model Complexity

To assess the computational efficiency and complexity of the
SIDP network model, we chose two pivotal metrics for verifica-
tion: Floating point operations per second (FLOPS) and network
parameter numbers. Specifically, we employ MS images with
dimensions 4 x 64 x 64 and PAN images with dimensions
1 x 256 x 256 as inputs to the model. Subsequently, the
metrics obtained from the input are compared with those of
the aforementioned DL methods. The comparison results are
illustrated in Fig. 11. In Fig. 11(a), the parameter count of the
SIDP network is 329 K, which is notably smaller compared with
other models such as TFNet with 2362 K parameters, MSDDN
with 2668 K parameters, and LDPNet with 1585 K parameters.
When compared with DRPNN which operates within a simi-
lar order of magnitude, the QNR metric exhibits a substantial
improvement. This enhancement is attributed to the introduced
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restore mechanism in this study. Through the incorporation of
dense connection operations, this module maintains the feature
expression capability while substantially reducing the parameter
count of subsequent convolutional layers.

InFig. 11(b), the FLOPS metric of the SIDP model ranks third,
following only DiCNN and LAGconv. This indicates that our
proposed approach exhibits superior computational efficiency in
terms of the computational complexity compared with current
SOTA self-supervised pansharpening methods such as LDPNet
and DSSN. Therefore, it can be concluded that our method
achieves superior fusion results with lower hardware resource
consumption.

F. Ablation Results

To further investigate the effects of the LKA and SSE modules
used in the network, as well as the spatial and spectral loss func-
tions on the performance of the SIDP model, this article conducts
a series of ablation experiments. We divide the experiments
into five groups, in which all networks are trained using the
WorldView-2 dataset, tested and evaluated by objective metrics
on the validation dataset. The results of the ablation experiments
are shown in Table VII.

1) In the process of performing spatial feature extraction,
this article uses the LKA module for spatial multiscale
feature extraction. In the first experiment, the LKA module
is directly removed and only the dense feature extraction is
performed in the spatial scale enhancement stream. As can
be seen from the first row of Table VII, the values repre-
senting spatial information features significantly increase
(meaning a decrease in spatial quality), indicating that the
LKA module introduced in the proposed SIDP does help
to enhance the spatial feature representation capability of
the network.

2) Inthe second ablation experiment of the network architec-
ture, the SSE module is removed from the spectral channel
attention stream. As seen in the second row of Table VII,
all metric values are degenerated. This is because the SSE
not only undertakes the task of spectral feature extraction,
but also influences the integration of spectral and spatial
information in the subsequent feature restore process.
Moreover, this module has an important connectivity role
in the model, which affects the overall performance of the
network.

3) Subsequently, this article conducts the ablation experi-
ment of the loss function. The results of the third group in
Table VII show that it will make the index value deteriorate
sharply and is difficult to achieve the purpose of optimizing
the network, if only the spatial loss function is used.

4) Inthe fourth experiment, we delete the spatial loss function
and only use the spectral loss function to train the network.
The experimental results are also not optimistic and the
spectral distortion quantization index value D also deteri-
orates to a certain extent. Therefore, in the self-supervised
model, in order to achieve the best performance of the
network, both the spectral loss function and the spatial
loss function are indispensable.
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TABLE VII
COMPARISON OF MODEL PERFORMANCE UNDER DIFFERENT STRUCTURES AND LOSS FUNCTIONS

Model Loss WorldView-2
Group LKA SSE e i D Dy QNR
0 x v v v 0.0449 0.0547 0.9030
(1D v x v v 0.0482 0.0528 0.9018
(III) v v x v 0.2605 0.1116 0.6570
(Iv) 4 4 v x 0.1216 0.4135 0.5162
SIDP v v 4 4 0.0409 0.0451 0.9158

The optimal values are highlighted in bold.

IV. DISCUSSION

In Section III, we test and compare the SIDP method
with traditional methods and numerous SOTA DL methods
on WorldView-2, GaoFen-1, and WorldView-3 satellite data
(seen in Tables II-IV for objective metrics and in Figs. 4-8
for visual results). As can be seen from the presentation of
the fusion results, the traditional methods fail to strike a good
balance between spatial and spectral information preservation.
The PCA method suffers from serious spectral distortion, while
the MTF_GLP method suffers from artifacts in spatial aspects
generally. In the gradient maps in Figs. 5 and 6, the gradient
of SIDP is basically the same as that of the PAN image, which
maximizes the preservation of spatial information of the PAN
image. However, methods like DRPNN, DiCNN, TFNet, and
LATGconv lose spatial information to varying degrees.

Analyzing from the network structural aspect, DRPNN and
DiCNN methods simply utilize the residual structure for feature
extraction, which makes the spectral and spatial features mixed
together for learning, and is not conducive to feature extraction
and reconstruction. Although TFNet adopts a dual-stream archi-
tecture, it ignores the complementarity between input images
and lacks an effective loss optimization strategy. Distinctively,
the SIDP method adopts a multilayer dual-stream interaction
strategy. This strategy introduces the LKA module in the spatial
stream, combines the convolution with the self-attention mecha-
nism, effectively improves the extraction efficiency of the local
spatial information, and continuously injects this information
into the spectral stream for the information compensation be-
tween different layers.

In addition, analyzing from the loss function, most of the latest
methods such as MSDDN and LAGConv use MSE and MAE as
the loss function. These functions only consider individual pixel
points in the image and do not take into account neighboring
pixels as well as the relationship of pixel values between bands,
which is not conducive to the optimization of the network. The
reconstructed fused image may still have spatial distortion or
spectral distortion. On the contrary, the SIDP method fully con-
siders the characteristics of spectral and spatial information, and
innovatively combines the SAM function and the KL divergence
function to control the spectral and spatial losses of the network,
respectively.

Furthermore, we conduct generalization experiments on
GaoFen-2 and Pleiades satellite data (seen in Figs. 9 and 10).
The TFNet spectral distortion is particularly severe. LAGConv
has blurred texture details in the shrub in Fig. 10(k). However,

the SIDP method has better performance. This is primarily due
to the fact that we use a self-supervised framework that does not
rely on the guidance of external labels and can adaptively extract
and integrate the required information for fusion from the input
data. Therefore, the SIDP method still demonstrates outstanding
robustness when dealing with heterogeneous satellite data.

V. CONCLUSION

In this article, a SIDP method is proposed to solve the problem
that the ideal fusion image does not exist as a reference label in
the current DL pansharpening model. The proposed SIDP model
no longer needs the ideal reference label of the fusion result, but
directly builds the training of the model on the real dataset, and
the original input image itself to be fused is the label. In the
network architecture, in order to accurately and purely learn the
spatial information and spectral information of the pansharpen-
ing, the two-stream network architecture including the spatial
scale enhancement stream and the spectral channel attention
stream is constructed. In the process of forward feature extrac-
tion and transmission, the multilayer cascading way is designed
to continuously maintain the information interaction between
spatial and spectral features, to inject spatial features of different
scales into spectral features of corresponding scales, and realize
spatial-spectral fusion at the feature level. In the design of the
loss function, in order to achieve the self-supervised learning
of the network, the spatial loss function KL and the spectral
loss function SAM are designed considering the characteristics
of spatial and spectral features to be learned by the network,
respectively. The joint spatial-spectral loss function is composed
by the weight assignment rule to guide the optimization of the
network.

In order to verify the effectiveness of the proposed SIDP
method, we compare and evaluate the SIDP method with tradi-
tional methods and the latest DL. methods in terms of subjective
vision and objective quantitative indicators. From the evalua-
tion results, the SIDP method effectively integrates the spectral
features and spatial features of the input data, which greatly
improves the visual quality of the fusion results and achieves the
optimum in the no-reference evaluation indexes such as D, , Dy,
and QNR. In addition, the generalization effect on the GaoFen-2
and Pleiades datasets is also very satisfactory and far exceeds
other comparison methods.

Moreover, we will further optimize the universal performance
and explore the generalization performance of the model on
satellite data such as Landsat-8 and GaoFen-6. In the future



9942

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

research, our emphasis will be directed toward the fusion of
multimodal heterogeneous satellite data. We will strive to further
enhance the quality of fusion results by integrating various
data types. Moreover, another research topic will combine the
pansharpening techniques with tasks such as target detection
and image classification to explore the universality of the fusion
technique in engineering applications.
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