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Abstract—In seismic data processing, denoising and reconstruc-
tion are the two steps for identification of resources in the earth
subsurface layers. The seismic data quality is affected by random
noise and interference during acquisition. Further, the noisy data
may be incomplete with missing traces. In this work, we propose a
method for incomplete seismic data denoising and reconstruction
based on double sparsity dictionary learning (DSDL) with structure
oriented filtering (SOF). The main function of the DSDL step is
denoising and SOF is used for residual noise attenuation and filling
the missing data points. The proposed method is tested on 2-D syn-
thetic and field datasets. The test results show that the DSDL-SOF
method has better noise attenuation and reconstruction in terms
of signal-to-noise ratio and mean squared error as compared to
existing methods.

Index Terms—Denoising, dictionary learning, double sparsity,
seismic data reconstruction, structure oriented filtering (SOF).

I. INTRODUCTION

IDENTIFICATION of resources present in the earth subsur-
face layers’ is essential for the exploration of hydrocarbon

and mineral deposits [1]. However, direct observation of these
layers is difficult and uneconomical as the area under survey is
usually vast. Seismic exploration is an efficient and economical
method to determine the earth subsurface layers’ information.
During seismic exploration, data is collected using geophones
arranged on the surface. However, the seismic data recorded
by geophones is incomplete, irregular in spatial dimensions
and contains anomalous traces due to imperfect instruments
and the presence of noise [2], [3]. Removal of these traces
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from the data leads to loss of information. Furthermore, some
recorded traces are lost due to obstacles in the field and ground
surface limitations [4], [5], [6]. These incomplete and irregular
recorded traces in seismic data severely effect the subsequent
seismic data processing steps such as velocity analysis, multiples
elimination, full waveform inversion, reverse time migration,
amplitude variation with offset analysis, time-frequency analy-
sis, and seismic interpretation [4], [5], [7], [8]. The missing data
problems in seismic exploration are classified based on regular
and irregular missing data. In regular missing data problem, the
data is equidistant and missing at constant rate in a uniform grid.
Whereas in irregular missing data problem, the data is randomly
missing along the same uniform grid and therefore, challenging
to reconstruct [2]. Therefore, reconstruction of missing data
is important for accurate imaging of subsurface structures and
removal of sampling artifacts.

In literature, four types of reconstruction (or) interpolation
methods have been proposed for seismic data based on: Predic-
tion Filtering (PF), Wave Equations (WE), Rank reduction (RR),
and compressive sensing. The PF-based seismic data reconstruc-
tion exploits the linear predictability property of the seismic
signal in different domains, namely the frequency-space (f-x),
time-space (t-x), and frequency-wavenumber (f-k) domains. PF
method in the f-x domain considers spatially sampled seismic
data and performs the reconstruction in each frequency slice
based on linear prediction (LP) theory [9]. In [10], the frequency-
space domain PF method was extended to f-x-y domain in
which data samples from each frequency slice are considered
selectively for the designing the LP operator. Further in [11],
a prediction error filter (PEF) was proposed for reconstruction
of seismic data with multiple dip events having different slopes.
The major limitation of PF-based methods is the need for equally
spaced seismic data for reconstruction of missing traces [5].

The second category of seismic data reconstruction is based on
WE techniques. The WE techniques used the Normal move out
(NMO) and inverse dip move out (IDMO) jointly and performs
the missing data reconstruction with the prior knowledge of the
surface parameters. NMO and IDMO techniques utilized the
seismic wave physical properties and depends on subsurface
velocity model. The performance of seismic data reconstruction
based on wave equations is dependent on the accurate veloc-
ity model which is difficult to obtain [3]. Also reconstruction
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technique assumes a smooth spatial spectrum of the seismic data
in WE-based techniques. Further, WE-based methods are com-
putationally expensive and not preferred for high dimensional
seismic data interpolation [12].

The third category of seismic data reconstruction is based on
RR method with the prior assumption of rank. In RR method,
complete data is assumed to have low rank and irregular data
is assumed to have a high rank [2]. The Multichannel singular
spectrum analysis (MSSA) method is a rank reduction method
which transforms noisy and incomplete seismic data with indi-
vidual frequency into Hankel matrix [13]. Then, a rank reduc-
tion operator known as truncated singular value decomposition
(TSVD) approach is applied on the Hankel matrix to decom-
pose the noisy-incomplete data into two different subspaces
namely signal subspace and noise subspace corresponding to
signal and noise [14]. The noise subspace consists of both
noise and incomplete seismic data [4]. However, the MSSA
method is computationally expensive for the complex data with
large Hankel matrix. An efficient MSSA method, where TSVD
approach is replaced with randomized QR decomposition was
proposed in [15]. The MSSA method can decompose seismic
data into a noise subspace and a signal-plus-noise subspace.
Therefore in [16], a damped multichannel singular spectrum
analysis (DMSSA) method was proposed for high dimensional
seismic data reconstruction with a new type of SVD known as
damped SVD was applied on Hankel matrix. DMSSA method
can precisely separate the seismic data into noisy and signal
subspaces. The DMSSA method performs well when the data
has low signal-to-noise ratio (SNR) and high dimensionality.
Therefore, the DMSSA method [16] is particularly attractive for
solving the 5-D offset-vector-tile (OVT) seismic data reconstruc-
tion and regularization problems in complicated area. However,
in RR-based methods the selection of rank is quite difficult.
A good selection of rank values provide better reconstruction
results for incomplete seismic data.

The fourth category of seismic data reconstruction method
is based on compressive sensing which recovers the fully sam-
pled data by sparsity promoting methods like sparse transforms
and dictionary learning (DL). Compressive sensing methods
assumes that the incomplete seismic data is less sparse in com-
parison to complete seismic data. The incomplete data is first
transformed into sparse domain using fixed basis where useful
seismic signals have large amplitude coefficients and incomplete
traces along with noise have low amplitude coefficients. From
these coefficients, the original seismic signal is recovered using
a thresholding operator. A variety of sparse transforms with pre-
defined basis such as Fourier [17], Wavelet [18], Curvelet [19],
Radon [20], Shearlet [21], Seislet [22], and Dreamlet [23] have
been studied for reconstruction of seismic data. Seislet and
dreamlet are two types of fixed sparse bases commonly used
in seismic data processing, specifically for denoising and in-
terpolation tasks. Compared to f-k transform-based approaches,
the seislet transform-based compressed sensing method offers
significantly better results in terms of data recovery, as indicated
by measures such as SNR, local similarities, and visual obser-
vations [24]. To incorporate sparsity constraints in the seislet
transform domain, a fast projection onto convex sets (POCS)

algorithm was proposed in [24]. However, accurate estima-
tion of the local slope is crucial for interpolation of regularly
missing traces using the seislet-based POCS algorithm. The
iterative slope estimation strategy employed in the algorithm
is not always be reliable and can lead to a degradation of the
interpolation performance. To address this issue, a more de-
pendable technique based on the velocity-slope transformation
was introduced in [22]. This alternative approach reduces the
number of iterations required for interpolation and significantly
improves overall performance.

The dreamlet, is a physical wavelet introduced by Wu
et al. [25] and has shown remarkable capabilities in representing
seismic data. The dreamlet is localized on the light cone within
the 4-D Fourier space, making it an efficient tool for estimating
the true signal from noisy seismic data [26]. The high sparsity
observed in the dreamlet domain further enhances its effec-
tiveness in representing seismic signals. A damped dreamlet
representation was introduced in [23] to further reduce the gap
between the projected signal and the true signal. By incorpo-
rating a damping factor, the damped dreamlet representation
achieves more accurate estimations of the true signal. However
all the aforementioned sparse transforms use orthogonal dic-
tionaries with fixed basis which cannot match with complex
seismic data structures [27]. Hence, dictionary learning (DL)
methods have been proposed in seismic data reconstruction with
the dictionaries learnt from training data based on data driven
tight frames (DDTF), K-means singular value decomposition
(K-SVD), and sequential generalized K-means (SGK) [3], [28].
The SGK algorithm is computationally efficient and used for
high dimensional seismic data reconstruction.

In addition to reconstruction, noise attenuation is also a
major concern for subsequent steps in seismic exploration.
Henceforth, simultaneous denoising and reconstruction were
performed based on rank reduction methods in [13], [29], sparse
transform methods in [26] and DL-based methods in [3], [27],
[28], and [30]. However, all the aforementioned methods are
unsuitable for complex structured events such as curved events in
seismic data. In [31], structure-oriented filtering (SOF) was used
for simultaneous removal of spike-like noise and interpolation of
missing points in seismic data with complex structured events.
However, double sparsity dictionary learning (DSDL) methods
perform better in the presence of Gaussian distributed random
noise and non-Gaussian noise in seismic data [32], [33]. In [30],
a joint denoising and reconstruction method for seismic data
was proposed using DSDL method in the presence of spiky
noise. An extended sparse K-SVD method for dictionary update
was used where the atoms are updated through weighted low
rank approximation. However the method in [31] was com-
putationally complex. In recent years, deep learning methods
have gained significant attention in the field of seismic data
reconstruction. By training the deep learning model on large
volumes of seismic data, it is possible to reconstruct missing
traces, suppress noise, and improve the overall resolution of
seismic images [34], [35], [36]. Deep learning models require
a large amount of labeled training data to learn and generalize
effectively. However, acquiring labeled seismic data for training
can be challenging, time-consuming and expensive. To address
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this problem, unsupervised learning or self-learning techniques
are proposed in [37] and [38] for sparse time frequency analysis
of seismic data.

In this work, we propose to use a computationally efficient
DSDL method as a reconstruction operator in weighted iterative
projection on convex sets algorithm with analytic dictionary as
fast discrete curvelet transform (FDCT) and adaptive dictionary
as sequential generalized k-means (SGK). Sparse representation
of the data in the dictionary domain does not always guaran-
tee a successful separation between signal and noise. Spatial
coherence of the training data has a significant impact on the
dictionary learning process [39]. In data sets with poor spatial
coherence, a learned dictionary will not be able to represent
a complex structure. In order to alleviate this shortcoming,
we further applied structure oriented filtering (SOF) on the
reconstructed data obtained from DSDL. The mean filter is
to applied along the structural direction of seismic events in
an approximately flattened gather and helps to preserve the
useful signals. Existing methods such as FDCT, SGK, and SOF,
individually cannot accurately recover the missing traces. In
DSDL reconstruction, the sparse dictionary is based on a sparsity
model of the dictionary atoms over a fixed dictionary. However,
the selection of parameters in DSDL is also a challenging task.
Further, the output of DSDL is filtered using SOF for further
improvement in SNR. Also, in the filtering step we fine tune the
number of iterations to get the accurate slope estimation for the
reconstructed output of DSDL. In SOF stage, we have applied
the partial denoised and reconstructed data (rather than direct
noisy decimated data) which helps to reconstruct the seismic
data with high level of accuracy. When compared to existing
methods, the proposed DSDL-SOF method applied to noisy and
incomplete seismic data has a marked improvement in terms of
SNR and mean squared error (MSE).

The rest of this article is organized as follows. In Section
II, we illustrate the mathematical prerequisites for the seismic
signal model with noise and missing traces, analytic (FDCT)
and adaptive dictionary learning (Fast dictionary learning) meth-
ods. In Section III, we describe our proposed methodology. In
Section IV, the reconstruction performance of the proposed
method is compared to that of existing methods. Finally, Sec-
tion V concludes the article.

II. MATHEMATICAL PREREQUISITES

This section describes the mathematical prerequisites that will
be used in the subsequent sections.

A. Signal Model

In this section, we describe the signal model for incomplete
seismic data with random noise. Let X ∈ RM×N be the com-
plete seismic data with N traces having M data points each,
mathematically expressed as

X = [T1, T2, · · ·TN ] (1)

where Ti ∈ RM×1 is the clean ith trace. In the process of
acquisition, the seismic signal recorded by geophones is afflicted

by noise and also some traces are lost. LetW ∈ RM×N be the ad-
ditive random noise with Gaussian distribution and S ∈ RM×M

be the sampling matrix with L nonzero diagonal entries and
M − L diagonal elements with zeros. Then, the observed noisy
and incomplete seismic dataset O ∈ RM×N can be expressed as

O = S(X +W ) (2)

where M − L traces have been lost.

B. Fast Discrete Curvelet Transform

The FDCT is one of the efficient transform used for denoising
and reconstruction of seismic data. FDCT is a multiscale and
multidirectional localized transform used for interpolation with
POCS [40]. FDCT is also used as sparsity promoting filter for
noise attenuation in seismic data [33], [41] [42]. We assume
that clean seismic data X has sparse representation d in FDCT
domain C is represented as

X = CT d. (3)

Then, the (2) is reformulated as

O = S(CT d+W ) = Ad+ W̃ (4)

where A = SCT , denotes the measurement matrix and
W̃ = SW . The sparse signal that can be separated from noise
is then solved by minimizing the cost function as follows:

d̂ = argmin
d

1

2
‖O −Ad‖22 + α‖d‖1 (5)

where α is the parameter used for regularization, ‖‖1 and ‖‖2
represents L1 and L2 norms, respectively. The solution of above
(5), provides the denoised and reconstructed seismic data.

C. Fast Dictionary Learning

In this section, we describe the fast DL method for seismic
data denoising and reconstruction. In DL, sparse coding and
dictionary update are the two important steps which are itera-
tively performed until the convergence of data model is obtained.
SGK algorithm is also known as fast DL wherein the atoms of
the dictionary are updated through arithmetic average of training
samples with accelerated sparse coding [27], [43]. The fast DL
has been used to denoise and reconstruct seismic data at the same
time [27].

In fast DL method, the observed data O(M ×N) is divided
into patches and the ith patch is denoted as Oi. Let D ∈ RM×P

represents dictionary and G ∈ RP×N is the sparse coefficient
matrix. Then, the sparse form of observed seismic data based on
DL method is defined as the product D and G = [g1, g2, · · · gN ]
and mathematically expressed as

O = DnG (6)

where n represents the iteration number. The first step of fast DL
method is sparse coding which can be obtained by minimizing
the cost function below.

∀jgnj = argmin
gj

‖O −DnG‖2F

subject to ∀j‖gj‖1 � q (7)
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where q denotes the sparsity level and gnj represents the sparse
coefficient corresponding to jth column of sparse coefficient
matrix, G and ∀j represents all columns of sparse coefficient
matrix G. To solve the optimization problem in (7), an or-
thogonal matching pursuit (OMP) algorithm can be used until
the defined sparsity constraint level is met. However, the OMP
method requires q iterations and hence, more computations. To
address that problem, accelerated sparse coding method was
used in SGK which computes the sparse coefficients in a single
iteration [27]. After sparse coding, dictionary update is the
second step in SGK where the sparse coefficients G are fixed
from (7) and dictionary atoms are updated by solving the cost
function given below.

Dn+1 = argmin
D

‖O −DGn‖2F (8)

In SGK-DL, the cost function given in (8) is solved without
performing singular value decompositions (SVD) operations.
Instead, an arithmetic average of training data samples is applied
for updating the dictionary atoms [27]. Let dk be the kth atom
in the dictionary, D and Nk represent the number of training
samples corresponding to the kth atom, then update equation of
kth atom via SGK-DL method can be defined as

dk =
1

Nk

Nk∑
i=1

Oi. (9)

The above equation is used for updating each atom in the
dictionary D. After the sparse coding and dictionary update
through finite number of iterations, the denoised seismic data can
be reconstructed as a linear combination of the updated atoms
in the dictionary and updated sparse coefficients as follows:

Ô = D̂Ĝ (10)

where D̂ and Ĝ are the updated dictionary and sparse coefficient
matrices, respectively.

D. Structure-Oriented Filtering

In the presence of complex events, structure oriented filtering
is performed in two steps: 1) local slope estimation; and 2)
filtering. Local slope is an important characteristic that can
help to separate the seismic signals from noise. Based on plane
wave destruction algorithm (PWD) [44], [45], the local slope
is calculated. Using this slope information, the seismic data
are translated to the flattened domain. Then, structural filtering
is performed using a mean or median operator applied in a
specific local window that is driven by the local slope at the
corresponding locations [46].

The structure oriented mean filter applied to 2-D seismic data
is mathematically defined [31] as

ŵi,j = arg min
wu∈Wi,j

L+1∑
l=1

(wu − wl)
2 (11)

where ŵi,j is the output for observed data point at (i, j)th
position in which i and j are vertical and spatial axes, respec-
tively. L+ 1 is the filter window length, u and l are indices in
filter window. The above optimization equation is equivalent to

determining the mean in the filtering window. The solution of
optimization equation gives the output value for the particular
position (i, j) of events, where Wi,j represents searching win-
dow with respect to slope of observed data at specified positions
defined as

Wi,j =
{
wi,j−(L

2 )σi,j
, . . . , wi,j−σi,j

, wi,j , wi,j+σi,j

, . . . , wi,j+(L
2 )σi,j

}
(12)

where σi,j represents is the local slope of the structure pattern
at position i, j.

III. METHODOLOGY

In this section, we demonstrate the methodology of our work
for seismic data denoising and reconstruction based on DSDL-
SOF. The block diagram of the proposed method is shown in
Fig. 1 which is the cascade of DSDL and SOF.

In seismic data, most of the events have complex curved struc-
ture, hence in the first step of our proposed work, we imposed
the double sparsity on noisy decimated data by computational
efficient fast discrete curvelet transform and fast dictionary
learning algorithm. FDCT is a one type of sparse transform with
high sparseness can be able to separate the signal from noise [19].
The transform-domain thresholding-based filtering works best
for random noise discussed in Section II-B. However, in our
work we have considered the presence of random noise in the
data along with missing traces which are randomly decimated.
Hence, some residual noise remaining with partial interpolation.

Therefore, we further impose the sparsity using the adaptive
dictionary learning method through sequential generalized k-
means algorithm given in Section II-C for the removal of the
residual noise. In adaptive dictionary learning method, the atoms
in the dictionary are learned from the training data which is
already sparse. Therefore, the data becomes double sparse and
extracts the useful seismic signal from the noise. The DSDL
is a promising method for Gaussian distributed random and
non-Gaussian distributed erratic noise attenuation in seismic
data [32], [33]. Let G represents the sparse coefficient matrix,
B and F are the analytic and adaptive dictionaries, respectively.
The sparse representation of the observed dataO based on DSDL
method is mathematically expressed as

O = DG (13)

where D represents the double sparsity dictionary obtained by
cascading of the analytic and adaptive dictionaries, i.e.,

D = BF. (14)

In double sparsity dictionary, the atoms in the analytic dictionary
B are fixed and predefined, and the atoms in the adaptive
dictionary are updated from the sparse data provided by the
fixed dictionary in adaptive manner. The sparse coefficients G
and dictionary D [32] are obtained by solving the cost function
below:

〈Ĝ, D̂〉 = argmin
G,D

1

2
‖O −DG‖22 + α‖G‖0. (15)
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Fig. 1. Proposed DSDL with SOF method’s block diagram.

The denoised seismic data R can be reconstructed using DSDL
as follows:

R = D̂Ĝ (16)

where D̂ and Ĝ are updated dictionary and sparse coefficient
matrices obtained using DSDL method. This DSDL method is
used as a reconstruction operator in the weighted projection on
convex sets algorithm for simultaneous denoising and missing
traces reconstruction like in [3]. Even though, data interpolation
need to be improved for further reconstruction of noiseless
data with good signal preservation. Hence, finally we applied
structure oriented filtering on the DSDL output with iterative
slope estimation and structural filtering (Section II-D).

Let U be the SOF initialized by the DSDL output R given in
(16), then the denoised and reconstructed data Y is mathemati-
cally expressed as

Y = U(Rq+1) (17)

where q indicates the iteration number and Rq+1 is the re-
constructed data after q + 1 iterations. The reconstructed data
at (q + 1)th iteration is obtained using the weighted iterative
projection on convex sets algorithm [3] with DSDL as a recon-
struction operator given as

Rq+1 = βqSO + (I − βqS)Γ(Oq) (18)

where Γ is the reconstruction operator and βq is the relaxation
parameter which decreases to 0 from 1 as the number of iter-
ations increase. The DSDL-based reconstruction operator with

sparsity constraint is represented mathematically as

Γ(Oq) = argmin
D,G

‖O −DG‖22

subject to ∀jg1j = ev (19)

where ev represents the unit vector with only vth element as
1 and remaining elements zero which is considered as sparsity
constraint for DSDL method. D and G are the double sparsity
dictionary and sparse coefficient matrix defined in (13), where
g1 is the coefficient vector of matrix G.

IV. RESULTS AND DISCUSSION

In this section, we illustrate the performance of the proposed
DSDL-SOF method on incomplete synthetic and field data. We
generated hyperbolic and linear crossed events similar to [47]
and [48], respectively. Also, two field data examples are also
used from [49] and [50]. The efficacy of our work using DSDL-
SOF on synthetic data is compared based on signal to noise ratio
(SNR), MSE, and local similarity map with energy [3], [33]
metrics. Whereas for field data, we analyzed based on visual
quality and frequency spectra. The SNR of reconstructed data
can be mathematically expressed as

SNR = 10 log10

( ∑
k X

2(k)∑
k(Y (k)−X(k))2

)
(20)

where k represents the trace number, X(k) is the clean seismic
data, and Y (K) is the reconstructed data.
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Fig. 2. Denoised and reconstruction results for existing and proposed methods on synthetic seismic data with complex hyperbolic events: (a) Clean data,
(b) Noisy data, (c) noisy and incomplete seismic data with SNR 1.9863 dB, denoised and reconstructed results using:(d) DDTF, (e) K-SVD, (f) SGK, (g) MSSA,
(h) DMSSA, (i) DSDL, (j) SOF, and (k) proposed DSDL-SOF.

The MSE of the reconstructed data Y (k) with N traces is
given by

MSE =
1

N

N∑
k=1

(
Y (k)−X(k)

)2

. (21)

The proposed method is studied on four different datasets as
follows.

1) Synthetically generated data with complex and simple
hyperbolic events;

2) synthetically generated data with linear crossed events;
3) field data-I;
4) field data-II.

A. Study-I: Comparision of DSDL-SOF With Existing
Methods on Synthetic Data With Complex Hyperbolic Events

In this study, we analyzed the performance of proposed
method with existing DL methods, structure oriented filtering
method and rank-reduction methods (MSSA and DMSSA) [3]
on synthetically generated seismic data with complex (more
number of) hyperbolic events. The generated clean hyperbolic
structured seismic events contain 250 traces with sampling du-
ration of 4 ms as depicted in Fig. 2(a). The clean data is distorted
with Gaussian distributed random noise presented in Fig. 2(b)
and decimated by 50% which is shown in Fig. 2(c). Then, the
noisy and incomplete synthetic data with hyperbolic events SNR
is of 1.98 dB. We applied both the proposed DSDL-SOF and
existing methods (DDTF, K-SVD, SGK, rank reduction methods
based on MSSA and DMSSA) and individual DSDL, SOF
methods on the noisy and incomplete data. Then, the obtained
output SNR, MSE, energy, and computation time are tabulated
in Table I.

TABLE I
COMPARISON OF PROPOSED METHOD USING DSDL-SOF ON COMPLEX

HYPERBOLIC EVENTS (FIG. 2) WITH EXISTING METHODS IN TERMS OF

SNR,MSE, ENERGY, AND COMPUTATION TIME

According to Table I, DDTF, K-SVD, SGK, MSSA, DMSSA,
SOF, and DSDL methods improved the SNR to 3.09 dB, 3.47 dB,
4.48 dB, 4.65 dB, 5.96 dB, 5.15 dB, and 7.18 dB, respectively.
In addition, the proposed method enhances the SNR to 8.15 dB
and also shows least MSE value as compared to the existing
methods. The reconstructed plots of existing methods are shown
in Fig. 2(d)–(h) and individual DSDL and SOF method plots
are shown in Fig. 2(i)–(j) where noise can be seen in the
reconstructed data and missing traces have been reconstructed
partially. In Fig. 2(k), the plot of reconstructed seismic data
corresponding to the proposed method based on DSDL-SOF
method is presented and it is observed that it has performed
better denoising and reconstruction of hyperbolic events.

It can be also observed from Fig. 2(i) that the DSDL method
does not reconstruct the missing traces 55 to 59. In Fig. 2(j), SOF
has a slightly better performance in reconstructing the missing



9486 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 3. Difference sections between clean and Reconstruction results for existing and proposed methods on synthetic seismic data with more hyperbolic events:
Difference section of clean and reconstructed section of : (a) DDTF; (b) K-SVD; (c) SGK; (d) MSSA; (e) DMSSA (f) DSDL; (g) SOF; and (h) proposed DSDL-SOF.

Fig. 4. Proposed method results for data with different noise levels and decimation: (a) Noisy seismic data decimated by 30% with SNR of 3.12 dB; (b) noisy
seismic data decimated by 60% with SNR of –1.88 dB; (c) Noisy seismic data decimated by 80% with SNR of 0.68 dB; (d), (e), and (f) are reconstructed data of
(a), (b) and (c), respectively, using the proposed method; (g), (h), and (i) are the difference sections of clean and reconstructed data of 30, 60, and 80% decimation
levels.

traces 55 to 59. Similarly, the reconstruction performance for
the traces 49, 50, 51, 52, 92, 93, 94, DSDL is slightly better
than SOF. In Fig. 2(k), the proposed method combines the
advantages of both the methods and has better reconstruction
than either DSDL or SOF. The difference sections between clean
and reconstructed data of all the existing and proposed methods
are shown in Fig. 3(a)–(h), respectively. Further, we analyzed

the performance of the proposed method on seismic data with
different noise levels and sampling ratios. We generated noisy
and decimated data with 30%, 60%, and 80% decimation having
different noise levels (5.76 dB, –3.7 dB, and 5.82 dB). The
resulting noisy and decimated data with SNR values 3.12 dB,
–1.88 dB, and 0.68 dB, respectively, are shown in Fig. 4(a)–(c).
The results obtained by applying the proposed method on the
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Fig. 5. Local similarity map between input and reconstructed data by (a) DDTF, (b) K-SVD, (c) SGK, (d) MSSA, (e) DMSSA, (f) DSDL, (g) SOF, and
(h) proposed DSDL-SOF.

noisy decimated data are shown in Fig. 4(d)–(f), respectively. In
order to illustrate the loss we consider noisy data with 50%
decimation and plot the local similarity map between input
and reconstructed data using the various methods which are
shown in Fig. 5. The respective energy values are tabulated in
Table I. From the similarity maps and Table I, we infer that
the proposed method outperforms the existing methods in terms
of energy. The loss in valid signal is indicated by arrows in
Fig. 5 and it can be observed that signal loss in the proposed
method given in Fig. 5(h) is small as compared to the existing
methods. In addition, simulation results demonstrate that the
DSDL method performs second best to the proposed method
in terms of reconstruction and denoising. From Table I, the
computation time for DSDL method is approximately 139 s
and the proposed method takes approximately 175 s. While
the proposed method takes slightly longer time, it achieves an
improvement in SNR of nearly 1 dB as compared to DSDL
method.

Furthermore, we compare the performance of our proposed
method with existing methods on the synthetic data of 128
traces with simple hyperbolic events for different noise levels
such as –2 dB, 0.28 dB, and 2.42 dB. The SNR and MSE
of the reconstructed data with existing state-of-the-art methods
and the proposed method are tabulated in Table II. From Table
II, it is observed that the proposed method has an improved
performance over a wide range of noise levels and decimation
of seismic data.

In Fig. 6, we presented the comparative results of existing
and proposed methods on synthetic seismic data with hyperbolic
events of 128 traces. In Figs. 6(a)–(c) depicts noise free clean
data, noisy data, noisy and incomplete data with 50% decimation
having SNR of 2.42 dB, respectively. The proposed method and
existing methods are applied for three different noise levels of
data and the performance in terms of SNR and MSE is given in
Table III. The plots of reconstructed outputs of existing and

TABLE II
SNR AND MSE COMPARISON OF PROPOSED METHOD USING DSDL-SOF WITH

EXISTING METHODS FOR THREE DIFFERENT NOISE LEVELS AND DECIMATION

PERCENTAGES ON HYPERBOLIC EVENTS GIVEN IN FIG. 2(A)

proposed methods for noisy level of 2.42 dB are shown in
Fig. 6(d)–(k).

From Table III, it can be inferred that the proposed method has
superior performance while compared to the existing methods
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Fig. 6. Performance analysis of existing and proposed methods for data with less number of hyperbolic events: (a) Clean data with hyperbolic events, (b) noisy
seismic data, (c) noisy and incomplete seismic data with SNR of 2.42 dB, denoised and reconstructed results using (d) DDTF, (e) K-SVD, (f) SGK, (g) MSSA,
(h) DMSSA, (i) DSDL, (j) SOF, and (k) proposed DSDL-SOF.

TABLE III
SNR AND MSE COMPARISON OF PROPOSED METHOD USING DSDL-SOF WITH

EXISTING METHODS FOR THREE DIFFERENT NOISE LEVELS ON SIMPLE

HYPERBOLIC EVENTS DATA GIVEN IN FIG. 6(A)

over wide range of noise levels in the seismic data. Further,
we also compared with local similarity map between clean and
reconstructed data and respective energy values are tabulated in

TABLE IV
ENERGY COMPARISON OF PROPOSED DSDL-SOF METHOD WITH EXISTING

METHODS ON SIMPLE HYPERBOLIC EVENTS DATA GIVEN IN FIG. 6(A)

TABLE V
SNR AND MSE COMPARISON OF PROPOSED METHOD USING DSDL-SOF ON

LINEAR CROSSED EVENTS WITH EXISTING METHODS

Table IV. From Table IV, it is clear that our proposed method has
high energy value which indicates the high similarity between
the clean input data and reconstructed data. The respective local
similarity maps between clean and reconstructed data of existing
and proposed methods are shown in Fig. 7(a)–(h).

B. Study-II: Comparision of DSDL-SOF With Existing
Methods on Synthetic Data With Linear Crossed Events

In this study, we compared the proposed method results to
that of existing methods on synthetic data having linear crossed
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Fig. 7. Local similarity map between input and reconstructed data by (a) DDTF, (b) K-SVD, (c) SGK, (d) MSSA, (e) DMSSA, (f) DSDL, (g) SOF, and (h),
proposed DSDL-SOF.

Fig. 8. Comparative results for linear-crossed events : (a) Clean data with linear-crossed events, (b) noisy seismic data with SNR 0.89 dB, (c) noisy and incomplete
seismic data with SNR 0.44 dB, denoised and reconstructed data using (d) DDTF, (e) K-SVD (f) SGK, (g) MSSA, (h) DMSSA, (i) DSDL, (j) SOF, and (k) proposed
DSDL-SOF.

events shown in Fig. 8. In Fig. 8(a), we presented the syntheti-
cally generated clean seismic data with linear crossed events.
The clean data consists of 50 traces with sampling duration
of 4 ms. The noisy data is generated by adding the Gaussian
distributed Random noise to the clean data which is shown in
Fig. 8(b). The noisy data is then decimated by 50% to obtain
noisy incomplete data with SNR of 0.44 dB and is presented in
Fig. 8(c). We applied the DDTF, K-SVD, SGK, MSSA, DMSSA,
DSDL, SOF methods and the proposed method on the noisy and
incomplete seismic data and the reconstructed results are shown
in Figs. 8(d)–(k), respectively. The corresponding SNR and MSE
values are given in Table V.

Table V clearly shows that the proposed method outper-
forms existing methods. The respective plot of proposed method
is as shown in Fig. 8(k), where we clearly notified that the

reconstructed data is more similar to the original noise free data
in Fig. 8(a).

C. Study-III: Comparision of DSDL-SOF With Existing
Methods on Field Data-I

In this study, we examine the performance of the proposed and
existed methods on field data-I [49] is analyzed. The field data-I
is presented in Fig. 9(a). The field data is decimated by 50%
and the resultant incomplete field data is presented in Fig. 9(b).
The existing and proposed methods are applied on decimated
field data for noise attenuation and reconstruction. The denoised
and reconstructed data of the DDTF, K-SVD, SGK, MSSA,
DMSSA, DSDL, SOF and the proposed methods are presented
in Fig. 9(c)–(j), respectively. From Fig. 9(j), we observed that



9490 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 9. Denoised and reconstructed results for field data-I (a) field data-I, (b) incomplete field data with 50% decimation, denoised and reconstructed field data
using (c) DDTF, (d) K-SVD, (e) SGK, (f) MSSA, (g) DMSSA, (h) DSDL, (i) SOF, and (j) proposed DSDL-SOF.

Fig. 10. Frequency spectra for input field data-I and reconstructed data through existing and proposed methods: (a) field data-I, (b) incomplete field data with
50% decimation, and reconstructed field data using (c) DDTF, (d) K-SVD, (e) SGK, (f) MSSA, (g) DMSSA, (h) DSDL, (i) SOF, and (j) proposed DSDL-SOF.

Fig. 11. Denoised and reconstructed results for (a) field data-II, (b) incomplete field data with 50% decimation, denoised and reconstructed field data using
(c) DDTF, (d) K-SVD, (e) SGK, (f) MSSA, (g) DMSSA, (h) DSDL, (i) SOF, and (j) proposed DSDL-SOF.
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Fig. 12. Proposed method results for data with different levels of decimation: (a) Field seismic data decimated by 10%; (b) field seismic data decimated by 30%;
(c) field seismic data decimated by 60%; (d), (e), and (f) are reconstructed data of (a), (b), and (c), respectively, using the proposed method.

the events in the output of proposed method are clearly visible
with better noise attenuation and reconstruction. Furthermore,
we also provided the frequency spectra of input field data and
reconstructed data of all the existing and proposed methods in
Fig. 10.

D. Study-IV: Comparision of DSDL-SOF With Existing
Methods on Field Data-II

In this study, we compared the proposed method on field
data-II in [50] with existed DL methods (DDTF, K-SVD, SGK,
and DSDL), RR methods using MSSA and DMSSA, and fil-
tering method based on SOF. The field data-II is depicted in
Fig. 11(a). The field data decimated by 50% is presented in
Fig. 11(b). The outputs of DDTF, K-SVD, SGK, MSSA, DSDL,
SOF and proposed DSDL-SOF methods on incomplete field data
are shown in Fig. 11(c)–(j), respectively.

The performance of the proposed method on the field data-II
with three different decimation levels 10%, 30%, and 60%,
respectively, shown in Fig. 12(a)–(c). The results of reconstruc-
tion from low decimation to high decimation are presented in
Fig. 12(d)–(f), respectively. In Fig. 12(f), which corresponds to
reconstructed data for highly decimated data, the features present
in the actual are also visible.

E. Discussion

In practical scenario, the recorded seismic data is noisy and
consists of missing traces. The reconstruction of irregularly
decimated and noisy seismic data is a challenging problem. To
address this issue, a novel method is proposed by combining the
benefits of DSDL and SOF. We used the DSDL method as a
reconstruction operator in weighted iterative projection on con-
vex sets algorithm. However, the sparse representation of data
in the dictionary domain does not always guarantee a successful
separation between signal and noise. Spatial coherence of the

training data also has a significant impact on the dictionary learn-
ing process. In datasets with poor spatial coherence, a learned
dictionary will not be able to represent a complex structure. In
order to alleviate this shortcoming, we further applied SOF on
the reconstructed data obtained from DSDL. The mean filter
is applied along the structural direction of seismic events in an
approximately flattened gather and it helps to preserve the useful
signals. Therefore, by combining the DSDL method and SOF
method the overall performance of denoising and reconstruction
has been improved. When compared to existing methods, the
proposed DSDL-SOF method applied to noisy and incomplete
seismic data has a marked improvement in terms of SNR and
MSE. In addition, we observed aliasing in regular decimated
(consecutive traces missing) seismic data with high percentage,
nearly 79%. Due to aliasing, the high frequency components
cannot be recovered and the edges in the reconstructed data are
not sharp. Novel methods for accurate reconstruction of missing
data with aliasing will be considered in the future work.

V. CONCLUSION

In this article, we proposed a novel method for seismic data
denoising and reconstruction based on DSDL with SOF in the
presence of incomplete and noisy seismic data. In our proposed
method, we perform denoising and reconstruction through two
cascaded steps: 1) DSDL; and 2) SOF. The first step performs
denoising and reconstruction leveraging the benefits of analytic
dictonary (FDCT) and adaptive dictionary (SGK), respectively.
In the second step, the output of DSDL method is filtered through
SOF with accurate slope estimation. Therefore, the residual
noise is attenuated and simultaneous reconstruction of missing
traces is performed with improved SNR. The efficacy of the
proposed double sparsity DL method with SOF is studied using
synthetically generated data and field data. The studies with
synthetic and field data prove that the proposed method has better
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denoising and reconstruction performance when compared to
existing methods and has better SNR, MSE, and local similarity.
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