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End-to-End Pixel-Wisely Detection of Oceanic Eddy
on SAR Images With Stacked Attention Network

Ming Xu , Hongping Li , Yuying Yun, Fan Yang, and Cuishu Li

Abstract—Oceanic eddies are ubiquitous phenomena carrying
large amounts of energy, thus of great importance for marine ecol-
ogy and sea–air exchange. As an all-weather, high-resolution sen-
sor, synthetic aperture radar (SAR) could provide valuable obser-
vations for oceanic eddies. However, there are few well-established
methods for eddy detection on SAR images except for manual
seeking, which is laborious and time-consuming. In combination
with deep learning, this study is among the earliest in the literature
that attempts end-to-end eddy detection on SAR images. Due to
obscure pictures and indistinct eddy boundaries, ordinary deep
learning models are not adaptable to the objective. Therefore, an
customized model, stacked attention network (SANet), is designed
to recognize the unique eddy pattern presented on radar images
automatically. SANet is a two-unit stacking architecture, with each
an hourglass structure for bottom–up, top–down reference and the
overall stacking network for iterative extractions of eddy textures
contained in shallow layers of each unit. Besides, SANet has in-
cluded the inner-hourglass attention gates and the outer-hourglass
GCblock for the extracted features to be more concentrated on the
interested areas. Using SANet, we have identified 87.75% of eddies
in the constructed dataset collected from ESA-2 and ENVISAT
SAR products. The result is much better than the no-stacking
counterpart U-net, as well as state-of-the-art deep learning models
DeepLabV3+ and SegFomer, thus verifying the superiority of the
proposed method. The generalization ability of the algorithm has
also been tested. The code and the constructed SAR dataset have
been made public for broader use.

Index Terms—Deep learning, end-to-end detection, oceanic
eddies, synthetic aperture radar (SAR).

I. INTRODUCTION

OCEANIC eddies are rotating structures with scales of
tens to hundreds of kilometers and tens to hundreds of

days. As relatively concentrated water masses, eddies transport
momentum, heat, and substances, such as carbon, phytoplank-
ton, and salt, thereby contributing to the general circulation,
large-scale water mass distributions, and ocean biology [1], [2],
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[3]. As a subject of identifying eddy as a mesoscale phenomenon,
eddy detection is extremely important for understanding the
ocean dynamic system. And satellite remote sensing, with its
advantage of large coverage, is one of the most common ways
to accomplish this task.

Oceanic eddies exhibit unique geographic and physical char-
acteristics and can therefore be extracted on a variety of re-
mote sensing imagery, such as sea surface height (SSH), sea
surface temperatures (SSTs), seawater flow fields, and synthetic
aperture radar (SAR). Among them, however, SSH is of low
spatial resolution, and SST variation may also be caused by
other oceanic phenomena. In addition, seawater flow fields are
either computed by SSH, thus suffering the same defect of low
resolution, or acquired by in situ sensors, thus being laborious
and discontinuous. Therefore, as a long-lasting, high-resolution,
and accurate data source, SAR has been increasingly noticed
for eddy detection research, especially for observing the sub- or
small-scale eddies, that are found to be ubiquitous but had not
attracted much attention until recently.

Various feasible eddy detection methods have been devel-
oped for decades, despite the significant contribution they have
made to scientific comprehension, these traditional methods
have their drawbacks like elaborate selection for thresholds,
poor generalization capability, high-level expertise knowledge
demanding, etc. Driven by the prosperity of artificial intelligence
(AI), some marine scientists are seeking solutions for automatic
eddy detection in deep learning communities.

In combination with the advantage of remotely sensed SAR
data source and the deep learning application, this article
proposes a new automatic eddy detection method. There are
some other works committed to the similar channel. Of which
DeepEddy [4], [5], and Xia [6] achieve high accuracy, and
Yan et al. [7] can distinguish five types of oceanic phenomena.
These works perform relatively well in the classification task on
potential image patches, while a more comprehensive method
is still awaited to identify possible eddies on the entire SAR
image, where multiple instances may exist. Furthermore, unlike
some previous works that apply existing deep learning models
to the eddy detection matter, we focus on eddy features on SAR
imagery to design a customized network inspired by stacking
architecture, namely stacked attention network (SANet).

The proposed SANet consists of two independent units
stacked together, drawing on shallow layers of each unit to
extract eddy textures, and refining the information by repeatedly
bottom–up, top–down propagating through all units. In addi-
tion, two kinds of attention mechanisms within and out of the
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individual unit are deployed to further highlight the interested
areas containing eddies and suppress the irrelevant backgrounds.
Using the architecture, we are able to identify eddies pixel-
wisely in a whole massive SAR imagery. Furthermore, by com-
bining the postprocessing based on mathematical morphology,
the final detection result achieves a recognition rate of 87.75% on
the constructed dataset, much better than several state-of-the-art
deep learning networks.

II. RELATED WORKS

A. Eddy Detection in Traditional Ways

Many studies have been devoted to eddy detection since it
was first discovered by a radiation thermometer [8]. From then
on, SST has become the earliest source for eddy interpreta-
tion. For example, Peckinpaugh and Holyer [9] applied several
circle detectors to the reduced advanced very high resolution
radiometer (AVHRR) edge images, and compared their ability of
defining size and position of eddies. Fernandes and Nascimento
[10] developed a three-stage procedure. First, they calculated
the vectorial field with the SST map and a zeros matrix. Then,
the vectorial field was binarized using an iterative thresholding
algorithm. Finally, five edge points classified by their gradient
vector direction were selected to fit an ellipse corresponding to
the eddy. Oram et al. [11] developed an edge detection algorithm
that is insensitive to noise and utilized it to classify cyclonic
and anticyclonic eddies in satellite images of the Southern
California Bight. Lemonnier et al. [12] used a multiscale analysis
of isotherm curvature and a characterization through phase
portraits to detect eddy outlines and extract related information
about the structures.

Although SST has played an important role in early eddy
research. Satellite altimeter data are the dominant resource for
eddy detection, since the merged products of two or more
altimeters were available. One of the most classic methods
based on SSH is the Okubo–Weiss (OW) [1], [13], [14], [15]
algorithm. The OW parameter is defined with the geostrophic
velocity components, and areas with OW parameter less than
the specified threshold are considered eddy regions. Another
popular approach is the winding angle (WA) method [16]. It
takes the SSH minima or maxima as the eddy center, and the
eddy contour is outlined by classifying streamlines with winding
angles exceeding 360◦. Chelton et al. [2] also used the SSH or sea
level anomaly (SLA) extreme-value point as the eddy core, and
the boundary was searched from the opposite polarity contour
toward the core by deliberate criteria. Yi et al. [17] developed a
hybrid algorithm combining the OW method and SSH topology
that is capable of recognizing eddy multicore structures. To
simplify the recognition process and narrow the search range,
Liu et al. [18] divided the global SLA map into several regions
and has greatly improved the efficiency.

Oceanic eddies are also visible on the flow field as unique
rotating patterns, which inspires research works detecting with
the flow velocity. The representative is the vector geometry (VG)
method [19]. It derived four constraints characterizing the spatial
features of velocity vectors in eddy presence, and the pixel
that satisfied these constraints was detected as the eddy center.

In addition, eddies carrying chlorophyll makes it possible to
identification by ocean color. And there are studies speculating
eddies in the North Pacific [20] and the Western South China
Sea [21] in this regard.

Due to high-resolution, all-day, all-weather observational ad-
vantage, SAR has recently raised more attention in eddy detec-
tion domain. Johannessen et al. [22] explored eddy expression
on SAR images in relation to wave–current interactions, surface
film damping the Bragg waves, and the varying wind field. Based
on this, Johannessen et al. [23] proposed a radar imaging model
(RIM) concerning surface current and temperature fields, which
quantitatively explained eddy signature in SAR images. Xu et al.
[24] illustrated the characteristics of oceanic eddies in the Luzon
Strait and its adjacent seas by visual interpretation of 426 SAR
images, valuable but laborious. Chen et al. [25] used Canny
detector to extract eddy edges and estimated the center position
with structure characteristics.

B. Eddy Detection With Deep Learning

Methods mentioned above are all traditional ways that may
suffer deficiencies like haphazard parameter setting, erratic
threshold initialization, unstable detection accuracy, and low
operational efficiency to varying degrees. Therefore, many sci-
entists are pursuing automatic eddy identification through deep
learning or AI frames. Benefited from increased computing
power, deep learning is gaining popularity in many practical do-
mains [26]. Lots of advanced architectures were constructed for
object detection or semantic segmentation, such as SPP-net [27],
YOLO [28], Faster R-CNN [29], and U-net [30], DeepLab [31],
[32], [33], PSPNet [34], etc.

By transferring the state-of-the-art networks, many eddy
detection studies have achieved superior performance than in
traditional ways. For example, Lguensat et al. [35] proposed
EddyNet based on U-net [30], adding dropout and modifying
the loss metric to better fit the eddy detection task. Similarly,
Liu et al. [36] used U-net [30] in a multimodal manner applying
to multisource remote sensing data. Santana et al. [37] also used
U-net [30], together with the plain model and the residual U-net,
to discuss how SSH and SLA data sources impact the final re-
sults. Xu et al. [38] employed PSPNet [34] as the core algorithm
and validated its ability to detect small-scale eddies. Further-
more, Xu et al. [39] included three algorithms of PSPNet [34],
DeepLabV3+[33], BiSeNet [40], and compared their detective
abilities in terms of eddies numbers, sizes, and lifetimes. Lu
et al. [41] applied the HRNet [42] and further refined the results
using CascadePSP [43] module. Duo [44] proposed OEDNet
based on RetinaNet [45] for eddy identification and enabled
positioning and contour seeking. Sun et al. [46] proposed an
encoder–decoder model including a modified Xception [47]
backbone and several atrous convolutions [32]. Furthermore,
Franz et al. [48] delved into the eddy tracking problem using the
convolutional long short-term memory [49] network.

All methods mentioned above were based on SSH or SLA,
largely because of the easily available altimeter fusion data and
the well-established conventional detection algorithms serving
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Fig. 1. Eddy morphological pattern on SAR images. The upper left and upper
right images are from [53] Figs. 18.2 and 18.11. The bottom left image is
from [52] Fig. 5. The bottom right image is from [22] Fig. 5(a). Only for
the upper left sub-figure we add red circles for eddy notation, and all other
sub-figures remain unchanged as they are already self-explained.

for the ground truth. On the other hand, there are some scien-
tists having been dedicated to other data sources. For example,
DeepEddy [4], [5] took SAR images as the study objective and
applied PCANet [50], spatial pyramid pooling model [27], and
supporting vector machine classifier in succession to distinguish
eddies. Xia et al. [6] combined edge information fusion and
multiscale detection strategy and obtained a good result on
Sentinel-1 products. Also based on SAR images, Yan et al.
[7] used ResNet-50 and atrous spatial pyramid pooling [27]
to classify five oceanic phenomena, including eddy, rain cell,
ship wake, front, and oil spill. These works primarily targeted
classification problem on manually preselected patches rather
than in an end-to-end manner, but still being inspirational for
future research.

III. MATERIALS AND DATASET

A. Eddy Pattern on SAR Images

Oceanic eddy expression on SAR imagery strongly depends
on the wind speeds and is best visualized when winds are
between 2 and 7 m/s [22]. Under moderate wind speeds be-
tween 3 and 5 m/s, natural films with surfactants dampen small
waves, leading to reduced radar backscattering from the sea
surface [51]. In this case, eddies are often recognized as dark,
narrow, curvilinear, concentric bands (slicks) that appear to
spiral inward. At wind speeds of 5–7 m/s, surfactant films
start to disrupt, and eddies expressions on SAR only result
from wave–current interactions. In this circumstance, eddies are
typically identified by a narrow band of enhanced brightness,
usually associated with current shear [23], [52], [53], [54]. Fig. 1
provides some examples of eddy presentation on SAR images.

Fig. 2. Data samples. From left to right images are from SAR
products: SAR_IMP_20050326_022750, ASA_IMP_20080105_015857,
ASA_APP_20071117_134558, ASA_WSS_20110501_022248. (Produc-
tID_startDay_startTime).

B. Dataset

Materials used in this study include ERS-2 and ENVISAT
(A)SAR images of the South China Sea and the Northwest
Pacific from 2005 to 2012, although may not continuous in
space and time. ERS-2 operated in wave mode or image mode.
Under image mode, three Level 1 products were provided: single
look complex product, precision product, and medium resolution
product. As the successor of the ERS program, ENVISAT has
expanded to five operational modes in addition to wave and im-
age mode, including alternating polarization mode, wide swath
mode, and global monitoring mode. All these modes provided
multiple products based on different processes. This work only
selects part of the products that are suitable for eddy observation.
Table I briefly introduces these products used [55].

We employ the SNAP [56] tool offered by the European
Space Agency to assist in building the dataset. The downloaded
SAR products are read and only speckle filtered before being
saved as. jpg images. We deliberately keep the manipulations
on images as few as possible to facilitate future practical usage.
The default filter in SNAP is Lee Sigma with a window size of
7 × 7, although we do not think any other filter would make
much difference. The only speckle filtering operation imposed
on SAR images is for human recognition. Two experts on marine
science manually identify eddies and the images containing them
are selected for our dataset as raw data. At the same time, the
specific eddy area on these images is marked with Labelme [57]
software, creating binary images indicating eddy-present or
eddy-absent as the ground truth. We have collected a total of
137 images presenting 204 eddies with an average radius of
16.3 km, indicating that SAR images are capable of observing
sub- or small-scale oceanic eddies. Fig. 2 provides some SAR
image samples of the collected data, which typically have 7–10 K
pixels in width or height.

After collection, two common data augmentation techniques,
namely flipping and rotating are simultaneously applied to the
raw data and the related ground truth. These two transforma-
tions should not affect as SAR images are not geographically
calibrated at first. However, we do not apply cropping because
it would change the contents of images, which goes against our
intentions of no extra operation needed when the methodology
is deployed. For storage and training time considerations, all
images are scaled to 1/4 of the origin, resulting in a width or
height of approximately 2–3 K pixels. The downscaling will not
affect the authenticity of the dataset because the interrelationship
between pixels are not changed during the process.
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TABLE I
SAR PRODUCTS USED IN THE STUDY

Fig. 3. Overall flowchart of the processing. The top side shows the construction
of the SAR dataset, and the bottom side is the end-to-end algorithm for eddy
detection.

Eventually, 822 sets of data have been gathered, each consist-
ing of one raw data and one ground truth. This dataset has been
made public, given the rarity of exiting eddy datasets based on
SAR imagery. With its relative diversity regarding four products
from two satellites, we hope it will play a greater role in the field.

In the experiment, the dataset are randomly divided in a ratio
of 4:1, of which 80% is the training set for the designed network
to learn the implicit function, and the remainder is the testing
set to assess the validity of eddy detection. Fig. 3 demonstrates
the overall flowchart of the processing.

IV. METHODOLOGY

A. Overview of the SANet

Oceanic eddies in SAR images are either presented as dark,
narrow, curvilinear, concentric slicks or a narrow band of en-
hanced brightness in varying sizes [23], [52], [53], [54]. Finding
these signatures differs from normal natural image segmentation
tasks in two aspects. First, there is no distinct boundary between
eddy areas and the other parts, and second, extra care should

be taken weighing texture and semantics information. The first
issue is inevitable partly from the fact that natural oceanic
phenomena do not have clear boundaries themselves, and partly
from the obscurity of SAR images. This will negatively affect
the detection task, and making it even more difficult and urgent
to solve the second problem.

While global semantic information is essential to understand
a natural image, it is not that important when seeking eddies
in a geographic map. For example, we need the head, neck,
body, limbs, and possible surrounding pastures to be able to
determine a horse. However, in an remotely sensed SAR images,
what other water parts look like has little to do with eddies
appearing in this specific area, so local texture, rather than global
semantics, is the ultimate key to identifying oceanic eddies. For
a deep learning network, the deeper layers often focus on global
semantic features and shallower layers on local texture features,
thus the rotating presentation of eddies actually lies in the model
first few layers. On the other hand, going deeper and deeper is
the trend in developing convolutional neural networks mainly
because of the more powerful and diverse nonlinear potential,
which is also necessary for eddy identification. Thus, the primary
challenge of our work is how to utilize shallow features fully
and comprehensively while preserving the nonlinearity of deep
networks simultaneously.

To achieve the above goal, this article sets up a convolutional
neural network architecture of image segmentation customized
for eddy detection, named SANet. The very principle of SANet is
to stack two independent units, each is relatively shallow in order
to extract the rotating texture of eddies, while the overall stacked
network is still deep enough to provide the desired mapping
ability. To further promote performance, SANet is additionally
implemented with internal and external attention mechanisms
to highlight the regions of interest that contain eddies.

An overview of SANet is illustrated in Fig. 4. A simple con-
volutional layer initially extends the image to multiple feature
channels. And then these features will go through two stacked
units interpolated by an intermediate supervision module. The
individual unit is in the hourglass shape for its effective bottom–
up, top–down inference. Besides, we incorporate the attention
gate within, and a GCblock followed by each hourglass unit to
impel the network to focus on the region of interest. Finally,
postprocessing is added at the end of the SANet to further refine
the eddy detection results. The following will demonstrate the
stacked network, the internal attention mechanism (attention
gates), the external attention mechanism (GCblock), and the
postprocessing in detail.
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Fig. 4. Overview of the SANet.

Fig. 5. Intermediate supervision.

B. Stacked Network With Intermediate Supervision

The extraction of eddy textures mainly depends on the first
few layers of convolutional neural networks, indicating the
discriminative model should not be a very deep one. While
one single shallow unit is not enough to capture the complex
expression in obscure and noisy radar imagery, stacking two
hourglasses together not only deepens the overall network, but
also allows the inferences to be drawn double times, so as to
refine the features repeatedly.

However, stacked architecture leads to the optimization prob-
lem on network training, Newell et al. [58] applied intermediate
supervision to settle the matter. We follow their ideas but greatly
simplify the procedure considering the heavy computational
burden already imposed by the huge radar images. The pruned
intermediate supervision is illustrated in Fig. 5, it uses only one
convolutional layer to reduce the feature channels after the first
hourglass plus GCblock from n to 1. These will be provided
as a set of predictions attributing to the final loss, allowing the
feedback to be connected directly, rather than back-propagating
in sequence tediously.

C. Hourglass Unit With Attention Gates

The individual unit is the hourglass model that was first
proposed for human pose estimation [58]. The name reflects
its symmetric encoder–decoder architecture that pools down the
input to a low resolution (encoder); and then upsamples and
combines features across multiple scales back to the original

Fig. 6. Attention gate installation.

resolution (decoder). This specific topology effectively captures
information at every scale, including local evidence at shallower
layers and holistic cognition at deeper layers. The original model
reaches the lowest resolution of 4× 4 at the end of the encoder,
which is suitable for understanding human poses, but is not
proper for our task where local textures are more indispensable.
Thus, the modified hourglass unit (dotted box in Fig. 4) only
downsamples three times, so that even the lowest resolution
remains 1/8 of the input image. Besides, unlike the original
version, which employs the same number of feature channels
for each layer, we make it 32, 64, 128, and 256 from the input to
the end of the encoder, thus considerably easing the computation.
Furthermore, given the varying size of eddies, we have added a
spatial pyramid convolution [27] after the fourth layer (end of the
encoder path), with dilation rates of 6, 12, and 18, respectively,
making sure no eddy being missed in the abstraction.

Inspired by “attention U-Net” [59], the attention gate as the
hourglass-internal attention mechanism is another improvement
of our work. The key is the gating signal, which should constrain
the entire representation. As the encoder goes to the deepest
layer, the information is the most coherent available to the
network, so it is appropriate to transmit the gating signal here
(after the spatial pyramid convolution). Multiscale features from
the encoder path will be gated by this signal before being
concatenated to the decoder path, thus being more focused on
the target structure.

The detailed installation of the attention gate is shown in
Fig. 6. Since the first scale features (conv-1) usually do not
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Fig. 7. GCblock installation.

capture enough information, the attention gate is only applied
to the second, the third, and the fourth scale features (conv-2,
conv-3, and conv-4). One single 1× 1 convolution after the
spatial pyramid convolution produces the contextual gating sig-
nal. Then, features from the encoder are pruned by aligning
them with this gating signal. This operation would provide
coefficients which, after some transformations, are multiplied by
the original features element-wisely to obtain the gated features
that identify salient regions. The consecutive 1× 1 convolutions
with channels of n/r and n (n equals the channel number of the
input features and r is a specified ratio) perform the nonlinear
transformation in a parameter-reduction manner, and this special
design is also used in the GCblock and will be further illustrated
in the next section.

D. GCblock as the External Attention

To further highlight the area containing eddy textures and
suppress irrelevant backgrounds, SANet apply Global Context
block (GCblock) [60], [61], [62] as the hourglass unit-external
attention mechanism. GCblock integrates both the pixelwise
and channelwise feature attentions, yet with only lightweight
parameters, thus can be flexibly plugged into any network.
As shown in Fig. 7, the GCblock consists of a global context
pooling component, a transform component and a broadcast
additive fusion. The global context pooling takes as input the
first hourglass’s outcome. The 1× 1 convolution and softmax
activation are used to obtain the global context attention map, and
by matrix-multiplying it with the previous features, the global
context is modeled. Then, the transform component captures the
channelwise dependencies with consecutive 1× 1 convolutions
of n/r- and n-channels, respectively (n equals the channel
number of the global context pooling output and r is a specified
ratio). Finally, these enhanced transformation will be added back
on the basic features, giving emphasis to the region of interest.

The same strategy of transformation is also deployed in the
hourglass-internal attention gates. A single n-channel convolu-
tion may achieve a similar goal, but would require a vast number
of parameters (n2). However, replacing it with two consecutive
n/r- andn-channel ones will significantly reduce the parameters
from n2 to 2n2/r. Our work’s default setting of r is 4, which
should cut down half of the parameters, saving approximately
2/5 of the training time.

E. Postprocessing

The direct output of SANet is a binary image, where the gray
value 1 is rendered white, indicating the eddy area, and the
gray value 0 is rendered black, indicating the ocean background.

In these results, however, the identified eddy areas are uneven
with burrs, bumps, and dips on the boundary, and hollows in
the interior. Also, the background is not clean with some white
dots appearing there and here. This is due to the opaque nature
of SAR imagery, the indistinct eddy features, and of course,
the inevitable incompetence of the deep learning model itself.
Therefore, a postprocessing is needed to congregate the eddy
presence and eradicate the noise on the massive background.

The well-established image analysis method, namely, math-
ematical morphology, is applied as the postprocessing. Specif-
ically, the Open and Close operation is imported and imposed
successively to the direct output of the network. The Open oper-
ation is defined as first Dilating and then Eroding, and the Close
operation is the opposite, first Eroding and then Dilating, both
based on the interrelationship of pixels in the binary image [63].
Simply put, the Open operation will remove the individual white
dots on the background and on the eddy boundaries. After
that, the Close operation is applied to fill in the hollows and
to cluster these potentially separate parts that actually belong
to one eddy. The Open–Close order is determined because the
direct output of the network is generally congregated, and those
individual or small scattered dots outside the eddy region must
be removed first, otherwise large portions of the image might be
catastrophically permeated and connected all together.

The detailed procedures for these operations will not be
elaborate redundantly since they have been maturely integrated
into programming frameworks such as Python and MATLAB,
where a simple built-in function could do the job. The basic
formula is as follows, in which B is the squared kernel that scans
the original image A, and the sizes of B are empirically set to 80
× 80 for both Open and Close operations

A ◦B = (A�B)⊕B
A •B = (A⊕B)�B

(1)

where ◦ is the Open operation, • is the Close operation, � is for
Dilating operation, and ⊕ is for Eroding operation.

F. Loss Matrix

The loss function is one of the most decisive factors in deep
learning. After several trials, we found the mixture of dice and
focal loss is proper for our task. Dice loss is commonly used in
image segmentation. It is the opposite of the dice coefficients,
which measures the similarity between two volumes. And focal
loss [45] is explicitly proposed to address the class imbalance
problem, which often leads to degenerate models dominated by
negative backgrounds. The loss function used in the experiment
is as follows:

p∗i =
{
pi if qi = 1
1− pi otherwise

F = −
N∑
i

((1− P ∗
i )

γ log(p∗i ))

(2)

Dc =
2
∑N

i (piqi)∑N
i p2i +

∑N
i q2i

D = −log(Dc) (3)

L = α · F +D. (4)
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In the above, p is the network’s output and q specifies the
ground truth, both have the same dimension of N pixels, with
each denoted by i. The focal loss F is defined by adding a
modulating factor (1− p∗i )

γ (γ is the focusing parameter) on
the basis of the normal cross entropy log(p∗i ), thus to up-weight
the misclassified samples. Dc represents the dice coefficients
calculated with two times the intersection between p and q
divided by the sum of their respective elements. The actual dice
loss D is the opposite of log(Dc), in which the logarithm is used
to balance the final loss combination L, with also the help of the
balanced variant α.

V. EXPERIMENTS AND RESULTS

A. Implementation Details

This article aims to build an end-to-end deep learning frame-
work that performs minimal pre- or postprocessing on SAR
images, so that little effort is required when the method is
implemented. Given this, raw images of the training set are
directly fed into the presented network without cutting or extra
enhancing operations. Considering that huge SAR images would
consume a bunch of memory, thus training by stochastic gradient
descent is the best choice under the condition (batch size=1).
Furthermore, the Adam optimizer is also used for stabilizing pa-
rameter updating. Using the loss function defined in Section IV,
the training process begins with the initial learning rate of 1e-5,
decreases to 1e-6 after 200 epochs, and further drops to 1e-7 after
300 epochs. The loss value stops falling after 350 epochs, which
completes the training process. Before the images are sent to the
network, normalization on gray values is performed by scaling
the original range 0–255 to 0–1 to accelerate convergence of the
network, and scaled back to 0–255 before output. There is no
uniformity on the data size since SANet is a fully convolutional
network capable of inputting images of arbitrary size. The direct
output will be postprocessed with the kernel size for both Open
and Close operations empirically set to 80 × 80, producing the
final result that could be examined compared to the ground truth.

The experiments are implemented on the TensorFlow plat-
form, and the hardware includes an NVIDIA DGX station with
one 20-core CPU and four Tesla V100 GPU.

B. Objective Metrics

Since the proposed method achieves pixel-wisely eddy de-
tection, the evaluation should first be performed on the pixel
level. Moreover, the ultimate goal of this work is to correctly
identify eddy as a whole instead of as individual pixels, thus the
evaluation on the target level is also essential.

First, for pixel level evaluation, accuracy, precision, recall,
Intersection over Union (IoU), Dice coefficients are used, most
of which could be calculated through the confusion matrix
consisting of true positive, false positive, true negative, and false
negative. Fig. 8 helps to understand their meanings.

1) True positive (tp): when pixel i on the output and the
ground truth both indicate eddy-present (the green part in
Fig. 8);

Fig. 8. Confusion matrix. The outer black box represents the entire image,
the top-left red box is the network-determining eddy area, and the bottom-right
gray box is the actual eddy area, also known as the ground truth.

2) False positive (fp): when pixel i on the output indicate
eddy-present but the ground truth actually eddy-absent
(the yellow part in Fig. 8);

3) True negative (tn): when pixel i on the output and the
ground truth both indicate eddy-absent (the white part in
Fig. 8);

4) False negative (fn): when pixel i on the output indicate
eddy-absent but the ground truth actually eddy-present
(the blue part in Fig. 8);

accuracy =
tp + tn

tp + fp + tn + fn
. (5)

Accuracy is the ratio of all correctly classified pixels, whether
eddy-present or eddy-absent, to the total number of pixels in the
image.

precision =
tp

tp + fp
. (6)

Precision is with regard to all model-determining eddy-present
pixels, the ratio of the actual eddy-present pixels

recall =
tp

tp + fn
. (7)

Recall is regarding all actual eddy-present pixels, the ratio of the
correctly identified pixels

IoU =
tp

tp + fp + fn
. (8)

IoU is the intersection of the model-determining eddy areas and
the actual eddy areas to the union of them

dice coefficient =
2tp

2tp + fp + fn
= Dc

= F1 score = 2/
( 1

precision
+

1

recall

)
. (9)

Dice coefficient is the same as Dc defined in Section IV, cal-
culated by two times the intersection of the model output and
the ground truth divided by the sum of their respective pixels.
In addition, algebraically, Dice coefficient is equal to F1 score,
an index to balance precision and recall.

In terms of the evaluation on the target level, recognition rate
and false alarm rate are used. The Dice coefficient is applied as
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Fig. 9. Eddy detection results. From the left column to the right column, top to bottom, images are from SAR products: (ProductID_startDay_startTime)
ASA_APP_20070218_014816, SAR_IMP_20090819_022317, SAR_IMP_20101013_022407, ASA_IMP_20080628_015827, SAR_IMP_20050829_022545,
SAR_IMP_20070502_022249, SAR_IMP_20080225_022513, SAR_IMP_20090522_235858, SAR_IMP_20090607_235558, SAR_IMP_20090607_235554,
and ASA_IMP_20080711_014929.

the decisive indicator for eddy recognition, whichever is greater
than 0.5 and considered the related eddy to be identified. Under
this premise, recognition rate is computed by the number of suc-
cessfully detected eddies divided by the total number of eddies in
the ground truth. And false alarm rate is the ratio of the number
of wrongly identified signals that are actually not eddies, to the
total number. Just note that when more than one eddy regions
are connected together, all of them are considered correctly
identified as long as the overall Dice coefficient exceeds 0.5.

C. Eddy Detection Results

Eddy detection is performed on the testing set, which is
retained aside when SANet is being trained. Fig. 9 shows the
direct output and postprocessed final results for some sam-
ples, along with their associated input raw images and ground
truths.

Since we see eddy detection as a semantic segmentation task
that assigns each pixel of the picture into a category not only
could we identify the presence of eddy, but also outline the full
profile. When the raw SAR image is simple and monotonous, as
in the six rows on the left in Fig. 9, the direct output of SANet is
already relatively complete with legible centroids, despite some
burrs appearing on the eddy boundaries and unexpected noise
scattered in the background. After postprocessing, the result
is better and more concrete in shape so that the eddy radius
can be measured accordingly. However, when the raw image
is more complex, such as with two or more eddies presenting
or covered by some curves and lines of the sea surface, as
shown in the five rows on the right of Fig. 9. In addition to
the abovementioned problems, the detected contours may be
inseparable between adjacent eddies even after postprocessing.
Fortunately, even so, we can still determine the existence of
eddies and their approximate locations.
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TABLE II
OBJECTIVE COMPARISON OF ABLATION EXPERIMENTS

D. Ablation Experiment

The special topology we design is not without reason. As
said before, the repeated bottom–up, top–down hourglasses are
for iterative extractions of shallow-layer features. The attention
gates within and the GCblock followed by the hourglass units are
employed to further constrain the expression. In order to testify
tenable of each component, we set up several ablation experi-
ments with the gadgets removed and compare their abilities of
eddy detection.

Table II lists the objective comparison of the ablation ex-
periments. The first row is the proposed SANet stacked by
two hourglasses, each comprising the gating mechanism, and
followed by the GCblock, as well demonstrated in Section IV.
The extremely high Accuracy seems promising, but it mainly
is contributed by the dominant backgrounds, or true-negatives
in SAR images. IoU is acceptable, although slightly lower
than the most advancing paper in computer vision, typically
lying in 60%–70%, considering our work is based on only a
few hundred obscure radar images that are utterly unparalleled
to the standard competition datasets comprising hundreds of
thousands of high-quality images with well-defined boundaries.
Precision, recall, and their combination Dice coefficient deter-
mine whether an eddy is recognized by the network. With the
cut off value of 0.5 for Dice coefficient announced before, the
proposed SANet achieves the recognition rate of 87.75%, while
only 1.96% false alarms, which we believe is an encouraging
result.

Removing the attention gates within the hourglass unit (the
second row in Table II) will decrease performance, and further
removal of the GCblock (the third row in Table II) damages
capability even more significantly, with the recognition rate
dropping to only 54.41%. In addition, adding more layers to
each hourglass (the fourth row in Table II) does not bring any
improvement, verifying the reasonable adaptation to 4-scale for
this specific task. Last but not least, in order to demonstrate the
necessity of the stacking structure as the most powerful element
for extracting eddy texture, we experiment on the one-hourglass
model with eight scales (the last row in Table II), so as to have
approximately the same total depth of layers and volume of pa-
rameters as in the replaced two-hourglass stacked model. In fact,
since the modified hourglass illustrated in Section IV chooses to

double the feature channels as layer deepens, instead of keeping
the constant feature channels as in the original hourglass ver-
sion, we found the one-hourglass model coincidentally share a
similar architecture to the well-known and widely used network
U-net [30]. However, the classic U-net only identifies less than
half of the eddies, much lower than our SANet, thus proving the
absolute superiority of the proposed stacking structure for eddy
detection in SAR images.

In addition, to better interpret each component’s role in the
SANet, a feature visualization experiment is performed. Fig. 10
displays the intermediate outputs of some critical nodes as two
data samples go through the SANet model. The left column
images are features at the encoder–decoder junction within the
hourglass unit that should recognize the overall structure but are
obscure in textures. After recovering by the decoder path of the
hourglass, the middle column images considerably reconstruct
the fine-grained texture information. Moreover, compared to
the right column images when the results are enhanced by the
attention mechanism, where regions related to eddies are high-
lighted, it is sufficient to prove the functionality of the GCblock.
Besides that, the most important insight is that the spatially
two-stack architecture does improve the feature representation
when comparing the output of the first and second hourglasses,
confirming the crucial role of the stacking design.

E. Comparison With Other Methods

An intuitive way to show the superiority of our method
is to compare it with other classic oceanic eddy identifica-
tion methods. Unfortunately, however, the widely accepted ap-
proaches based on physical oceanography are mainly applicable
to SSH/SLA or flow field data (which have their own intrinsic
drawbacks, as discussed in Section II) and not to SAR images.
As for some other methods that benefit from the deep learning
community, such as DeepEddy [4], [5], Xia et al. [6], Yan et al.
[7], all of them first crop the whole SAR image into patches
and select those containing eddies, and then classify the specific
patch or frame out the target with a box, rather than performing
an end-to-end detection on the whole SAR image, nor at the
pixel-level. Therefore, none of these approaches are suitable for
comparison with our method.
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Fig. 10. Feature visualization. The first two rows and the last two
rows are intermediate outputs of image corresponding to SAR prod-
uct: ASA_APP_20070218_014816, SAR_IMP_20090607_235558, (Produc-
tID_startDay_startTime). For each product, the subfigures from top to bottom,
left to right are intermediate outputs of: the encoder–decoder junction inside
the first/second hourglass, the endpoint of the first/second hourglass, after the
first/second GCblock. Note that for alignment, the figures does not reflect
the actual size relationship between these intermediate outputs, and that the
intermediate outputs of the inner-hourglass attention gates cannot be generated
because these gates are distributed and intertwined in every scale in the hourglass
unit.

However, in terms of the capability of the proposed SANet that
belongs to the semantic segmentation genre, we can compare
it with other existing state-of-the-art networks with respect to
solving the problem of oceanic eddy identification. Since some
authors [35], [36], [37] have applied U-net [30] as the backbone
of their work (although implemented on SSH/SLA data), and
considering its potential connection with SANet as discussed
in the previous section, we decided to include U-net [30]
for comparison. U-net was the first to propose the U-shaped
encoder–decoder architecture combined with skip connections
that has the advantage of comprehending the overall context
while recovering fine-grained information, and is credited as
the foundation of many later models in the field of semantic

Fig. 11. Visual comparison with other deep learning networks. The
left two columns and the right two columns corresponds to SAR
product: SAR_IMP_20051202 and SAR_IMP_20090607 (Produc-
tID_startDay_startTime).

segmentation. Another network we draw attention to is the latest
version of the DeepLab series, DeepLabV3+[33], developed
by the Google Team. DeepLabV3+ is a relatively new high
achiever in semantic segmentation tasks, exploring the atrous
separable convolution and atrous spatial pyramid pooling on top
of previous models, and is commonly recognized as a benchmark
in many applications because of its robustness and efficacy. Be-
sides, have been noticing the promising performance of Trans-
former in the Computer Vision field recently, the SegFormer [64]
model is also included as one of the competitors. Transformer-
based model differs from the aforementioned convolution-based
models (including the proposed SANet) in its heavy reliance on
the self-attention mechanism, which facilitates the acquisition
of global information at the outset, rather than accumulating
features through multiple layers of convolution computation.

Fig. 11 shows two randomly selected samples and their
corresponding detection results for U-net, DeeplabV3+, Seg-
Former, and the proposed SANet. For the three convolution-
based models, it is apparent that SANet outperforms U-net and
DeeplabV3+, as the latter two either fail to detect the target or the
detected regions are far from the ground truth in shapes and sizes.
As for the SegFormer, the good news is that the direct output
is much smoother on eddy boundaries and few scattered white
dots appear outside the eddy region, thus the postprocessing
seems unnecessary (although it is also performed for a fair
comparison). However, in terms of the practical recognition
ability, it is polarized for different samples, with some being
precisely identified and others not recognized at all, as you can
see in the first sample displayed in Fig. 11. Another drawback
is that it tends to permeate large areas when multiple eddies
are present in one image. Nevertheless, the transformer-based
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TABLE III
OBJECTIVE COMPARISON WITH OTHER DEEP LEARNING NETWORKS

Fig. 12. Detection of Sentinel-1 SAR images.

method deserves more exploration. Table III lists the objective
results of the four methods, in which SANet has an absolute
advantage in almost all objective metrics, except for Recall on
pixel-level, with SegFormer slightly higher, mainly because of
its tendency to saturate large areas that may not even be eddies,
as we explained above.

F. Generalization Ability

Generalization ability refers to the adaptability of deep learn-
ing algorithms to new samples that are distant from the training
set but share inherent commonalities. A few images from Xia
et al. [6] derived from the Sentinel-1 satellite are leveraged for
generalization testing. Naturally, Sentinel-1 differs from ERS-2/
ENVISAT in many ways, such as the operation of the mission,
the resolution and swath of the products, and most importantly,
the signal-to-noise ratio of the image, which will severely affect
the performance of the model trained exclusively on our dataset.
As can be seen from the middle column in Fig. 12, the direct
outputs of SANet for Sentinel-1 images are obviously not as
good as for our dataset. However, what we appreciate is that
it does highlight the eddy area, although poorly concentrated,

mainly due to various noise distributions caused by instruments’
differences. After postprocessing, the results are expected to be
more concrete. Note that the postprocessing is slightly different
from that in all other experiments mentioned in this article. Here,
we choose the order of Close–Open operation since the direct
output of the model is no longer congregated but rather scattered
in this situation. In addition, the kernel size is changed to 30 ×
30 for Close operation and 60 × 60 for Open operation.

The important thing is that the proposed SANet has no restric-
tions on the size or resolution of the input, so it can be developed
successively or simply start from scratch with other source SAR
images. Thus, we are confident that the network’s performance
will be further improved if more varieties of SAR images are
available, and that the model will be more accommodating for
Sentinel-1 or other SARs if these products are used for training
from the beginning.

VI. DISCUSSION

A. Overfitting

Constructing SAR image datasets for eddy detection is a time-
consuming and arduous work; on the one hand, because of the
large size of SAR products and, therefore, the slow downloading
and reading. On the other hand due to the stringent observation
conditions, such as sea surface wind speed and surface oil film
accumulation, and finally because of the limitations on the tem-
poral and spatial resolution of the satellite, leading to possible
missing of the eddy occurrence, relative to observation coverage.
Regardless of the reason, it is justified to consider the potential
risk of overfitting problem arising from the limited number of
data samples. However, as this article sees eddy detection as
an image segmentation task where each pixel is required to be
assigned into a category, the number of data samples should be
determined not only by the number of images, but also by the
number of pixels in these images, and that is quite a lot! As
we have described in Section III, the typical width of the input
images has 2–3 K pixels in just one dimension, and exponential
to that in the whole picture. Under this circumstances, we do not
have to think much about the issue of overfitting, which is one of
the advantages of treating it as an image segmentation problem.

B. Plain Samples

In relation to the first discussion, since the dataset is not so
rich, should we add more plain samples which have no eddies
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Fig. 13. Plain sample examination. The two SAR products are
SAR_IMP_20050102_023557 and SAR_IMP_20050104_141535
(ProductID_startDay_startTime) for the smooth sea surface and for land,
respectively.

in them? The answer is also in relation to the first consideration,
that the data samples we are talking about are actually the
product of the number of images and the number of pixels in
images. If that is the case, we already have, and have much
more plain samples than eddy samples, that we have had to
bring in focal loss as mentioned in Section IV to compensate for
this imbalance, instead of including more “fully plain sample”
images. However, it is reasonable to include fully plain samples
in the testing dataset and examine whether the output is empty.
The experiment is conducted on two SAR images, one with a
smooth sea surface and the other orienting to land. The results are
displayed in Fig. 13. For the smooth sea surface, the direct output
is all clean. And for the land area, the direct output presents some
noise in the upper left of the image, but after the postprocessing,
the final result is as expected.

C. Future Improvements

During the study, we also realize some areas for improvement.
First, since the original SAR images have not been geographi-
cally calibrated, and furthermore, we have rotated images for
data augmentation. The consequence is that we can not tell
whether the actual rotating direction is counterclockwise or
clockwise, and thus to determine the type (cyclonic or an-
ticyclonic) of oceanic eddies. This requires a more specific
consideration regarding eddy attribution in our next step. The
other crucial defect of this work is the small-scaled dataset,
which needs to be expanded and enriched in terms of number and
satellite sources. Finally, this work sees eddy detection as an im-
age segmentation task performed only on the intensity channel of
SAR products, but ignores many of their unique characteristics,
which seems a big loss and should be reconsidered fully and
completely in future work.

VII. CONCLUSION

This article devotes to establishing an end-to-end pipeline
from downloaded SAR images to the final eddy identification
results that avoids all the hustle and bustle in the middle. For
this purpose, a deep learning model is proposed, namely, SANet,
customized for oceanic eddy detection on SAR images. As the
name suggests, the constructed model is a stacking structure
with additional functions providing attention mechanisms. The
individual component for stacking is the hourglass unit, a sym-
metric encoder–decoder that first shrinks the image to acquire
semantic signals and then expands it to restore the detailed
information. Unlike most deep learning-applying cases where
the holistic cognition of the whole image is more important,
eddies’ superficial texture contained in a model’s shallow lay-
ers is the ultimate objective of our task. This gives a hint to
the innovative usage of stacking two hourglass units together,
thus allowing repeated refinement of shallow layers’ embedded
messages. Besides, SANet has included attention mechanisms
for the network to be more concentrated on the eddy area. One
of them is the attention gate installed within the hourglass unit,
thus constraining the features extracted by its attached hourglass.
The other is the GCblock followed by each hourglass, ensuring
the validity of the overall abstraction. Also, for the feasibility
of the model training, a trick called intermediate supervision is
applied after the first hourglass, so that the back-propagating
gradients will never vanish even more hourglasses are stacked if
needed. The only postprocessing applied after SANet is based
on mathematical morphology, which will congregate the eddy
region and remove the noise of false alarms.

The proposed method achieves a recognition rate of 87.75%
on the established dataset, which is higher than those similar
models but without attention gates or GCblock, thus validating
the reliability of attention mechanisms. More importantly, the
stacked network is way better than its one-hourglass counter-
part U-net, which only identifies less than half of eddies, thus
confirming the efficacy of the stacked architecture. The same
conclusion is also consolidated by the feature visualization of
some intermediate outputs of the network. In addition, SANet
has exceeded some other state-of-the-art deep learning models
such as DeepLabV3+ and SegFormer by a large margin. Finally,
a further generalization tests is conducted, verifying its adapt-
ability to some extent.
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