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Fit-for-Purpose Approach for the Detection and
Analysis of Earthquake Surface Ruptures

Using Satellite Images
Yire Choi , Jin-Hyuck Choi , and Yeonju Choi

Abstract—Coseismic surface ruptures are the ground truth of
earthquake rupture along faults, and detailed mapping of earth-
quake surface ruptures provides an opportunity to understand
the relationship between earthquakes and faults. One of the most
effective tools for mapping earthquake surface ruptures is the use of
remote sensing data, such as high-resolution satellite imagery. This
study proposes a crack detection model based on deep learning and
analysis tools to extract the geometrical characteristics of surface
rupture using high-resolution satellite imagery (Pléiades-1B) for
an earthquake that occurred in the Bulnay region of Mongolia. By
comparing the prediction result with a line map of the previous
study (Choi, 2018), it was possible to confirm the reliability of the
fault detection. The model achieved a rupture detection accuracy
of approximately 90% and an extraction of characteristic features
of crack error level of 5% or less. To assess the broad applicability
of the proposed model regardless of image size, we evaluated the
model performance through quantitative and qualitative methods.
The model accurately calculated essential characteristics, such as
the orientation and length of a diverse range of surface ruptures.
These results confirm the general effectiveness of the proposed
model in detecting and characterizing surface ruptures caused by
earthquakes. The suggested model for automated target detection
utilizing satellite imagery can serve as a fit-for-purpose solution for
conducting field surveys and acquiring fundamental earthquake-
related data. The proposed model can provide valuable insights into
the aftermath of seismic events by identifying a range of surface
ruptures and deformations induced by earthquakes.

Index Terms—Coseismic surface ruptures, deep learning,
earthquake fault mapping, morphology feature extraction, satellite
imagery.
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I. INTRODUCTION

AN EARTHQUAKE is a sudden slip of a fault. In con-
tinental earthquakes greater than magnitude 6, the slip

surface reaches the ground surface, resulting in permanent sur-
face ruptures. In addition to instrumental seismicity, geodetic
measurements, and numerical modeling, mapping of earthquake
surface ruptures provides an opportunity to understand the earth-
quake rupture processes and their relations with the inherited
faults [2], [3]. By mapping the cumulative surface ruptures as-
sociated with multiple earthquakes, researchers can investigate
the history of fault ruptures over multiple earthquake events [4].
Both coseismic and cumulative surface deformation resulting
from earthquake ruptures are crucial for comprehending how
significant active faults accommodate crustal deformations in
the Earth. Moreover, quantitative parameters of earthquake sur-
face ruptures are utilized for assessing seismic hazards, includ-
ing investigating earthquake cycle models and estimating the
maximum magnitude that a future earthquake in a given fault
system could attain.

A. Related Work

Before the 1990s, mapping earthquake surface ruptures were
conducted mainly through field observations and imagery anal-
ysis using aerial photos [5], [6]. Although a field survey is one
of the most accurate methods to map the earthquake surface
ruptures, it could be a highly time-consuming investigation con-
sidering that surface ruptures occur within up to a few hundred
kilometers depending on the earthquake size [7]. Significant
advancements in mapping earthquake surface ruptures have
been achieved through advances in remote sensing techniques
(e.g., interferometric synthetic aperture radar, InSAR). These
advances emerged in the early 2000s, coinciding with the utiliza-
tion of high-resolution satellite images in the field of earthquake
sciences [8]. High-resolution topographic data that are mainly
generated vis the structure-from-motion approach as well as
light detection and range have now become the main tools to map
the earthquake surface ruptures [9], [10], [11]. More recently, it
is possible to map coseismic surface deformation using technics
that directly correlate pre and postearthquake images or digital
elevation model (DEM) [12], [13] [14]. In particular, satellite
data became increasingly available due to high spatial resolution
and extensive data acquisition over most regions of the Earth.
Indeed, for destructive earthquakes involving surface faulting,
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there is a growing trend to use satellite-based InSAR and image
correlation together with seismic and geodetic data to understand
the earthquakes [15], [16].

Deep learning and computer vision technologies have recently
been utilized in the field of tectonic-geomorphic investigations
based mainly on crack detection using remote sensing data.
Mattéo et al. [17] developed the model based on U-Net [18]
for automatically mapping tectonic faults in optical images and
topographical data and their architecture was based on one
developed by [19]. Despite being trained on low-quality and
small-sized datasets, their model can be strongly generalized
and applied to different types of image data. Jafrasteh et al. [20]
proposed an automated fractures and faults mapping method us-
ing a generative adversarial network model to predict small frac-
tures. Building on previous research, the authors in [17], [19],
and [21] proposed an improved deep learning approach to
identify and map faults and fractures through high-resolution
optical images and topographic data. Their method, focused
on identifying long-lived geological faults, but did not address
recent surface ruptures caused by earthquakes. Meanwhile, a
deep learning-based crack detection model was employed to
detect coseismic surface ruptures using postevent unmanned
aerial vehicle (UAV) images obtained from the M 7.4 Maduo
earthquake in China [22], [23]. Chen et al. [22] proposed a
deep learning method to identify cracks and developed a seman-
tic segmentation network, which efficiently mapped the major
surface ruptures caused by the earthquake, despite some false
and missed identifications. Yu et al. [23] proposed a remote
sensing-based automatic crack detection framework that focuses
on densely distributed cracks to detect coseismic ruptures caused
by earthquakes. The framework integrates a novel terrain surface
crack detection neural network named Crack-CADNet, which
outperformed recent CNN-based methods in detecting cracks.

B. Our Proposed Contribution

Identifying earthquake surface ruptures using deep
learning is challenging, owing to the complex background of
postearthquake images and the varied and complicated shapes of
the ruptures, which can appear in any position and direction. The
Bulnay region’s earthquakes exhibit surface ruptures distributed
across different geographic regions, further complicating the
identification task. To achieve efficient, precise, and intelligent
detection of surface rupture caused by postearthquake events,
this study, pertaining to the 1905 earthquakes in the Bulnay
region of Mongolia, not only presents a fit-for-purpose
approach for a deep learning-based crack detection model but
also introduces a model for automatic analysis of the detected
cracks’ geology/geomorphology features. The suggested model
represents the first attempt to accurately detect surface rupture
using high-resolution satellite imagery (Pléiades-1B). The
surface ruptures were precisely detected with high accuracy, and
quantitative characteristic information was calculated. Through
comparison with previous mapping results by manual imagery
and field observations [1], mapping information by the proposed
model in the test area was clearly verified. The utilization of
high-resolution satellite images to map widely distributed
earthquake surface ruptures has the advantage of being able

to conduct mapping quickly with a single satellite image,
particularly in hard-to-work-in regions, with the elimination
of subjective interpretation by experts. Also, the finding of
along-fault variations in rupture geometry and/or complexity,
which is a typical feature of the surface ruptures associated
with large earthquakes [5], [24], provides an opportunity to
interpret rupture behaviors as the first stage investigation and
to establish a follow-up survey strategy, such as field survey
site selection. Therefore, combining high-resolution satellite
imagery and deep learning algorithms, which enables rapid and
accurate fault detection in large-scale regions, and a quantitative
analysis model which provides morphology features of detected
cracks are expected that it could provide a crucial integrated
solution for more comprehensive and efficient postearthquake
investigations. In particular, only a crack was detected with high
accuracy by learning a model based on a random augmentation
technique and a strong penalty loss function to the undesired
target. We believe that the proposed model, which also provides
the analysis result of the crack with coordinate information,
can be highly effective in postearthquake investigations and
can support disaster management by providing significant
information for damage assessment and identifying high-risk
areas for geohazards, such as landslides and liquefaction. This
can aid in determining the optimal allocation of resources and
prioritizing response efforts. Furthermore, the proposed model
can contribute to improving the accuracy and efficiency of early
warning systems, which are essential for minimizing the impact
of future earthquakes and other natural disasters. This article
contributes to literature in four major respects as follows.

1) Earthquake rupture analysis is a very challenging task due
to its complex structure and background, and we have
proposed an optimized method for this purpose.

2) Using high-resolution satellite images, we proposed a
deep learning model including an optimized loss function
and augmentation technology for detecting surface rupture
by an earthquake in the Bulnay region of Mongolia.

3) A morphological analysis model that segments the de-
tected cracks into individual cracks and accurately extracts
morphological information is proposed.

4) Proposed models can provide a crucial integrated solution
for comprehensive and efficient postearthquake investiga-
tions.

The rest of this article is outlined as follows: Section II
introduces a dataset and study area and describes the proposed
methods in detail. Section III presents the results and analyses
of our approach. Discussion is present in Section IV. Finally,
Section V concludes this article.

II. METHODOLOGY

A. Study Area and Dataset

Mongolia is a tectonically active intracontinental region, with
seismicity mostly associated with regional deformations related
to the convergence of the Indo-Eurasia plate [25], [26], as
shown in Fig. 1(a). In 1905, the largest continental earthquake
sequence ever recorded struck the Bulnay fault system in
northwest Mongolia: 1) the July 9th, M ∼ 8, Tsetserleg
earthquake; 2) the July 23 rd, M > 8 Bulnay earthquake. These
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Fig. 1. (a) Simplified tectonic map around Mongolia. (b) Structural map of the Bulnay fault system. Fault traces marked by red and orange indicate the coseismic
surface ruptures and cracks associated with the 1905 M ∼ 8 Tsetserleg and Bulnay earthquakes. (c) Rupture section along the western Bulnay fault. Both Pléiades
imagery and field observations indicate the earthquake surface ruptures’ complex geometry and two-parallel traces. (d) Rupture section along the Dungen fault that
is geometrically highlighted by en echelon cracks and mole tracks without a through-going rupture trace on the Pléiades images and in the field. In addition to the
earthquake surface ruptures, other linear features, such as rivers and roads appear on the Pléiades satellite images. All figures were modified from [1].

two successive events, referred to as the 1905 Tsetserleg–Bulnay
earthquake sequence (1905 T–B eqs), caused surface ruptures
with a total length of at least 676 km [Fig. 1(b)]. Choi et al. [1]
conducted detailed mapping of surface ruptures associated with
the 1905 T-B eqs based on submeter ground sampling distance,
0.5-m optical satellite “Pléiades” imagery, and field surveys. We
note that Mongolia has almost no erosion and deposition due
to high mountain dry climate conditions, and the earthquake
surface ruptures are well preserved to the present day. Mapping
results by Choi et al. [1] indicate that the rupture geometry is
complicated, such as en echelon cracks, mole tracks, fault jogs
and/or bends, and fault branches, similar to other strike-slip
earthquakes, and the horizontal offset was about 6 m along
the main Bulnay fault and about 2 m along the other branch
faults.

The main target of this study is the surface ruptures on the
central-western section of the Bulnay and the Dungen fault
[Fig. 1(b)]. These two sections were designated because the
rupture geometry is remarkably complex among the entire
surface ruptures [Fig. 1(c) and (d))]: 1) the primary rupture
strand consists of en echelon tension cracks and mole tracks,
2) pull-apart or pressure-ridge associated with fault jogs between
subparallel ruptures, 3) local compressional deformation caused
by the change of the azimuth of the main fault, and 4) two parallel
strands with strike-slip rupture. The study utilized Pléiades-1B
images in both panchromatic and pan-sharpened formats, with
a resolution of 0.5 m. The selected datasets had less than 10 %
cloud coverage and a tilt angle range of 12–19◦. The Bulnay
and Dungen fault areas are covered with snow for most of the

Fig. 2. Selection of the dataset: Satellite images, line maps, and refined line
map as ground truth. (a) Satellite images: panchromatic, pan-sharpend (b) Line
map: Training reference. (c) Refined line map: Comparitive reference.

year, which makes it difficult to identify surface ruptures using
satellite imagery. Therefore, to mitigate this seasonal effect, we
utilized satellite images captured at a specific time when surface
ruptures can be detected. The image was taken around May 2013
and was used in a previous study by Choi et al. [1].

Examples of the datasets used are shown in Fig. 2. The
mask images displaying the cracks in the satellite image (first
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Fig. 3. Proposed surface rupture detection model architecture and process flow.

row) were created with lines of equal thickness (second row)
for the purpose of training ground truth, based on the manual
sketches provided in the result of [1]. The refined line maps are
additionally created to evaluate how exactly the actual crack
shape can be detected with respect to the test images (third
row). The initial line map was modified by experts to reflect
the actual shape and thickness that can be displayed in colored
form according to the rupture area.

Meanwhile, in the collected dataset, the desired target,
namely, cracks, is distributed at a very low rate in the generated
patch. To ensure effective feature learning, the usefulness of
each patch was determined by calculating the crack ratio using
a statistical method. We assume that there are n raw images, and
each image size is H(height) × W(width). The number of crack
pixels in ith raw image is expressed as N i

crack and N i
image is the

number of pixels in the image. The average ratio of all crack
pixels to pixels in all images, Rimage is defined as

Rimage =

∑
i=1 N

i
crack∑

i=1 N
i
image

=

∑
i=1 N

i
crack

n(W ×H)
. (1)

Next, raw images were divided into patches of the same size
(512× 512) with a stride of 200 pixels by the overlap sliding
window method. We defined the number of crack pixels asN ij

crack

and the number of all pixels as N ij
image in the jth patch in the ith

raw image. Finally, the portion of crack pixel to all pixels in the
jth patch in the ith image is expressed as

Rij
patch =

N ij
crack

N ij
image

. (2)

Only patches satisfying the condition Rij
patch ≥ Rimage, and a

patch containing a larger ratio of crack pixels than the average
ratio for all raw images, were selected. Through this condition,
we constructed the training set with around 6000 patches. It was
composed of training, verification, and evaluation sets at a ratio
of 8:1:1 among the entire data. The generated final patches were
converted to [0–1] value through the min-max normalization
method.

B. Crack Detection Network

In this section, we describe a deep learning network designed
for detecting various types of surface ruptures resulting from
a T–B earthquake. The network utilized in this study is a fully
convolutional network (FCN) based on the VGG-16 [27] seg-
mentation model, as illustrated in Fig. 3, which has demonstrated
excellent segmentation performance in previous research [28].
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The convolution part consists the five convolution layers fol-
lowed by an ReLU and max pooling layers for down-sampling.
To obtain output with the same size as the original images, we
add four decoder layers and upsampling layers are followed by
convolutional layers to produce dense features with finer reso-
lution. This symmetrical structures of the encoder and decoder
is connected with skip connections which takes outputs after
each max pooling layer in the VGG-16. At the end of the step,
upsampling is performed with a feature map that contains only
high-dimensional information, so coarse information could be
omitted. Therefore, the role of skip connection is to deliver
the coarse information to the network so that all features from
low-level to high-level can be combined. All parameters of
the network learned and fine-tuned using Adam optimizer and
the learning rate starts at 2×10−4, and the cosine annealing
technique is applied as a scheduler to update the rate during
training. Meanwhile, this study focused on segmenting the
rupture in a satellite image, which can be viewed as a binary
problem. The input dimension of the network is (3, 512, 512),
corresponding to the pan-sharpened image with red, green, and
blue (RGB) bands. In the case of panchromatic, we expanded
the original image to three channels. The output dimension is
(2, 512, 512), consisting of two classes: class 1 represents the
rupture, which is the detection target, while class 0 corresponds
to the background (e.g., road, mountain, and tree) excluding
cracks. As explained in Section II-A, only images that satisfied
the criteria were selected, and the training dataset was divided
into patches. However, a class imbalance problem still existed
during training due to the difference in the ratio between the
two classes. For instance, when the model learns about the
major class (background as nondesired target), the relatively
minor class (crack as the desired target) may yield an increase
in false positives. To address this issue, we applied a stronger
penalty for misclassifying the target class than the background
class and emphasized the importance of the crack class for
improving overall detection performance. The weighted softmax
cross-entropy (WSCE) loss function defined in (3) was used,
where the weight for the target class was increased

SCE(pc) = −αc log(pc) (3)

pc =

{
p y = 1
1− p y = 0.

(4)

Here, pc in (4) is the estimated probability for crack p ∈ [0,1],
and c is the number of class, c = 2 (crack = 1, background = 0).
As mentioned above, in order to minimize the imbalance effect
between classes, the class weight factorαc is adopted, as defined
in the following: {

α1 = 0.5× (1 + e−10)
α2 = 10− α1.

(5)

Meanwhile, to address the lack of training data and demon-
strate robust detection performance in various environments,
we employed rand augmentation [29] in the proposed model.
This technique is known to perform best in data augmentation
policy search with only two parameters (N, M), where N is the
number of augmentations to be applied, and M is the magnitude

of the augmentation to be applied. We applied rand augmentation
to the next step of the training data load, with modifications
applied in two categories: 1) color (contrast, brightness, sharp-
ness, equalization, invert, etc.) and 2) shape (flip, rotation, shear,
translation, resize, etc.). A total of 12 types (N) of modifications
were applied, and the augmentation magnitude (M) was set
to 14.

III. RESULTS

In this study, we evaluated the performance of the developed
surface rupture detection model using various methods. First,
we conducted a visual comparison between the detected results
from the test patches of the same size and the refined line map
to determine how accurately the actual rupture shapes were
detected. Next, we calculated the accuracy metric for about 10%
of the entire dataset for the detection performance and compared
it with other algorithms. Finally, we introduced a proposed
model capable of extracting topographic features based on the
detected cracks and analyzed the accuracy of the extracted
information compared to previous research results. Through this
multifaceted analysis, we confirmed the potential of the devel-
oped model as an effective analysis tool for earthquake-prone
areas.

A. Performance of the Crack Detection

The performance of the model is evaluated using precision,
recall, and F1 score. Precision measures the degree of actual
correct predictions out of the total predictions made, while
recall measures the accuracy of actual cracks that were correctly
classified. The F1 score is the average value of arithmetic har-
monization for recall and precision. All evaluation metrics are
described as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2× (Recall × Precision)

(Recall + Precision)
(6)

where TP is the true positive, which correctly indicates the pres-
ence of the result, and FP is the false positive, which correctly
predicts the absence of the result. The FN incorrectly predicts
the result of absence.

Fig. 4 illustrates the detection results (represented by the
red line) of various types of surface ruptures created by the
earthquake, as obtained from raw satellite images (Top row),
using the proposed model. The second row displays the initial
mapping results, while the third row depicts the refined mapping
results that are additionally generated from the initial image to
show the real crack shape and to compare with the predicted
result in the test set.

As shown in the satellite images in Fig. 4(a)–(c), it can be
observed that there are features, such as roads or dried rivers that
appear similar to cracks. However, in the results of the developed
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Fig. 4. Examples of the crack detection result by proposed and line maps as ground truth. 1st row: satellite image, 2nd row: initial line map, 3rd row: refined line
map and 4th row: proposed detection map.

model, it is apparent that it only detects surface ruptures and
does not detect these similar structures. Compared to the ground
truth, slight differences in the thickness or disconnection of
the cracks are visible; however, the model can detect complex
structures, even very small cracks, accurately. In addition, the
model accurately detects irregular surface ruptures, such as the
mole track and tension crack, as shown in Fig. 4(d)–(e). Notably,
the line map used for training does not fully represent these types
of cracks, yet the developed model is able to detect them in their
original form, as seen in the refined map. Fig. 4 demonstrates
that the proposed model can robustly represent the real rupture
shape even in harsh conditions and similar structures, such as
dried-up rivers and roads.

Meanwhile, in this study, a quantitative comparison was con-
ducted with several models, as illustrated in Fig. 5. The goal was
to determine how differences in the detection target, training
dataset configuration, and image source (satellite) affect the
detection results. For this purpose, we compared the results of
existing line detector models (Sobel edge [30] and GVG detec-
tor [31]), as well as deep learning-based crack detection models
(Deep Crack [32], CrackSegNet [33], and Crack-CADNet [23])
to the model we used. However, some models are designed to
detect crack datasets on road surfaces based on general images,
while others are designed to detect surface ruptures captured

through UAVs, making it impossible to evaluate performance
based on the same standards as our model.

The two line/edge detectors in Fig. 5 exhibited inferior perfor-
mance in extracting edges or cracks compared to other models.
This is because these detectors were developed to detect edges or
cases where gradients occur in the image due to clear changes
in relief or terrain structure. Nevertheless, in Fig. 5(b), some
visible cracks were successfully detected, while in Fig. 5(d),
the outlined road was excluded while effectively capturing the
fine cracks on the right side. In contrast, models based on deep
learning demonstrated notable crack detection capabilities. Deep
crack, as shown in Fig. 5(c), captures even complex cracks in
detail. However, there was a tendency to misclassify terrain
features, such as rivers and roads as cracks. This is because the
model was developed to detect cracks in environments, such
as roads and buildings. On the other hand, models, such as
CrackSegNet or Crack-CADNet incorrectly identified certain
rivers, as shown in Fig. 5(a). However, they showed accu-
rate detection of major cracks in Fig. 5(b). In addition, even
though both models were developed for the detection of building
ruptures or UAV-based local areas, they successfully avoided
mistaking the road as a crack in Fig. 5(d), ensuring the detection
performance of all apparent ruptures. Meanwhile, our proposed
model is the only model that can accurately detect cracks without
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Fig. 5. Detection performance comparisons of the proposed method with other detection methods: 1st column: satellite image with the ground truth (red line)
overlaid, 2nd–6th columns: results predicted by different models.

misidentifying the road, as shown in Fig. 5(a), and can accurately
detect complex cracks, as shown in Fig. 5(b). This can be inter-
preted as the result of configuring the data set to detect various
types of surface ruptures that we target, and effectively training
the model to reflect the characteristics of the satellite images as
much as possible. The final performance of the proposed model
is as follows: 90.46% precision, 85.57 % recall, and 87.95 % F1
score.

B. Large-Scale Surface Rupture Detection

As seen in the previous section, the detection result is inter-
preted as mapping the result of surface rupture by the earthquake.
The mapping results for the central-western part of the Bulnay
fault and the Dungen fault are presented in this section, with
various rupture geometries shown in Fig. 1(c) and (d); therefore,
to analyze this area, large-scale test regions are required. The
proposed model was trained with fixed-size input images (512,
512); however, the model was designed to operate regardless
of input size in the test process. The surface ruptures detected
in the central-western section of the Bulnay fault have complex
but typical geometries that are associated with strike-slip earth-
quakes (e.g., [34]), as highlighted in Fig. 6(a)–(d). The size of
Fig. 6(a)–(f) is huge, with a range from 2000–3000 pixels, and
each size is different.

The main rupture strand is distinguishable in most parts of the
rupture section due to en echelon arrays of subsidiary ruptures
and cracks. The azimuth of the main rupture zone varies from
90◦ to 100◦ east from the north, and the width of the main

rupture zone is also variable. The subsidiary ruptures are often
subparallel to the azimuth of the main rupture. In addition, the
main rupture generally displays a stepping geometry, even with
a variable stepping distance. Secondary ruptures were highly
distributed around the main rupture zone, particularly around
the fault-stepping area. Most of these detection results by the
proposed model correspond with those of previous investiga-
tions ([1], [35]). It is worth noting that along-fault variations in
rupture geometry along with offset distribution are indicators of
segmented-fault geometry, which is closely related to dynamic
earthquake rupture propagation.

We applied the proposed model to detect discontinuity cracks
in the Dungen fault, which is primarily characterized by en ech-
elon cracks without a through-going rupture trace [see Fig. 6(e)
and (f)]. Our results reveal that the rupture consists of a series
of NE–SW trending cracks. The majority of individual cracks
exhibit a sharp geometry, indicative of Mode-I tension cracks,
while only some of the ruptures display a rightward curve at both
tips, indicating a dextral slip. Rupture is frequently characterized
by a combination of en echelon cracks and mole tracks that are
orthogonal to one another. In a later section, we will discuss
detailed quantitative analysis results, such as crack length and
thickness. Many of these geometrical patterns closely resemble
previous findings [1].

C. Morphology Feature Analysis Model and Performance

After completing the mapping of the rupture, the morphologi-
cal properties of the extracted rupture are analyzed. In particular,
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Fig. 6. Surface rupture detection result on test sites of the Bulnay and Dungen region.
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Fig. 7. Schematic diagram of the proposed crack morphology analysis.

quantitative analysis of the ruptures, including length, average
width, orientation, and location (coordinates), plays an impor-
tant role in precisely identifying earthquake-induced ruptures.
To achieve this, we developed a morphological analysis model
that converts the detected cracks in the image into individual
cracks and extracts their geometric information.

The morphology analysis is processed with segmentation,
skeletonization step, and feature analysis, as shown in Fig. 7.
Here, the skeleton is the result of the thinning process, also called
the “medial axis,” which was first proposed by [36]. The original
2-D shape in the image is changed to a skeleton graph while
maintaining the original geometric and topological information.
Skeleton images in the field of geology/geomorphology enable
the structural state analysis of surface ruptures through topologi-
cal visualization of surface ruptures. Several thinning algorithms
have been studied to produce different skeleton shapes and
applications.

After obtaining the rupture mapping result through the de-
tection model, the image is first converted into a binary image
whose pixels have only two possible intensity values (0,1),
and then the opening operation is applied to that. The opening
operation (◦), defined in (7), is the dilation operation (⊕) of
erosion result in order to condense the cracks. Erosion (�) is the
process of eroding the object’s borders, whereas dilation is the
process of increasing the object’s coverage, and the operation
was performed on two sets of images: the original image I and
a structural element M

I ◦M = (I �M)⊕M. (7)

Subsequently, the median filter, which is a nonlinear method
for determining the median value within a specified window and
removing outliers that are not among the sorted values [37], is
adopted. After the application of the two morphological steps,
the cracks are labeled as a single crack and assigned different

colors, as shown in Fig. 7. The color-coded representation of
these cracks allows for a rapid understanding of the total number
of cracks and the complexity of their distribution. To ensure
the accuracy of the model, a test area with highly detailed and
complex cracks was selected, as shown in Fig. 8. As shown
in the figure, counting the colors expressed in each image can
confirm the complexity of how many cracks a region is divided
into. Also, the skeleton line was accurately extracted while
maintaining its original shape without distorting or changing
the initial detection result. In particular, such a uniform width
output image effectively identifies the segmental shape of cracks
and predicts the direction of occurrence of the earthquake.

Morphological characteristics, such as the length and width
of each crack, were calculated based on the segmentation and
skeletonization results, as depicted in Fig. 9(a).

The first morphological characteristic analyzed is length. The
length was calculated based on the one-pixel-with skeleton line,
and as shown in Fig. 9(b), it was confirmed that the number of
cases of line distribution in the (3× 3) array is five. Therefore,
the “total length ( lengthi),” which is the sum of all cases over
each crack, is expressed by (8), where nk represents the number
of occupied pixels in cases Ck, and Ck represents the line
distance in each configuration case in Fig. 9(b). Furthermore,
k has a value between one and five

lengthi =

5∑
i=1

nkCk

2
+

n1C1 + n2C2

2
. (8)

The second property is the area, and each crack’s total area
(areai) is calculated as the sum of the pixel values in the
unskeletonized segmented image of the ith crack, as described
in (9), and sxy is the (x,y) pixel defined as a crack class at (x,y)

areai =
∑
x,y

sxy. (9)
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Fig. 8. Example of crack segmentation and skeletonization result.

Fig. 9. Calculation of morphological features. (a) Individually segmented crack result. (b) Grid form for crack width and length calculation. (c) Crack orientation
calculation.

On the other hand, the “mean width” of cracks was calculated
as the ratio of area and length. And all the normal distances
from the central line to the edge of the crack were calculated,
and the longest value was defined as the “maximum width” of the
crack.

We assume that the individual cracks in the skeleton image can
be represented by an (x,y) curve starting at (0,0), where the X-axis
represents the east–west direction and the Y-axis represents the
north–south direction. When the linear fitting is applied to each

curve (crack), the slope (α) of the fitting result with respect
to the Y-axis, as shown in Fig. 9(c), can be interpreted as the
“orientation.”

Fig. 10 shows the results of rupture mapping for the four test
sites and the extraction of various morphological information
described above. The reliability of the analysis obtained by the
proposed method was confirmed by comparison with reference
studies [1]. When compared to the entire test area, the length
estimation showed an error <1 %, the width <3 %, and the
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Fig. 10. Results of crack segmentation result with fitting line [Top: raw image, Middle: segmentation result, Bottom: skeleton line (red) with the fitting line
(black)] and calculated morphological information of each crack.
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orientation < 3◦. All extracted cracks have coordinates, so their
location can be identified, and all characteristics can be directly
converted into a unit of [m].

D. Statistical Analysis and Results

One of the advantages of our crack detection and segmentation
is that it allows standardized and rapid statistical analysis of
the geometries of earthquake surface ruptures. Indeed, manual
observations and visual measurements of all deformations can be
labor-intensive and time-consuming, making deep learning an
advantageous alternative. The results of this statistical analysis
enable quantitative evaluation of distributed deformation and
hence provide valuable information on the seismic behavior of
fault ruptures [1], [15], [16]. In this study, we present the results
of the statistical analysis of two rupture sections on the Dungen
fault: the southern section [Fig. 6(e)] and the northern section
[Fig. 6(f)], which are composed of en echelon cracks with no
thoroughgoing rupture along the fault. For the targeted sections,
the geometrical elements analyzed include number of cracks
and each crack’s azimuth, length, and width (mean, maximum).
We note that the crack width is measured perpendicular to the
azimuth of the crack, and hence it is an oblique parameter with
respect to the general trend of the Dungen fault (north–south
direction). Here, we test the amount of lateral offset using the
projected crack width which is estimated by projecting the crack
width onto the north–south direction, as proposed by [38].

In the southern section, which spans approximately 1.5 km,
exhibited a total of 65 detected ruptures. The azimuth of each
crack was predominantly northeast–southwest, with an average
length of 53.2 m and a range of 10 to 150 m [Fig. 11(a)]. The
projected maximum width showed high variability, with a lower
limit of approximately 2.5 m, but the mean width of the ruptures
was concentrated at approximately 3.5 m, which is evident in
the lower limit [Fig. 11(b)]. In the northern section, we have
identified 115 cracks, which is almost twice the number detected
in the southern section, along with a fault that is approximately
2-km long [as depicted in Fig. 6(f)]. The azimuth of these cracks
is predominantly northeast–southwest, with a few more of them
being subperpendicular (i.e., NW–SE) to those cracks, as shown
in Fig. 11(e). The average length of these cracks (∼ 53.0 m) is
comparable to that of the southern section, but their variability
is higher, reaching up to 341 m [as illustrated in Fig. 11(e)]. On
average, the projected width is about 4 m and generally narrower
than 5 m. It is noteworthy that the along-fault variations in the
crack width are relatively inconsistent when compared to those
in the southern section. The relationship between the projected
width and the other two geometrical elements, i.e., the azimuth
and length of the cracks [Figs. 11(c), (d), (g), and (h)] indicate
that there is no significant correlation between geometric factors
of cracks. One notable result is that, in the northern section, the
lower limit of the projected crack width tends to increase when
the crack azimuth is closer to the main trend of the Dungen fault
(north–south direction) [Fig. 11(h)].

Our statistical analysis has revealed the following differences
between two fault sections: 1) The number of cracks, includ-
ing those of cracks in the NW–SE direction, is higher in the

northern section, 2) the lower limit of the crack width, which is
proportional to the lateral offset, is wider in the northern section,
and 3) the cracks in the northern section have high variations in
along-fault crack width with a tendency to widen in the general
trend of the main fault. This could be due to variations in the
degree of connection between neighboring cracks, which may
be linked to the amount of lateral deformation. It is important to
note that the en echelon cracks in the northern section are mostly
connected by northwest–southeast trending cracks, indicating a
relatively well-linked rupture geometry [1]. Our results imply
that the amount of surface deformation is lower to the south,
where it approaches to the Bulnay rupture, and we interpret
that there was a slip bump at a fault branch during the rupture
propagation from the main Bulnay fault to the Dungen fault.
Along the Dungen fault, Baljinnyam et al. [39] inferred 1–2 m of
horizontal offset on average based on the dimensions of tension
cracks, but without any quantitative measurement criteria. Our
estimation of the lower limit of the projected crack width imply
that horizontal offset of about 2.5 m in the last (1905) earthquake
event. Although the wider crack width, that is larger offset,
could be the result of cumulative deformations over multiple
earthquakes, it is challenging to determine the origin of the
offset since there have been no reported geomorphic and/or
paleoseismological observations.

IV. DISCUSSION

A. Advance and Implications

To map in detail and shortly the distribution of surface defor-
mation after an earthquake offers an opportunity to investigate
seismic source fault [5], dynamic rupture propagation [1], [15]
and surface displacement hazards [2], [3], [24]. As mentioned
in the Section I-A, prior to the 1990s, the mapping of seismic
surface ruptures primarily relied on field observations and aerial
photograph analysis. Data collected in this manner required
manual analysis or observations made during field visits to
analyze variations and characteristics of the rupture geome-
try, which could be labor-intensive and time-consuming tasks.
In recent years, high-resolution remote sensing data (such as
satellite, drone, etc.) and high-quality topographic data (seismic
and geological data) have been integrated with state-of-the-art
analytical techniques to gain a multidimensional understanding
of earthquakes [10], [11], [16]. Here, we propose solutions that
incorporate deep learning and image processing techniques for
automated imagery detection and analysis of the earthquake
surface ruptures within imagery can serve as efficient tools for
researchers.

Satellites acquire space imagery information for the entire
Earth with centimeter-level high resolution on a periodic basis,
enabling valuable applications in postearthquake damage assess-
ment and rapid response strategy formulation. Particularly, the
greatest advantage lies in the ability to swiftly obtain information
about the earthquake surface ruptures for vast regions up to
hundreds of kilometers long [7]. Indeed, in a few days later of the
earthquake, particularly in humid and rainy regions, coseismic
surface ruptures could be altered or removed due to meteoro-
logical conditions or on-site recovery operations following the
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Fig. 11. Relationships between geometrical elements—azimuth, length (m), and projected width (m)—of each rupture and/or crack on the southern sections
(a)– (d) and northern sections (e)– (h) of the Dungen fault are presented. The term “direction” has been replaced with “azimuth,” and the Azimuth has been indicated
with the addition of [from North to east (+) and to the west (-)] in parentheses.
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seismic event. Combining high-resolution satellite imagery with
state-of-the-art deep learning technology can provide related
researchers with rapid, comprehensive, and objective informa-
tion about surface ruptures, making it a valuable foundational
resource for investigations of the fault-rupture.

This study proposes a deep learning-based one-stop solution
model for the accurate detection and geometrical analysis of
various forms of surface ruptures in high-resolution satellite
imagery. The proposed model demonstrates the capability to
clearly distinguish similar surface rupture forms in features,
such as road, water system, and artificial structures. Various
types of significant surface ruptures were detected with high
performance by the proposed model, accurately mapping even
intricate details of surface ruptures. Importantly, the proposed
model can analyze large-scale distributed surface ruptures re-
gardless of their shape or complexity within the resolution of
satellite imagery. However, it should be noted that factors, such
as weather conditions, vegetation distribution, and obstacles
in satellite imagery can obscure surface ruptures, potentially
leading to reduced detection rates.

On the other hand, we presented that a statistical analysis
of rupture geometry, such as orientation, length, and width,
extracted based on the detected cracks, provides insights into
the rupture behavior using the case of two sections of the
Dungen fault. This demonstrates that the proposed model not
only validated the accuracy of the mapping but also delivered
precise information at a detailed level for extensive areas. This
can be attributed to the high-quality labeling dataset, which
includes various types of surface ruptures, validated by experts,
and the optimal training on this dataset. The outcomes of this
statistical analysis play a crucial role in facilitating a quantitative
assessment of variations in distribution of the surface defor-
mation. By automating the detection and analysis processes,
researchers can expedite their studies, reduce the potential for
human and/or subjective bias, and ensure a more consistent
and objective evaluation of characteristics of the earthquake
surface ruptures. The objective observation could be an essential
factor for building unified database of the earthquake surface
ruptures and performing correlation analysis [7], [24]. This
approach not only enhances the accuracy of data collection
but also empowers researchers to make informed decisions and
draw reliable conclusions about earthquake surface deformation.
Overall, the integration of deep learning technology in surface
rupture analysis represents a promising avenue for advancing
our understanding of earthquake dynamics and improving earth-
quake hazard assessment.

Surface rupture mapping information for large-scale faults
distributed globally primarily consists of georeferenced vector
files manually created by experts in related research [24]. By
utilizing this data, it becomes possible to integrate previously
established ground truth data with satellite data of varying
resolutions and characteristics. Furthermore, any necessary ad-
ditions or missing information in the created ground truth data
can be enhanced using various image processing techniques.
When accuracy-enhanced information is used as train data, it
can further improve the performance and robustness of the
model. Recently, Li and Ren [40] introduced “EASRAPP,” a

Python-based semiautomatic application that can be used on
personal computers and the web. This application utilizes feature
extraction in the HSV color space to classify and extract surface
ruptures, providing a fast method for extracting detailed struc-
tures of cracks or fractures in high-resolution remote sensing
images. EASRAPP is expected to serve as a practical tool to
support the training of deep learning models by providing sample
datasets for geologists and geophysicists.

B. Limitations and Future Directions

There are plans to address and improve the constraints im-
posed by the use of satellite imagery to enhance the model’s
performance. The limitations associated with satellite imagery,
including resolution constraints and variations in viewing an-
gles, can reduce the clarity of surface features of interest. In
addition, factors like cloud cover and seasonal changes (e.g.,
snow and vegetation) can significantly decrease visibility and
accuracy in feature extraction. These challenges underscore the
need for innovative approaches and techniques to mitigate these
limitations and improve the accuracy of surface rupture detection
models in satellite imagery. Environmental constraints, such
as limitations in satellite image resolution, changes in viewing
angles, and factors like noise and shadows within the imagery,
are common challenges faced by researchers analyzing remote
sensing-based images. Therefore, obtaining time-series data that
encompass seasonal variations and different viewing angles is
crucial, allowing the model to learn from a wide range of envi-
ronments. In addition, synthesizing multimodal data, including
data from UAVs with varying resolutions or different wavelength
DEM and synthetic aperture radar (SAR) data, can be a viable ap-
proach. These strategies can enhance the model’s robustness and
its ability to mitigate noise and other environmental constraints,
ultimately improving the accuracy of surface rupture detection.
However, it is not just the data source but also the reliability of
the ground truth that must be ensured. The labeling dataset of this
study was obtained through expert review, but it may still contain
some level of uncertainty. Ground truth labeling information for
surface ruptures can vary depending on the resolution of the data
source used by experts and may even differ based on individual
expert opinions. Therefore, the creation and availability of map-
ping validation data on a global scale for large-scale faults, based
on objective and consistent criteria, would significantly reduce
the uncertainty associated with surface rupture detection models
and play a role of a highly valuable common reference source.
To address these limitations and uncertainties, further research
and efforts are indeed necessary. Our study aims to contribute to
the improvement of research directions in this field by providing
an integrated solution for surface rupture detection and analysis,
building upon previous research efforts. We anticipate that this
research will significantly advance the field of surface crack
detection and analysis by effectively addressing these challenges
and offering valuable insights for the development of more
robust and accurate models. In addition, in this study, instead of
considering detailed surface rupture information from existing
validation data, a binary classification approach was applied to
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the model, distinguishing between “surface rupture” and “non-
surface rupture,” from a general perspective. In the future, there
are plans to utilize various ground truth labels to further segment
surface ruptures and perform multiclass classification based on
different types of surface ruptures. The goal is to harness the
capabilities of the latest deep learning models to understand
structural characteristics, such as fault growth, organization,
mechanics, and seismic potential at the surface fault level.

V. CONCLUSION

This research deserves attention for introducing a fit-for-
purpose approach to detect and analyze earthquake surface
ruptures using high-resolution satellite images. This approach
places particular emphasis on accurately detecting surface rup-
tures caused by earthquakes by utilizing a high-performance
deep learning-based crack detection model. In addition, the
study introduces a model for the automated analysis of the
geological and geomorphological characteristics associated with
the detected cracks. The model guarantees the flexibility of test
size and derives an immediate analysis result in a large-scale
area. A learning strategy applying random augmentation and
penalty loss confirmed that all of the various verification showed
high performance. The reliability of the model was confirmed
through comparative verification with actual surface rupture
investigations. As a result, it can serve as an automated and
comprehensive solution for rapidly and precisely mapping and
quantitatively analyzing earthquake surface ruptures. This can
aid in improving our understanding of the geometrical complex-
ity and relationships in rupture behaviors along inherited fault
systems. Furthermore, by utilizing time-series satellite images
for periodic visits and data acquisition, the proposed model may
enable automatic evaluation of the degree of risk associated
with destructive earthquakes, including recent events, such as
the 2023 Turkey–Syria earthquake and the 2022 Qinghai earth-
quake. This can provide basic spatial data on surface ruptures
to field researchers and modelers, as well as suggest future
evaluation plans for earthquake-prone areas.
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