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Abstract—Nowadays, the developed deep neural networks
(DNNs) have been widely applied to synthetic aperture radar (SAR)
image interpretation, such as target classification and recogni-
tion, which can automatically learn high-level semantic features
in data-driven and task-driven manners. For the supervised learn-
ing methods, abundant labeled samples are required to avoid the
over-fitting of designed networks, which is usually difficult for
SAR image applications. To address these issues, a novel two-stage
algorithm based on contrastive learning (CL) is proposed for SAR
image target classification. In the pretraining stage, to extract
self-supervised representations (SSRs) from an unlabeled train
set, a convolutional neural network (CNN)-based encoder is first
pretrained using a contrasting strategy. This encoder can convert
SAR images into a discriminative embedding space. Meanwhile,
the optimal encoder can be determined using a linear evaluation
protocol, which can indirectly confirm the transferability of pre-
learned SSRs to downstream tasks. Therefore, in the fine-tuning
stage, a SAR target classifier can be adequately trained using a
few labeled SSRs in a supervised manner, which benefits from the
powerful pretrained encoder. Numerical experiments are carried
out on the shared MSTAR dataset to demonstrate that the model
based on the proposed self-supervised feature learning algorithm
is superior to the conventional supervised methods under labeled
data constraints. In addition, knowledge transfer experiments are
also conducted on the openSARship dataset, showing that the
encoder pretrained from the MSTAR dataset can support the
classifier training with high efficiency and precision. These results
demonstrate the excellent training convergence and classification
performance of the proposed algorithm.

Index Terms—Contrastive learning (CL), convolutional neural
network (CNN), self-supervised repersentation (SSR) learning,
synthetic aperture radar (SAR) image, target classification.
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I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an advanced remote
sensor used to provide high-resolution images, which has

many potential applications in military and civilian fields [1], [2],
[3], [4], [5]. Nowadays, numerous high-resolution SAR images
are available due to extensive satellite exploration activities,
making automatic SAR image interpretation an urgent necessity.
Target classification is a fundamental SAR interpretation task
that can automatically offer target category information for
other advanced applications, such as hostile target identification,
high-value target surveillance [6], [7], [8], town planning [9], oil
spill detection [10], etc.

SAR images inevitably exhibit speckle noise due to their co-
herent imaging mechanism [11]. This noise presents a significant
challenge for the feature extraction capabilities of SAR target
classifiers, as it can lead to small interclass differences and large
intraclass differences in SAR targets. Therefore, numerous SAR
target classification methods mainly focus on feature extraction.
For example, principal component analysis (PCA), fisher linear
discriminant analysis (LDA) [12], and local discriminant em-
bedding (LDE) [13] directly transform SAR images into feature
vectors using a linear or nonlinear transformation automatically.
Some researchers have manually designed feature extractors to
capture the texture, orientation, and contour features of SAR
images, such as HOG [14], SIFT [15], wavelet transform [16].
Nevertheless, these handcrafted features are low-level features
or originally developed for optical image textures, resulting
in the poor interclass separation and discriminability of the
extracted features. These shortcomings restrict the performance
of the aforementioned methods.

Fortunately, with the prosperous development of deep learn-
ing (DL) technologies, numerous studies on SAR image in-
terpretation with convolutional neural networks (CNNs) have
demonstrated that they can automatically learn high-level fea-
tures from large-scale datasets [17], [18], [19], [20], [21]. Early
research mainly applies labeled data to drive model learning with
a supervised learning paradigm, which often suffers from over-
fitting problems due to the limitation of elaborately labeled SAR
samples. Some researchers have proposed alleviating methods
such as reducing classifier parameters [22], applying SAR image
enhancement [23], and designing special models. For example,
Sharifzadeh et al. [24] combined CNN and MLP modules to
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propose a novel CNN–MLP hybrid classifier and benefit the
SAR ship classification. Samadi et al. [25] suggested a pixel
selection approach and a morphological preprocessing on input
SAR images to better train a deep belief network, thus alleviating
the need for labeled train samples. However, these methods still
fail to break out of the supervised learning framework, which
is merely a temporary fix. Transfer learning techniques based
on SAR image domains have been implemented to overcome
the dilemma posed by the lack of labeled SAR images. Huang
et al. [26] attempted to transfer knowledge from unlabeled SAR
scene data to SAR target classification tasks by feedbacking the
reconstruction loss to the classification bypath. Wang et al. [27]
and Youk and Kim [28] attempted to prelearn the mapping
relationship between the simulated and measured SAR target
images. The above methods dramatically alleviate the shortage
of labeled SAR samples and achieve considerable performance.
However, when and how to transfer knowledge varies by spe-
cific tasks and source domains. Such limitations can dilute the
extensibility of transfer learning methods.

Self-supervised learning (SSL) is a task-agnostic paradigm
that can be easily incorporated with downstream supervised
learning tasks through pretext tasks that provide self-supervised
signals. It is possible for this technology to learn valuable
visual representations from an abundance of unlabeled data.
For example, Wen et al. [29] proposed a weak rotation aware-
ness encode method to learn rotational representations from
sequence SAR images. Zhang et al. [30] employed a stacked
autoencoder to learn spatial representations from SAR images
via the denoising pretext task. Contrastive learning (CL) is a
cutting-edge self-supervised method that can unlock the po-
tential of self-supervised techniques. Because it can extract
more discriminative features from an unlabeled dataset, which
can benefit the downstream classification tasks. InstDisc [31]
proposed a pretext task to learn instance-level discrimination and
a novel nonparametric softmax formulation, which allows the
CL model to capture the apparent similarity between instances.
Based on instance discrimination, SimCLR [32] has completed
the CL framework by studying its components and investigating
the effects of different design choices. He et al. [33] proposed
momentum contrast (MOCO) to reduce the computational de-
mand in CL. It maintains a dynamic dictionary as a memory bank
to access a large number of negative samples. They all establish
instance-level discrimination as a pretext task to drive the model
to learn discriminative representations. Therefore, based on the
instance discrimination task, it is possible to encode raw SAR
images as self-supervised representations (SSRs). These SSRs
will have a more discriminative embedding space, where the
samples with the same category label can be automatically clus-
tered together and separated from other types of targets. In other
words, SSRs in this embedding space will have larger interclass
differences and smaller intraclass differences. Therefore, the
urgency for large annotated datasets can be reduced, and the
accuracy of the classifier can be improved when transferring
these learned SSRs to downstream SAR target classification
tasks.

The pretraining method by implementing a contrasting strat-
egy has been applied to various remote sensing data not only

SAR images [34], [35], but also optical remote sensing im-
ages [36] and multimodal remote sensing images [37]. How-
ever, during the training of the CL model, the objective of the
supervised task in the transfer stage is irrelevant to the pretext
task, making it difficult to quantify the encoder’s performance
in downstream transfer tasks. To address this paradox, a model-
agnostic linear evaluation protocol is proposed to evaluate the
state during the training of CL models. This allows the transfer-
ability and discriminability of prelearned SSRs to downstream
tasks to be indirectly confirmed with a simple linear classifier.

In this article, we propose a two-stage training framework for
SAR target classification models. In the pretraining stage, we
investigate a CL model to learn SSRs from an unlabeled train set
to overcome the insufficiency of annotated samples. Meanwhile,
a linear evaluation protocol is proposed to evaluate the learned
SSRs during the CL model training, which can indicate the self-
supervised training status by verifying the discriminability of the
learned SSRs, thereby determining the best pretrained encoder.
In the fine-tuning stage, the best encoder is applied to a small set
of annotated datasets, where all raw SAR images are encoded
as SSRs. Within the SSRs, a supervised classifier can be fitted
with a few labeled SAR images and ensure the accuracy of the
SAR target classification system.

More specifically, the main contributions of this article are
summarized as follows.

1) A novel two-stage training framework for SAR target
classification is proposed, which overcomes the scarcity of
labeled data by contrasting strategies so that the classifica-
tion task requires only a few labeled SAR image samples
to ensure considerable accuracy.

2) A linear evaluation protocol is implemented during each
pretraining epoch to evaluate the learned SSRs. This guar-
antees the encoder utilized in the fine-tuning stage is the
most efficient one, and further improves the accuracy of
SAR target classifiers.

3) The proposed algorithm can achieve SOTA performance
on the MSTAR dataset with a few labeled SAR samples.
Meanwhile, the learned knowledge also has better gener-
alization on the openSARship dataset.

II. PROPOSED METHOD

In this section, a brief review of our proposed two-stage train-
ing framework for SAR target classification is first presented.
Then, in the pretraining stage, the novel SSR leaning model
using contrastive strategy is described in detail. We also illustrate
how to assess the encoder with the proposed linear evaluation
protocol. Finally, the transfer learning strategy of fine-tuning
the pretrained encoder is introduced in downstream SAR target
classification tasks.

The proposed two-stage algorithm are mainly consists of
two stages: pretraining and fine-tuning. In stage one, we use
a variant CL model to pretrain a CNN-based encoder in a self-
supervised manner. The encoder will learn hierarchical features
and transform the whole unlabeled train set into discriminable
SSRs. Then, partial labeled SSRs will be used in the subsequent
linear evaluation protocol to evaluate the transferability and
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Fig. 1. Block diagram of the proposed two-stage training framework for SAR target classification models.

discriminability of current learned SSRs. In the fine-tuning
stage, the best pretrained encoder determined by the linear evalu-
ation protocol will be applied to fine-tune a SAR target classifier
with a small number of annotated samples. The detailed block
diagram of the proposed two-stage algorithm is demonstrated in
Fig. 1.

A. Pretraining the Network With CL

Generally, supervised learning has a clear training purpose
or task, but the SSL needs a pretask to motivate the model
to learn meaningful representations from an unlabeled dataset.
Compared with supervised classification tasks that learned the
category discrimination with the assistance of category labels,
we set the instance discrimination [31] as the pretext task, which
means learning to discriminate between individual instances
without any semantic categories. Hence, based on the instance
discrimination pretext task, a CL paradigm with three modules
can be designed. 1) The augmentation module, which can pro-
vide two different views of one raw sample; 2) The CNN-based
encoder module is pretrained with a contrastive strategy to learn

discriminative representations; 3) The nonlinear module, which
can project all the representations into a contrastive space, where
the contrast loss can be calculated with the projected samples.
Besides, some preprocessing of SAR images is performed, in-
cluding despeckling, normalization, clip max, etc., before the
raw SAR images are input into the above modules. The main
components of the CL model applied in this article are illustrated
in Fig. 2.

A Stochastic Data Augmentation Module Γ(·): Since many
researchers have found that various complex data augmenta-
tion benefits CL [38]. We adopt various image transformation
methods that can be applied to one-channel SAR images. The
transform is formed with random cropping followed by resiz-
ing back to the original size, random horizontal flip, random
grayscale, random color jitter and random Gaussian blur. The
augmentation module can transform any SAR images into two
random augmented images, which can note as a positive pair
x⊕ and x�. Meanwhile, other transformed SAR images can be
viewed as negative samples against the positive pair {x⊕, x�}.

A CNN Based Feature Encoder F (·): The CNN encoder can
project the augmented SAR images into an embedding space
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Fig. 2. Detailed structure of the CL model.

as latent representation h⊕ and h�. As known that deep neural
network (DNN) can obtain more generalized and high-level se-
mantic representations, when there are enough data for training.
Though various complex data augmentation for CL can provide
more data patterns to help adequately activate the parameters in
the neural network. The DNNs will also degrade due to the gradi-
ent exploding or vanishing. Therefore, we use the ResNet50 [39]
as a CNN encoder to address the degradation problem. ResNet
stacks the residual blocks to build a deep network. Meanwhile,
the residual blocks ensure that the model will not degrade
during the deepening by at least learning identity mapping. In
addition, ResNet50 is more profound and has more channels in
the same block layer compared with ResNet18 and ResNet34.
Because of concerns about the training time we can afford, a

“bottleneck” layer is added to the vanilla residual block to reduce
the additional parameters associated with the increased number
of layers and channels. Fig. 3 shows the bottleneck residual
block in ResNet50 when inputting the output xl ∈ RHl×Wl×Cl

of the previous layer or layers, assuming that F(xl) indicates
the transformed intermediate features of current layers, then
the residue block can be represented as F(xl) + xl before the
activation layer δ by shortcut connection operation. However,
in practice, F(xl) may have different channels with xl, when a
1 ∗ 1 convolution layer s(·) should be used to reshape xl before
the element-wise add operation. Meanwhile, a stack of three
layers with 1× 1, 3× 3 and 1× 1 convolutions build a bottle-
neck block in the above procedure. The first 1× 1 convolution is
responsible for reducing the channel dimension, and the second
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Fig. 3. Bottleneck residual blocks in ResNet50. The right figure shows the
satiation when xl has different shape with F (xl).

can restore the dimensions, which can leave the 3× 3 layer
a bottleneck with smaller input/output dimensions. The above
processing can be given as

xl+1 =

{
δ(F(xl) + s(xl)) Cxl

�= CF(xl)

δ(F(xl) + xl) Cxl
≡ CF(xl)

(1)

in which Cxl
and CF(xl) denote the number of channels for

intermediate feature map xl and F(xl), respectively.
A Nonlinear Projection Module L(·): Chen et al. [32] find

that a nonlinear projection head improves the representation
quality of the layer before it. In this work, this module is simply
structured by an MLP with one hidden layer and one ReLU
nonlinearity layer, which is formulated as

o = L(h) = W (2)ReLU(W (1)h) (2)

where W (1) and W (2) represent the weight parameters of the
two fully connected layers, respectively.

Based on the three above modules, a CL training procedure
can be established. When a mini-batch of N original SAR images
{S}Ni pass through the data augmentation module. One positive
pair is generated by the data augmentation module accompanied
with 2(N − 1) negative pairs. Then, the 2N pair-labeled sam-
ples are encoded into an embedding space as latent features (3),
which can also be called as SSRs in this article

H = {hi = (F ◦ Γ(si))|si ∈ S} (3)

where hi = (h⊕
i , h

�
i ). h

⊕
i and h�

i denote the encoded SSRs for
positive pair (x⊕

i , x
�
i ).

At last, the nonlinear projection moduleL(·)will project SSRs
into a same contrastive space with the same dimension as

O = {oi = (L(h⊕
i ), L(h

�
i ))|hi ∈ H} (4)

where oi = (o⊕i , o
�
i ). o

⊕
i and o�i are obtained from the encoded

SSR pair (h⊕
i , h

�
i ), which are processed by the nonlinear pro-

jection module L(·).
Then, in the contrastive space, the similarity between positive

pair vector o⊕i and vectoro�i against other negative samples can
be measured by Info-NCE loss [33] formed as (5). It means that

given a nonlinear coding vector o⊕i , we want to query the most
similar SSR o�i in the contrastive space

�⊕i = − log
exp

(
Cosim

(
o⊕
i ,o

�
i

)
/τ

)
∑N

k=1 I[ôk �=o⊕
i ]
exp

(
Cosim

(
o⊕
i , ôk

)
/τ

) . (5)

Among the contrastive loss (5), τ is an adjustable temperature
parameter that can be used to control the distribution shape of
(5) and the discrimination of the model to negative samples;
I[ôk �=o⊕

i ]
is an indicator function, and the value is 1 only if ôk

is different from o⊕
i , otherwise, it is 0. In Info-NCE loss, the

instance-wise discrimination can be regarded as the similarity
or distance between two features generated by the nonlinear
projection module. We use the cosine similarity formulated as
(6) to measure the distance, where the vectors u, v are Euclidean
normalized.

Cosim(u, v) =
u · v

|u| ∗ |v| . (6)

Therefore, for mini-batch of N original SAR images {S}Ni=1,
the batch loss can be calculate by

L =
1

2N

N∑
i=1

(�⊕i + ��i ). (7)

B. Evaluation of the Pretrained Encoder

When pretraining the encoder with the CL model, the objec-
tive of the encoderF (·) is to project the original SAR images into
a discriminative embedding space as SSRs, which is agnostic to
the objective of downstream SAR target classifier. To monitor
the process of CL, we proposed a linear classification evaluation
protocol to evaluate the encoder in each training epoch. It applies
partial currently learned SSRs and the corresponding class labels
to fit a linear classifier. Then, quantitatively evaluating the linear
classifier with some classification metrics that can represent the
efficiency of the current encoder. It should be noted that the
SSL process requires no labeled samples, but a few labeled
samples are necessary for ensuring the optimal performance of
the pretrained encoder by linear evaluation protocol.

In detail, for each training epoch, given a train set of N
unlabeled samples Dt = {xn}Nn=1, and a few labeled train set
of M samples D̂t = {xm, ym}Mm=1, where ym ∈ {1, 2, 3, . . . , k}
andM ≤ N . The weight parameters ζ∗ of current CNN encoder
F (·) pretrained by CL model can be given as

ζ∗ = argmin
ζ

1

N

N∑
n=1

L [F (xn; ζ)] . (8)

Then, we can use F (xm; ζ∗) to denote the current learned
SSRs, and a multinomial logistic regression classifier [40] of
K categories is used to estimate the probability that F (xm; ζ∗)
belongs to each category, which can be given as

p (ym = k | F (xm; ζ∗); η) =
eη

T
mF (xm;ζ∗)∑k

l=1 e
ηT
l F (xm;ζ∗)

. (9)
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Moreover, the logical probability of sample (xm, ym) shows as
follows:

hη (F (xm; ζ∗)) =

⎡
⎢⎢⎢⎣
p (ym = 1 | F (xm; ζ∗); η)
p (ym = 2 | F (xm; ζ∗); η)

...
p (ym = k | F (xm; ζ∗); η)

⎤
⎥⎥⎥⎦

=
1∑k

l=1 e
ηT
l F (xm;ζ∗)

⎡
⎢⎢⎢⎣
eη

T
1 F (xm;ζ∗)

eη
T
2 F (xm;ζ∗)

...
eη

T
k F (xm;ζ∗)

⎤
⎥⎥⎥⎦ (10)

where η denote the learnable parameters of the multinomial
logistic regression classifier. Therefore, for total labeled train
set, the K categories logistic regression classifier can be fit with

η∗ = argmax
1

M

[
M∑

m=1

K∑
k=1

I log
eη

T
k F (xm;ζ∗)∑k

l=1 e
ηT
l F (xm;ζ∗)

]

I(ym, k) =

{
1, ym = k
0, ym �= k.

(11)

Finally, with the solution of ζ∗ and η∗, the overall classification
accuracy in the test set can be used as metric for assessing the
current epoch learned SSRs.

C. Fine-Tuning the Classifier Designed for SAR Target

Fine-tuning is a prevalent technique for transfer learning,
which aims to transfer knowledge learned by pretrained models
using downstream tasks and target domain datasets. In our work,
the encoder is pretrained by the proposed CL model on unlabeled
source domain samples. Then, in downstream tasks, it will be
fine-tuned with a few labeled samples. In the following, we il-
lustrate how to use the pretrained encoder during the fine-tuning
stage.

When the CL model has been trained for multiple epochs,
the linear evaluation protocol is adopted to evaluate the perfor-
mance of the encoder. Then, the optimal CNN encoder F (·) can
be determined, and the encoder’s parameters ζ∗ are frozen in the
subsequent procedure. Consequently, given a small annotated
dataset Da = {xi, yi}, where the samples can be encoded as
a labeled representation set R = {ri = (F (xi), yi) | xi ∈ Da}.
Then, an MLP-based classification head H(·) is directly applied
on this labeled representation set to fine-tune the encoder using
downstream SAR target classification task and the representa-
tion set R, which can be expressed as follows:

χ∗ = argmin
1

N

N∑
i=1

Lsup{H(ri;χ), yi}. (12)

Here, χ indicates the learned parameters for classification head
H; Lsup indicates the supervised loss function for downstream
tasks. Especially, it is cross-entropy loss for SAR image classi-
fication tasks.

The detailed architecture of the MLP-based H(·) shows in
Table I. We stack two Linear-BatchNorm-ReLU modules and
add a linear layer behind them to convert the number of output

TABLE I
STRUCTURE OF THE MLP-BASED CLASSIFICATION HEAD H(·)

Fig. 4. Military ground targets in the MSTAR dataset. SAR images (bottom)
and corresponding optical images (top).

channels to the number of categories. Then, following by a Soft-
max layer to predict the classification scores for input sample
xi. The shape of the input batch of average poolinged SSRs is
(B, 2048). The first linear module’s output units are 128, and the
second linear module’s output units are 64. Finally, nclass output
units for the last classification layer.

III. EXPERIMENTAL RESULTS

A. Experiment Setup

1) Dataset: The experiments about the SAR target classi-
fier’s performance and linear evaluation protocol are carried
out on moving and stationary target acquisition and recognition
(MSTAR) [41] database, which is collected by a 10 GHz SAR
platform with 0.3 × 0.3 m resolution. It published thousands
of SAR images for 10 military ground targets, including tank:
BMP2, T72, T62; armored vehicle: BTR70, BTR60; truck:
BRDM, ZIL131; cannon: 2S1, ZSU234 and bulldozer D7. Fig. 4
shows the samples of 10 targets, including SAR and corre-
sponding optical images. In addition, there are 15◦ and 17◦

two depressing angles for each target, and all of them are full
aspect coverage (in the range of 0◦ to 360◦). Similar to [22], we
applied the MSTAR 10 class targets classification benchmark,
in which all of the data with 17◦ depressing angle are divided
as the train set Dtrain, and other data with 15◦ depressing angle
are divided as the test set Dtest. Although Dtrain and Dtest are
all annotated, when pretraining the encoder with CL, just using
Dtrain without category labels, while full labeled Dtrain during the
linear evaluation. Table II shows the number of available SAR
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TABLE II
AVAILABLE SAR IMAGES OF THE TRAIN SET(17◦) AND THE TEST SET(15◦) IN THE MSTAR DATASET

TABLE III
AVAILABLE SAR SHIP IMAGES OF THE TRAIN SET AND THE TEST SET IN THE

OPENSARSHIP DATASET

Fig. 5. Three types of SAR ship in the prepared openSARship dataset.

images of the train set and the test set with different depress
angles.

After pretraining the ResNet50-based encoder on the MSTAR
dataset, a special knowledge transfer experiment is also set up on
another dataset named openSARship [42] to verify the transfer-
ability of the SSRs extracted by the encoder. The openSARship
dataset is a well-organized shared dataset collected from the
Sentinel-1 satellite and widely used for marine surveillance. The
publisher has provided thousands of SAR ship target images and
corresponding ground truth, including tens of categories, while
also having serious category imbalance issues (8470 in cargo but
4 in towing). Therefore, only the three most numerous ship types,
including cargo, bulk carrier, and container ship, are used to
form the classification dataset, and only the VH polarization and
ground range detected (GRD) products are sampled to compose
the specific openSARship dataset. Finally, we randomly split
the dataset into a train set and a test set in a ratio of 7:3.
Table III shows the number of samples in each category, and
Fig. 5 illustrates the three classes of SAR ships.

2) Hyperparameters and Metrics: In this article, only the
pretraining stage is trained on two NVIDIA RTX 3090 GPUs
with the PyTorch DL framework on an Ubuntu 20.04 Linux
system, and one NVIDIA RTX 3090 GPU is used for other exper-
iments, when training the classifier with the proposed two-stage
algorithm mentioned in Section II-C. In the pretraining stage,
the ResNet50-based encoder F (·) is self-supervised per-trained
by the proposed CL model. In the data argumentation module
Γ(·), the original SAR images are first resized to 158 * 158
and randomly cropped back to 128 * 128. After that, three
augmentation policies are applied: random flip, grayscale, and
Gaussian blur. Then, we set the epochs to 1000 and batch size

to 256 (128 per GPU), using the Adam optimizer with 10−3

initial learning rate and 10−6 weight decay. In addition, since
the CL model is very unstable at the beginning of training, we
apply CosineAnnealing learning rate scheduler [43] with 100
epoch period to overcome it. Finally, we trained the CL model
with Info-NCE loss which temperature τ is 0.2. During the CL
model training period, we evaluated the current learned SSRs
with the linear evaluation protocol mentioned in Section II-B
for each epoch. In the fine-tuning stage, the learnable parameters
of ResNet50 encoder F (·) are frozen for the downstream SAR
target classification task. We just trained the classification head
H(·) with cross-entropy loss and Adam optimizer, meanwhile,
setting the epochs to 100, batch size to 64 and initial learning
rate to 0.01 with OneCycle learning rate scheduler.

In the experiment on fine-tuning the pretrained encoder,
we use openSARship to transfer the knowledge learned form
MSTAR dataset into a new dataset, and evaluate the efficiency
of knowledge transferring compared with training on open-
SARship dataset from scratch. When training with fine-tuning
scheme, we use the OneCycle learning rate scheduler with
maximum learning rate of 10−4, but 10−3 for training from
scratch. Then, keeping the other hyperparameters be the same.
For example, training models with cross-entropy loss and Adam
optimizer, and setting the epochs to 200, batch size to 64. In addi-
tion, no data enhancements are applied during the experiments.

Since all experiments are related to classification tasks, two
common classification evaluation indicators, including overall
accuracy (OA) and average accuracy (AA) are adopted in this
article. OA refers to the percentage of all test samples that are
correctly categorized. AA refers to the average accuracy for each
category

B. Performance of the Proposed Pretrained Network

Here, we design a series of experiments in the pretraining
stage. 1). The training states of the CL model are illustrated by
plotting the CL model’s training loss and the LR classifier’s OA
at each epoch; 2). In addition to LR, three other linear classifiers,
including KNN, DT, and SVM, are considered for testing the
efficacy of various linear classifiers used in the linear evalua-
tion protocol; 3). T-Stochastic Neighbor Embedding (T-SNE)
algorithm [44] is utilized to visualize the distribution of SSRs in
order to evaluate the separability and discriminability of SSRs
in the embedding space.

1) Linear Evaluation: In the pretraining stage, the whole
train set Dtrain without category labels is employed to train the
CL model proposed in Section II-A. For each training epoch, the
encoderF (·) in current epoch can transform the whole Dtrain into
SSRs. Then, the logistical regression classifier can be fitted with
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TABLE IV
DETAILED CLASSIFICATION RESULTS ON THE TEST SET OF THE MSTAR DATASET

Fig. 6. Training states in the pretraining stage. (a) The train loss and OA
curves during the pretraining stage. (b) OA curves of four different types of
linear classifier.

the SSRs and category labels in Dtrain. Finally, the fitted classifier
can assess the performance of the pretrained network on the Dtest

using OA and AA metrics. Fig. 6(a) plots the train loss and OA in
linear evaluation protocol for each epoch. In the figure, the best
encoder for the subsequent fine-tuning stage is obtained in epoch
968, in which the linear evaluation has achieved the highest OA
of 98.47%. Meanwhile, the AA of the best logistical regression
classifier and detailed classification result is shown in Table IV.
The result indicates that when the Info-NCE loss decreases,

Fig. 7. Results of T-SNE visualization for different feature extractors. (a) The
optimal encoder. (b) The randomly initialized encoder. (c) Classification head
H(·) in the fine-tuning stage. (d) PCA.

better SSRs are learned, meanwhile, the OA of the logistical re-
gression classifier is gradually improved. It demonstrates that the
linear evaluation protocol proposed in Section II-B can provide
guidelines for evaluating the pretrained encoder’s performance
in the process of SSL.

2) Different Linear Classifiers: This section examines four
types of classifiers: LR, KNN, DT, and SVM. The four classifiers
listed above are tested for 1000 epochs. Fig. 7 shows the OA-
Epoch curve for four different linear classifiers at the first 400
epochs, and the detailed metrics for four kinds of classifiers in
epoch 968 are listed in Table V. It is clear that the OA of LR
and SVM classifiers are obviously better than KNN and DT
classifiers with more than 2%–5% improvement, while in the
initial stage of training the CL model, the performance of the
SVM classifier fluctuates more than the LR classifier. It implies
that the multinomial logistic regression classifier would be more
appropriate as a linear evaluator in the pretraining stage.

3) Visualization With T-SNE: In this experiment, the best
encoder F (·) in the pretraining stage is compared with sev-
eral feature extractors, including randomly initialized encoder
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TABLE V
CLASSIFICATION RESULTS OF FOUR KINDS OF LINEAR CLASSIFIER IN EPOCH 968

F̂ (·), proposed classification head H(·) in the fine-tuning stage
and PCA. We use the T-SNE algorithm to reduce the high-
dimensional feature vectors to two dimensions and visualize
their distributions. Fig. 7(a) and (b) demonstrates that with
the iterative training of the CL model, samples with the same
category can automotive gather together and separate from the
rest in the embedding space. Comparing Fig. 7(a) with Fig. 7(d)
indicates that the encoder pretrained by the CL model can
provide better interclass separability in the embedding space
than the conventional machine learning method (PCA). Fig. 7(c)
shows that the discrimination of the previously preextracted
SSRs in the feature space will be further improved after the
bootstrapping of the downstream supervised classification task.
The above results show that the pretrained encoder is capable of
embedding raw SAR images into a more discriminative feature
space, thus facilitating the convergence of the downstream SAR
target classifier during the fine-tuning stage.

C. Fine-Tuning Using Limited Annotated Data

In the fine-tuning experiments, the parameters of the best
encoder obtained in the pretraining stage is fixed. To begin
with, we evaluated its performance under a few labeled Dtrain

in MSTAR. The results show that our proposed algorithm can
achieve an optimal OA of 90.71% when only samples 10%
labeled Dtrain and 99.34% when samples 30%. Fig. 8 shows the
above classification results with a confusion matrix. Each row is
the true category, and each column is the predicted category.
In addition, the elements of the confusion matrix represent
the number of targets identified as a certain category, and the
elements on the diagonal line represent the number of true
identifications of a category. It show that our fine-tuned classifier
performs comparably to the state-of-the-art (SOTA) supervised
model in the MSTAR 10 targets classification benchmark, even
when the available labeled dataset is constrained.

To further demonstrate the efficiency of the proposed fine-
tuning approach, several SAR targets classification methods
are compared with the proposed two-stage algorithm, includ-
ing PCA with an LR classifier, vanilla ResNet50 [39] and
A-ConvNet [22]. In the PCA-based method, the raw SAR images
are firstly flattened and then reduced its dimensionality to 128
using the PCA algorithm. The 128-dimensional vectors are then
used to train an LR classifier comparable to the one proposed; In
the vanilla ResNet50 model, just adding a linear layer to reshape
the number of output channels to 10 categories; For A-ConvNet,
only reshaping the raw SAR images as the model required, and
do not use the enhancement methods mentioned in the model’s
paper. Fig. 9 shows the OA for the proposed classification model
and other aforementioned methods trained with 10%, 20%, 30%,

Fig. 8. Confusion matrix for fine-tuning experiments in MSTAR dataset.
(a) 10% train set. (b) 30% train set.

50%, and 100% annotated Dtrain. The result shows that the
PCA-based approach can work better than Vanilla ResNet50 and
A-ConvNet under very few(10%) labeled datasets. However, as
the size of the annotated train set increases, the performance of
supervised models based on DL can significantly outperform
traditional methods (PCA). In contrast to the above approaches,
the proposed two-stage algorithm using SSRs is better than other
comparison methods under any ratio of the labeled train set.
Especially our proposed algorithm can achieve the best OA of
99.34% with 30% of the labeled train set, which is comparable
to the performance of other methods under 50% and 100% of
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Fig. 9. OA for different SAR classification models under various train set
ratio.

the train set. The above analysis indicates that our proposed
algorithm has very significant advantages in insufficiency of an-
notated samples. Meanwhile, the classification performance can
also be rapidly improved by slightly increasing the proportion
of annotated train set.

D. Knowledge Transfer Under Different Datasets

In the experiments of this section, we attempt to transfer the
knowledge learned from MSTAR dataset to training a open-
SARship classifier. Some classifiers are trained on the prepared
openSARship dataset under the following different settings.

1) Supervised training of the classifier from scratch with
ResNet18.

2) Supervised training of the classifier from scratch with
ResNet50.

3) Training the classifier with ResNet50 pretrained by the
CL model in Section III-B on the Dtrain in MSTAR. In
addition, the pretrained ResNet50-based encoder is frozen
during the knowledge transfer experiments.

4) Training the classifier with ResNet50 pretrained by the CL
model in Section III-B on the Dtrain in MSTAR. But the
pretrained ResNet50-based encoder isn’t fixed during the
knowledge transfer experiments.

In addition, the class head behind the pretrained ResNet50-
based encoder is identical to Table I, except that the output units
of the softmax layer are three. Meanwhile, the class layer in
ResNet18 and ResNet50 is replaced with the abovementioned
class head to maintain fairness.

Fig. 10 shows the evaluation results when training the above
four ship classifiers. When supervised training from scratch, the
trends of the evaluation curve during model training are almost
similar, and the best OA for ResNet18 and ResNet50 are quite
close, which are 71.17% and 70.72 %, respectively. However,
fine-tuning with the pretrained encoder can achieve the best
OA of 77.03% and a smoother and faster training state than
training from scratch. It indicates that training a classifier on the
openSARship dataset with the pretrained encoder is more easier
than training from scratch, even though the encoder is pretrained
using the MSTAR dataset. Combining this experiment result
with the above experiments in Section III-C, it seems that com-
pared with supervised learning models that tend to capture the

Fig. 10. Training states for different SAR classification models in openSAR-
ship dataset.

class similarities among samples driven by category labels, the
CL model based on instance discrimination pretext task attempts
to pretrain an encoder to grasp the instance similarities among
samples so that the encoded features can be more generalized
and high-level representations and make the knowledge transfer
between different datasets easier.

E. Compare With SOTA Methods

This section compares some SOTA SAR target classification
methods with our proposed algorithm. We unify the encoder as
ResNet50 and compare their classification accuracy using 10%
and 30% randomly sampled labeled MSTAR dataset. Besides,
SAR target classifiers are trained without data augmentation.
The SOTA and baseline methods used for comparison are listed
as follows.

1) Baseline methods: Three traditional supervised methods
are selected as baselines, including feature extraction-
based methods: PCA and wavelet energy [45]. supervised
CNN-based model A-ConvNet [22]. We use a three-layer
Haar wavelet transform to extract normalized wavelet
coefficients from SAR images. The energy, kurtosis, and
skewness of nine high-frequency subgraphs were used to
form a 27-dimensional feature vector for training a SVM
classifier.

2) SAR domain transfer learning methods: One attempts
to learn knowledge from unlabeled SAR images by re-
constructing these images [26]. We have replicated the
experiment by reconstructing the MSTAR dataset. An-
other attempts to learn knowledge from simulating SAR
images [27]. We borrowed their experimental results.

3) SSL methods: InstDisc [31] and MOCO [33]. We use these
method to pretrain a ResNet50 with 1000 epochs. Then
fine-tuning the ResNet50 with 100 epochs. Since InstDisc
and MOCO do not use a linear evaluation protocol to
determine the best pretrained encoder. In the fine-tuning
stage, the encoder trained in the last pretraining epoch is
applied to train a SAR target classifier.

The experimental results shown in Table VI prove the supe-
riority of our proposed algorithm on SAR target classification
tasks when labeled SAR images are scarce. It also demonstrates
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TABLE VI
OA OF SOTA METHODS TRAINED ON 10% AND 30% LABELED MSTAR

DATASET

that our two-stage method is more efficient than other self-
supervised methods. This further emphasizes the importance
and practicality of our proposed additional linear evaluation
protocol.

IV. CONCLUSION

In this article, a contrasting strategy is proposed for learning
SSRs. Based on this, a two-stage algorithm is designed to
train a SAR image target classifier under the constraints of
the annotated dataset. In the pretraining stage, a CL model has
investigated to pretrain a CNN-based encoder with an unlabeled
train set. This encoder can transfer the raw SAR images into a
discriminative embedding space in which the samples with the
same category label can be automatically clustered together and
separated from other types of targets. In the fine-tuning stage,
the classifier can be adequately trained with a few transformed
SSRs, and corresponding labels because the SSRs already have
some discriminatory properties. In addition, we also apply a
linear evaluation protocol to indicate the CL model training state
in each training epoch. It can quantitatively evaluate the perfor-
mance of the pretrained CNN encoder and the corresponding
transformed SSRs, which can indirectly indicate the merit of
the downstream classifier trained in the stage of fine-tuning. For
SAR target classification tasks, experimental results show that
our proposed algorithm achieves SOTA quantitative results with
an accuracy of 90.71% when sampling only 10% of the labeled
dataset and 99.34% when sampling 30% on the MSTAR dataset.
Meanwhile, it achieves the best performance and a smoother,
faster training state in knowledge transfer experiments, where
MSTAR learned knowledge is transferred to the openSARship
dataset. On the one hand, it shows that our proposed algo-
rithm has excellent potential in small sample learning and SSR
learning. On the other hand, this suggests that the proposed
pretraining strategy can take full advantage of many unlabeled
SAR datasets to pretrain a SAR image feature extractor with high
generalization performance. In future work, based on the con-
trasting strategy, we will attempt to pretrain a more generalized
feature extractor using vast quantities of unlabeled SAR images

and then transfer it to classification, detection, segmentation,
tracking, and other tasks.
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